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ON THE GAUSS MAP OF COMPLETE SPACE-LIKE
HYPERSURFACES OF CONSTANT MEAN

CURVATURE IN MINKOWSKI SPACE

By

Reiko AIYAMA

\S 1. Introduction.

Let $R_{1}^{n+1}$ be the $(n+1)$-dimensional Minkowski space, that is, $R^{n+1}$ with the
Lorentz metric $\langle, \rangle=(dx_{1})^{2}+\cdots+(dx_{n})^{2}-(dx_{n+1})^{2}$ . It has been known that in
$R_{1}^{n+1}$ hyperplanes are the only complete space-like hypersurfaces whose mean
curvatures are zero. This Bernstein type theorem was proposed by Calabi, and
solved by him [3] (for $n\leqq 4$) and by Cheng and Yau [5] (for all n) (see also Ishi-
hara [10] or Nishikawa [14]). On the other hand, for complete space-like
hypersurfaces of nonzero constant mean curvature in $R_{1}^{n+1}$ , there are many
nonlinear examples constructed by Treibergs [18], Hano and Nomizu [7], Ishi-
hara and Hara [11] and others.

In his recent paper, Palmer [17] discussed the Gauss map of a complete
space-like hypersurface of constant mean curvature in $R_{1}^{n+1}$ and showed a con-
dition for the hypersurface to be a hyperplane. This is a result analogous to
the one obtained by Hoffman, Osserman and Schoen [9], who proved that the
normals to a complete surface of constant mean curvature in the 3-dimensional
Euclldean space $E^{3}$ cannot lie in a closed hemisphere of $S^{2}$ , unless the surface
is a plane or a right circular cylinder. Note that a right circular cylinder is
the simplest example of a complete non-umbilical surface of constant mean
curvature in $E^{3}$ .

In $R_{1}^{n+1}$ the simplest example of a complete non-umbilical space-like hyper-

surface of constant mean curvature is given by the following:

$H^{k}(c)\times R^{n-k}$

$=\{(x_{1}, \cdots, x_{n}, x_{n+1})\in R_{1}^{n+1}$ ; $(x_{n-k+I})^{2}+\cdots+(x_{n})^{2}-(x_{n+1})^{2}=\frac{1}{c},$ $x_{n+1}>0\}$ ,

where $c$ is a negative number and $k=1,2,$ $\cdots,$ $n-1$ . In particular, $H^{1}(c)\times R^{n-1}$

is called a hyperbolic cylinder.

Received May 1, 1991, Revised October 23, 1991.



354 Reiko AIYAMA

Recently, Ki, Kim and Nakagawa [12] characterized hyperbolic cylinders

as the only complete space-like hypersurfaces of non-zero constant mean cur-
vature in $R_{1}^{n+1}$ for which the norm of the second fundamental form is maximal.
Moreover, when $n=2$ , K. Milnor [13] and Yamada [19] showed that the
hyperbolic cylinder $H^{1}(c)\times R^{1}$ is the only “uniformly” non-umbilical surface
among complete space-like surfaces of non-zero constant mean curvature, and
the author gave another proof of this theorem [2].

In this paper, we shall improve the Palmer’s theorem and characterize the
hyperbollc cylinder in $R_{1}^{n+1}$ by a method similar to the one employed by

Hoffman et al [9]. In fact, we shall make use of the distance function of the
hyperbolic space constructed by Cecil and Ryan [4].

The author would like to thank Professor Hlsao Nakagawa for his helpful
suggestions.

\S 2. The theorems.

Throughout this paper, we assume manifolds to be connected and geo-
metric objects to be smooth.

Let $M$ be a complete space-like hypersurface of constant mean curvature $H$

in $R_{1}^{n+1}$ and $\eta$ be the time-like unit normal field of $M$ . For each point $p$ in $M$

we regard $\eta(p)$ as a point in the n-dimensional hyperbolic space $H^{n}=H^{n}(-1)$

in $R_{1}^{n+1}$ . Then Palmer’s theorem (in [17]) can be improved in the following
fashion:

THEOREM 1. Let $M$ be a complete space-like hypersurface of constant mean
curvature $R_{1}^{n+1}$ . If $\eta(M)$ is contained in a geodesic ball in $H^{n}$ , then $M$ is a
hyperplane in $R_{1}^{n+1}$ .

