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A CLASS OF MULTIVALENT FUNCTIONS

By

Mamoru NUNOKAWA

1. Introduction.

Let $A(p)$ be the class of functions of the form

$f(z)=z^{p}+\sum_{n=p+1}^{\infty}a_{n}z^{n}$ $(p\in N=1,2,3, \cdots)$

which are analytic in $U=\{z||z|<1\}$ .
A function $f(z)\in A(p)$ is said to be p-valently starlike iff

${\rm Re}\frac{zf^{\prime}(z)}{f(z)}>0$ in $U$ .

We denote by $S(p)$ the subclass of $A(p)$ consisting of functions which are
p-valently starlike in $U$ . Further, a function in $A(p)$ is said to be p-valently
convex iff

$1+{\rm Re}\frac{zf^{\prime\prime}(z)}{f\prime(z)}>0$ in $U$ .

Also we denote by $C(p)$ the subclass of $A(p)$ consisting of all p-valently

convex functions in $U$ .
MacGregor [2] investigated the class of functions which are analytic in $U$ ,

$f(O)=f^{\prime}(O)-1=0$ and satisfy the condition

$|f^{\prime}(z)-1|<1$ in $U$ .

Let $F$ denote the cIass of functions which satisfy the above conditions.
MacGregor [2, Theorem 6] obtained the following result:

THEOREM A. If $f(z)\in F$, then $f(z)$ is starlike in $|z|<\sqrt{4/4}=$ 0.894.

Nunokawa [4] and Nunokawa, Fukui, Owa, Saitoh and Sekine [6] improved
Theorem A. Mocanu [3] showed that there is a function $f(z)\in A(1)$ which is
a member of $F$ but not starlike in $|z|<1$ .

THEOREM B. If $f(z)\in F$, then $f(z)$ is starlike in $|z|<r_{1}<1$ , where $r_{1}$ is the
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root of the equation

$\log(9-4r^{2}+4r^{3}-r^{4})-\log 9(1-r^{2})+\sin^{-1}r=\pi$ ,

that is $r_{1}\doteqdot 0.934$ .

A proof of Theorem $B$ can be found in [6, Corollary].

2. Main theorem.

In this paper, we need the following lemmata.

LEMMA 1. Let $w(z)$ be analytic in the unit disk $U$ , with $w(O)=0$ . If $|w(z)|$

attains its maximum value on the circle $|z|=r$ at a point $z_{0}$ , then we can write

$z_{0}w^{\prime}(z_{0})=kw(z_{0})$

where $k$ is a real number and $k\geqq 1$ .

A proof can be found in [1].

Applying Lemma 1, we can obtain the following lemma.

LEMMA 2. Let $p(z)$ be analytic in $U,$ $p(O)=1$ and suppose that

(1) $|p(z)+zp^{J}(z)-1|<\sqrt{2}$ in $U$ .

Then we have

$|p(z)-1|<\frac{\sqrt{2}}{2}$ in $U$

and

$|\arg p(z)|<\frac{\pi}{4}$ in $U$ .

PROOF. Putting

$p(z)=1+\frac{\sqrt{2}}{2}w(z)$ ,

then $w(z)$ is analytic in $U$ and $w(O)=0$ . If there exists a point $z_{0}\in U$ such that

$\max_{|z|\leqq|z_{0}}|w(z)|=|w(z_{0})|\geqq 1$ ,

then from Lemma 1, we nave
$z_{0}w^{\prime}(z_{0})=kw(z_{0})$ , $(k\geqq 1)$ .

Then $w$ have
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$|p(z_{0})+z_{0}p^{J}(z_{0})-1|=\frac{\wedge 2}{2}|w(z_{0})+kw(z_{0})|$

$=\frac{\sqrt{2}}{2}|w(z_{0})|(1+k)\geqq\frac{\sqrt{2}}{2}(1+k)\geqq\sqrt{2}$ .

This contradicts (1). Therefore we have

$|w(z)|<1$ in $U$ .
This shows that

$|p(z)-1|<\frac{\sqrt{2}}{2}$ in $U$ .

and therefore we have

$|\arg p(z)|<\frac{\pi}{4}$ in $U$ .

This completes our proof.
Applying the same method as in the proof of [5, Lemma 6 and Theorem 5],

we can easily obtain the following lemma.

LEMMA 3. Let $p\geqq 2$ . If $f(z)\in A(p)$ satisfies the condition

${\rm Re}\frac{zf^{(p-1)}(z)}{f^{(p-2)}(z)}>0$ in $U$ ,

then we have

${\rm Re}\frac{zf^{\prime}(z)}{f(z)}>0$ in $U$ .

MAIN THEOREM. Let $p\geqq 2$ . If $f(z)\in A(p)$ satisfies the condition

(2) $|f^{(p)}(z)-p!|<\sqrt{2}(p!)$ in $U$ ,

then $f(z)$ is p-valently starlike in $U$ .

PROOF. Let us put

(3) $p(z)=\frac{f^{(p-1)}(z)}{p!z}$ , $(p(0)=1)$ .

Then we have

$p(z)+zp^{J}(z)-1=\frac{f^{(p)}(z)}{p!}-1$ ,

and from the hypothesis (2), we have

$|p(z)+zp^{J}(z)-1|<\sqrt{2}$ in $U$ .
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Then, from Lemma 2 and (3), we have

(4) $|\arg p(z)|=|\arg\frac{f^{(p-1)}(z)}{p!z}|=|\arg\frac{f^{(p-1)}(z)}{z}|<\frac{\pi}{4}$ in $U$ .

