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REDUCTION TECHNIQUES FOR HOMOLOGICAL
CONJECTURES

By

Dieter HAPPEL

Let $A$ be a finite-dimensional k-algebra over an algebraically closed feld $k$ .
We denote by $mod$ $A$ the category of finitely generated left A-modules. For
an A-module $AX$ we denote by $pd_{A}X$ (resp. $id_{A}X$ ) the projective (resp. injective)

dimension of $X$ . With $D=Hom_{k}(-, k)$ we denote the standard duality with
respect to the ground field. Then $AD(A_{A})$ is an injective cogenerator for $mod A$ .
To formulate some of the homological conjectures we need some more
notation. Let $As\subset mod$ $A$ be the full subcategory containing the finitely gener-
ated injective A-modules. Let $K^{b}(AJ)$ be the homotopy category of bounded
complexes over $A^{c}\mathcal{J}$ . Let $D^{b}(A)$ be the derived category of bounded complexes

over $mod A$ . We consider $K^{b}(AJ)$ as a full subcategory of $D^{b}(A)$ . We define.

$K^{b}(4^{c}9)^{\perp}=$ {$X\in D^{b}(A)|Hom(I,$ $X)=0$ for all $I\in K^{b}(AJ)$ }.

We are interested in the following conjectures:

(1) Finitistic Dimension Conjecture: $fd(A)=\sup\{pd_{A}X|pd_{A}X<\infty\}$ is finite.

(2) Vanishing Conjecture: $K^{b}(Acg)^{\perp}=0$ .

(3) Generalized Nakayama Conjecture: For a simple module $AS$ there is
$i\geqq 0$ such that $Ext_{A}^{i}(AD(A_{A}), AS)\neq 0$ .

We refer to [AR], [B1], [H3] and [J] for some further information about
these conjectures.

The aim of this article is to show that using the language of triangulated
categories certain reduction techniques can be obtained. To be more precise

we will show the following results:
A module $T\in mod$ $A$ is called a (generalized) tilting module if the following

conditions are satisfied:
(i) $pd_{A}T<\infty$

(ii) $Ext_{A}^{t}(T, T)=0$ for all $i>0$
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(iii) There is a long exact sequence $0\rightarrow_{A}A\rightarrow T_{0}\rightarrow\cdots\rightarrow T_{m}\rightarrow 0$ with $ T_{j}\in$

add $T$ .
In section 2 we will show.

THEOREM 1. Let $A$ be a finite-dimensional algebra and $T$ a tilting module.
Let $B=End_{A}T$ . Then $fd(A)<\infty$ if and only if $fd(B)<\infty$ .

Using the notion of recollement introduced by [BBD] (see section 3 for
more details) we show the following result.

THEOREM 2. Let $A$ be a finite-dimensional algebra and assume that $D^{b}(A)$

has a recollement relative to $D^{b}(A^{\prime})$ and $D^{b}(A^{\prime\prime})$ for some finite-dimensional
algebras $A^{\prime},$

$A^{\prime\prime}$ . Then $fd(A)<\infty$ if and only $\iota ffd(A^{\prime})$ and $fd(A^{\prime\prime})<\infty$ .

In section 4 we will see that the generalized Nakayama conjecture is related
to a problem about Grothendieck groups of triangulated categories.

In section one we will recall the terminology about complexes which we
will have to use and recall the relationship of the conjectures above.

We denote the compositionn of morphisms $f:X\rightarrow Y$ and $g:Y\rightarrow Z$ in a
given category X by $fg$ .

1. Perpendicular categories.

1.1. For the convenience of the reader we recall some of the terminology

for complexes which we have to use.

Let $\mathfrak{a}$ be an arbitrary additive subcategory of $mod A$ .
A complex $X=(X^{i}, d_{X}^{i})_{i\in Z}$ over a is a collection of objects $X^{i}$ from $\mathfrak{a}$ and

morphisms $d^{i}=d_{X}^{i}$ : $X^{i}\rightarrow X^{i+1}$ such that $d^{i}d^{i+1}=0$ . A complex $X=(X^{i}, d_{X}^{i})$ is
bounded below if $X^{i}=0$ for all but finitely many $i<0$ . It is called bounded above
if $X^{i}=0$ for all but finitely many $i>0$ . It is bounded if it is bounded below
and bounded above. It is said to have bounded cohomology if $H^{i}(X)=0$ for all
but finitely many $i\in Z$, where by definition $H^{i}(X)=kerd_{X}^{i}/imd_{X^{-1}}^{i}$ . Denote by
$C(a)$ the category of complexes over $\mathfrak{a}$ , by $C^{-}(\mathfrak{a})$ (resp. $C^{+}(\mathfrak{a})$ resp. $C^{-.b}(\mathfrak{a})$ resp.
$C^{+,b}(\mathfrak{a})$ , resp. $C^{b}(\mathfrak{a}))$ the full subcategories of complexes bounded above (resp.

bounded below, resp. bounded above with bounded cohomoIogy, resp. bounded
below with bounded cohomology, resp. bounded above and below).

If $X=(X^{i}, d_{X}^{i})$ is a complex, then $suppX=\{i\in Z|X^{i}\neq 0\}$ is called the
support of $X$ .
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If $X=(X^{i}, d_{X}^{i})_{i\in Z}$ and $Y=(Y^{i}, d_{Y}^{i})_{i\in Z}$ are two complexes, a morphism $f$ :
$X\rightarrow Y$ is a sequence of morphisms $f^{i}$ : $X^{i}\rightarrow Y^{i}$ of $\mathfrak{a}$ such that

$d_{X}^{i}f^{i+1}=f^{i}d_{y}^{i}$

for all $i\in Z$ . The translation functor is defined by

$(X[1])^{i}=X^{i+1}$ , $(d_{X[1]})^{i}=-(d_{X})^{i+1}$ .
The mapping cone $C_{f}$ . of a morphism $f$ : $X\rightarrow Y$ is the complex

$C_{f}.=((X[1])^{i}\oplus Y^{i}, d_{c_{f}}^{i})$

with ’differential’

$d_{c_{f}}^{i}=\left(\begin{array}{ll}-d_{X}^{i+1} & f^{i+1}\\0 & d_{Y}^{i}\end{array}\right)$ .

