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UNIVERSAL SPACES FOR SONE FAMILIES
OF RIM-SCATTERED SPACES

By

S. D. ILIADIS

1. Introduction.

1.1. Definitions and notations. All spaces considered in this paper are
separable and metrizable and the ordinals are countable.

Let $F$ be a subset of a space $X$. By $Bd(F),$ $Cl(F),$ $Int(F)$ and $|F|$ we de-
note the boundary, the closure, the interior and the cardinality of $F$, respec-
tively. An open (respectively, closed) subset $U$ of $X^{\prime}$ is called regular iff $U=$

$Int(Cl(U))$ (respectively, $U=Cl(Int(U))$). If $X$ is a metric space, then the dia-
meter of $F$ is denoted by diam$(F)$ . A map $f$ of a space $X$ into a space $Y$ is
called closed iff the subset $f(F)$ of $Y$ is closed for every closed subset $F$ of $X$.

A compactum is a compact metrizable space; a continuum is a connected
compactum. A space is said to be scatterea iff every non-empty subset has an
isolated point.

A space $Y$ is said to be an extension of $X$ iff $X$ is a dense subset of $Y$ .
A space $Y$ is said to be a compactification of $X$ iff $Y$ is a compact extension
of $X$. Let $Y$ and $Z$ be extensions of $X$. A map $\pi$ of $Y$ into $Z$ is called a
natural projection iff $\pi(x)=x$ for every $x\in X$. 0bviously, if there exist a
natural projection of $Y$ into $Z$ , then it is uniquely determined.

A space $T$ is said to be universal for a family $A$ of spaces iff both the
following conditions are satisfied: $(\alpha)T\in A,$ $(\beta)$ for every $X\in A$ , there exists
an embedding of $X$ in $T$ . If ony condition $(\beta)$ is satisfied, then $T$ is called a
containing space for a family $A$ .

A partition of a space $X$ is a set $D$ of closed subsets of $X$ such that $(\alpha)$ if
$F_{1},$ $F_{2}\in D$ and $F_{1}\neq F_{2}$ , then $ F_{1}\cap F_{2}=\emptyset$ , and $(\beta)$ the union of all elements of $D$

is $X$. The natural projection of $X$ onto $D$ is the map $\pi$ defined as follows, if
$x\in X$, then $\pi(x)=F$, where $F$ is the uniquely determined element of $D$ contain-
ing $x$ . The quotient space of the partition $D$ is the set $D$ with a topology
which is the maximal on $D$ for which the map $\pi$ is continuous. (We observe
that we use the same notation for a partition of aspace and for the correspond-
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ing quotient space). The partition $D$ is called upper semi–continuous iff for
every $F\in D$ and for every open subset $U$ of $X$ containing $F$ there exists an
open subset $V$ of $X$ which is union of elements of $D$ such that $F\subseteqq V\subseteqq U$ .

Obviously, in order to define a oartition $D$ of a space $X$ it is sufficient to
define the non-degenerate elements of $D$ . Let $D^{l}$ be a subset of $D$ (generally,

let $D^{\prime}$ be a set of subsets of a space $X$ ). We denote by $(D^{\prime})^{*}$ the union of all
elements of $D^{\prime}$ .

An ordinal $\alpha$ is called isolatecl iff it has the form $\beta+1$ , where $\beta$ is an
ordinal. A non-isolated ordinal is called a limit ordinal (hence, the ordinal zero
is a limit ordinal).

Every ordinal $\alpha$ is uniquely represented as the union of a limit ordinal $\beta$

and of a non-negative integer $m$ . In what follows, the ordinal $\beta$ is denoted by
$\beta(\alpha)$ and the integer $m$ is denoted by $m(\alpha)$ . Also, by $\gamma(\alpha)$ we denote the
ordinal $\beta+2m+\min\{\beta, 1\}$ and by $m^{+}(\alpha)$ we denote the integer $m+\min\{\beta, 1\}$ .
The set $\{0,1, \cdots\}$ is denoted by $N$.

Let $M$ be a subset of a space $X$. For every ordinal $\alpha$ we define, by induc-
tion, a subset $M^{(a)}$ of $M$ as follows: $M^{(0)}=M,$ $M^{(1)}$ is the set of all limit points
of $M$ in M. $M^{(\alpha)}=(M^{(\alpha- 1)})^{(1)}$ if $\alpha>1$ is an isolated ordinal and $M^{(\alpha)}=\bigcap_{\beta<\alpha}M^{(\beta)}$

if $\alpha>1$ is a limit ordinal. The set $M^{(a)}$ is called a–derivative of $M$ (See $[K_{2}]$ ,
$v.I$ , \S 24. IV).

We say that $M$ has $ type\leqq\alpha$ , and we write type$(M)\leqq\alpha$ iff $ M^{(\alpha)}=\emptyset$ . If $\alpha$

is the least such ordinal, we say that $M$ has type $\alpha$ , and we write type $(M)=\alpha$ .
0bviously, type $(M)=0$ iff $ M=\emptyset$ .

We say that a scattered subset $M$ has type $\alpha$ (respectively, $\leqq\alpha$ ) at the point
$a\in M$ and we write type $(a, M)=\alpha$ (respectively, type $(a,$ $ M)\leqq\alpha$ ) iff $a\not\in M^{(\alpha)}$

and $a\in M^{(\beta)}$ for every $\beta<\alpha$ (respectively, $a\not\in M^{(\alpha)}$ ). (See $[l_{3}]$ ).

We denote by com-type $(a, M)$ (compact type of $M$ at the point a) the mini-
mal ordinal $\gamma$ for which there exists a compactification $K$ of $M$ such that
rype $(a, K)=\gamma$ . (See [I-Z]). By $\max(M)$ we denote the set of all points $a$ of $M$

for which $com-type(x, M)\leqq com-type(a, M)$ for every $x\in M$.
We say that $M$ has locally compact type $\gamma$ (respectively, compact type $\gamma$ )

which is denoted by loc-com-type $(M)$ (respectively, by com-type $(M)$) iff $\gamma$ is the
minimal ordinal for which there exists a locally compact extension of $M$ (re-

spectively, a compactification of $M$ ) having type $\gamma$ . (See [I-Z]).

We observe that:
(1) A subset $M$ of a space $X$ is scattered iff there exists an ordinal $\alpha$ such

that type $(M)\leqq\alpha$ .
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(2) Every scattered space is countable.
(3) A compactum is scattered iff it is countable.
(4) The type of a non-empty countable compactum is an isolated ordinal.
(5) There exist compacta having type $\alpha$ for every isolated ordinal $\alpha$ . (See

[M-S]).

(6) The number of compacta having type $\alpha$ , where $a$ is an ordinal, is
countable. (See [M-S]).

