RECOLLEMENT AND IDEMPOTENT IDEALS

Dedicated to Professor Hiroyuki Tachikawa on his 60th birthday

By

Jun-ichi Miyachi

The notion of quasi-hereditary algebras was introduced by E. Cline, B. Parshall and L. Scott [3, 4, 8 and 9]. A quasi-hereditary algebra is defined by a chain of particular idempotent ideals, and induces a sequence of recollements of their derived categories. In case A is a semiprimary ring, V. Dlab and C. M. Ringel [5] studied the notion of a quasi-hereditary ring. The notion of recollement was introduced by A. A. Beilinson, J. Bernstein and P. Deligne [2]. In [7] we studied localization of triangulated categories and derived categories, and showed that recollement is equivalent to bilocalization.

Recall that an ideal I of a ring A is called idempotent if $I=A e A$ for some idempotent e of A; in particular, I is a minimal idempotent ideal provided that e is primitive. An ideal J of A is said to be a heredity ideal of A if $J^{2}=J$, $J(\operatorname{Rad} A) J=0$, and J_{A} is projective. Then, in case of A being a semiprimary ring, J is a heredity ideal if and only if there exists an idempotent e of A such that: (1) $J=A e A$; (2) $A e \bigotimes_{e A e} e A \cong A e A$; (3) $e A e$ is a semisimple ring [5, 9]. In this case, E. Cline, B. Parshall and L. Scott showed that $\left\{\boldsymbol{D}^{b}(\operatorname{Mod} A / A e A)\right.$, $\left.\boldsymbol{D}^{b}(\operatorname{Mod} A), \boldsymbol{D}^{b}(\operatorname{Mod} e A e)\right\}$ is recollement [9].

In this note, we give necessary and sufficient conditions for $\left\{\boldsymbol{D}^{b}(\operatorname{Mod} A / A e A)\right.$, $\left.\boldsymbol{D}^{b}(\operatorname{Mod} A), \boldsymbol{D}^{b}(\operatorname{Mod} e A e)\right\}$ to be recollement in case of A is left noetherian or semiprimary. In particular, we study when a minimal idempotent ideal satisfies recollement conditions. Throughout this note, we assume that all rings have unity and that all modules are unital. For a ring $A, \operatorname{Mod} A$ (resp. A-Mod) is the category of right (resp., left) A-modules, and $\bmod A$ (resp., A-mod) is the category of finitely presented right (resp., left) A-modules.

The author would like to thank M. Hoshino for helpful suggestions and discussions.

Theorem 1. Suppose A is a left noetherian or semiprimary ring. Let e be an idempotent of A. The following assertions are equivalent:
(1) $\left.\left\{\boldsymbol{D}^{b}(\operatorname{Mod} A / A e A), \boldsymbol{D}^{b}(\operatorname{Mod} A), \boldsymbol{D}^{b}(\operatorname{Mod} e A e)\right)\right\}$ is recollement,
(2) (i) $\operatorname{Tor}_{i}^{A}(A / A e A, A / A e A)=0$ for all $i>0$; (ii) $\{(a)$ or $(c)\}$ and $\{(b)$ or $(d)\}$.
(3) (i) $\operatorname{Ext}_{A}^{i}\left(A / A e A_{A}, A / A e A_{A}\right)=0$ for all $i>0$; (ii) (a) and $\{(b)$ or $(d)\}$,
(4) (i) $\left.\operatorname{Ext}_{A}^{i}{ }_{A} A / A e A,{ }_{A} A / A e A\right)=0$ for all $i>0$; (ii) (b) and $\{(a)$ or (c)\},
(5) (i) $A e \bigotimes_{e A e} e A \cong A e A$ and $\operatorname{Tor}_{i}^{e A e}(A e, e A)=0$ for all $i>0$; (ii) $\{(a)$ or (c) $\}$ and $\{(b)$ or $(d)\}$,
where (a) $\operatorname{pdim} A / A e A_{A}<\infty$, (b) $\operatorname{pdim}_{A} A / A e A<\infty$, (c) $\operatorname{pdim} A e_{e A e}<\infty$, and (d) $\operatorname{pdim}_{e A e} e A<\infty$.