We denote by $K^{-}(\mathfrak{a}),$ $K^{+}(\mathfrak{a}),$ $K^{-.b}(\mathfrak{a}),$ $K^{+.b}(\mathfrak{a})$ and $K^{b}(a)$ the homotopy cate-
gories of the categories of complexes introduced above. Note that all these
categories are triangulated categories in the sense of [V].

Recall that two morphisms $f,$ $g$ : $X\rightarrow Y$ are called homotopic, if there
exist morphisms $h^{i}$ : $X^{i}\rightarrow Y^{i-1}$ such that $f^{i}-g^{i}=d_{X}^{i}h^{i+1}+h^{i}d_{Y}^{i-1}$ for all $i\in Z$ .

We denote by $A\mathcal{P}$ (resp. $Al$) the full subcategory of $mod$ $A$ formed by the
projective (resp. injective) A-modules. Then we identify the derived category
$D^{b}(A)$ of bounded complexes over $mod$ $A$ with $K^{-,b}(A\mathcal{P})$ or with $K^{+.b}(Ad)$ . In
case $A$ has finite global dimension this yields the identification of $D^{b}(A)$ with
$K^{b}(A\mathcal{P})$ or with $K^{b}(Al)$ , since the natural embedding of $K^{b}(A\mathcal{P})$ into $K^{-,b}(A\mathcal{P})$

is an equivalence in this case. We identify the derived category $D^{-}(A)$ of
complexes bounded above over $mod$ $A$ with $K^{-}(A\mathcal{P})$ and we identify the derived
category $D^{+}(A)$ of complexes bounded below over $mod$ $A$ with $K^{+}(AJ)$ .

1.2. We will briefly recall from $[H3]$ the relationship between the con-
jectures mentioned in the introduction. Recall that we have defined

$K^{b}(A\mathscr{E})^{\perp}=$ {$X\in D^{b}(A)|Hom(I,$ $X)=0$ for all $I\in K^{b}(Acg)$ }.

PROPOSITION. Let $A$ be a finite-dimensional k-algebra. Then
(i) If $fd(A)<\infty$ , then $K^{b}(Ad)^{\perp}=0$ .
(ii) If $K^{b}(A^{c}g)^{\perp}=0$ , then given $0\neq AX$ there exists $i\geqq 0$ such that

$Ext_{A}^{i}(D(A_{A}), X)\neq 0$ .

PROOF. For (i) assume that $K^{b}(A9)^{\perp}\neq 0$ . Let $I\in K^{b}(Al)^{\perp}$ . We assume
that $I=(I^{i}, d_{I}^{i})\neq 0$ . Applying the translation functor if necessary we may
assume that $I^{i}=0$ for $i<0$ . Next consider the complex
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$0-Hom$ ($D(A_{A}),$ I) $-Hom$ ($D(A_{A}),$ I) $-\cdots$

Observe that $Hom(D(A_{A}), I^{j})\in A\mathcal{P}$ . Since $I\in K^{b}(AJ)^{\perp}$ we infer that this complex

is acyclic. Note that pd cok $Hom(D(A_{A}), d^{i})<\infty$ . But this contradicts $fd(A)<\infty$ .
For (ii) assume that there exists $0\neq AX$ with $Ext_{A}^{i}((D(A_{A}), X)=0$ for all

$i\geqq 0$ . Let $I$ be a minimal injective resolution of $AX$ . We consider $I$ as
element of $D^{b}(A)$ . We claim that $I\in K^{b}(Ad)^{\perp}$ .

For this let $J=(J^{i}, d_{J}^{i})\in K^{b}(Ad)$ . So there exists $r\leqq s$ such that $J^{i}=0$ for
$i<r$ and $i>s$ . The width $w(J)$ of $J$ is by definition $s-r+1$ . The assertion
$Hom(J, I)=0$ now follows easily by induction on $w(J)$ by considering a
triangle as in lemma 1.1 of [H1] and applying the cohomological functor
$Hom_{D^{b}(A)}(J$ , - $)$ to this triangle. The start of the induction is just the assump-
tion $Ext_{A}{}^{t}(D(A_{A}), X)=0$ for all $i\geqq 0$ .

The proposition above shows that $K^{b}(Ad)^{\perp}=0$ implies that $A$ satisfies the
socalled Nunke condition (see [J]), in particular satisfies the generalized Naka-
yama conjecture.

1.3. Let $A$ and $B$ be two fnite-dimensional algebras. We say that $A$ and
$B$ are derived equivalent if $D^{b}(A)$ the $D^{b}(B)$ are equivalent as triangulated
categories. We refer to [Ri] for necessary and sufficient conditions and to 2.1
for specific classes of examples.

PROPOSITION. Let $A$ and $B$ be derived equivalent finite-dimensional algebras.

Then $K^{b}(A3)^{\perp}=0$ if and only if $K^{b}(B9)^{\perp}=0$ .

PROOF. In fact, let $F:D^{b}(A)\rightarrow D^{b}(B)$ be a triangle equivalence. Then the
restriction of $F$ to the subcategory $K^{b}(Ad)$ induces a triangle equivalence $K^{b}(A^{s}9)$

$\rightarrow K^{b}(B3)$ , hence $K^{b}(A^{c}J)^{\perp}\cong K^{b}(B9)^{\perp}$ .

2. Tilting invariance.

2.1. Let $A$ be a finite-dimensional algebra and $AT$ be a tilting module.
We consider also $B=End_{A}T$ . We refer to [H1], [H2] and [Mi] for an outline
of tilting theory. We will need that in this situation $A$ and $B$ are derived
equivalent. The functors giving this equivalence are obtained as follows.

We identify $D^{b}(A)$ with $K^{+.b}(A9)$ . Let $t$ be the full subcategory of $mod B$

with objects $Hom_{A}(T, I)$ for $I\in Ag$ . We consider $K^{+.b}(addt)$ as a full sub-
category of $K^{+.b}(mod B)$ and denote by $Q^{+.b}$ the localization functor from
$K^{+.b}(mod B)$ to $D^{b}(B)$ . Let
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$F^{\prime}=Hom_{A}(T$ , - $)$ : $K^{+.b}(A9)-K^{+.b}(addl)$

Then $F=Q^{+.b}F^{\prime}$ is a triangle equivalence from $D^{b}(A)$ to $D^{b}(B)$ .
For the inverse we identify $D^{b}(B)$ with $K^{-b}’(B\mathcal{P})$ and consider the full sub-

category $t^{\prime}$ of $mod$ $A$ with objects $T\otimes_{B}P$ for $P\in B\mathcal{P}$ . We consider $K^{-.b}(addt^{\prime})$

as a full subcategory of $K^{-,b}(mod A)$ and denote by $Q^{-,b}$ the localization functor
from $K^{-,b}(mod A)$ to $D^{b}(A)$ . Let

$G^{\prime}=T\otimes_{B}-:K^{-,b}(B\mathcal{P})-K^{-.b}(add \{’)$

Then $G=Q^{-.b}G$ ‘ is a triangle equivalence from $D^{b}(B)$ to $D^{b}(A)$ , which is
quasiinverse to $F$.