We denote by $L_{n},$ $n=1,2,$ $\cdots$ , the set of all ordered n-tuples $i_{1}\cdots i_{n}$ , where
$i_{l}=0$ or 1, $t=1,$ $\cdots$ , $n$ . Also, we set $L_{0}=\{\emptyset\}$ and $L=\bigcup_{n=0}^{\infty}L_{n}$ . For $n=0$ , by
$i_{1}\cdots i_{n}$ we denote the element $\emptyset$ of $L$ . We say that the element $i_{1}\cdots i_{n}$ of $L$ is
a part of the element $j_{1}\cdots j_{m}$ and we write $i_{1}\cdots i_{n}\leqq j_{1}\cdots j_{m}$ if either $n=0$ , or
$n\leqq m$ and $i_{t}=]_{l}$ for every $t\leqq n$ . The elements of $L$ are also denoted by $\overline{i},\overline{j},\overline{i}_{1}$ ,

etc. If $\overline{i}=i_{1}\cdots i_{n}$ then by $\overline{i}0$ (respectively, il) we denote the element $i_{1}\cdots i_{n}0$

(respectively, $i_{1}\cdots i_{n}1$ ) of $L$ .
We denote by $\Lambda_{n},$ $n=1,2,$ $\cdots$ , the set of all ordered n-tuples $i_{1}\cdots i_{n}$ , where

$i_{t},$ $t=1,$ $\cdots,$ $n$ , is a positive integer. We set $\Lambda=\bigcup_{n=1}^{\infty}\Lambda_{n}$ . The elements of $\Lambda$

are denoted by $\overline{\alpha},\overline{\beta}$ , etc. Let $\tilde{\alpha}=i_{1}\cdots i_{n}$ and $\overline{\beta}=j_{1}\cdots j_{m}$ . We say that $\overline{\alpha}$ is a
part of $\overline{\beta}$ and we write $\overline{\alpha}\leqq\overline{\beta}$ iff $1\leqq n\leqq m$ and $i_{t}=]_{l}$ for every $t\leqq n$ . Obviously,

if $\overline{\alpha},\overline{\beta}\in\Lambda_{n}$ and $\overline{\alpha}\leqq\overline{\beta}$ then $\overline{\alpha}=\overline{\beta}$ . Also, for every $\overline{\alpha}\in\Lambda_{n}$ the set of all elements
$\overline{\beta}\in\Lambda_{n+1}$ such that $\overline{\alpha}\leqq\overline{\beta}$ , is a countable non-finite set.

We denote by $C$ the Cantor ternary set. By $C_{\grave{l}}$ , where $\overline{i}=i_{1}\cdots i_{n}\in L,$ $n\geqq 1$ ,

we denote the set of all points of $C$ for which the $t^{th}$ digit in the ternary ex-
pansion, $t=1,$ $\cdots$ , $n$ , coincides with $0$ if $i_{t}=0$ and with 2 if $i_{t}=1$ . Also, we
set $C_{g}=C$ . For every subset $s$ of $L_{n},$ $n=0,1,$ $\cdots$ , we set $C_{s}=\bigcup_{\grave{l}\in s}C_{\overline{i}}$ . For
every point $a$ of $C$ and for every integer $n\geqq 0$ , by $\overline{i}(a, n)$ we denote the uni-
quely determined element $\overline{i}\in L_{n}$ for which $a\in C_{\overline{i}}$ . For every subset $F$ of $C$

and for every integer $n\geqq 0$ , we denote by $st(F, n)$ the union of all sets $C_{\overline{i}}$ ,
$\overline{i}\in L_{n}$ , such that $ C_{\overline{i}}\cap F\neq\emptyset$ . If $F=\{a\}$ we set $st(F, n)=st(a, n)$ . 0bviously,
$st(a, n)=C_{\overline{i}(a.n)}$ . If $S$ is a subset of $C$ , then the set $S\cap C_{\overline{i}}$ is denoted by $S_{\overline{i}}$ .

Let $D$ be a partition of a subset $S$ of $C,\overline{i}$ an element of $L_{n},$ $n=0,1,$ $\cdots$ .
We set $D(1)=$ { $d\in D:d$ is not singletion}, $D_{\overline{i}}=\{d\in D:d\cap C_{\overline{i}0}\neq\emptyset,$ $ d\cap C_{\overline{i}1}\neq\emptyset$ and
$d\subseteqq C_{\overline{i}0}\cup C_{\overline{i}1}\},$ $D_{n}=\bigcup_{\overline{i}\in L_{n}}D_{\overline{i}}$ . It is easy to see that: $(\alpha)D(1)=\bigcup_{n=0}^{\infty}D_{n},$ $(\beta)$

$ D_{\overline{i}}\cap D_{j}=\emptyset$ if $\overline{i},\overline{j}\in L$ and $\overline{i}\neq j$ and $(\gamma)D_{m}\cap D_{n}=\emptyset$ if $m\neq n$ .
A space $X$ is called rim-finite (respectively, $rational$ ) $iffX$ has a basis $B$ of

open sets such that the set $Bd(U)$ is finite (respectively, countable) for every
$U\in B$ .

We say that a space $X$ has rim-type $\leqq a$ , where $\alpha$ is an ordinal and we
write rim-type $(X)\leqq a$ iff $X$ has a basis $B$ of open sets such that type $(Ba(U))$
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$\leqq a$ , for every $U\in B$ . If $\alpha$ is the least such ordinal, then we say that $X$ has
rim-type $\alpha$ , and we write rim-type(X) $=\alpha$ .

In [G-I] (respectively, in $[l_{2}]$ and $[l_{3}]$ ) the following definition is given: a
space $K$ has the property of $\alpha$-intersections (respectively, the property of finite
intersections) with respect to a family $Sp$ of spaces iff the every $x\in sp$ there
exists a homeomorphism $i_{X}$ of $X$ in $K$ such that if $Y$ and $Z$ are distinct ele-
ments of $Sp$ , then the set $i_{Y}(Y)\cap i_{Z}(Z)$ has type $\leqq\alpha$ (respectively, the set
$i_{Y}(Y)\cap i_{Z}(Z)$ is finite) (For the corresponding definitions of the present paper
see Section 5.1).

1.2. Some known results. Let $\alpha>0$ be an ordinal. We denote by $R(\alpha)$

the family of all spaces having rim-type $\leqq\alpha$ . Natural subfamilies of $R(\alpha)$ are
the family $R^{0\circ m}(\alpha)$ of all compact elements of $R(\alpha)$ and the family $R^{cont}(\alpha)$ of
all elements of $R(\alpha)$ which are continua.

Another subfamily of $R(\alpha)$ is the family $R^{rim- com}(\alpha)$ defined as follows an
element $X$ of $R(\alpha)$ belongs to $R^{rim-com}(\alpha)$ iff $X$ has a basis $B$ of open sets
such that for every $U\in B$ , the set $Bd(U)$ is a compactum having type $\leqq\alpha$ .

We denote by $RF$ the family of all rim-finite spaces and by $R$ the family
of all rational spaces.

In [I-Z] some new subfamilies of $R(\alpha)$ are given. These families are de-
noted by $R_{c}^{k}(\alpha)$ and $R_{lc}^{k}(a)$ , $\alpha>0$ , $k=0,1,$ $\cdots$ . A space $X$ belongs to $R_{lc}^{k}(\alpha)$

(respectively, to $R_{c}^{i}(\alpha)$ ) iff $X$ has a basis $B=\{U_{0}, U_{1}, \cdots\}$ of open sets such that
type $(Bd(U_{i}))\leqq\alpha$ and loc-com-type $(Bd(U_{i}))\leqq\alpha$ (respectively, com-type $(Bd(U_{i}))\leqq\alpha$ ),

for every $i=0,1,$ $\cdots$ .
It is easy to see that $ R^{conl}(\alpha)\subseteqq R^{com}(\alpha)\subseteqq R^{rim- com}(\alpha)\subseteqq R_{c}^{0}(\alpha)\subseteqq\cdots\subseteqq R_{c}^{k}(\alpha)\subseteqq$

$R_{lc}^{k}(\alpha)\subseteqq R_{c}^{k+1}(\alpha)\subseteqq\cdots\subseteqq R(a)$ .
We observe that if type $(M)=\alpha$ , then by Lemma 1 of [I-T] it follows that

$M$ admits a compactification $K$ having type $\leqq\gamma(\alpha)$ . By the proof of this lemma
it follows that if $\alpha>0$ and type $(K)=\gamma(\alpha)$ , theu $K$ is the one-point compactifica-
tion of some locally compact oxtension of $M$ having type $\leqq\gamma(\alpha)-1$ .