A geodesic ball of radius $r$ centered at $\overline{\eta}$ in $H^{n}$ is denoted by $B_{r}(\overline{\eta})$ . The
distance in $H^{n}$ from $\overline{\eta}$ to $x$ is given by

$L_{\overline{\eta}}(x)=\cosh^{-1}(-\langle\overline{\eta}, x\rangle)$ .
This distance function $L_{\overline{\eta}}$ on $H^{n}$ has, as level sets, compact totally unbilic
hypersurfaces (geodesic spheres), and $B_{r}(\overline{\eta})$ is given by

$B_{r}(\overline{\eta})=\{x\in H^{n} ; L_{\overline{\eta}}(x)<r\}$ .
It is clear that hyperplanes are the only space-like hypersurfaces for which
$\eta(M)$ coincide with one point.

On the other hand, $\eta(H^{i}(c)\times R^{n-k})$ is a complete totally geodesic k-dimen-
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tional submanifold in $H^{n}$ , which is called a k-plane in $H^{n}$ . In particular, an
$(n-1)$-plane in $H^{n}$ is called a hyperplane in $H^{n}$ and a parametrized l-plane in
$H^{n}$ is a maximal geodesic in $H^{n}$ .

We can define a tubular neighborhood $U_{r}(\pi)$ of radius $r$ around a k-plane
$\pi$ in $H^{n}$ . For each $x$ in $H^{n}$ , there is a unique shortest geodesic $\gamma$ in $H^{n}$ from
$x$ to $\pi$ . Let $L_{\pi}(x)$ denote the length of $\gamma$ and define $U_{r}(\pi)$ by

$U_{r}(\pi)=\dagger x\in H^{n}$ ; $L_{n}(x)<r$ }.

Then a characterizatlon of the hyperbolic cylinder is obtained as follows.

THEOREM 2. Let $M$ be a complete space-like hypersurface of non-zero con-
stant mean curvature in $R_{1}^{n+1}$ . If $\eta(M)$ is contained in $U_{r}(\beta)$ for some $r>0$

and for some maximal geodesic $\beta$ on $H^{n}$ , then $M\iota s$ congruent to a hyperbolic
cylinder $H^{1}(c)\times R^{n-1}$ .

Thls theorem is an immediate consequence of the next proposition.

PROPOSITION. Let $M$ be a complete space-like hypersurface of constant mean
curvature in $R_{1}^{n+1}$ . If $\eta(M)$ is contained in $U_{r}(\pi)$ for some $r>0$ and for some
k-plane $\pi$ of $H^{n}$ , then $\eta(M)$ is contained in $\pi$ and at least $(n-k)$-principal cur-
vatures of $M$ are zero at any point of $M$.

REMARK. Theorem 2 can be proved by a theorem obtained by Choi and
Treibergs [6], if we note that complete space-like hypersurfaces in $R_{1}^{n+1}$ are
entire. Furthermore, Theorem 1 can also follow from the Liouville theorem
for harmonic mappings of Riemannian manifolds, which is proved by Hilde-
brandt, Jost and Widman in [8]. But our proofs do not depend on these facts,
and we shall consistently make use of the generalized maximum principle on
a complete Riemannian manifold.

\S 3. Preliminaries.

As in \S 2, let $M$ be a complete space-like hypersurface of constant mean
curvature $H$ in $R_{1}^{n+1},$

$\eta$ be the time-like unit normal field of $M$.
We choose a local field of orthonormal frames $e_{1},$ $e_{2},$ $\cdots,$ $e_{n}$ on $M$ and let

$\omega_{1},$ $\omega_{2},$ $\cdots,$ $\omega_{n}$ denote the dual coframes on $M$ . We shall use the summation
convention with Roman indices in the range $1\leqq i,$ $j,$ $\cdots\leqq n$ . The second funda-
mental form on $M$ is given by the quadratic form

$\alpha=-\Sigma h_{ij}\omega_{i}\otimes\omega_{j}\otimes\eta$
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with values in the normal bundle of $M$ . Let $D$ (resp. $\nabla$ ) denote the Levi-Civita
connection of $R_{1}^{n+1}$ (resp. $M$ ). Then the Gauss formula and the Weingarten
formula are given respectively by

$ D_{e_{i}}e_{j}=\nabla_{e_{i}}e_{j}-h_{ij}\eta$ and $D_{e_{i}}\eta=-\sum_{j}h_{ij}e_{j}$ .