2.2. Let $A$ be a finite-dimensional algebra and $AT$ be a tilting module with
$B=End_{A}T$ . It is known that in this case gl. $\dim A<\infty$ if and only if
gl. $dimB<\infty$ . The next result generalizes this.

THEOREM. $fd(A)<\infty$ if and only if $fd(B)<\infty$ .

PROOF. Let $BM$ be a B-module of finite projective dimension and let $BN$

an arbitrary B-module. Let $P(M)$ and $P(N)$ be minimal projective resolutions
of $M$ and $N$. Note that by assumption $P(M)\in K^{b}(B\mathcal{P})$ and $P(N)\in K^{-.b}(B\mathcal{P})$ .
Using the notation of 2.1 we have the following:

$Ext_{B}^{l}(M, N)=Hom_{Db(B)}(M, N[t])$

$=Hom_{K(B^{\mathcal{Q})}}- b)(P(M), P(N)[t])$

$=Hom_{Db(A)}(G(P(M)), G(P(N)[t]))$

$=Hom_{Db(A)}(G(P(M)), G(P(N))[t])$

for all $t\in N$. We consider the complexes $Q;=(Q_{1}^{i}, d^{i})=T\otimes_{B}P(M)$ and $Q_{2}=$

$T\otimes_{B}P(N)$ . Note that $Q_{2}^{i}=0$ for $i>0$ and that $H^{-\$}(Q;)=0$ for $ s>pdT_{B}=r<\infty$

since $H^{-s}(Qi)=Tor_{s}^{B}(T, M)$ . We consider the complex $X\in D^{b}(A)$ isomorphic
to $Q$ :

$d^{-r}$

$ X=\cdots 0-kerd^{-r}--\neq QTr-\cdots-Q_{1}^{-1}-Q_{1}^{0}-0\cdots$

Since $X\cong G(P(M))\in K^{b}(A\mathcal{P})$ we infer that $pd_{A}kerd^{-r}<\infty$ . Therefore $X\cong Q$

$\in K^{b}(A\mathcal{P})$ with width $w(Q)\leqq r+fd(A)+2$ . Thus $Q$ and $Q_{2}[t]$ have disjoint
support for $t>r+fd(A)+2$ . The calculation above then shows that $Ext_{B}^{l}(M, N)$

$=0$ for $t>r+fd(A)+2$ , so $pd_{B}M\leqq r+fd(A)+2$ , in particular $fd(B)<\infty$ .
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3. Recollement.

3.1. Let $C$ , C’ and $C$ “ be triangulated categories. Following [BBD] a
recollement of $C$ relative to C’ and $C$ “ is given by

$\underline{i^{*}}$ $\underline{j_{!}}$

$i_{*}$ $j^{i}$

$C’\rightarrow C-C^{\prime\prime}$

$i_{!}$ $1^{*}$

$i^{!}$ $j_{*}$

such that
(RI) $(i^{*}, i_{*}),$ $(i_{!}, i^{!}),$ $(j!, j^{!})$ and $(J^{*}, j_{*})$ are adjoint pairs of exact functors

and that $i_{*}=i_{!},$ $j^{!}=j^{*}$

(RII) $j^{*}i_{*}=0$

(RIII) $i^{*}i_{*}\cong id,$ $id\cong i^{!}i_{\iota},$ $j_{J*}^{*}\cong id$ and $id\cong j^{!}j_{!}$

(RIV) For $X\in C$ there are triangles

$j_{\iota J^{!}}X-X-i_{*}i^{*}X\rightarrow j_{!J^{!}}X[1]$

$i_{!}i^{!}X-X-j_{*]^{*}}X-i_{!}i^{!}X[1]$ .
(The morphisms in (RIII) and (RIV) are the adjunction morphisms.

Note that it is a consequence from the definition that also $i_{J*}^{!}=0$ and
$i^{*}j_{!}=0$ . Also we point out that the functors $i_{*},$ $j_{!}$ and $j_{*}$ are full embeddings.

We refer to [BBD] for properties of recollements and to [K\"o] for necessary
and sufficient conditions that $D^{-}(A)$ has a recollement relative to $D^{-}(A^{\prime})$ and
$D^{-}(A^{\prime\prime})$ for some finite-dimensional algebras $A,$ $A^{\prime},$ $A^{\prime\prime}$ .

In particular we mention the following result from [K\"o]. If $D^{-}(A)$ has a
recollement relative to $D^{-}(A^{\prime})$ and $D^{-}(A^{\prime\prime})$ for some finite-dimensional algebras
$A,$ $A^{\prime},$ $A^{\prime\prime}$ and one of the algebras $A,$ $A^{\prime},$ $A^{\prime\prime}$ has finite global dimension then
$D^{b}(A)$ has a recollement relative to $D^{b}(A^{\prime})$ and $D^{b}(A^{\prime\prime})$ .

3.2. For the proof of theorem 2 from the introduction we need some
preparation. We have a canonical embedding of $mod A\rightarrow D^{b}(A)$ which sends an
A-module $X$ to the complex concentrated in degree zero with stalk equal to $X$ .
We will identify $X$ with the corresponding stalk complex.

We will also need the following facts. For a proof we refer to [Ri]. Let
$X\in D^{b}(A)$ , then
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$(*)H^{-j}(X)=Hom_{Db(A)}(AA, X[]])$ for all $j\in Z$

$=Hom_{Db(A)}(X[-]], D(AA))$ for all $j\in Z$ .