From the above it follows that $R_{i}^{m_{C^{+}}(\alpha)- 1}(\alpha)=R(a)$ and hence, $R_{lc}^{k}(\alpha)=R_{c}^{l-1}(\alpha)$

$=R(\alpha)$ if $k\geqq m^{+}(\alpha)-1$ .
We recall some known results concerning the above mentioned families of

spaces.
(1) Every element of $RF$ has a compactification belonging to $RF$. (See

$[K],$ $[R_{1}]$ ).

(2) In the family $RF$ there is no universal element. (See [N]).

(3) In the family $R(\alpha)$ there exists a universal element having the property
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of finite intersections with respect to any subfamily of $R(a)$ whose power is
less than or equal to the continuum. (See $[l_{3}]$ ).

(4) Every element of $R^{rim-com}(a)$ has a compactification belonging to
$R^{com}(\alpha)$ , (See $[l_{1}]$ ). Moreover, every element of $R^{rim-com}(a)$ is topologically
contained in an element of $R^{conl}(\alpha)$ . (See $[l_{1}]$ ).

(5) In the family $R^{rim- com}(\alpha)$ there does not exist a universal element (See
$[l_{4}])$ . Hence, by (4), in the families $R^{cont}(a)$ and $R^{com}(a)$ there do not exist
universal spaces.

(6) For the family $R^{com}(\alpha)$ there exists a containing space belong to the
family $R^{conl}(\alpha+1)$ . (This is a result of J.C. Mayer and E.D. Tymchatyn).

(7) For the family of all planar compacta having $rim- type\leqq a$ there exists
a containing planar locally connected continuum having $rim- type\leqq\alpha+1$ . (See

[M-T]).

(8) In the family $R_{c}^{k}(a)$ , where $a$ is an isolated ordinal and $k=0,$ $\cdots,$
$m^{+}(\alpha)$

$-1$ , there is no universal element. (See [I-Z]).

(9) For a family $Sp$ of rim-finite spaces there exists a containing rim-finite
space (heving the property of finite intersections with respect to any subfamily
of $Sp$ whose the power is less than or equel to the continuum) if and only if
$Sp$ is a uniform family. (A family $Sp$ of rim-finite spaces is called uniform iff
for every $X\in Sp$ there exists an ordered basis $B(X)=\{U_{0}(X), U_{1}(X), \cdots\}$ having
the properties: $(a)Bd(U_{i}(X))\cap Bd(U_{j}(X))=\emptyset$ if $i\neq j$ and $(\beta)$ for every integer
$k\geqq 0$ there exists an integer $n(k)\geqq 0$ (which is independent from the elements
of $Sp$) such that for every $x,$ $y\in\bigcup_{i=0}^{k}(Bd(U_{i}(X))),$ $x\neq y$ , there exists an integer
$j(x, y),$ $ 0\leqq$ ] $(x, y)\leqq n(k)$ , for which either $x\in U_{j(x,y)}(X)$ and $y\in X\backslash Cl(U_{j(x.y)}(X))$ ,
or $y\in U_{j(x.y)}(X)$ and $x\in X\backslash Cl(U_{j(x.y)}(X))$ (See $[l_{2}]$ ).

(10) In [G-I], for a given subfamily $Sp$ of $R^{com}(a)$ , necessary and sufficient
conditions are given for the existence of a containing space (having the pro-
perty of $\alpha$-intersections with respect to any subfamily of $Sp$ whose power is
less than or equal to the continuum) belonging to the family $R^{rim-com}(a)$ .

(11) In the family $R$ of all rational spaces there exists a universal ele-
men; having the property of finite intersections with respect to the subfamily
of all rational continua. (See $[l_{6}]$ ).

1.3. Results. In the present paper we study the family $R_{lc}^{k}(\alpha)$, where
$a>0$ and $k=0,$ $\cdots$ , $m^{+}(a)-1$ . We construct a universal element $K$ of this
family as a subset of another space $T$ . For the construction of these spaces
we need in two ”kinds” of countability.

In Section 2 starting with some properties of scattered spaces we prove
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the following theorem: every element of $R_{lc}^{k}(a)$ admits a compactification hav-
ing rim-type $\leqq\alpha+k+1$ . For the proof of this theorem, we construct for every
$X\in R_{lc}^{k}(a)$ (See Lemma 2.4) an extension $\tilde{X}$ with a basis $B(\tilde{X})$ whose elements

have boundaries with some special properties. These properties also provide us
with the above mentioned two “kinds” of countability.

In Section 3 we consider a family $A$ of pairs $(S, D)$ , where $S$ is a subset
of $C$ and $D$ is an upper semi-continuous partition of $S$ such that $D_{\overline{i}},\overline{i}\in L$ , is
homeomorphic to an element of a given family $M$ of scattered compacta. The
elements of $A$ are called M-representations. Using the M-representations we
construct a space $T$ which will be used in Section 5. An important fact is the
countability of the family $M$ (this is the first “kind” of countability).

In $[l_{3}]$ we have considered a set of some specific subsets of a given scat-

tered compactum $M$ : a subset $X$ of $M$ is such a subset iff $M\backslash M^{(\beta(\alpha))}\subseteqq X$. We
have proved that if in the above set we consider the equivalence relation:
$X_{1}\sim X_{2}$ iff there exists a homeomorphism $f$ of $X_{1}$ onto $X_{2}$ , then the number of
equivalence classes is countable. In Section 4 of the present paper we improve

this result by proving that if in the set of all pairs (X, $M$ ), where $M$ is a com-
pactum, type $(M)=a$ and $M\backslash M^{(\beta(\alpha))}\subseteqq X$, we consider the equivalence relation
$(X_{1}, M_{1})\sim(X_{2}, M_{2})$ iff there exists a homeomorphism $f$ of $M_{1}$ onto $M_{2}$ such that
$f(X_{1})=X_{2}$ , then the number of equivalence classes is countable (this is the

second “kind” of countability).

In Section 5 using the properties of the extension nentioned in Lemma 2.4
we give the notion of a c-extension of elements of the family $R_{\iota c}^{k}(\alpha)$ . For
every element of this family we consider a fixed c-extension. By a standdard
manner, we correspond to every such extension an M-representation, where $M$

is a countable set of scattered compacta. The space $T$ constructed in Section
3 (for the above M-representations) has $rim- type\leqq a+k+1$ and it contains topo-

logically the fixed c-extensions. Using the result of Section 4, the construction

of the space $T$ can be done in such a manner that a subset $K$ of $T$ has type
$\leqq\alpha$ and contains topologically every element of $R_{lc}^{k}(\alpha)$ . Thus, the space $T$ is
a containing space for the family of fixed c-extensions and simultaneously the
subset $K$ is an universal element of $R_{lc}^{k}(\alpha)$ . The main result of this papers is
Theorem 5.3.

We note the following corollaries of the main results: In the family $R_{lc}^{k}(a)$

there exists a universal element having the property of $a_{lc}^{k}$-intersections (See

Definitions 5.1.) with respect to any subfamily of $R_{lc}^{k}(\alpha)$ the power of which is
less than or equal to the continuum.

Also, for the family $R_{c}^{k}(\alpha)$ , there exists a containing space belonging to the
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family $R_{lc}^{k}(\alpha)$ and, hence, there exists a containing continuum having rim-type
$\leqq a-k+1$ . In particular, for $k=0$ (since $R^{com}(a)\subseteqq R_{c}^{0}(a)$ ) we have: There
exists a continuum having $rim- type\leqq a+l$ which is containing space for all
compacta having $rim- type\leqq a$ . (This is a result of J.C. Mayer and E. E. Tym-
charyn).