Let $h_{ijk}$ denote the covariant derivative of $h_{ij}$ . Then we obtain the Coddazi
equation

$h_{ijk}=h_{ikj}$ .

Since the mean curvature $H$ of $M$ is defined by $\sum h_{ii}/n$ , the norm of $\alpha$

satisfies

(1) $|\alpha|^{2}\geqq nH^{2}$ .

LEMMA. The Gauss map $\eta$ is a harmonic map of $M$ into $H^{n}\subset R_{1}^{n+1}$ , that
$is$ , if $\eta=(\eta_{1}, \cdots , \eta_{n}, \eta_{n+1})$ then a Laplacian of each component $\eta_{A}(A=1,$ $\cdots$ ,

$n+1)$ satisfies the following equation;

(2) $\Delta\eta_{A}=|$ tz $|^{2}\eta_{A}$ .

PROOF. Let $p$ be any fixed point in $M$ . Let $\{E_{1}, \cdots, E_{n}\}$ be an orthonormal
local frames about $p$ such that $(\nabla_{E_{i}}E_{j})(p)=0(i, j=1, \cdots , n)$ . Then we have

$E_{i}(h_{ij})_{p}=(h_{iji})_{p}=(h_{iij})_{\rho}$ , $(D_{E_{i}}E_{j})_{p}=-(h_{ij}\eta)_{p}$

and, since $H$ is constant,

$(\Delta\eta_{1}, \cdots, \Delta\eta_{n+1})(p)=(\sum_{i}E_{i}E_{i}\eta_{1}, \cdots, \sum_{i}E_{i}E_{i}\eta_{n+1})(p)$

$=(\sum_{i}D_{E_{i}}D_{E_{i}}\eta)_{p}=(\sum_{i}D_{E_{i}}(-\sum_{i}h_{ij}E_{j}))_{p}$

$=(-\sum_{i.j}E_{i}(h_{ij})E_{j}-h_{ij}D_{E_{i}}E_{j})_{p}$

$=(-\sum_{j}E_{j}(nH)E_{j}+\sum_{i.j}(h_{ij})^{2}\eta)_{p}$

$=(|\alpha|^{2}\eta)_{p}$ . $\blacksquare$

In order to prove the theorems, we need the following generalized maxi-
mum principle theorem due to Omori [15] and Yau [20].

THE GENERALIZED MAXIMUM PRINCIPLE. Let $N$ be a Complete Riemannian
manifold whose Ricci curvature is bounded from below and let $F$ be a function
of class $C^{2}$ on N. If $F$ is bounded from above, then for any \’e>O there exists a
point $q$ such that
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(3) $|\nabla F(q)|<\epsilon$ , $\Delta F(q)<\epsilon$ , $ F(q)>\sup F-\epsilon$ ,

where $|\nabla F|$ denotes the norm of the gradient $\nabla F$ of $F$.

In the present case, the Ricci curvature is given by

$S_{ij}=-nHh_{ij}+\sum_{k}h_{ik}h_{kj}$ ,

and hence is bounded from below by $-n^{2}H^{2}/4$ . So we can apply the gener-
alized maximum principle for any $C^{2}$-function on $M$ which is bounded from
above.

\S 4. Proof of the theorems.

In this section, we give the proofs of the previous theorems.

PROOF OF THEOREM 1. The condition $\eta(M)\subset B_{r}(\overline{\eta})$ is equivalent the fol-
lowing inequality valid everywhere on $M$ ;

$1\leqq-\langle\eta,\overline{\eta}\rangle<\cosh r$ .
We may assume $\overline{\eta}=(0,0, \cdots , 0,1)$ , by applying, if necessary, a Lorentz trans-
formation to $M$. Then the condition reads

(4) $1\leqq\eta_{n+1}<\cosh r$ ,

and in particular, $\eta_{n+1}$ is a smooth function on $M$ which is bounded from above.
From the equatlon (2) combined with the relation (1), we have

(5) $\Delta\eta_{n+1}=|\alpha|^{2}\eta_{n+1}\geqq nH^{2}\eta_{n+1}$ .