The subcategories $K^{b}(A\mathcal{P})$ of $D^{b}(A)$ and $K^{b}(Ad)$ of $D^{b}(A)$ can be characterized
as follows:

$(-)K^{b}(A\mathcal{P})=$ { $X\in D^{b}(A)|\forall Y\in D^{b}(A)\exists t_{0}$ with $Hom(X$ ‘, $Y[t])=0\forall t\geqq t_{0}$ }

$(+)K^{b}(A3)=$ { $X\in D^{b}(A)|\forall Y\in D^{b}(A)\exists t_{0}$ with $Hom(Y,$ $X[t])=0\forall t\geqq t_{0}$ }

LEMMA. Let $B,$ $C$ be finite-dimensional algebras and let

$i^{*}$

$D^{b}(C)^{\leftarrow}-D^{b}(B)$

$i_{*}$

be exact functors with $(i^{*}, i_{*})$ an adjoint pair. Then there is $r\geqq 0$ such that
$H^{-j}(i_{*}X)=0$ for all $X\in mod C$ and all $j\geqq r$ .

PROOF. Let $P=i_{B}^{*}B$ . We claim that $P\in K^{b}(c\mathcal{P})$ . For this let $Y\in D^{b}(C)$ .
Then

$Hom(P, Y)=Hom(BB, i_{*}Y)$ by adjointness.

Since $i_{*}Y\in D^{b}(B)$ and $BB\in K^{b}(B\mathcal{P})$ there is $t_{0}$ such that

$Hom(BB, i_{*}Y[t])=0$ for all $t\geqq t_{0}$ by (–).

So there is $t_{0}$ such that

$Hom(P, Y[t])=0$ for all $t\geqq t_{0}$ ,

hence $P\in K^{b}(c\mathcal{P})$ by (–).

Since $P\in K^{b}(c\mathcal{P})$ there is $r\geqq 0$ such that $P$ and $X[]]$ have disjoint support

for all $j\geqq r$ . So the assertion follows from $(*)$ .
The following is dual to the previous lemma.

LEMMA. Let $B,$ $C$ be finite-dimensional algebras and let

$D^{b}(C)-D^{b}(B)\underline{j_{!}}$

$j^{!}$

be exact functors with $(j_{!}, j^{!})$ an adjoint pair. Then there is $r\geqq 0$ such that
$H^{-j}(j_{!}X)=0$ for all $X\in mod C$ and all $j\geqq r$ .

PROOF. Let $I=j^{!}D(B_{B})$ . We claim that $I\in K^{b}(c\prime i)$ . For this let $ Y\in$
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$D^{b}(C)$ . Then

$Hom(Y, I)=Hom(J!^{Y}\prime D(B_{B}))$ by adjointness.

Since $j_{!}Y\in D^{b}(B)$ and $D(B_{B})\in K^{b}(BJ)$ there is $i_{0}$ such that

$Hom(i_{!}Y, D(B_{B})[t])=0$ for all $t\geqq t_{0}$ by $(+)$ .
So there is $t_{0}$ such that

$Hom(Y, I[t])=0$ for all $t\geqq t_{0}$ ,

hence $I\in K^{b}(cJ)$ by $(+)$ .
Since $I\in K^{b}(cJ)$ there is $r\geqq 0$ such that $I$ and $X[-j]$ have disjoint sup-

port for all $j\geqq r$ . So the assertion follows from $(*)$ .

3.3. We will now give the proof of theorem 2 from the introduction.

THEOREM. Let $A$ be a finite-dimensional algebra and assume that $D^{b}(A)$ has
a recollement relative to $D^{b}(A^{\prime})$ and $D^{b}(A^{\prime\prime})$ for some finite-dimensional algebras
$A^{\prime},$

$A^{\prime\prime}$ . Then $fd(A)<\infty$ if and only if $fd(A^{\prime})<\infty$ and $fd(A^{\prime\prime})<\infty$ .

PROOF. We first show that $fd(A^{\prime})<\infty$ .

Let $A^{\prime S}$ be a simple A’-module and let $Y(S)=i_{*}S$ . Since $Y(S)\in D^{b}(A)$

there is $t_{0}\geqq 0$ with $Y^{\iota}(S)=0$ for all $t\geqq t_{0}$ and all simple A’-modules $S$ . Let $ X\in$

$mod A^{\prime}$ with $pd_{A^{\prime}}X<\infty$ . Then

$Ext_{A^{\prime}}^{l}(X, S)=Hom_{Db(A^{\prime})}(X, S[t])$

$=Hom_{D^{b}(A)}(i_{*}X, Y(S)[t])$ .
We claim that $i_{*}X\in K^{b}(A\mathcal{P})$ . For this let $Y\in D^{b}(A)$ . By (–) there is $m_{0}$ such
that for all $m\geqq m_{0}$ we have that

$Hom_{D^{b}(A^{\prime})}(X, i^{!}Y[m])=0$ .
But again by adjointness we have that

$Hom_{D^{b}(A)}(i_{*}X, Y[m])=Hom_{Db(A^{\prime})}(X, i^{!}Y[m])$ .
Thus using (–) again we infer that $i_{*}X\in K^{b}(A\mathcal{P})$ . So

$ i_{*}X=P^{*}=\cdots 0\rightarrow P^{-*}\rightarrow\cdots\rightarrow P^{0}\rightarrow\cdots\rightarrow P^{\iota^{l}}\rightarrow 0\cdots$ .
Let $r\geqq 0$ be an integer satisfying the assertion in 3.2. If $s\leqq r$ , then for

$t>t_{0}+r$ we infer that $i_{*}X$ and $Y(S)[t]$ have disjoint support for all simple $A^{\prime}-$

modules $S$ . If $s>r$ , then by 3.2 we infer that $pd_{A}kerd_{P}^{-r}<\infty$ , hence
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$pd_{A}kerd_{P}^{-r}\leqq fd(A)<\infty$ . Hence for $t>t_{0}+r+fd(A)$ we infer that $i_{*}X$ and $Y(S)[t]$

have disjoint support for all simple A’-modules $S$ . Hence $Ext_{A^{\prime}}^{i}(X, S)=0$ for all
$i>t_{0}+r+fd(A)$ and all simple A’-modules $S$ . In particular, $fd(A^{\prime})<\infty$ .

