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PLURIHARMONIC MAPS INTO PRINCIPAL FIBER
BUNDLE AND VERTICAL TORSION

By

Hiroki MANABE

Introduction.

Harmonic maps into Lie groups are deeply studied as classical solutions of
the principal chiral model in many recent works of mathematics and theoretical
physics. The purpose of this paper is to investigate a geometrical linkage
among harmonic maps and pluriharmonic maps into structure group, total space
of a principal fiber bundle by the medium of their vertical data.

Let 5, P and M be Riemannian manifolds and n: P-»M be a Riemannian
submersion. A smooth map ¢: ¥—P is called vertically harmonic if ¢ is a
critical point of the vertical energy;

EV(¢)=S2[(d¢)V|2dZ

for arbitrary compactly supported vertical variation through ¢, where (d¢)" :
T2 —¢" Ker my denotes the vertical differential which is the vertical component
of d¢: TX—¢'TP.

The notion of vertically harmonic map includes that of usual harmonic map
as as a vertically harmonic graph map ([10]) and a Yang-Mills connection as
a harmonic section ([9]). In [10], C.M. Wood characterizes vertical harmoni-
city of ¢ in terms of vertical tension field ©V(@) via vertical torsion TV ¢ intro-
duced by him (cf. definition in §1).

At first by connecting a vertical tension field with a usual one, we obtain
~ the following theorem.

THEOREM A. Let nm be a Riemannian submersion with totally geodesic fibers.
If ¢: X—P is harmonic, then ¢ is always vertically harmonic.

Let G be a Lie group which admits a bi-invariant Riemannian metric <,
and (P, =, M) be a smooth principal G-bundle with a connection form ® over
a Riemannian manifold (M, gx). The horizontally lifted metric “gp on P by w
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is defined as follows;

(mgP)u(X) Y):(gM)n(u)(”*uX; TC*uY)+<(Du(X), wu(y)>
for X, YeT,P, ucP.

: (P, “gp)—(M, gun) becomes to be a Riemannian submersion with totally
geodesic fibers ([8]). Vertical torsion in this case can be considered as a just
obstruction for generating a harmonic map into G.

THEOREM B. (i) For a smooth map ¢: X—P, ¢: X—(P, “gp) is vertically
harmonic if and only if ¢*w satisfies the Hodge gauge equation; 6(¢p*w)=0.

(ii) Let X be a connected Riemannian manifold. Choose a based point
x0=2 and assume that Hom(z,(2), G)={1}. For a wvertically harmonic map
¢:X—(P, °gp), TV'?=0 if and only if there exists a unique harmonic map ¢: 2%
—G such that o*0=¢*w and ¢(x.)=e, where 0, m,\(X)=n,(2, x.)), Hom(-, -),
and e denote the codifferential with respect to the Riemannian metric of 2, the
fundamental group of 2, the set of group homomorphisms, the Maurer-Cartan

form on G and the identity element of G, respectively.

Let X be a complex manifold instead of a Riemannian manifold. ¢~ Ker -
valued 2-form T" ¢ extends by complex linearily to the ¢! Ker r§-valued 2-
form TV ¢. Relative to the complex structure of 2, we have the decomposition
of the vector space of ¢! Ker n§-valued 2-forms on 2. By restricting TV ¢ to
to (1, 1)-factor, we define ¢! Ker n§-valued (1, 1)-form (TV#)-0,

Here we shall introduce the notion of veriical pluriharmonicity, which is
vertical version of pluriharmonicity;

¢: X—(P, “gp) is vertically pluriharmonic if ?D""(0¢)"=0, where 4DV (0¢)"
is the wvertically (0, 1)-exterior covariant aerivative of d¢: T2 —¢'TPC (cf.
definition in §1).

Vertical pluriharmonicity is characterized in terms of (T %)*Y and we
have the following theorem which is an analogue of theorem A and B.