Let $\{\epsilon_{n}\}$ be a convergent sequence such that $\epsilon_{m}>0$ and $\epsilon_{m}\rightarrow 0(m\rightarrow\infty)$ . Then,

by the generalized maximum principle, there is a sequence of points $\{q_{n}\}$ such
that $\eta_{n+1}$ satisfies (3) at each $q_{m}\in M$ for $\epsilon_{m},$ $i.e.$ ,

(3) $|\nabla\eta_{n+1}(q_{m})|<\epsilon_{m}$ , $\Delta\eta_{n+1}(q_{m})<\epsilon_{m}$ , $\eta_{n+1}(q_{m})>\sup\eta_{n+1}-\epsilon_{m}$ .
Then by the inequality (5),

$nH^{2}\eta_{n+1}(q_{m})<\epsilon_{m}$ .
Furthermore, because the sequence $\{\eta_{n+1}(q_{m})\}$ converges to $\sup\eta_{n+1}$ , we have

$nH^{2}\sup\eta_{n+1}\leqq 0$ .
Since (4) implies $\sup\eta_{n+1}\geqq 1$ , it follows from this inequality that the mean
curvature $H$ must be zero.

Hence, by the result of Cheng and Yau, $M$ must be a hyperplane. $\blacksquare$
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PROOF OF PROPOSITION. For the k-plane $\pi$ in $H^{n}$ , we can choose space-
like orthonormal vectors $\{\sigma_{1}, \cdots, \sigma_{n-k}\}$ in $R_{1}^{n+1}$ such that

$\pi=\{x\in H^{n} ; \langle x, \sigma_{a}\rangle=0(a=1, \cdots, n-k)\}$ .
Let $\pi_{a}(a=1, \cdots, n-k)$ be the hyperplane in $H^{n}$ defined by

$\pi_{a}=\{x\in H^{n} ; \langle x, \sigma_{a}\rangle=0\}$ .
The distance in $H^{n}$ from $x$ to a hyperplane $\pi_{a}$ is then given by

$L_{\pi_{a}}(x)=L_{\sigma_{a}}(x)=|\sinh^{-1}(-\langle x, \sigma_{a}\rangle)|$ .
Since $U_{r}(\pi)$ is contained in $U_{r}(\pi_{a})$ for every $a$ , it follows from the assump-

tion $\eta(M)\subset U_{r}(\pi)$ that the inequalities

$-\sinh r<-\langle\eta, \sigma_{a}\rangle<\sinh r$ $(a=1, \cdots , n-k)$

are valid everywhere on $M$ . We may assume

$\sigma_{a}=(0, \cdots , 0^{alh}1, 0, \cdots, 0)$ $(a=1, \cdots , n-k)$ ,

by applying a Lorentz transformation to $M$ if necessary. Let $F_{a}$ be a smooth
function on $M$ defined by $F_{a}=(\langle\eta, \sigma_{a}\rangle)^{2}=(\eta_{a})^{2}$ . Then the above inequalities
imply

(6) $0\leqq F_{a}<\sinh^{2}r$ $(a=1, \cdots , n-k)$ .

and, in particular, $F_{a}$ is bounded from above.
From the equation (2) combined with the relation (1), we have

$\Delta\eta_{a}=|\alpha|^{2}\eta_{a}$ ,

(7) $\Delta F_{a}=2\{|\nabla\eta_{a}|^{2}+|\alpha|^{2}(\eta_{a})^{2}\}\geqq|\alpha|^{2}(\eta_{a})^{2}\geqq 2nH^{2}F_{a}$ .
Let $\{\epsilon_{m}\}$ be a convergent sequence such that $\epsilon_{m}>0$ and $\epsilon_{m}\rightarrow 0(m\rightarrow\infty)$ .

Then, by the generalized maximum principle, there is a sequence of points $\{q_{m}\}$

such that $F_{a}$ satisfies (3) at each $q_{m}$ for $\epsilon_{m},$ $i.e.$ ,

$(3^{\parallel})$ $|\nabla F_{a}(q_{m})|<\epsilon_{m}$ , $\Delta F_{a}(q_{m})<\epsilon_{m}$ , $F_{a}(q_{m})<\sup F_{a}-\epsilon_{m}$ .