A similar proof shows that $fd(A^{\prime\prime})<\infty$ . For the convenience of the reader

we supply the details.
Let $A$ ”

$S$ be a simple A’-module and let $Y(S)=j_{!}S$ . Since $Y(S)\in D^{b}(A)$

there is $t_{0}\geqq 0$ with $Y^{l}(S)=0$ for all $t\geqq t_{0}$ and all simple A’-modules $S$ . Let $ X\in$

$mod A^{\prime\prime}$ with $pd_{A^{n}}X<\infty$ . Then

$Ext_{A^{t}}^{t},(X, S)=Hom_{Db(A^{\prime\prime})}(X, S[t])$

$=Hom_{D^{b}(A)}(j_{!}X, Y(S)[t])$ .

We claim that $j_{!}X\in K^{b}(A\mathcal{P})$ . For this let $Y\in D^{b}(A)$ . By (–) there is $m_{0}$ such
that for all $m\geqq m_{0}$ we have that

$Hom_{D^{b}(A^{\prime\prime})}(X, j^{!}Y[m])=0$ .

But again by adjointness we have that

$Hom_{D^{b}(A)}(J!^{X}\prime Y[m])=Hom_{D}\epsilon_{(A}$ ”) $(X, j^{!}Y[m])$ .

Thus using (–) again we infer that $j_{!}X\in K^{b}(A\mathcal{P})$ . So

$ j_{!}X=P=\cdots 0\rightarrow P^{-s}-\cdots-P^{0}\rightarrow\cdots-P^{s\prime}-0\cdots$ .
Let $r\geqq 0$ be an integer satisfying the assertion of the second lemma in 3.2.

If $s\leqq r$ , then for $t>t_{0}+r$ we infer that $j_{!}X$ and $Y(S)[t]$ have disjoint support

for all simple A’-modules $S$ . If $s>r$ , then by 3.2 we infer that $pd_{A}kerd_{P}^{-r}<\infty$ ,

hence $pd_{A}kerd_{\overline{p}^{r}}\leqq fd(A)<\infty$ . Hence for $t>t_{0}+r+fd(A)$ we infer that $j_{!}X$ and
$Y(S)[t]$ have disjoint support for all simple $A^{\prime\prime}$ -modules $S$ . Hence $Ext_{A^{\prime}}^{l}(X, S)=0$

for all $t>t_{0}+r+fd(A)$ and all simple A’-modules $S$ . In particular, $fd(A^{\prime\prime})<\infty$ .
We now show the converse.
Let $X\in mod$ $A$ with $pd_{A}X<\infty$ and $S$ a simple A-module. By (RIV) there

are triangles:

$j_{!}j^{!}X-X-i^{*}i^{*}X-j_{!}j^{!}X[1]$

and
$i_{!}i^{\iota}S-S-j_{*J^{*}}S-i_{!}i^{!}S[1]$ .

For abbreviation we set: $X^{\prime}=j_{!}j^{!}X,$ $X^{\prime\prime}=i_{*}i^{*}X$ and $S^{\prime}=i_{!}i^{!}S,$ $S^{\prime\prime}=j_{*J^{*}}S$ .
Apply $Hom_{Db(A)}(X$, - $)$ to the second triangle. This yields a long exact sequence,
where we use $m(-, -)=Hom_{Db(A)}(-, -[m])$ as an abbreviation.

. .. $-m(X, S^{\prime})-m(X, S)-m(X, S^{\prime\prime})-m+1(X, S^{\prime})-\cdots$ .
Applying $Hom_{Db(A)}(-, S^{\prime})$ to the first triangle yields a long exact sequence
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... $-m(X^{\prime\prime}, S^{\prime})-m(X, S^{\prime})-m(X^{\prime}, S^{\prime})-m+1(X^{\prime\prime}, S^{\prime})-\cdots$ .

Applying $Hom_{D^{b}(A)}(-, S^{JJ})$ to the first triangle yields a long exact sequence

$-m(X^{\prime\prime}, S^{\prime\prime})-m(X, S^{JJ})-m(X^{\prime}, S^{\prime\prime})-m+1(X^{\prime\prime}, S^{\prime\prime})-\cdots$ .
Next we observe that

$m(X^{\prime}, S^{\prime})=^{m}(’!j^{!}X, i^{!}i^{!}S)$

$=^{m}(j_{!}j^{!}X, i_{*}i|S)$

$=^{m}(i^{*}j_{!}j^{!}X, i^{!}S)$ (by adjointness)

$=0$ (since $i_{*}j_{!}=0$)

and that
$m(X^{\prime\prime}, S^{\prime\prime})=^{m}(i_{*}i^{*}X, j_{*}j^{*}S)$

$=^{m}(i_{!}i^{*}X, j_{*}j^{*}S)$

$=^{m}(i^{*}X, i^{!}j_{*J^{*}}S)$ (by adjointness)

$=0$ (since $i^{!}.i_{*}=0$).

We claim that there is $m_{0}\geqq 0$ such that $m(X^{\prime\prime}, S^{\prime})=0$ for all $m\geqq m_{0}$ . Note
that

$m(X^{\prime\prime}, S^{\prime})=^{m}(i_{*}i^{*}X, i_{:}i^{!}S)$

$=Hom_{Db(A^{\prime})}(i^{*}X, i^{!}S[m])$

Let $Y(S)=i^{!}S$ . So there is $t_{0}\geqq 0$ such that $Y^{t}(S)=0$ for all $t\geqq t_{0}$ . As in
3.2 we may show that $i^{*}X\in K^{b}(A^{\prime}\mathcal{P})$ . So

$ i^{*}X=P=\cdots 0-P^{-s}-\cdots-P^{0}-\cdots-P^{S^{\prime}}-0\cdots$ .
We may apply the second lemma in 3.2 to the pair $(i^{*}, i_{*})$ . So there is

$r\geqq 0$ such that $H^{-j}(i_{*}X)=0$ for all $X\in mod$ $A$ and all $j\geqq r$ . If $s\leqq r$ , then for
$m>t_{0}+r$ we infer that $i^{*}X$ and $Y(S)[m]$ have disjoint support for all simple
A-modules $S$ . If $s>r$ , then by 3.2 we infer that $pd_{A^{\prime}}kerd_{P}^{-r}<\infty$ , hence $pd_{A^{\prime}}$

$kerd_{P}^{-}\leqq fd(A^{\prime})<\infty$ . Hence for $m>t_{0}+r+fd(A^{\prime})$ we infer that $i^{*}X$ and $Y(S)[m]$

have disjoint support for all simple A-modules $S$ . Hence there is $m_{0}\geqq 0$ such
that $m(X^{\prime\prime}, S^{\prime})=0$ for all $m\geqq m_{0}$ .