Applying the same idea as in the proof of [7, Theorem 1] and integrating
on the line segment from $0$ to $z$ , we have

(5) $\frac{f^{(p-2)}(z)}{z^{2}}=\frac{1}{z^{2}}\int_{0}^{z}f^{(p-1)}(t)dt$

$=\frac{1}{r^{2}}\int_{0^{r}}\frac{f^{(p-1)}(t)}{t}\rho d\rho$

where $z=re^{i\theta},$ $0<r<1,$ $t=\rho e^{i\theta}$ and $0\leqq\rho\leqq r$ .
From (4), we have

(6) $|\arg\frac{f^{(p-1)}(t)}{t}\rho|=|\arg\frac{f^{(p- 1)}(t)}{t}|<\frac{\pi}{4}$ in $U$ .

Applying the same idea as in the proof of [8, Lemma 1] and since $s=$

$f^{(p-1)}(t)/t$ lies in the convex sector $\{|\arg s|<\pi/4\}$ , then from (5) and (6), the
same is true of its integral mean value of (5).

Therefore, we have

(7) $|\arg\frac{f^{(p-2)}(z)}{z^{2}}|=|\arg\frac{1}{\gamma^{2}}\int_{0^{r}}\frac{f^{(p-1)}(t)}{t}\rho d\rho|$

$=|\arg\int_{0^{r}}\frac{f^{(p-1)}(t)}{t}\rho d\rho|<\frac{\pi}{4}$ in $U$ .

From (4) and (7), we have

$|\arg\frac{zf^{(p-1)}(z)}{f^{(p-2)}(z)}|=|\arg\frac{f^{(p-1)}(z)z^{2}}{zf^{(\rho-2)}(z)}|$

$\leqq|\arg^{\underline{f}^{(}}\frac{p-1)(z)}{z}|+|\arg\frac{f^{(p-1)}(z)}{z^{2}}|<\frac{\pi}{2}$ in $U$ .

This shows that

(8) ${\rm Re}\frac{zf^{(p-1)}(z)}{f^{(p-2)}(z)}>0$ in $U$ .

From Lemma 3 and (8), we have

${\rm Re}\frac{zf^{\prime}(z)}{f(z)}>0$ in $U$ .

This completes our proof.
From the main theorem, we easily have the following corollary.

COROLLARY 1. Let $p\geqq 2$ . If $f(z)\in A(p)$ satisfies the condition
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(9) $|zf^{(p+1)}(z)+pf^{(p)}(z)-p(p!)|<\sqrt{2}p(p!)$ in $U$ ,

then $f(z)$ is p-valently convex in $U$ .

PROOF. Putting

$g(z)=\frac{zf^{\prime}(z)}{p}$ ,

then $g(z)$ is a function of $A(p)$ .
From the hypothesis (9) and the main theorem, we have that $g(z)$ is p-

valently starlike in $U$ . Therefore, $f(z)$ is p-valently convex in $U$ .
This completes our proof.

COROLLARY 2. Let $p\geqq 2$ . If $f(z)\in A(p)$ satisfies the condition

(10) $|f^{(p+1)}(z)|<\sqrt{2}(p!)$ in $U$ ,

then, $f(z)$ is p-valently starlike in $U$ .

PROOF. By an easy calculation and from (10), we have

$|f^{(p)}(z)-p!|=|\int_{0}^{z}f^{(p+1)}(t)dt|$

$\leqq\int_{0^{r}}|f^{(p+1)}(t)|d\rho<\sqrt{2}(p!)|z|<\sqrt{2}(p!)$

where $|z|=r<1$ and $0\leqq|t|=\rho<r$ .
From the main theorem, $f(z)$ is p-valently starlike in $U$ .
This completes our proof.

REMARK 1. It is easily confirmed that the function

$f(z)=z^{p}+\frac{p!e^{-\alpha}}{\alpha^{p}}\sqrt{2}\{e^{\alpha z}-\sum_{k=0}^{p}\frac{(\alpha z)^{k}}{k!}\}$

satisfies the conditions (2) and (10), therefore $f(z)$ is p-valently starlike in $U$ .
On the other hand, the function

$g(z)=z^{p}+\int_{0}^{z}\frac{p!e^{-\alpha}}{t\alpha^{p}}(e^{\alpha l}-\sum_{k=0}^{p}\frac{(\alpha t)^{k}}{k!})dt$

satisfies the condition (9), therefore $g(z)$ is $p$ -valently convex in $U$ .

REMARK 2. To prove the main theorem, we have to obtain

${\rm Re}\frac{zf^{(p-1)}(z)}{f^{(p-2)}(z)}>0$ in $U$ .
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Therefore we have to suppose $p\geqq 2$ .
On the other hand, it is easily confirmed that the function

$f(z)=z+\frac{\sqrt{2}}{2}z^{2}\in A(1)$

satisfies the condition

$|f^{\prime}(z)-1|<\sqrt{2}$ in $U$ ,

but $f(z)$ is not starlike in $U$ .
This shows that the main theorem does not hold good for the case $p=1$ .
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