Proof. First, we show that if A is left noetherian or semiprimary, then we have $\operatorname{wdim}_{A} A / A e A=\operatorname{pdim}_{A} A / A e A$ and $\operatorname{wdim}_{e A_{e} e} e A=\operatorname{pdim}_{e A e} e A$. If A is left noetherian, then ${ }_{A} A e A$ is a finitely generated left A-module. Therefore we have an epimorphism ${ }_{A} A e^{(n)} \rightarrow_{A} A e A$ for some $n \in N$. This implies that $e A$ is a finitely generated left $e A e$-module. By [1, Theorem 4], we have $\operatorname{wdim}_{A} A / A e A=\operatorname{pdim}_{A} A / A e A$ and $\operatorname{wdim}_{e A e} e A=\operatorname{pdim}_{e A e} e A$. If A is semiprimary, then we have also same results by [1, Proposition 7]. According to [7, Section 2 and 3], it suffices to show that the condition (i) in (2)-(5) hold, in order to show that (1) implies the other assertions. Conversely, if the functor $\boldsymbol{D}^{b}(\operatorname{Mod} A / \operatorname{Ae} A) \rightarrow \boldsymbol{D}^{b}(\operatorname{Mod} A)$ is fully faithful, then $0 \rightarrow \boldsymbol{D}^{b}(\operatorname{Mod} A / A e A) \rightarrow$ $\boldsymbol{D}^{b}(\operatorname{Mod} A) \rightarrow \boldsymbol{D}^{b}(\operatorname{Mod} e A e) \rightarrow 0$ is exact in the sense of [2]. According to [7, Section 2], (a) and (b) are equivalent to (c) and (d), respectively. And (ii) of the other assertions imply that $\left\{\boldsymbol{D}^{b}(\operatorname{Mod} A / A e A), \boldsymbol{D}^{b}(\operatorname{Mod} A), \boldsymbol{D}^{b}(\operatorname{Mod} e A e)\right\}$ is recollement (see [7, Sections 2, 3 and Proposition 5.9] for details).
$(1) \Rightarrow(2): \quad \boldsymbol{D}^{b}(\operatorname{Mod} A / A e A) \rightarrow \boldsymbol{D}^{b}(\operatorname{Mod} A)$ has a left adjoint, say G. Then $G \cong$ $L^{-b}\left(-\bigotimes_{A} A / A e A\right)$ (see [7, Section 3] or [8, Proof of (2.1) Theorem]). Therefore we have the following isomorphism in $\boldsymbol{D}^{b}(\operatorname{Mod} A / \operatorname{Ae} A)$:

$$
A / A e A \cong \boldsymbol{L}^{-b}\left(-\otimes_{A} A / A e A\right)(A / A e A)
$$

In particular, we have

$$
\operatorname{Tor}_{i}^{A}(A / A e A, A / A e A)=0 \quad \text { for all } i>0
$$

$(2) \Rightarrow(1)$: According to [7, Proposition 5.3] or [8, Proof of (2.1) Theorem], we have a fully faithful functor

$$
\boldsymbol{D}^{b}(\operatorname{Mod} A / A e A) \longrightarrow \boldsymbol{D}^{b}(\operatorname{Mod} A)
$$

$(1) \Leftrightarrow(5)$: See [8, (2.1) Theorem] and [9, Theorem 2.1].
$(1) \Rightarrow(3)$: This is trivial by the following isomorphisms:

$$
\begin{aligned}
\operatorname{Ext}_{A}^{i}\left(A / A e A_{A}, A / A e A_{A}\right) & \cong \operatorname{Hom}_{D b(\operatorname{Mod} A)}\left(A / A e A_{A}, A / A e A_{A}[i]\right) \\
& \cong \operatorname{Hom}_{D b(\operatorname{Mod} A / A e A)}\left(A / A e A_{A}, A / A e A_{A}[i]\right) \\
& =0 \quad \text { for all } i>0 .
\end{aligned}
$$