THEOREM C. Let ¢: X—(P, °gp) be a pluriharmonic map. Then

(i) ¢ is vertically pluriharmonic if and only is (T %) 1=0,

(ii) assume that X is connected and Hom (z(2), G)=1{0}, then TV $=0 if
and only if for each x,2 there exists a unique pluriharmonic map ¢: X—G
such that p*0=¢*w and ¢(x.)=e,

(iii) let X be a compact Kihler surface, then ¢ is vertically pluriharmonic
if ana only if TV ¢9=0.

Real four-dimensional self-duality is crucial to (iii) ([1]).
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It is a well-known fact that pluriharmonicity is equivalent to harmonicity
when Y is a Riemann surface. To the contrary, even over a Riemann surface,
vertically pluriharmonicity does not coincide with vertically harmonicity because
of wvertical torsion, which appears in the difference between Theorem A and
Theorem C().

Finally, by the definition of 77 %, it is obvious that 77 ¢=0 if ¢ is hori-
zontal ; (d¢)"=0 for a smooth map ¢. To prove the converse for weakly stable
pluriharmonic map with respect to the total energy, we make use of an energy
descending deformation along loop parameter of real extended solution into a
based loop group 2G ([4], [7]). In this case, the vertical torsion can be con-
sidered as an obstruction for projecting down ¢ to a pluriharmonic map into M.

THEOREM D. Let XY be a compact connected Kdahler manifold wilh
Hom (z,(2), G)={1} ana ¢: X—(P, “gp) be a weakly stable pluriharmonic map.
If TV =0, then ¢ is horizontal, and therefore, mo: X—M is pluriharmonic.

The author would like to express his sincere gratitute to Professor Tsunero
Takahashi for his generous advice and kind encouragement.

1. Second Fundamental Form and Vertical Torsion.

Let Y, P and M be Riemannian manifolds and = : P-»M be a Riemannian
submersion with totally geodesic fibers. The Riemannian connections of X' and
P are denoted by %V and VY. Relative to the Riemannian structure of P, we
have the orthogonal decomposition

TP=Ker nP(Ker wx)*; X=X"+ X",

The induced connection in Ker z4 from FV is denoted by £VV. Each fiber of P
is totally geodesic so that

LEMMA 1.1. For any X, Y C=(TP),
VY)Y =CFVxY )+ AXH, Y H),
where A ana C>(-) denote the O’ Neill’s tensor A ([5]) and the vector space of

smooth sections, respectively.

Let ¢: 2—P be a smooth map. The induced connections through ¢ from
PY and V¥ are denoted by ¢V and ?V", respectively. By pulling back
1.1, we get
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LEMMA 1.2. For any X,YeC(T2),

(i) (OVx((d)Y ) =9V5(d@)"Y )+ A((d@)¥ X, (d$)"Y),

(i) ((*Vxd@)Y)'=(V5(d$))Y +A(d§)" X, (d§)*Y),
where (dg)X=(dg)’ X+(d@)¥ X etc..

The vertical tension field ¥(¢) and the vertical torsion 7" ¢ of ¢ are de-

fined as follows ([107]);
tV(¢)= TracetV"(dg)",

TV 9(X, Y)=Vi(d@)'Y)—?Vr(dg)’ X)—(d$)"([X, Y ])
for X, YeCx(T2).

LEMMA 1.3. For any X,YCxT2),

(i) TV¥X, Y)=—24(d9)" X, (d$)"Y),

(ii) (*Vz((d@)Y))' =¢V(d¢)'Y)—1/2T" (X, Y),
(iil) ((*Vxd@)Y)=(*Vidg)")Y —1/2T"#(X, Y),
(iv) (z($)'=1"(9),

where ©(@) denotes the usual tension field of ¢.

