A REMARK ON FOLIATIONS ON A COMPLEX PROJECTIVE SPACE WITH COMPLEX LEAVES

Dedicated to Professor Hisao Nakagawa on his sixtieth birthday

By
Tohru Gotor

Introduction.

Let \mathscr{F} be a foliation on a Riemannian manifold M. The distribution on M which is defined to be orthogonal to \mathscr{G} is said to be normal to \mathscr{F} and denoted by \mathscr{F}^{\perp}.

Nakagawa and Takagi [8] showed that any harmonic foliation on a compact Riemannian manifold of non-negative constant sectional curvature is totally geodesic if the normal distribution is minnimal. And succesively the present author [2] proved a complex version of their result, that is, the above result holds also on a complex projective space with a Fubini-Study metric. However, recently, Li [4] pointed out a serious mistake in the proof of the result of Nakagawa and Takagi, and so of the author's. Therefore those results are now open yet.

On the other hand, Li [4] have studied a harmonic foliation on the sphere along the method of Nakagawa and Takagi, and obtained some interesting results.

The purpose of this paper is to give a complex analogue of the Li's results. Let $\boldsymbol{P}_{n+p}(\boldsymbol{C})$ be the complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature c. Let \mathscr{F} be a complex foliation on $\boldsymbol{P}_{n+p}(\boldsymbol{C})$ with q-complex codimention and h the second fundamental tensor of \mathscr{F}. Then we shall prove the following;

Theorem. If the normal distribution \mathcal{F}^{\perp} is minimal, we have

$$
\int_{P_{n+p}(c)} S\left\{\left(2-\frac{1}{2 p}\right) S-\frac{n+2}{2} c\right\} * 1 \geqq 0,
$$

where S denotes the square of the length of h and $* 1$ the volume element of $\boldsymbol{P}_{n+p}(\boldsymbol{C})$.

Corollary. Under the condition of the above theorem,
(1) if $S<\frac{n+2}{4-1 / p} c$, then \mathscr{F} is totally geodesic,
(2) if \mathscr{T} is not totally geodesic and if $S \leqq \frac{n+2}{4-1 / p} c$, then $S=\frac{n+2}{4-1 / p} c$.

1. Outline of the proof.

We use the following convention on the range of indecies;

$$
\begin{aligned}
& A, B, C, \cdots=1, \cdots, 2(n+p) \\
& i, j, k, \cdots=1, \cdots, 2 n \\
& \alpha, \beta, \gamma, \cdots=2 n+1, \cdots, 2(n+p)
\end{aligned}
$$

Let $\left\{e_{\boldsymbol{A}}\right\}$ be an locally defined orthonormal frame field on $\boldsymbol{P}_{n+p}(\boldsymbol{C})$ such that each e_{i} is always tangent to \mathscr{F}. Then the component $R_{A B C D}$ of the curvature tensor of $\boldsymbol{P}_{n+p}(\boldsymbol{C})$ is given by

$$
\begin{equation*}
R_{A B C D}=\frac{c}{4}\left(\boldsymbol{\delta}_{A D} \boldsymbol{\delta}_{B C}-\boldsymbol{\delta}_{A C} \boldsymbol{\delta}_{B D}+J_{A D} J_{B C}-J_{A C} J_{B D}-2 J_{A B} J_{C D}\right), \tag{1.1}
\end{equation*}
$$

where $J=\left(J_{A B}\right)$ denotes the complex structure. If we denote by $h_{B C}^{A}$ the components of h, each $h_{\alpha \beta}^{i}$ vanishes. Since all leaves of \mathscr{F} are somplex, we obtain

$$
\begin{equation*}
\Sigma h_{k j}^{\alpha} J_{k i}=\Sigma h_{i k}^{\alpha} J_{k j}=\Sigma h_{i j}^{\beta} J_{\alpha \beta} . \tag{1.2}
\end{equation*}
$$

Note that the first equalities imply $\Sigma h_{i i}^{\alpha}=0$, that is, all leaves of \mathcal{F} are minimal.