$(3) \Rightarrow(1)$: By Rickard's results there exists a fully faithful functor $\boldsymbol{D}^{-}(\operatorname{Mod} A / A e A) \rightarrow \boldsymbol{D}^{-}(\operatorname{Mod} A), \quad$ in particular, a fully faithful functor $\boldsymbol{D}^{b}(\operatorname{Mod} A / A e A) \rightarrow \boldsymbol{D}^{b}(\operatorname{Mod} A)$ (see [6], [10] and [11]).
$(4) \Rightarrow(2)$: Considering $(3) \Rightarrow(1)$ in case of the left module categories (we need not assume that A is right noetherian), $\left\{\boldsymbol{D}^{b}(A / A e A-M o d), \boldsymbol{D}^{b}(A-M o d), D^{b}(e A e-\right.$ $\operatorname{Mod})\}$ is recollement. As well as (1) $\Rightarrow(2)$, we get $\operatorname{Tor}_{i}^{A}(A / A e A, A / A e A)=0$ for all $i>0$.
$(2) \Rightarrow(4)$: Since the condition (2) is symmetric, $\left\{\boldsymbol{D}^{b}(A / A e A-M o d), \boldsymbol{D}^{b}(A\right.$-Mod), $\left.\boldsymbol{D}^{b}(e A e-M o d)\right\}$ is recollement (we need not assume that A is right noetherian). well as (1) $\Rightarrow \Rightarrow(3)$, we get $\operatorname{Ext}_{A}^{i}\left({ }_{A} A / A e A,{ }_{A} A / A e A\right)=0$ for all $i>0$.

REMARK. (2)-(5) in the above theorem are also equivalent for right noetherian rings.

Recall that a ring A is called a noetherian algebra if its center $\boldsymbol{Z}(A)$ is a noetherian ring, and A is a finitely generated $\boldsymbol{Z}(A)$-module.

Proposition 2. Let A be a noetherian algebra, and e an idempotent. The following assertions are equivalent:
(1) $\left\{\boldsymbol{D}^{b}(\bmod A / A e A), \boldsymbol{D}^{b}(\bmod A), \boldsymbol{D}(\bmod e A e)\right.$ is recollement,
(2) $\left\{\boldsymbol{D}^{b}(\operatorname{Mod} A / A e A), \boldsymbol{D}^{b}(\operatorname{Mod} A), \boldsymbol{D}^{b}(\operatorname{Mod} e A e)\right\}$ is recollement.

Proof. In general, if R is a right coherent ring, then we have $\boldsymbol{D}^{b}{ }_{\bmod R}(\operatorname{Mod} R) \cong \boldsymbol{D}^{b}(\bmod R)$. Also, for a given $X \in \bmod R$, if $\operatorname{Ext}_{R}^{i}(X, Y)=0$ for all $i>n$ and $Y \in \bmod R$, then $\operatorname{pdim} X_{R} \leqq n$.
$(1) \Rightarrow(2)$: Let F and G be right and left adjoint functors of $D^{b}(\bmod A / A e A)$ $\rightarrow \boldsymbol{D}^{b}(\bmod A)$, respectively. Since A is noetherian and $A / A e A$ is a finitely generated A-module, we have $G \cong L^{-b}\left(-\otimes_{A} A / A e A\right)$, and $\operatorname{Tor}_{i}^{A}(A / A e A, A / A e A)$ $=0$ for all $i>0$ as well as $(1) \Rightarrow(2)$ in the proof of theorem 1. Moreover $\operatorname{Tor}_{i}^{4}(\bmod A, A / A e A)=0$ implies $\operatorname{Tor}_{i}^{4}(\operatorname{Mod} A, A / A e A)=0$ for all i, in particular, $\operatorname{pdim}{ }_{A} A / A e A<\infty$. For given $X \in \bmod A$, we have the following isomorphisms :

$$
\begin{aligned}
\operatorname{Ext}_{A}^{i}(A / A e A, X) & \cong \operatorname{Hom}_{D b(\bmod A)}(G(A / A e A), X[i]) \\
& \cong \operatorname{Hom}_{D b(\bmod A / A e A)}(A / A e A, F X[i]) \\
& \cong H^{i}(F X[i]) \quad \text { for all } i .
\end{aligned}
$$