PrROOF. (i); By using Lemma 1.2, we compute
TV (X, Y)="V(d$)'Y)—?V(d$)’ X)—(dg)"([X, Y ])
=(#Vx((dP)Y)) — A((d@)" X, (d)Y)
—(*Vp((d§) X)) + A((d)?Y , (dg)* X)—(dg)' ([ X, Y ])
={(*Vxd@)Y —(*Vrd@) X}V
—{A((d)7 X, (d®)"Y)— A((d@)?Y , (dd)* X)}.

The second fundamental form ?Vd¢ of ¢ is symmetric and A is skew-symmetric
with respect to horizontal vectors ([5]) so that

TV X,Y)=—2A(d¢)? X, (dp)*Y).

(ii); Substitute (i) to Lemma 1.2, we get (ii).
(iii); Add—(d@)"(®*VxY) to the both sides of (ii).
(iv); Take a trace of (iii).

Since vertical harmonicity for ¢ is equivalent to the vanishing of z"(¢) ([10,
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Theorem 2]), it follows from Lemma 1.3 (iv) that

THEOREM 1.4 (THEOREM A). If ¢ is harmonic, then ¢ is vertically har-
monic.

Extend d¢, ?V, 9", TV and A by complex linearity, then
holds for any X, Y C(TZX°).

Let 2 be a complex manifold instead of a Riemannian manifold. Relative
to the complex structure of Y, we have the decomposition

TYC=T®OIPTODY
The usual and vertical (0, 1)-exterior covariant derivatives $D”d¢ and ¢D""(0¢)"
of d¢ are defined as follows;
(* D)W =#Vz((d )W )—(d)(@FzW) ,
(PDZ'(09)" W =#V2(d@)"W)—(d§)" (@3zW) ,

for Z, WeC=(T*®%), where o denotes the d-operator of 7<%, From
1.3 (ii),

LEMMA 1.5. For any Z, WeC(T* %)

(i) (OVz(dp)W))' =V3((d@)'W)—1/2T"V-¥(Z, W),

(i) (?DLASIW)"=(? DY (09) YW )—1/2T" $)(Z, W).

¢ is called pluriharmonic (resp. vertically plurinarmonic) if the usual (resp.
vertical) (0, 1)-exterior covariant derivative vanishes.

(ii) implies that

THEOREM 1.6. Let ¢: X—P be a pluriharmonic map. Then ¢ is vertically
pluriharmonic if and only if (T ¢)D=0.

Let G be a Lie group with a bi-invariant Riemannian metric and (P, =, M)
be a smooth principal G-bundle with a connection form w. = : (P, ®gp)—M is a
Riemannian submersion with totally geodesic fibers ([8, Theorem 3.5]) so that
Theorem C (i) is deduced from [Theorem 1.6l

Evaluating T"'? by w, we have

PROPOSITION 1.7.
(i) w-T"#=2¢*Q,

where “Q is the curvature form of w,
(i) T"¢=0 if and only if ¢p*w is integrable.
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PrOOF. (i); From [3, Chapter 2, Corollary 5.3] and [5, Lemma 2],
w AXH, Y)=—*Q(X,Y) for all X,YeT,P, ucP. By (i), for all
X YeT, Y, x&¥

o(T" 4 X, Y)=—20(A(d¢)? X, (d$)"Y))
=2°Q0(d¢)" X, (dp)?Y)
=2Q((d$) X, (d§)Y)
=2(g*2)X,Y),

since “£ is a tensorial 2-form.
(ii); By the structure equation ([3, Chapter 2, Theorem 5.27),

P Q=¢*(dw+1/2[wNw])=d(¢*0)+1/2[¢*0 Np*w],

Combining (i), we get (ii).
Evaluation by @ for ¢! Ker m4-valued differential forms does not depend
upon the choice of w, therefore, we denote it by #I in §2.

2. Transfer of Vertical Data.

Let G be a Lie group with a bi-invariant Riemannian metric <{,) and
(8, [ ,]) be the Lie algebra of G. ¢V denotes the Riemannian connection of
{,>. The tangent bundle TG is identified with GXg through the Maurer-
Cartan form @;

T.G—> {g}xg; X—>(g, 0,(X)), g=G.