We claim that there is $n_{0}\geqq 0$ such that $n(X^{\prime}, S^{\prime\prime})=0$ for all $n\geqq n_{0}$ . Note
that

$n(X^{\prime}, S^{\parallel})=^{n}(j_{!}j^{!\chi}, j_{*}\uparrow*s)$

$=Hom_{Db(A^{ll})}(j^{!}X, j^{*}S[m])$

Let $Y(S)=]^{*s}$ . So there is $t_{0}\geqq 0$ such that $Y^{t}(S)=0$ for all $t\geqq t_{0}$ . We
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show first that $j^{!x=]^{*}}X\in K^{b}(A’’ \mathcal{P})$ . For this let $Y\in D^{b}(A^{\prime\prime})$ . Then

$Hom(]*X, Y)=Hom(X, j_{*}Y)$ by adjointness.

Since $j_{*}Y\in D^{b}(A)$ and $X\in K^{b}(B\mathcal{P})$ there is $p_{0}$ such that

$Hom(X, j_{*}Y[t])=0$ for all $p\geqq p_{0}$ by (–).

So there is $p_{0}$ such that

$Hom(]^{*x}, Y[p])=0$ for all $p\geqq p_{0}$ ,

hence $j^{*}X\in K^{b}(A^{\prime\prime \mathcal{P})}$ by (–). So

$ j^{!}X=P=\cdots 0\rightarrow P^{-s}-\cdots\rightarrow P^{0}\rightarrow\cdots\rightarrow P^{s^{\prime}}\rightarrow 0\cdots$ .

We may apply the first lemma in 3.2 to the pair $(j_{!}, j^{!})$ . So there is $r\geqq 0$

such that $H^{-j}(j^{!}X)=0$ for all $X\in mod$ $A$ and all $j\geqq r$ . If $s\leqq r$ , then for $n>t_{0}+r$

we infer that $j^{!}X$ and $Y(S)[n]$ have disjoint support for all simple A-modules
$S$ . If $s>r$ , then by 3.2 we infer that $pd_{A^{n}}kerd_{P}^{-r}<\infty$ , hence $pd_{A^{lJ}}kerd_{P}^{-r}\leqq$

$fd(A^{\prime\prime})<\infty$ . Hence for $n>t_{0}+r+fd(A^{\prime\prime})$ we infer that $i^{!}X$ and $Y(S)[m]$ have
disjoint support for all simple A-modules $S$ . Hence there is $n_{0}\geqq 0$ such that
$n(X^{\prime}, S^{\prime\prime})=0$ for all $n\geqq n_{0}$ .

Let $s_{0}=\max(m_{0}, n_{0})$ .
The previous considerations show that $s(X, S^{\prime})=^{s}(X, S^{\prime\prime})=0$ for all $s\geqq s_{0}$ .

The first long exact sequence then shows that $s(X, S)=Ext_{A}^{s}(X, S)=0$ for all
$s\geqq s_{0}$ and all simple A-modules $S$ . In particular, $fd(A)<\infty$ .

Note that the theorem above generalizes a result of [W] where under the
same assumptions it was shown that gl. $\dim A<\infty$ if and only if gl. $\dim A^{\prime}<\infty$

and gl. $\dim A^{\prime\prime}<\infty$ .

3.4. We give two examples to which this theorem may be applied. We
stress that there exist proofs of these results avoiding the use of triangulated
categories (see for example [FS]).

Let $A^{\prime},$ $A^{\prime\prime}$ be finite-dimensional algebras and let $A^{\prime M}A^{Jl}$ be a bimodule.
Consider the triangular matrix algebra $A$ of the form

$A=\left(\begin{array}{ll}A^{\prime} & M\\0 & A^{\prime}\end{array}\right)$

with multiplication

$(a_{0}^{\prime}$ $am$, $(b_{0^{\prime}}$

$m^{\prime},’$

where $a^{\prime},$ $b^{\prime}\in A^{\prime},$ $m,$ $m^{\prime}\in M$ and $a^{\prime\prime},$
$b^{\prime\prime}\in A^{\prime\prime}$ .
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It is easy to see that the reslt in [Ko] may be applied. So $D^{-}(A)$ has a
recollement relative to $D^{-}(A^{\prime})$ and $D^{-}(A^{\prime\prime})$ .

Asume that $A^{\prime}$ or $A^{\prime\prime}$ has finite global dimension. Then $D^{b}(A)$ has a re-
collement relative to $D^{b}(A^{\prime})$ and $D^{b}(A^{\prime\prime})$ . In particular, $fd(A)<\infty$ if $fd(A^{\prime})<\infty$

and $fd(A^{\prime\prime})<\infty$ .
We refer to [Ko] for other conditions that $D^{b}(A)$ has a recollement relative

to $D^{b}(A^{\prime})$ and $D^{b}(A^{\prime\prime})$ .
In the next example we will use the concept of perpendicular categories

as introduced in [GL], see also [H4].

Let $X\in mod$ $A$ with $pd_{A}X\leqq 1$ . We define the right perpendicular category
$X^{\perp}$ to be the full subcategory of $mod$ $A$ whose objects $Z$ satisfy

$Hom_{A}(X, Z)=0=Ext_{A}^{1}(X, Z)$ .

It is straightforward to see that $X^{\perp}$ is an abelian category, which is closed
under extensions and that the inclusion functor $X^{\perp}\leftrightarrow mod$ $A$ is exact. The next

result states some useful properties of $X^{\perp}$ under additional assumptions. For
the proof we refer to [GL] or [H4].

THEOREM. Let $X\in mod$ $A$ such that $pd_{A}X\leqq 1$ and $Ext_{A}^{1}(X, X)=0$ , then there
exists $AQ\in X^{\perp}such$ that $X^{\perp}\cong mod A_{0}$ , with $A_{0}=End_{A}Q$ . If $X$ is indecomposable,

then $rkK_{0}(A_{0})=rkK_{0}(A)-1$ , where $K_{0}(A)$ denotes the Grothendieck group of $A$ .