Since $F X[i]$ is contained in $\boldsymbol{D}^{b}(\bmod A)$, we get $\operatorname{pdim} A / A e A_{\Lambda}<\infty$. Hence $\left\{\boldsymbol{D}^{b}(\operatorname{Mod} A / A e A), \boldsymbol{D}^{b}(\operatorname{Mod} A), \boldsymbol{D}^{b}(\operatorname{Mod} e A e)\right\}$ is recollement by Theorem 1.
$(2) \Rightarrow(1)$: Let E and H be right and left adjoint functors of $\boldsymbol{D}^{b}(\operatorname{Mod} A / A e A)$ $\rightarrow \boldsymbol{D}^{b}(\operatorname{Mod} A)$, respectively. It is clear that $\boldsymbol{D}^{b}(\bmod A / A e A) \rightarrow \boldsymbol{D}^{b}(\bmod A)$ has a left adjoint. Since A is a noetherian algebra, and $A / A e A$ is finitely generated, $\operatorname{Ext}_{A}^{i}(A / A e A, X)$ is a finitely generated $A / A e A$-module for all $X \in \bmod A$. Then it is easy to see that $\left.\operatorname{Im} H\right|_{D b(\bmod A)}$ is contained in $\boldsymbol{D}^{b}{ }_{\bmod A}(\operatorname{Mod} A)$. By the above equivalence, $\boldsymbol{D}^{b}(\bmod A / A e A) \rightarrow \boldsymbol{D}^{b}(\bmod A)$ has a right adjoint. We are done by Theorem 1.

Let A be a left (or right) noetherian or semiprimary ring. An ideal I of A is called a recollement ideal of A if $I=A e A$ with some idempotent e of A which satisfies the equivalent conditions (2)-(5) of Theorem 1 . The next proposition is useful to exhibiting examples of recollement ideals.

Proposition 3. Let R be a commutative ring, and A and B-algebras. Suppose A is a left or right noetherian ring and B is a finitely generated projective R-module. If I is a recollement ideal of A, then $I \otimes_{R} B$ is a recollement ıdeal of $A \otimes_{R} B$.

Proof. First, $A \otimes_{R} B$ is a left or right noetherian ring, because B is a finitely generated R-module. Since B is R-projective, we have pdim $I_{A} \geqq$ $\operatorname{pdim} I \otimes_{R} B_{A \otimes_{R} B}$ and $\operatorname{pdim}_{R} I \geqq \operatorname{pdim}_{A \otimes_{R^{B}}} I \otimes_{R} B$. And let P. be a projective resolution of A / I. Then we have

$$
\begin{aligned}
& \operatorname{Tor}_{i}^{A} \otimes_{R}^{B} \\
&\left(A / I \otimes_{R} B, A / I \otimes_{R} B\right) \cong \mathrm{H}_{l}\left(P \cdot \otimes_{R} B \otimes_{A \otimes_{R} B} A / I \otimes_{R} B\right) \\
& \cong \mathrm{H}_{l}\left(P \cdot \otimes_{A} A / I\right) \otimes_{R} B \\
& \cong \operatorname{Tor}_{i}^{A}(A / I, A / I) \otimes_{R} B \\
&=0 \quad \text { for all } i>0 .
\end{aligned}
$$

Lemma 4. If A is a local semiprimary ring, then $\operatorname{pdim} M$ is 0 or ∞, for all modules M.

Proposition 5. Suppose A is a semıprimary ring. Let I be a minimal idempotent ideal of A. Then I is a recollement ideal of A if and only if I is projective as both a left and right A-module.

Proof. If $I=A e A$ is projective as both a left and right A-module, then it is easy to see that $A / A e A$ satisfies the condition (2) of Theorem 1. Con-
versely, if $I=A e A$ is a recollement ideal, then $A e A$ has finite projective dimension. Let P. be a projective resolution of $A e$ as right $e A e$-modules. Then given any left A-module X, we get

$$
\begin{aligned}
\operatorname{Tor}_{i}^{A}(A e A, X) \cong \operatorname{Tor}_{i}^{A}\left(A e \otimes_{e A e} e A, X\right) & \cong \mathrm{H}_{l}\left(P \cdot \otimes_{e A e} e A \otimes_{A} X\right) \\
& \cong \operatorname{Tor}_{i}^{e A e}(A e, e X) .
\end{aligned}
$$

For every left $e A e$-module Y, there exists a left A-module X such that Y is isomorphic to $e X$. Then $A e$ has finite projective dimension in Mod $e A e$. Since I is a minimal idempotent ideal of $A, e A e$ is a local semiprimary ring. Therefore $A e$ is a projective right $e A e$-module by Lemma 4. Hence $A e A$ is a projective right A-module by the above isomorphisms. Similarly, $A e A$ is also a projective left A-module.