This trivialization is denoted by €I and induces a natural identification between
smooth sections ¢1: C(TG)—C=(GXg). Here we give a connection 4V by

oV Ps=ds+1/2[0, s], for s€eC=(GXg).

The following lemma is well-known (cf. [2, Chapter 27):

LEMMA 2.1.
GY=C]1c ;W ®.C] .

Let (P, =, M) be a smooth principal G-bundle with a connection form w
over a Riemannian manifold M.
Pl. Ker m+—PXg denotes the trivialization defined by;
Ker myy, —> {u} Xg; X+ (u, A), ues P,

where X=(d/dt)(u exp tA)|.,=0, A=g.

This trivalization induces a natural identification between smooth sections
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¢]: C*(Ker mx)—C=(PXg).
We introduce a connection .,V in PXxg as follows;

oV Vs=ds+1/2[w, s], for s€C2(PXg).
The following proposition is an analogue of Lemma 2.1.

PROPOSITION 2.2.

PQV_P[-1, YO P]

PROOF. The above equation follows from since each fiber is
totally geodesic.

For a C~-manifold X and a smooth map ¢: ¥—P, ¢~ Ker nsx, X Xg?, I and
299 (=44,V) denote the corresponding induced objects through ¢ to Ker zy,
Pxgf, I and ,V, respectively. From [Proposition 2.2, we have

PROPOSITION 2.3.
SV =201"10 ug VU P?] .

THEOREM 2.4. Let 3 be a Riemannian manifold, then

(1) o((®Vx(dPY )=V xg*0) Y )+1/2[($*0)(X), (*w)¥ )]
for all XT .2, x&€X,YeC=(T2),
(ii) w(z'(¢)=—0(d*w).

PrROOF. (i); By using Proposition 2.3,
w(*VK(d@) Y )=1(*T5(dg)"Y )=V (*1((d¢)"Y))
=gr V5 (W(dP)Y ) =4,V (§*0)(Y)),

therefore,
W((PVKdP) )Y )=w)?V(d$)'Y ) —w(dg)(*VxY))
= X((¢*0)(Y)+1/2[(¢*0) X), (¢*0)(¥ )] —(¢*0)(*VxY)
=V xg*0)Y)+1/2[(¢*0) X), (¢*0)Y )]
(ii); Take the trace of the equation of (i), we get w(z"(¢))=—0d(¢*w).
Theorem B(i) is deduced from (ii).
Return to [Proposition 2.3, the equality means that vertical notions are in-
dependent of the choice of g» and depend only upon the data of X, ¢ and w.

Namely, we may define ?V" by ¢1-%0,,9®-%] without the Riemannian data of
M. Combining [Proposition 2.3, we obtain
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LEMMA 2.5. Lel (Q,, m,, F\), (Q,, ®s, Ny) be smooth principal G-bundles and
7 be a connection form on Q, and ¥: Q,—Q, be a bundle homomorphism. For
a smooth map f,: X—Q,, set fo=¥-f,: X—>Q,. Then

(i) AVO=79©  in Ixg,
(i) (Tdf)'Y)=ndf)'Y)  for al YET, 2, x€2,
(iii) @T*)( V(@ f )Y N=7n("*VE(d f2)'Y))
for all XeT. 2, x€Z%, YeC(T2),
(iv) over a Riemannian manifold X,

TH* ) (V% fONY)=0(" Nk (d f)V)Y)

for all X, YT, %, x&2,
(v) over a complex manifold X,

@F*) (DY@ f ) IW)=n((2DL'@f2)" )W)
for all Z, WeT®»2, xelX.
PrOOF. (i), (ii); trivial, (iii); Using (i) and (ii),
@T*n) V(A f)Y D=V [V Y ) =oAL I(d fTY )
=gV (T *)d f)'Y)=7V(n((d f)" (V)
=N (d f'YN="21(7 V5 (d f2)7Y)

=9 V% ((d f)"Y))
(iv), (v); It follows from (iii).