We consider a globally defined vector field $v=\Sigma v_{A} e_{A}$ on $\boldsymbol{P}_{n+p}(\boldsymbol{C})$ defined by

$$
v_{k}=\sum h_{i j}^{\alpha} h_{\boldsymbol{i} j k}^{\alpha}, \quad v_{\alpha}=0,
$$

and culculate its divergencc δv. Since, by using (1.1) and (1.2), culculation of δv is carried out in a similar fashion to that in [4], we write down the result directry ;

$$
\begin{equation*}
\delta v=\Sigma h_{i j k}^{\alpha} h_{i j k}^{\alpha}+\frac{n+2}{2} c S-\Sigma N\left(H^{\alpha} H^{\beta}-H^{\beta} H^{\alpha}\right)-\Sigma\left(\operatorname{Tr} H^{\alpha} H^{\beta}\right)^{2} \tag{1.3}
\end{equation*}
$$

For the notation H^{α} and N, see [1], [4]. By an estimation

$$
\Sigma N\left(H^{\alpha} H^{\beta}-H^{\beta} H^{\alpha}\right)+\Sigma\left(\operatorname{Tr} H^{\alpha} H^{\beta}\right)^{2} \leqq \frac{4 p-1}{2 p} S^{2}
$$

we obtain from (1.3)

$$
\begin{aligned}
\delta v & \geqq \sum h_{i j k}^{\alpha} h_{i j k}^{\alpha}+\frac{n+2}{2} c S-\frac{4 p-1}{2 p} S^{2} \\
& =\Sigma h_{i j k}^{\alpha} h_{i j k}^{\alpha}-S\left\{\left(2-\frac{1}{2 p}\right) S-\frac{n+2}{2} c\right\},
\end{aligned}
$$

that is,

$$
\begin{equation*}
S\left\{\left(2-\frac{1}{2 p}\right) S-\frac{n+2}{2} c\right\} \geqq-\boldsymbol{\delta} v+\sum h_{i j k}^{\alpha} h_{i j k}^{\alpha} \tag{1.5}
\end{equation*}
$$

Thus integrating the both side of (1.5), we have

$$
\left.\int_{\boldsymbol{P}_{n+p}(C)} S\left\{\left(2-\frac{1}{2 p}\right) S-\frac{n+2}{2} c\right\}\right\}^{*} \geqq \int_{\boldsymbol{P}_{n+p}(C)} \sum h_{i j k}^{\alpha} h_{i j k}^{\alpha} * 1 \geqq 0
$$

Remark. Consider the case where $c=1$, and assume $S=\frac{n+2}{4-1 / p}$. Then the minimality of \mathscr{F}^{\perp} implies that $n=p=1$. This is obtained by a similar augument in Chern, do-Carmo and Kobayashi [1] or Ogiue [5].

Moreover if the metric is bundle-like, this cannot be occur (cf. Theorem 3. [4].)

Added in Proof (Non-existence of the case $S=\frac{n+2}{4-1 / p} c$)
As is mentioned in the above remark, if $S=\frac{n+2}{4-1 / p} c$, then both n and p must equal to 1 . However this is impossible because $\boldsymbol{P}_{2}(\boldsymbol{C})$ can not admit even a plane field ([3]). For the interesting results about the existence of plane fields on 4-manifolds, see [6], [7].

References

[1] Chern, S.S., Do-Carmo, K. and Kobayashi, S., Minimal submanifolds of a sphere with second fundamental form of constant length, in "Functional Analysis and Related Fields", Springer-Verlag, Berlin, Heidelberg, New York, 1970, 59-75.
[2] Gotoh, T., Harmonic foliations on a complex projective space, Tsukuba J. Math. 14 (1990), 99-106.
[3] Hirzebruch, F. and Hopf, H., Felder von Flächenelementen in 4-dimentionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156-172.
[4] Li, Z. B., Harmonic foliations on the sphere, Tsukuba J. Math. 15 (1991), 397-407.
[5] Ogiue, K., Complex submanifolds of the complex projective space with second fundamental form of constant length, Kodai Math. Sem. Rep. 21 (1969), 252254.
[6] Matsushita, Y., Fields of 2 -planes on simply connected 4-manifolds, Math. Ann. 280 (1988), 687-689.
[7] -, Fields of 2-planes and two kinds of almost complex structures on compact 4 -dimentional manifolds, to appear in Math. Z.
[8] Nakagawa, H. and Takagi, R., Harmonic foliations on a compact Riemannian manifold of non-negative constant curvature, Tohoku Math. J. 40 (1988), 465-471.

Department of Mathematics
Faculty of Science
Chiba University
Chiba, 260
Japan