According to the above proposition, it suffices to find idempotent ideals which are two-sided projective, when we want to find minimal recollement ideals. But the following proposition implies that heredity ideals are best possible in case of rings of finite global dimension.

Proposition 6 Suppose A is a semiprimary ring of finite global dimension. Let I be a minimal idempotent ideal. Then I is a recollement ideal if and only if I is a heredity rdeal.

Proof. Let I be $A e A$ with some idempotent e of A, P. a projective resolution of $e A e / e J e$ as right $e A e$-modules. The $P \cdot \otimes_{e A e} e A$ is a projective resolution of $e A / e J e A$ as right A-modules, where J is the radical of A. Therefore, we get

$$
\begin{aligned}
\operatorname{Tor}_{i}^{e_{i}^{A e}}(e A e / e J e, e X) & \cong \mathrm{H}_{l}\left(P \cdot \otimes_{e A e} e A \otimes_{A} X\right) \\
& \cong \operatorname{Tor}_{i}^{A}(e A / e J e A, X)
\end{aligned}
$$

According to assumption, pdim $e A / e J e A<\infty$, and $\operatorname{pdim} e A e / e J e<\infty$. Since $e A e$ is a local semiprimary ring, $e A e / e J e$ is a projective $e A e$-module by Lemma 4. Hence $e J e=0$.

Examples. (a) Let A be a finite dimensional algebra over a field k which has a quiver with relations:

with $\alpha^{2}=\varepsilon^{2}=\gamma \beta=0$. Then $A e_{1} A$ is projective as both sides. Moreover, $e_{1} A e_{1}$ is isomorphic to $k[x] /\left(x^{2}\right)$ as a ring, and $A / A e_{1} A$ has the following quiver with relations:

with $\varepsilon^{2}=0$. Hence we have $\operatorname{pdim} A=\operatorname{gldim} e_{1} A e_{1}=\operatorname{gldim} A / A e_{1} A=\infty$.
(b) Let A be a finite dimensional algebra over a field k which has a quiver with relations:

with $\beta \alpha=\delta \gamma=\beta^{2}=\delta^{2}=0$. Then $A\left(e_{1}+e_{2}\right) A$ is a recollement ideal. But $A e_{2} A$ is not a recollement ideal because of $\operatorname{pdim} A e_{2} A_{A}=\infty$.

References

[1] Auslander, M., On the dimension of modules and algebras, III, Nagoya Math. J. 9 (1955), 67-77.
[2] Beilinson, A. A., Bernstein, J. and Deligne, P., Faisceaux pervers, Astérisque 100 (1980).
[3] Cline, E., Parshall, B. and Scott, L., Algebraic stratification in representation categories, J. Algebra 117 (1988), 594-521.
[4] Cline E., Parshall, E. and Scott, L., Finite dimensional algebras and highest weight categories, J. reine angew. Math. 391 (1988), 85-99.
[5] Dlab, V. and Ringel, C. M., Quasi-hereditary algebras, Illinois J. Math. 33 (1989), 280-291.
[6] König, S., Tilting complexes, perpendicular categories and recollements of derived categories of rings, J. Pure and Applied Algebra 73 (1991), 211-232.
[7] Miyachi, J., Localization of triangulated categories and derived categories, J. Algebra 141 (1991), 463-483.
[8] Parshall, B., Finite dimensional algebras and algebraic groups, Contemp. Math. 82 (1989), 97-113.
[9] Parshall, B. and Scott, L., Derived categories, quasi-hereditary algebras, and algebraic groups, Carlton University Math. Notes 3 (1989), 1-111.
[10] Rickard, J., Equivalences of derived categories of modules, preprint.
[11] Rickard, J., Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), 436-456.

Department of Mathematics
Tokyo Gakugei University
Koganei-shi, Tokyo, 184
Japan