Set @=r-¢p: ¥—>M. For a principal G-bundle (P, =, M) with a connection
form @ (@ 'P, °z, 3) denotes the induced principal G-bundle with a connection
form ®*w, where & : @-'P—P is the induced bundle homomorphism by (®-'P),
=Pgcry, x=2%. Since ¢(x) lies in the fiber Py, the smooth map ¢: 2—@'P;
x—@(x)e(P'P), is a global section of @-'P. P-F=¢ so that de-
duces the following proposition.

PROPOSITION 2.6.

(i) Let 2 be a Riemannian manifold. Then ¢ is vertically harmonic if
and only if ¢ is vertically harmonic.

(ii) Let X be a complex manifold. Then ¢ is vertically pluriharmonic if
and only if ¢ is vertically pluriharmonic.

For a global section ¢ there exists a unique bundle isomorphism I5: @-'P—
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2’ XG such that (Igo@)(x)=(x, ¢) for all x€2X. Notice that (5*(0:1’5(0(1 (co pa)-
(p¥o*w)+p%0), where ¢: G—G; g—g™!, p,: XXG—-2; (x, g—x and p,: ZXG
—-G; (x, g)—g.

‘This means that ¢*w and ?#**F=d(¢*w)+1/2[¢*w Ap*0](=0**Q) are cocycle
representations for @*w and ‘5*‘“.9, respectively. Using [Proposition 1.7, we can

restate in terms of ?**F.

PROPOSITION 2.7. Let Y be a complex manifola and ¢: X-—(P, “gp) be a
pluriharmonic map. Then ¢ is vertically pluriharmonic if and only if ¢**F®D
=0.

3. Self-duality in Kihler Surface.Y

In this section, we assume that 2 is a Kdhler surface, that is, a complex
two-dimensional Kédhler manifold.

Let G be a Lie group with a bi-invariant Riemannian metric {,>. *:gQRA2Y
—g@A2Y denotes the Hodge star operator with respect to the Kédhler metric
and the natural orientation of 2, and induces the operator acting g-valued 2-
forms *: C*(gRQN22)->C*(gRA2Y) where N2X=ANT*2.

Note that *®*=1. For a g-valued 2-form {, { is called self-dual if { is a +1-
eigen section of .

Extend { by complex linearity. ¢ is self-dual if and only if {** is pro-
portional to the K&hler form of ¥ (cf. [1].

Let M be a Riemannian manifold and (P, =, M) be a smooth principal G-
bundle with a connection form w. Combining the above fact and [Proposition 2.7,

we have

PROPOSITION 3.1. Let ¢:2X—(P,“gp) be a pluriharmonic map. If ¢ is
vertically pluriharmonic, then ¢*“F is self-dual.

We define a real 4-form (#**FA?**F> on X as follows;

FOFN*Fy=3%0,0{Fa, F>6a Ao,

where #**F=2%,F,RQ¢&, (F, is a g-valued function, &, is a real 2-form).
Theorem C (iii) is deduced from the following theorem.

THEOREM 3.2. Lel 3 be a campact Kdhler surface anad ¢: X—(P, “gp) be
a plurtharmonic map. If ¢ is vertically pluriharmonic, then #**F=0, and there-

fore, TV #=0.
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PrOOF. By [Proposition 3.1, #*“F is self-dual, it follows that

|#roF|2=(F* O FAxP* Y=< FA$*F)

d*w is a connection form in a trivial bundle @-'P. According to the Chern-
Weil theory,

P*w — P*w o*w —
[1oerraz={ c#eFnterras=0

so that #*¢F=0.