2. Extensions of elements of $R_{lc}^{k}(a)$ .
2.1. LEMMA. Let $M$ be a scattered space having type $\alpha=\beta(a)+m(a)>0$ . Let

$X$ be a zero-dimensional metric compactification of M. Then, there is a com-
pactification $K$ of $M$ for which the natural projection $\pi$ of $X$ onto $K$ exists and

such that:
(1) type$(K)=com- type(M)$ (and, hence, by Lemma 1 of [I-T], type$(K)\leqq\gamma(a)$).

(2) type$(M\cup(K\backslash K^{(\beta(\alpha))}))=a$ .
(3) loc-com-type$(M)=loc- com- type(M\cup(K\backslash K^{(\beta(\alpha))}))ana$

(4) if $K=\{z_{1}, z_{2}, \cdots\}$ , then $\varliminf_{i+\infty}(d\overline{i}am(\pi^{-1}(z_{i})))=0$ .

PROOF. We prove the Iemma by induction on the ordinal com-type$(M)$ .
The proof can be done in such a manner that besides properties (1)$-(4)$ of the
lemma the following properties will be also true:

(5) for a given $\epsilon>0,$ $ diam(\pi^{-1}(z))<\epsilon$ for every $z\in K$, and
(6) for every $a\in M,$ $type(a, K)=com- type(a, M)$

Let com-type$(M)=1$ . We set $K=M$. Then, $K$ is a compactification of $M$

having properties (1)$-(6)$ .
Suppose that for every space $M$ for which $ 1\leqq com- type(M)<\gamma$ there exists

a compactification $K$ of $M$ having properties (1)$-(6)$ . Since for every scattered
space $M,$ $com- type(M)$ is an isolated ordinal, we may suppose that $\gamma$ is also an
isolated ordinal.

Let $M$ be a space such that com-type$(M)=\gamma$ and $\epsilon>0$ be a number. Suppose
that type$(M)=\alpha$ . By Lemma 1 of [I-T] it follows that $\beta(\alpha)=\beta(\gamma)$ .

First we suppose that $\max(M)$ is infinite. By Lemma 2.4 of [I-Z] it follows
that com-type$(a, M)=\gamma-1$ , for every $a\in\max(M)$ .

Let $F=Cl(\max(M))\backslash \max(M)$ . (The closure is considered in the space $X$ ).

Let $F_{1},$ $\cdots$ , $F_{n}$ be open and closed non-empty subsets of $F$ such that $(a)F=$

$F_{1}\cup\cdots\cup F_{n},$ $(\beta)F_{i}\cap F_{j}=\emptyset$ if $ i\neq$ ], and $(\gamma)diam(F_{i})<\epsilon$ for every $i=1,$ $\cdots$ , $n$ .
There exist open and closed subsets $U_{ij},$ $i=1,$ $\cdots,$ $n,$ $j=1,2,$ $\cdots$ , of $X$ such

that: $(\alpha)U_{11}\cup U_{21}\cup\cdots\cup U_{n1}=X$, $(\beta)U_{i(J+1)}\subseteqq U_{ij}$ , $(\gamma)(U_{ij}\backslash U_{i(j+1)})\cap\max(M)$

$\neq\emptyset,$ $(\delta)U_{i1}\cap U_{j1}=\emptyset$, if $i\neq j$ , and $(\epsilon)\bigcap_{j=1}^{\infty}U_{ij}=F_{i}$ .
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Let $M_{ij}=(U_{ij}\backslash U_{i(j+1)})\cap M,$ $i=1,$ $\cdots,$ $n,$ $j=2,2,$ $\cdots$ . Obviously, $\max(M_{ij})=$

$M_{ij}\cap\max(M)$ and, hence, the set $\max(M_{ij})$ is finite and com-type$(a, M_{ij})=\gamma-1$

for every $a\in\max(M_{ij})$ . By Lemma 2.4 of [I-Z], com-type$(M_{ij})=\gamma-1$ .
Hence, by induction, there is a compactification $K_{ij}$ of $M_{ij},$ $i=1,$ $\cdots,$ $n,$ $j=$

$1,2,$ $\cdots$ , for which the natural projection $\pi_{ij}$ of $U_{ij}\backslash U_{i(j+1)}$ onto $K_{ij}$ exists and
such that properties (1) $-(6)$ are true, where in place of $\epsilon$ in property (5) we
take the number $\epsilon/J$ .

Let $K=(\bigcup_{i.j}K_{ij})\cup\{F_{1}, \cdots, F_{n}\}$ . We topologize $K$ as follows: a subset $V$

of $K$ is an open subset iff $V$ has the following properties: $(\alpha)$ the set $V\cap K_{ij}$ ,

$i=1,$ $\cdots$ , $n,$ $j=1,2,$ $\cdots$ , is an open subset of $K_{ij}$ , and $(\beta)$ if $F_{i}\in V$ , then $V$ con-
tains all but finitely many of the sets $K_{ij},$ $j=1,2,$ $\cdots$ .

Let $\pi$ be the map of $X$ onto $K$ defined as follows: if $x\in U_{ij}\backslash U_{i(J+1)}$ , then
$\pi(x)=\pi_{ij}(x)$ and if $x\in F_{i},$ $i=1,$ $\cdots,$ $n$ , then $\pi(x)=F_{i}$ .

It is easy to see that $K$ is a compactification of $M$ and $\pi$ the natural pro-
jection of $X$ onto $K$.

Since $K_{ij}$ is an open and closed subset of $K$ and type$(K_{ij})\leqq\gamma-1$ we have
type$(F_{i}, K)=\gamma$ and, hence, type$(K)=com- type(M)=\gamma$ , that is, property (1) is
satisfied.

By induction, type $(M_{ij}\cup(K_{ij}\backslash K_{ij}^{(\beta(\alpha))}))\leqq\alpha$ . Hence, since $M\cup(K\backslash K^{(\beta(\alpha))})=$

$\bigcup_{i.j}(M_{ij}\cup(K_{ij}\backslash K_{ij}^{(\rho_{(\alpha))}}))$ we have type$(M\cup(K\backslash K^{(\beta(\alpha))}))=\alpha$ , that is, property (2)

is satisfied.
Since the subset $K\backslash \{F_{1}, \cdots, F_{n}\}$ is a locally compact extension of

$M\cup(K\backslash K^{(\beta(\alpha))})$ and type$(K\backslash \{F_{1}, \cdots, F_{n}\})=\gamma-1$ we have loc-com-type
$(M\cup(K\backslash K^{(\beta(a))}))\leqq\gamma-1$ . Since the set $\max(M)$ is infinite and com-type$(M)=\gamma$ ,

by Lemma 2.4 of [I-Z] it follows that loc-com-type$(M)=\gamma-1$ , that is, property

(3) is true.
Properties (4) and (5) follow by the construction of $K$.
For every $x\in M_{ij}$ we have type$(x, K_{ij})=type(x, K)=com- type(x, M)$ . Hence,

property (6) is also true.
Now, we suppose that $\max(M)$ is finite. Then, by Lemma 2.4 of [I-Z],

com-type$(a, M)=\gamma$ , for every $a\in\max(M)$ . Let $\max(M)=\{a_{1}, \cdots, a_{n}\}$ and let
$U_{ij},$ $i=1,$ $\cdots,$ $n,$ $j=1,2,$ $\cdots$ , be open and closed subsets of $X$ such that: $(\alpha)$