Then by the inequality (7),

$2nH^{2}F_{a}(q_{m})<\epsilon_{m}$ .
Furthermore, because the sequence $\{F_{a}(q_{m})\}$ converges to $\sup F_{a}$ , we have

$2nH^{2}\sup F_{a}\leqq 0$ .

Since $H$ is non-zero and (6) implies that $\sup F_{a}$ is non-negative, it follows from
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this inequality that $F_{a}=0$ for each $a=1,$ $\cdots,$ $n-k$ . Hence we get $\eta_{1}=\cdots=$

$\eta_{n-k}=0$ and $\eta(M)\subset\pi$ .
Let $p$ be a point in $M$ and choose a local field of orthonormal frames $\{e_{i}\}$

on a neighborhood of $p$ in such a way that $h_{ij}=\lambda_{i}\delta_{ij}$ , where $\{\lambda_{i}\}$ are the
principal curvatures of $M$. Note that, since $\eta=(0, \cdots, 0, \eta_{n-k+1}, \cdots, \eta_{n+1})$ , the
Weingarten formula is written as

(8) $\lambda_{i}e_{i}=(0, \cdots, 0, -e_{i}\eta_{n-k+1}, \cdots, -e_{i}\eta_{n+1})$ $(i=1, \cdots, n)$ .

Let 1 denote the number of zero principal curvatures at $p$ . We may as-
sume $\lambda_{1}=\cdots=\lambda_{l}=0,$ $\lambda_{l+1},$

$\cdots,$
$\lambda_{n}\neq 0$ by changing the indices if necessary. Let

$T_{l}^{\perp}$ be the subspace of the tangent space $T_{p}(M)$ at $p$ of $M$, which is spanned
by the vectors $e_{l+1},$ $\cdots,$ $e_{n}$ . The dimension of $T_{l}^{\perp}$ is $n-l$ . On the other hand,
it follows from (8) and simple calculation that $T_{k}^{\perp}$ is contained in the vector
space spanned by the following k-independent vectors

$(0, \cdots, 0,1(n-k+1)lh0, \cdots, 0, \eta_{n-k+1}/\eta_{n+1}),$
$\cdots,$

$(0, \cdots, 0^{nt}1^{h}, \eta_{n}/\eta_{n+1})$ .
Then we get that $n-l\leqq k$ .

Hence, at least $(n-k)$-principal curvatures are zero at $p$ . $\blacksquare$

PROOF OF THEOREM 2. Under the assumption, it follows from the proposi-
tion that the principal curvatures of $M$ are $0$ and $nH$ with multiplicity $n-1$

and 1 respectively. Hence, from the congruence theorem due to Abe, Koike
and Yamaguchi [1], $M$ is congruent to a hyperbolic cylinder. $\blacksquare$

\S 5. Remarks.

In order to illustrate our results, we make a few remarks on the Gauss
map images of a complete space-like surface $M$ of constant mean curvature $H$

in 3-dimensional Minkowski space $R_{1}^{3}$ . In this case, the Gauss map $\eta$ is a map
of $M$ into $H^{2}$ .

It ls well-known that a hyperbolic space $H^{2}$ is isometric to the Poincar\’e
disk $(D, ds^{2})$ , where $D=\{z=u+iv\in C;|z|<1\}$ and $ds^{2}$ is the Poincar\’e metric
$ds^{2}=4dzd\overline{z}/(1-|z|^{2})^{2}$ . In the Poincar\’e disk, by choosing suitable isometries,
we can regard a geodesic ball $B_{r}(\overline{\eta})$ and a tublar neighborhood $U_{r}(\beta)$ around
a maximal geodesic $\beta$ in $H^{2}$ as the following regions respectively.
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It is easy to see that the Gauss map image of a plane and a hyperbolic
cylinder is the one point set $\{\overline{\eta}\}$ and the maximal geodesic $\beta$ , respectively.

On the other hand, we know other examples of complete space-like surface
with non-zero constant mean curvature, which are constructed by Treibergs

and others. These examples are space-like surfaces of revolution in $R_{1}^{3}$ . The
Gauss map images of these are classified into the following two types.

All D The domain rounded by
$\partial D$ and a geodesic in $D$
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