4. Integrability Condition for Vertical Differential.

Let Y be a connected C>-manifold and ¢: ¥—P be a smooth map, where
P is the total space of a smooth principal G-bundle with a connection form w
and G is a Lie group with a bi-invariant Riemannian metric <,>. Choose a
based point x,2. n,(2)=mn,(2, xo) denotes the fundamental group of 2X. In
this section, we assume that Hom (x,(2), G)={1}.

If ¢*w is integrable, then the corresponding connection P*w in P-'P is flat,
and therefore, there exists a unique bundle isomorphism /44, : @®'P—2 X G such
that @*@w=(I4:,)*(p¥0) and 4 ,(B(x0))=(x,, e) (cf. [3, Chapter 2, §9], [6]).

Set o=psolgre°dp: 2—G, then I4u,°¢ is the graph map of ¢, that is, s,
=(@d.sX@)ed: ¥—-3XG, where id.5: ¥—X; x—x and 4: Y>3 %X3Y; x—(x, x).

LEMMA 4.1. ¢*0=¢*w.

PROOF. By (i), for all YT, 3, x=¥
(*0)Y)=w(dg)Y )=w((d¢)'Y)

=(P*w)(dg)'Y)
=3 (P*0)(d((Gd. s X )= A)'Y)
=(p30)(d((id.s X @) A)"Y)
=(p30)(d((Gd.s X p)-A)Y)
=0(d(peo(id.s X @) A)Y)
=0(dp)Y)=(p*0)(Y') .

Combining [Proposition 1.7, Lemma 2.5 (iii) and [Proposition 2.6, we obtain
the following theorem.

THEOREM 4.2, Let ¢: X—P be a smooth map with TV-#=0. Then
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(i) over a Riemannian manifold 2,

@ is vertically harmonic if and only if ¢ is harmonic,

(ii) over a complex manifold X,

@ is vertically pluriharmonic if and only if ¢ is pluriharmonic.

By the Maurer-Cartan equation d@+1/2[6 N\01=0,

d(¢*w)+1/2[¢*w N\ p*wl=¢*(d0+1/2[6 N61])=0,

From [Proposition 1.7] (ii), have 77 ¢#=0. Therefore, Theorem B (ii) (resp. C (ii))
follows from and (i) (resp. 4.2 (ii)).

5. Stability and Vertical Torsion.

In this section, let G, M, (P, =, M) and 2 be a Lie group which admits a
bi-variant Riemannian metric <, ), a Riemannian manifold, a smooth principal
G-bundle with a connection form @ and a compact connected Kidhler manifold
with Hom (z,(Y), G)={1}, respectively. It is easy to check the following lemma.

LEMMA 5.1. Let ¢: X—P be a smooth map with TV $=0.

(i) ¢ is constant if and only if ¢ is horizontal.

(ii) For any variation ¢, through @o=¢,

Qolgl,o(id.sX¢s)°d is a vertical variation of ¢.

(iii) Conversely, any wvertical variation ¢ through ¢e=¢ is of the form
Dolgh,o(id.sX@s)e 4,

(iv) E(¢.)=E(p.)+E(D),

where E(-) aenotes the total energy.

Combining theorem 1.6, proposition 1.7 (ii) and theorem 4.2 (ii), we have

PROPOSITION 5.2. Let ¢: X—(P, °gp) be a pluriharmonic map with TV ¢$=0.
Then there exists a unique pluriharmonic map ¢: 2—G such that p*0=¢*w and

p(x0)=e.

It is known ([4], [7] that if ¢ : ¥—G is a non-constant pluriharmonic map,
then ¢ has an energy descending variation which is a real loop into G, and
therefore ¢ is unstable as a harmonic map.

Existence of energy descending variation implies the following theorem by
using [Lemma 5.1 and Proposition 5.2

THEOREM 5.3. Let ¢: 3—(P, “gp) be a pluriharmonic map. If T ?=0 and
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@ is not horizontal, then ¢ is unstable. Equivalently, if ¢ is weakly-stable, then
TV ¢+0 or ¢ is horizontal.

Theorem D follows from [Theorem 5.3.
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