$U_{11}\cup\cdots\cup U_{n1}=X,$ $(\beta)U_{i(j+1)}\subseteqq U_{ij},$ $(\gamma)U_{ij}\backslash U_{i(j+1)^{\frac{\prime}{-\kappa}\emptyset}},$ $(\delta)U_{i1}\cap U_{j1}=\emptyset$ , if $i\neq j$ ,

and $(\epsilon)\bigcap_{j=1}^{\infty}U_{ij}=\{a_{i}\}$ .
Let $M_{ij}=(U_{ij}\backslash U_{i(j+1)})\cap M$. Then, either com-type$(M_{ij})\leqq\gamma-1$ , or com-

type$(M_{ij})=\gamma$ and the set $\max(M_{if})$ is infinite. Hence, by induction, there is a
compactification $K_{ij}$ of $M_{ij}$ (for which the natural projection $\pi_{ij}$ of $U_{ij}\backslash U_{i(j+1)}$
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onto $K_{ij}$ exists) having properties (1)$-(6)$ .
Let $K$ and $\pi$ be the compactification of $M$ and the natural projection of $X$

onto $K$, respectively, constructed from $K_{ij}$ in the same manner as in case,
where the set $\max(M)$ is infinite (replacing the set $\{F_{1}, \cdots, F_{n}\}$ by the set
$\max(M)=\{a_{1}, \cdots, a_{n}\}$ and the subset $F_{i}$ , in the definition of $\pi$ , by the subset
$\{a_{i}\}$ of $X$).

By construction, type $(K_{ij})\leqq\gamma$ . On the other hand, for a given $i$ , there exists
an integer $j_{0}$ such that type$(K_{ij})\leqq\gamma-1$ for every $j\geqq j_{0}$ . (See Section 2.2.4 of
[I-Z]). Hence, rype$(a_{i}, K)=\gamma$ . Thus, type$(K)=com- type(M)=\gamma$ . Hence, pro-
perty (1) is satisfied.

Since the subset $K_{ij}$ of $K$ is an open subset and since type$(a_{i}, K)=\gamma$ , pro-
perty (6) is also satisfied.

For the proof of property (2) it is sufficient to prove that $(M\cup(K\backslash K^{(\beta(\alpha))}))^{(\beta(\alpha))}$

$=M^{(\beta_{(\alpha))}}$ . Obviously, $M^{(\beta(\alpha))}\subseteqq(M\cup(K\backslash K^{(\beta_{(\alpha))}}))$ . Let $x\in(M\cup(K\backslash K^{(\beta(\alpha))}))^{(\beta(\alpha))}$ .
Then, it is clear that $x\not\in K\backslash K^{(\beta(\alpha))}$ . Hence, $x\in M$. If $x\in M\backslash M^{(\beta(\alpha))}$ , then
com-type$(x, M)<\beta(\alpha)$ and, therefore, type$(x, K)<\beta(a)$ , that is, $x\in K\backslash K^{(\beta(\alpha))}$

which is impossible. Hence, $x\in M^{(\beta(\alpha))}$ and property (2) is satisfied.
Since the set $\max(M)$ is finite, by Lemma 2.4 of [I-Z] it follows that loc-

com-type$(M)=com- type(M)=type(K)$ . Hence, loc-com-type $(M)\cup(K\backslash K^{(\beta(\alpha))}))=$

$type(K)$ and property (3) is satisfied.
Since for a fixed $i,$

$\lim_{j\rightarrow 0}(diam(U_{ij}\backslash U_{i(j+t)}))=0$ , properties (4) and (5) follow

by the construction of $K$.

2.2. LEMMA. Let $M$ be a locally finite union of closea subset $M_{1},$ $M_{2},$ $\cdots$

such that loc-com-type$(M_{i})\leqq\alpha,$ $i=1,2,$ $\cdots$ . Then, $loc- com\lrcorner type(M)\leqq a$ .

PROOF. Let $a\in M$ . There exist an open neighbourhood $U$ of $a$ in $M$ and
a set $\{n_{1}, \cdots, n_{t}\}$ of integers such that $U=(U\cap M_{n_{1}})\cup\cdots\cup(U\cap M_{n_{i}})$ . Since,
loc-com-type$(M_{n_{i}})\leqq a$ we have loc-com-type$(U\cap M_{n_{i}})\leqq a,$ $i=1,$ $\cdots,$

$t$ .
By Theorem 2.5 of [I-Z] it follows that loc-com-type$(U)\leqq a$ . Hence, by

Lemma 2.4 of [I-Z], com-type$(a, U)=com- type(a, M)\leqq\alpha$ . By the same lemma
we have loc-com-type$(M)\leqq\alpha$ .

2.2.1. COROLLARY. Let $X\in R_{lc}^{k}(a)$ (See the Introduction). Then, every pair

of aisjoint closed subsets of $X$ can be separatea by a subset $M$ such that type$(M)$
$\leqq a$ and loc-com-type$(M)\leqq a+k$ .

The proof follows by Lemma 2.2 and Lemma 4 of [I-T]. This corollary
is used in the proof of the following Lemma 2.3.
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2.3. LEMMA. Let $X\in R_{lc}^{k}(\alpha)$ anct $B=\{U_{0}, U_{1}, \cdots\}$ be a basis of open sets of
$X$ such that for every $i,$ $ type(Bd(U_{i}))\leqq\alpha$ and loc-com-type$(Bd(U_{2}))\leqq a+k$ . Let
$F$ be the family of all pairs $A_{m}=(U_{i_{m}}, U_{j_{m}})$ such that $Cl(U_{i_{m}})\subseteqq U_{j_{m}}$ and $U_{i_{m}}$ ,
$U_{j_{m}}\in B$ . Let $D$ denote the set of triaaic rationals in the open interval $(0,1)$ .
Then, there exists a sequence $(f_{m})$ of continus functions $f_{m}$ : $X\rightarrow[0,1]$ such that

for integers $m,$ $r,$ $m\neq r$ and $d\in D$ ;

(1) $f_{m}(Cl(U_{i_{m}}))=\dagger 0$ },

(2) $f_{m}(X\backslash U_{j_{m}})=\{1\}$ ,

(3) type $(f_{m}^{-1}(d))\leqq\alpha$ and loc-com-type$(f_{m}^{-1}(d))\leqq\alpha+k$ ,

(4) $Bd(f_{m}^{-1}([0, d)))=Bd(f_{m}^{-1}((d, 1]))=f_{m}^{-1}(d)$ ,

(5) $ f_{r}(f_{m}^{-1}(d))\cap D=\emptyset$ , and
(6) $f_{r}(f_{m}^{-I}(d))$ is a closed subset of $[0,1]$ of dimension $\leqq 0$ .

This lemma, except condition 3, is the same as Lemma 7 of [I-T] and it
is proven similarly.

2.4. LEMMA. Let $X\in R_{\iota c}^{k}(\alpha)$ . There exist an extension $\tilde{X}$ of $X$ and a basis
$B(\tilde{X})=\{V_{0}, V_{1}, \cdots\}$ of open sets of $\tilde{X}$ such that:

(1) the set $Bd(V_{i}),$ $i=0,1,$ $\cdots$ , is a compactum,
(2) $V_{i}=Int(Cl(V_{\ell})),$ $i=0,1,$ $\cdots$ ,

(3) $ Bd(V_{i})\cap Bd(V_{j})=\emptyset$ if $ i\neq$ ],

(4) type$(Bd(V_{i}))\leqq\alpha+k+1$ ,

(5) type$((Bd(V_{i})\cap X)\cup(Bd(V_{i})\backslash (Bd(V_{i}))^{(\rho_{(a))}}))\leqq a$ and
(6) loc-com-type$((Bd(V_{i})\cap X)\cup(Bd(V_{i})\backslash (Bd(V_{i}))^{(\beta(a))}))\leqq\alpha+k$ .