Now assume that $A$ admits a simple A-module $S$ with $pd_{A}S=1$ . Note that
we clearly have $Ext_{A}^{1}(S, S)=0$ . Again using [K\"o] we see that $D^{-}(A)$ has a
recollement relative to $D^{-}(A^{\prime})$ and $D^{-}(A^{\prime\prime})$ , where $A^{\prime}=End_{A}Q$ for a projective
generator $AQ$ of $S^{\perp}$ and $A^{\prime\prime}=k$ . Since gl. $\dim k=0$ we infer that $D^{b}(A)$ has a
recollement relative to $D^{b}(A^{\prime})$ and $D^{b}(A^{\prime\prime})$ . In particular, $fd(A)<\infty$ if $fd(A^{\prime})<\infty$ .
We refer to [H4] and [Ko] for other situations in which $D^{b}(A)$ admits a re-
collement.

4. Grothendieck groups.

4.1. The generalized Nakayama conjecture is related to a problem about
Grothendieck groups of triangulated categories. First we need a reformulation
of the generalized Nakayama conjecture which is due to [AR].

(3): Let $AM$ be a cogenerator for $mod$ $A$ with $Ext_{A}^{i}(M, M)=0$ for all $i>0$ ,

then $AM$ is injective.
The following is shown in [AR]. The generalized Nakayama conjecture

holds for all finite-dimensional algebras if and only if the conjecture (3’) holds
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for all finite-dimensional algebras.
Let us indicate one direction.
The following notation seems to be useful. If $AM$ is an A-module we may

decompose $AM=\bigoplus_{i=1}^{\epsilon}M_{\iota^{i}}^{n}$ with $M_{i}$ indecomposable, $M_{i}\neq M_{j}$ for $i\neq j$ and $n_{i}>0$ .
In this case we denote the number $s$ of non-isomorphic indecomposable direct
summands of $M$ by $\delta(M)$ .

We assume that (3’) holds for all finite-dimensional algebras with $rkK_{0}(A)$

$=n-1$ and we claim that the generalized Nakayama conjecture holds for all
finite-dimensional algebras with $rkK_{0}(A)=n$ . In fact, let $A$ be an algebra with
$rkK_{0}(A)=n$ and let

$...-P_{2}\rightarrow P_{1}-P_{0}\rightarrow D(A_{A})-0$

be a minimal projective resolution of $D(A_{A})$ . Assume that there is a simple

A-module $S$ with $Ext_{A}^{i}(D(A_{A}), S)=0$ for all $i$ . Let $P(S)$ be the projective cover
of $S$ . Then $P(S)$ is not a direct summand of $P_{i}$ for all $i$ . Let $AA=P\oplus P(S)^{r}$

such that $P(S)$ is not a summand of $P$. Let $B=End{}_{A}P$. Then it follows from
[Ri] that we have a full exact embedding of triangulated categories $ D^{-}(B)\rightarrow$

$D^{-}(A)$ . By the choice of $P$ we infer that $K^{b}(A\prime 9)$ is contained in $D^{-}(B)$ . Using
the obvious identifications we may consider $D(A_{A})$ as B-module. But $\delta(D(A_{A}))$

$=n$ and $Ext_{B}^{i}(D(A_{A}), D(A_{A}))=0$ for all $i>0$ yields a contradiction to (3’).

We recall now the definition of the Grothendieck group of a triangulated
category [Gr]. For this let $C$ be a triangulated category. Let $\mathcal{F}$ be the free
abelian group on the isomorphism classes of objects in $C$ . The isomorphism
class of an object $X\in C$ is denoted by [X]. Let $\mathcal{F}^{\prime}$ be the subgroup of $\mathcal{F}$

generated by $[X]+[Z]-[Y]$ for all triangles $X\rightarrow Y-\rightarrow Z\rightarrow X[1]$ in $C$ . Then by

definition the Grothendiek group of $C$ is $K_{0}(C)=\mathcal{F}/\mathcal{F}^{\prime}$ .
Let $F:C^{\prime}\rightarrow C$ be an exact functor of triangulated categories. Then there

is an induced map $K_{0}(F):K_{0}(C^{\prime})\rightarrow K_{0}(C)$ .
For example consider the embedding of $K^{b}(A\mathcal{P})$ into $D^{b}(A)$ . Then the in-

duced map on the level of Grothendieck groups turns out to be the Cartan
map (see [B2] for a definition). In particular we see that $K_{0}(F)$ need not to
be injective, if $F$ is an embedding, since it is easy to construct examples of
finite-dimensional algebras $A$ such that the determinant of the Cartan map
vanishes.

In the following proof we will identify an object $X$ with its isomorphism
class [X].

PROPOSITION Let $\mu;D^{b}(A)\rightarrow D^{-}(A)$ be the canonical embeddmg. Then
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$K_{0}(\mu)=0$ .

PROOF. Let $X=(X^{i}, d_{X}^{i})\in D^{b}(A)$ be a complex. Then $X=\Sigma(-1)^{i}X^{t}$ in
$K_{0}(D^{b}(A)$ . Therefore it is enough to show that $K_{0}(\mu)(X)=0$ for $X\in mod A$ ,

which we identify with the complex of $D^{b}(A)$ concentrated in degree zero with
stalk equal to $X$ . For $X\in mod$ $A$ we consider the following complexes. Let
$Y=\coprod_{i\leq 0}X[i]$ and $Z=\coprod_{i<0}X[i]$ . We have a triangle in $D^{-}(A)$ of the form $ X\rightarrow$

$Y\rightarrow Z\rightarrow X[1]$ . Thus $X+Z-Y=0$ in $K_{0}(D^{-}(A))$ . Also consider $Y;=Z;=$

$\coprod_{i\leqq 0}X[2i-1],$ $Y_{2}=\prod_{i\leqq 0}X[2i]$ and $Z_{2}=_{i<0}1IX[2i]$ . We have triangles in $D^{-}(A)$ :

$Zi-Z-Z_{2^{-}}Zi[1]$
and

$Y;-Y-Y_{2^{-}}Y;[1]$ .
In particular, $Z;+Z_{2}-Z=0$ and $Yi+Y_{2}-Y=0$ in $K_{0}(D^{-}(A))$ .