The proof is similar to the proof of theorem 8 of [I-T]. The extension $\tilde{X}$

is constructed in the same manner as the space $Z$ is constructed in the proof
of Theorem 8 of [I-T]. Instead of Theorem 3 of [I-T] which was used in the
proof of Theorem 8 of [I-T] we have use Lemma 2.1.

2.5. THEOREM. Let $X\in R_{lc}^{k}(\alpha)$ . Then, $X$ admits a compacification having
$rim- type\leqq a+k+1$ .

This theorem is proved using properties (1)$-(4)$ of extension $\tilde{X}$ of $X$ of
Lemma 2.4 and Theorem 2 of $[l_{1}]$ .

3. Construction of specific spaces.

3.1. DEFINITIONS AND NOTATIONS. Let $M$ be a scattered space. A finite
cover $\omega$ of $M$ is called a decomposition iff every element of $\omega$ is an open and
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closed subset of $M$ and the intersection of any two distinct elements of $\omega$ is
empty.

A decomposition $\omega$ is a subdivision of a decomposition $\omega^{\prime}$ of $M$ iff every
element of $\omega$ is contained in an element of $\omega^{\prime}$ .

A sequence $\omega^{n},$ $n\in N$, of decompositions of $M$ is called a decreasing sequence
of aecompositions iff $(a)$ the decomposition $\omega^{n+1},$ $n\in N$, is a subdivision of the
decomposition $\omega^{n}$ and $(\beta)$ the set of all elements of all $\omega^{n},$ $n\in N$, is a basis of
open sets of $M$.

In what follows by $M$ we denote a countable set of scattered compacta.

We suppose that two distinct elements of $M$ are not homeomorphic.
Also, we suppose that for every $M\in M$ there exists a fixed decreasing

sequence of decompositions of $M$. The $n^{th}$ decomposition of this sequence is
denoted by $M^{n},$ $n\in N$.

Let $x\in M\in M$ and $n\in N$. We denote by $F(n, x)$ the element $F$ of $M^{n}$ for
which $x\in F$.

A pair $g=(S, D)$ is called an M-representation iff: $(a)S$ is a subset of $C$ ,

$(\beta)D$ is an upper semi-continuous partition of $S,$ $(\gamma)$ every element of $D(1)$

consists of exactly two points, and $(\delta)$ for every $q\in N,$ $D_{q}$ is homeomorphic to
an element of $M$.

In Section 3, we denote by $A$ a family of M-representations the power of
which is less than or equal to the continuum. We suppose that for distinct
elements $g=(S, D)$ and $f=(S‘, D^{\prime})$ of $A$ it may happen that $S=S^{\prime}$ and $D=D^{\prime}$ .

For every element $g=(S, D)$ of $A$ and for every $q\in N$ by $M_{q}(g)$ we denote
the element of $M$ which is homeomorphic to $D_{q}$ and by $\psi_{q}(g)$ a fixed homeo-
morphism of $M_{q}(g)$ onto $D_{q}$ .

Let $A^{\prime}$ be a subfamilly of $A$ such that for some $q\in N,$ $M_{q}(g)=M_{q}(f)$ for
any elements $g,$ $f$ of $A^{\prime}$ . In this case the element $M_{q}(g)$ of $M$ is also denoted
by $M_{q}(A^{\prime})$ and we shall say that the element $M_{q}(A^{\prime})$ of $M$ is then determinea.

For any subfamilly $A^{\prime}$ of $A$ and for any subset C’ of $C$ we denoted by
$C^{\prime}xA^{\prime}$ the subset of $C’\times A^{\prime}$ consisting of all elements $(a, g)$ of $C^{\prime}\times A^{\prime}$ such
that if $g=(S, D)$ , then $a\in S$ .

A aecomposition $\Omega$ of $A$ is a countable set of subfamilies of $A$ such that:
$(a)$ the intersection of any two distinct elements of $\Omega$ is empty and $(\beta)$ the
union of all elements of $\Omega$ is $A$ .

A decomposition $\Omega$ is a subaivision of a decomposition $\Omega^{J}$ of $A$ iff every
element of $\Omega$ is contained in an element of $\Omega^{\prime}$ .

A sequence $\Omega^{n},$ $n\in N$, of decompositions of $A$ is called $a$ aecreasing sequence
$af$ decompositions iff: $(a)\Omega^{n+1}$ is a subdivision of $\Omega^{n},$ $n\in N$, and $(\beta)$ if $g$ and
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$f$ are distinct elements of $A$ , then there exists an integer $n$ such that $g$ and $f$

belong to distinct elements of $\Omega^{n}$ .
Since the power of $A$ is less than or equal to the continuum, the existence

of decreasing sequence of decompositions of $A$ is easily proved.

In what follows, we suppose that there exists a fixed such sequence of $A$

denoted by $\Omega^{n},$ $n\in N$. Moreover, without loss of generality, we may suppose
that for every $E\in\Omega^{n}$ and for every $q,$ $0\leqq q\leqq n$ , the element $M_{q}(E)$ is deter-
mined.

3.2. LEMMA. For every integer $m\in N$ there exist:
(1) A decomposition $A^{m}=\{A_{r}^{m} : r\in l(m)\}$ of A which is a subaivision of $\Omega^{m}$

(hence, for every $r\in l(m)$ and for every integer $q,$ $0\leqq q\leqq m$ , the element $M_{q}(A_{\tau}^{m})$

of $M$ is determined). In what follows, we aenote by $r$ an arbitrary element of
$1(m)$ and by $q$ an integer such that $0\leqq q\leqq m$ .

(2) An integer $n(q, A_{r}^{m})\geqq m$ (denoted also by $n(q,$ $m,$ $r)$ ).

(3) An integer $n(A_{r}^{m})>m$ (denotea also by $n(m,$ $r)$).

(4) A subset $s(F)$ of $L_{n(m.r)}$ for every $F\in(M_{q}(A_{r}^{m}))^{n(q.m.r)}$ (denoted also by
$s(q, m, r, F))$ .

(5) A subset $U(F)$ of $Cx$ $A$ for every $F\in(M_{q}(A_{r}^{m}))^{n(q.m.r)}$ (aenoted also by
$U(q, m, r, F))$ such that:

(6) If $m\geqq 1$ , then $A^{m}$ is a subdivision of $A^{m-1}$ (hence, the sequence $A^{0},$ $A^{1},$ $\cdots$

is $a$ aecreasing sequence of decompositions of $A$ ).

(7) If $m\geqq 1,$ $t\in l(m-1)$ and $A_{r}^{m}\subseteqq A_{l}^{m-1}$ , then $n(m, r)>n(m-1, t)$ .
(8) If $t\in I(q)$ and $A_{r}^{m}\subseteqq A_{t}^{q}$ , then $n(q, m, r)=n(q, q, t)+m-q$ .
(9) If $m\geqq 1,$ $t\in l(m-1),$ $f,$ $g\in A_{r}^{m}\subseteqq A_{t}^{m-1}anax\subset_{-}F\in(M_{m}(A_{r}^{m}))^{n(m.m.r)}$ , then

$st(\psi_{m}(g)(x), n(m-1, t))=st((\psi_{m}(f)(F))^{*}, n(m-1, t))$ .
(10) If $m\geqq 1$ , $q<m$ , $t\in I(m-1)$ , $g=(S, D)\in A_{r}^{m}\subseteqq A_{t}^{m-1}$ , $d\in D$ , $ F\in$

$(M_{q}(g))^{n(q.m,r)}$ , $Q\subset-(M_{q}(g))^{n(q.m.r)-1}$ , $F\subseteqq Q$ and $ d\cap st((\psi_{q}(g)(F))^{*}, n(m, r))\neq\emptyset$ ,

then $d\subseteqq st((\psi_{q}(g)(Q))^{*}, n(m-1, t))$ .
(11) If $g\in A_{r}^{m}$ and $F\in(M_{q}(A_{r}^{m}))^{n(q.m.r)}$ , then $st((\psi_{q}(g)(F))^{*}, n(m, r))=C_{s(F)}$ .
(12) $U(F)=C_{s(F)}xA_{r}^{m}$ for every $F\in(M_{q}(A_{r}^{m}))^{n(q.m.r)}$ .
(13) If $F\in(M_{k}(A_{r}^{m}))^{n(k.m,r)}anaQ\in(M_{q}(A_{r}^{m}))^{n(q,m.r)}$ , where $0\leqq k<q$ , then

$ U(F)\cap U(Q)=\emptyset$ .
(14) If $F,$ $Q\in(M_{q}(A_{r}^{m}))^{n(q.m.r)}$ and $F\neq Q$ , then $ U(F)\cap U(Q)=\emptyset$ .

PROOF. We prove the lemma by induction on integer $m$ .
Let $m=0$ . Let $E\in\Omega^{0}$ . For every $g\in E$ there exists an integer $n(g)>0$

such that if $F,$ $Q\in(M_{0}(g))^{0}$ , then $ st((\psi_{0}(g)(F))^{*}, n(g)(\cap st((\psi_{0}(g)(Q))^{*}, n(g))=\emptyset$ .
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We observe that if $f,$ $g\in Q$ , then $M_{0}(f)=M_{0}(g)$ .
Now, we define the decomposition $A^{0}$ of $A$ as follows: two elements $g$ and

$f$ of $A$ belong to the same element of $A^{0}$ iff there exists an element $E\in\Omega^{0}$

such that: $(\alpha)g,$ $f\in E,$ $(\beta)n(g)=n(f)$ and $(\gamma)st((\psi_{0}(g)(F))^{*}, n(g))=st((\psi_{0}(f)(F))^{*}$ ,

$n(f))$ for every $F\in(M_{0}(g))^{0}=(M_{0}(f))^{0}$ .
Obviously, $A^{0}$ is a countable set and by the construction, $A^{0}$ is a subdivi-

sion of $\Omega^{0}$ . Let $A^{0}=\{A_{r}^{0} ; r\in I(O)\}$ .
For every $r\in l(O)$ we set $n(O, A_{r}^{0})=0$ and $n(A_{r}^{0})=n(g)$ , where $g\in A_{r}^{0}$ . Ob-

viously, the integer $n(A_{r}^{0})$ is independent from $g\in A_{r}^{0}$ .
For every $F\in(M_{0}(A_{r}^{0}))^{0}$ we denote by $s(F)$ the set of all elements $\overline{i}$ of

$L_{n(0.r)}$ for which $C_{\overline{i}}\subseteqq st((\psi_{0}(g)(F))^{*}, n(g))$ , where $g\in A_{r}^{0}$ . Obviously, the set
$s(F)$ is independent from $g\in A_{r}^{0}$ .

Finally, we set $U(F)=C_{s(F)}xA_{r}^{0}$ for every $F\in(M_{0}(A_{r}^{0}))^{0}$ . It is easy to see
that properties (8), (11), (12) and (14) of the lemma are satisfied.

Suppose that the lemma is proved for every $m,$ $0\leqq m<p$ . We prove the
lemma for $m=p$ .

Let $E\in\Omega^{p}$ , $t\in l(p-1)$ and $g=(S, D)\in E\cap A_{t}^{p-1}$ . Since the map $\psi_{p}(g)$ is
continuous, for every $x\in M_{p}(g)$ there exists an open neighbourhood $O(x)$ of $x$

in $M_{p}(g)$ such that for every $y\in O(x)$ we have $st(\psi_{p}(g)(x), n(p-1, t))=$

$st(\psi_{p}(g)(y), n(p-1, t))$ . (For example, we can suppose that $0(x)=$

$(\psi_{p}(g))^{-1}(O(\psi_{p}(g)(x)))$ , where $O(\psi_{p}(g)(x))$ is the set of all elements of $D_{p}$ which
are contained in the open set $st(\psi_{p}(g)(x)n(p-1, t))$ of $C$ ). The set of all such
neighbourhoods $O(x)$ is an open cover of $M_{p}(g)$ . Hence, since $M_{p}(g)$ is a com-
pactum there exists an integer $n_{0}(g)\geqq 0$ such that every element of $(M_{p}(g)^{n_{0}(g)}$

is contained in the neighbourhood $O(x)$ for some $x$ .
There exists an integer $n_{1}(g)\geqq 0$ such that $st((\psi_{k}(g)(F))^{*}, n_{1}(g))\cap st((\psi_{q}(g)(Q))^{*}$ ,

$ n_{1}(g))=\emptyset$ for every $F\in(M_{k}(g))^{n(k.p-1.t)+1}$ and for every $Q\in(M_{q}(g))^{n(q.p-1.l)+1}$ ,

where $0\leqq k\leqq p-1,0\leqq q\leqq p-1$ and either $k\neq q$ or$k=q$ and $F\neq Q$ .
Also, since $D$ is an upper semi-continuous partition of $S$ , there exists an

integer $n_{2}(g)\geqq 0$ such that if $0\leqq q\leqq p-1$ , $d\in D$ , $F\in(M_{q}(g))^{n(q.p-1.l)+1}$ , $ Q\in$

$(M_{q}(g))^{n(q.p- 1.t)+1},$ $F\subseteqq Q$ and $ d\cap st((\psi_{q}(g)(F))^{*}, n_{2}(g))\neq\emptyset$ , then $d\subseteqq st((\psi_{q}(g)(Q))^{*}$ ,

$n(p-1, t))$ .
There exists an integer $n_{3}(g)\geqq 0$ such that if $F$ and $Q$ are distinct elements

of $(M_{p}(g))^{n_{0}(g)}$ , then $ st((\psi_{p}(g)(F))^{*}, n_{3}(g))\cap st((\psi_{p}(g)(Q))^{*}, n_{3}(g))=\emptyset$ .
Finally, there exists an integer $n_{4}(g)\geqq 0$ such that if $0\leqq q\leqq p-1,$ $ F\in$

$(M_{q}(g))^{n(q.p-1.t)+1},$ $Q\in(M_{p}(g))^{n_{0}(g)}$ , then $st((\psi_{q}(g)(F))^{*}, n_{4}(g^{\backslash }/)\cap st((\psi_{p}(g)(Q))^{*}$ ,
$ n_{4}(g))=\emptyset$ .