Let $\tilde{X}=(\tilde{X}^{i}, d^{i})$ with $\tilde{X}^{i}=X$ for $i=0,$ $-1$ and $\tilde{X}^{i}=0$ for $-1\neq i\neq 0$ , and
$d^{-1}=id_{X}$ and $d^{i}=0$ for $i\neq-1$ . Let $K;=_{i}I_{\leq}I_{0}\tilde{X}[2i]$ and $K_{2}=_{i}I_{\leqq}I_{0}\tilde{X}[2i-1]$ . Note

that $K:=K_{2}$ in $D^{-}(A)$ , since they are homotopy-equivalent to the zero complex
in $K^{-}(mod A)$ . Clearlv we have triangles

$Y_{2^{-}}Ki-Y:-Y_{2}[1]$
and

$Z_{2^{-}}K_{2^{-}}Zi-Z_{2}[1]$

Thus $Yi+Y_{2}-K;=0$ and $Z;+Z_{2}-K_{2}=0$ in $K_{0}(D^{-}(A))$ . Summarizing we obtain
in $K_{0}(D^{-}(A))$

$X=Y-Z$

$=Y;+Y_{2}-Z;-Z_{2}$

$=K;-K_{2}$

$=0$ .
It was shown in [Gr] that $K_{0}(D^{b}(A))\cong K_{0}(A)$ , which is isomorphic to $Z^{n}$ ,

with $n=\delta(AA)$ .

4.2. Following [V] we call a full triangulated subcategory $C^{\prime}$ of a triang-

ulated subcategory $C$ an epaisse subcategory, if $C^{\prime}$ is closed under direct sum-
mands. We consider the following condition:

$(3^{\prime\prime})$ : Let $C$ be an \’epaisce subcategory of $D^{b}(A)$ such that $K_{0}(A)$ is finitely

generated. Then $rkK_{0}(C)\leqq n$ .

REMARK. If $(3^{\prime\prime})$ holds then the generalized Nakayama conjecture holds.
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PROOF. By the mentioned result of [AR] it is enongh to verify condition
(3’). Let $AM$ be a generator which satisfies $Ext_{A}^{i}(M, M)=0$ for all $i>0$ . Then
it is easy to see that we obtain a full embedding $K^{b}$ (add $M$ ) $\rightarrow D^{b}(A)$ (compare

[H1]). So we may consider $K^{b}$ (add $M$ ) as an \’epaisse subcategory of $D^{b}(A)$ .
A straightforward calculation shows that $K_{0}(K^{b}(addM))\cong Z^{\delta(M)}$ . So $\delta(M)\leqq n$

by $(3^{\prime\prime})$ . Since $M$ is a generator we know that $AA$ is a direct summand of $M$,

hence $M$ is projective.

Note that the proof actually shows that for an arbitrary A-module $M$ which
satisfies $Ext_{A}^{i}(M, M)=0$ for all $i>0$ the number $\delta(M)\leqq n$ in case $(3^{\prime\prime})$ holds.

It is easy to construct counterexamples to the condition $(3^{\prime\prime})$ if we leave
out the assumptions that $C$ is \’epaisse or that $K_{0}(C)$ is finitely generated. For
instance let $A$ be a finite-dimensional tame hereditary algebra and let $C=D^{b}(R)$

be the derived category of the abelian subcategory $R\subset mod$ $A$ of regular A-
modules. Clearly $C$ is an \’epaisse subcategory of $D^{b}(A)$ , but $K_{0}(C)$ is not finitely

generated. We thank H. Lenzing for this example, which led to a reformula-
tion of a more optimistic version of $(3^{\prime\prime})$ .

References

[AR] Auslander, M., and Reiten, I., On a generalized version of the Nakayama con-
jecture, Proc. Amer. Math. Soc. 52 (1975), 69-74.

[B1] Bass, H., Finitistic dimension dimension and a homological generalization of semi.
primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.

[B2] Bass, H., Algebraic K-Theory, Benjamin (Now York 1968).
[BBD] Beilinson, A. A., Bernstein, J. and Deligne, P., Faisceaux pervers, Ast\’erique

100 (1982).
[FS] Fuller, K. R. and Saorin, M., On the finitistic dimension conjecture and the theorem

of E. Green and B. Zimmermann-Huisgen, preprint.
[GL] Geigle, W. and Lenzing, H., Perpendicular categories with applications to repre-

sentations and sheaves, preprint.
[Gr] Grothendieck, A., Groupes des cat\’egories abeliennes et triangul\’ee, SGA 5, Springer

Lecture Notes 589 (Heidelberg 1977), 351-371.
[H1] Happel, D., On the derived category of a finite-dimensional algebra, Comment.

Math. Helv. 62 (1987), 339-389.
[H2] Happel, D., Triangulated categories in the representation theory of finite-dimen-

sional algebras, Cembridge University Press 119 (1988).
[H3] Happel, D, On Gorenstein algebras, in Representation Theory of Finite Groups

and Finite-Dimensional Algrebras, Birkh\"auser Verlag (Base11991), 389-404.
[H4] Happel, D., Partial tilting modules and recollement. Proceedings Malcev Conference,

to appear.
[J] Jans, J. P., Some genralizations of finite projective dimension, lllinois J. Math. 5

(1961), 334-344.
[Ko] Konig, S., Tilting complexes, perpendicular categories and recollement of derived

module categories of rings, J. of Pure and Applied Algebra 73 (1991), 211-



130 Dieter HAPPEL

232.
[Mi] Miyashita, Y., Tilting modules of finite proiective dimension, Math. Zeitschrift

193 (1986), 113-146.
[Ri] Rickard, J., Morita theory for derived categories, J. London Math. Soc. 39 (1989),

436-456.
[V] Verdier, J. L., Cat\’egories d\’eriv\’ees, \’etat 0, Springer Lecture Notes 569 (1977),

262-311.
[W] Wiedemann, A., On stratifications of derived module categories, preprint.

Kerwords. finitistic dimension, derived categories, recollement
1991 Mathematics subject classifications: $16E10,18E30$ .

Fachbereich Mathematik
Technische Universit\"at Chemnitz
Postfach 964
09009 Chemnitz
Germany


	REDUCTION TECHNIQUES FOR ...
	THEOREM 1. ...
	THEOREM 2. ...
	1. Perpendicular categories.
	2. Tilting invariance.
	THEOREM. $fd(A)<\infty$ ...

	3. Recollement.
	THEOREM. Let ...
	THEOREM. Let ...

	4. Grothendieck groups.
	References