Let $n(g)=\max\{n_{1}(g), n_{2}(g), n_{3}(g), n_{4}(g), p+1, n(p-1, t)+1\}$ .
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We now define the decomposition $A^{p}$ . Let $g,$ $f\in A$ . The elements $g$ and
$f$ belong to the same element of $A^{p}$ iff there exist an element $E$ of $\Omega^{p}$ and an
element $t\in I(p-1)$ such that: $(\alpha)g,$ $f\in E\cap A_{t}^{p- 1}$ (hence, $M_{q}(g)=M_{q}(f)$ for every
$q,$ $0\leqq q\leqq p$ ), $(\beta)$ $n(g)=n(f)$ , $(\gamma)$ $n_{0}(g)=n_{0}(f)$ , $(\delta)$ if $0\leqq q\leqq p-1$ and $ F\in$

$(M_{q}(g))^{n(q.p-1.\iota)+1}=(M_{q}(f))^{n(q.p-1.t)+1}$ , then $st((\psi_{q}(g)(F))^{*}, n(g))=st((\psi_{q}(f)(F))^{*}$ ,

$n(f))$ , and $(\epsilon)$ if $F\in(M_{p}(g))^{n_{0}(g)}=(M_{p}(f))^{n_{0}(f)}$ , then $st((\psi_{p}(g)(F))^{*}, n(g))=$

$st((\psi_{p}(f)(F))^{*}, n(f))$ .
It is easy to see that the set $A^{p}$ is countable. Let $A^{p}=\{A_{r}^{p} ; r\in l(p)\}$ .
Property (6) of the lemma follows by the definition of the decomposition $A^{p}$ .
Let $r\in l(p)$ . We define the integers $n(p, r)$ and $n(q, p, r)$ for $0\leqq q\leqq p$

setting $n(p, r)=n(g),$ $n(p, p, r)=n_{0}(g)$ , where $g\in A_{r}^{p}$ and $n(q, p, r)=n(q, p-1, t)$

$+1$ if $0\leqq q\leqq p-1$ , where $t\in l(p-1)$ such that $A_{r}^{p}\subseteqq A_{t}^{p-1}$ .
Property (7) of the lemma follows by the definition of the number $n(g)$ .

Also, if $t\in l(p-1),$ $q\leqq p-1$ and $e\in l(q)$ such that $A_{r}^{m}\subseteqq A_{t}^{m-\iota}\subseteqq A_{e}^{q}$ , then we have
$n(q, p, r)=n(q, p-1, t)+1=n(q, q, e)+p-1-q+1=n(q, q, e)+p-q$ , that is, pro-
perty (8) of the lemma is satisfied.

Property (9) of the lemma follows by the definition of the integer $n_{0}(g)$

(considering that $n(p,$ $p,$ $r)=n_{0}(g)$ ) and by property $(\epsilon)$ of the definition of the
set $A^{p}$ (from which it follows that $st((\psi_{p}(g)(F))^{*}, n(p-1, t))=st((\psi_{p}(f)(F))^{*}$ ,

$n(p-1, t)))$ .
Property (10) of the lemma follows by the definition of the integers $n_{2}(g)$

and $n(g)$ (considering that $n(q,$ $p,$ $r)=n(q,$ $p-\iota,$ $t)+1$ ).

The set $s(F)$ , where $F\in(M_{q}(A_{r}^{p}))^{n(q.p.r)}$ is defined as follows: an element $\overline{i}$

of $L_{n(p.r)}$ belongs to $s(F)$ iff $C_{\overline{i}}\subseteqq st((\psi_{q}(g)(F))^{*}, n(p, r))$ , where $g\in A_{r}^{p}$ . By
properties $(\delta)$ and $(\epsilon)$ of the definition $\circ r*the$ decomposition $A^{p}$ it follows that
$s(F)$ is independent from $g\in A_{r}^{p}$ .

Property (11) of the lemma follows immediately from the above definition
of the set $s(F)$ .

The set $U(F)$ , where $F\in(M_{q}(A_{r}^{p}))^{n(q.p.r)}$ , is defined setting $U(F)=C_{s(F)}xA_{r}^{P}$ .
Then, property (12) of the lemma is clear.

Finally, properties (13) and (14) of the lemma follows by the definition of
the integers $n_{1}(g),$ $n_{a}(g),$ $n_{4}(g)$ and $n(g)$ and the definition of the sets $s(F)$ and
$U(F)$ .

3.3. NOTATIONS. For every $q\in N$ and $g\in A$ we denote by $r(q, g)$ the ele-
ments $t\in l(q)$ for which $g\in A_{t}^{q}$ .

Let $m\in N$ and $r\in l(m)$ . We denote by $s(m, r)$ the union of all sets $s(q, m, r, F)$ ,

where $0\leqq q\leqq m$ and $F\in(M_{q}(A_{r}^{m}))^{n(q.m.r)}$ . Obviously, $s(m, r)\subseteqq L_{n(m.r)}$ .
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Let $m\in N,$ $r\in l(m)$ and $x\in M_{m}(A_{r}^{m})$ . Obviously, if $(a, g)\in CxA_{r}^{m}$ , then
$g\in A_{r}^{m}$ and $M_{m}(A_{r}^{m})=M_{m}(g)$ . We denote by $d(x, m, r)$ the set of all elements
$(a, g)\in CxA_{r}^{m}$ for which $\psi_{m}(g)(x)=a$ . We denote by $T(1)$ the set of all sub-
sets of $Cx$ $A$ of the form $d(x, m, r)$ . By $T$ we denote the union of the set
$T(1)$ and the set of all singletons $\{(a, g)\}$ , where $(a, g)$ belongs to $Cx$ $A$ and
does not belong to any $d(x, m, r)\in T(1)$ .

Let $d(x, m, r)$ be a fixed element of $T(1)$ and let $k\in N$. We denote by

$U(d(x, m, r), k)$ the union of all sets of the form $U(m, m+k, t, F)$ , where $ t\in$

$l(m+k)$ such that $A_{l}^{m+k}\subseteqq A_{r}^{m}$ and $x\in F\in(M_{m}(A_{r}^{m+k}))^{n(m.m+k.i)}$ .
Since $M_{m}(A_{l}^{m+k})=M_{m}(A_{r}^{m})$ and by property (8) of Lemma 3.2, $n(m, m+k, t)$

$=n(m, m, r)+k$ we have $(M_{m}(A_{l}^{m+k}))^{n(m,m+k.l)}=(M_{m}(A_{r}^{m}))^{n(m,m.r)+k}$ . This means
that $F$ is independent from the elements $t$ of $l(m+k)$ for which $A_{t}^{m+k}\subseteqq A_{r}^{m}$ .

We observe that for every $y\in F$ we have $U(d(x, m, r), k)=U(d(y, m, r), k)$ .
We denote by $0$ the set of all sets of the form $U(d, k)$ , where $d=d(x, m, r)$

$\in T(1)$ and $k\in N$.
Let $m\in N,$ $r\in I(m)$ and $\overline{i}\in L_{m(m.r)}$ such that $\overline{i}\not\in s(m, r)$ . Then, we set

$V(\overline{i}, m, r)=C_{\overline{i}}xA_{r}^{m}$ . We denote by $\hat{V}$ the set of all sets of the form $V(\overline{i}, m, r)$ .

REMARKS. It is not difficult to prove that:
(1) For every $d(x, m, r)\in T(1),$ $d(x, m, r)\subseteqq CxA_{r}^{m}$ .
(2) If $g\in A_{r}^{m}$ and $d(x, m, r)\in T(1)$ , then $d(x, m, r)\cap(Cx\{g\})=\psi_{m}(g)(x)x\{g\}$

$\neq\emptyset$ .
(3) For every $d\in T(1)$ and $k\in N,$ $d\subseteqq U(d, k)$ .
(4) For every $d(x, m, r)\in T(1)$ and $k\in N,$ $U(d(x, m, r), k)\subseteqq CxA_{r}^{m}$ .
(5) FOJ every $d\in T(1)$ and $k\in N,$ $U(d, k+1)\subseteqq U(d, k)$ .
(6) If $x\in F\in(M_{m}(A_{r}^{m}))^{n(m.m,r)}$ , then $U(d(x, m, r), O)=U(m, m, r, F)$ .
(7) If $t\in l(m+k)$ , $A_{t}^{m+k}\subseteqq A_{r}^{m}$ and $x\in F\in(M_{m}(A_{t}^{m+k}))^{n(m.m+k.l)}$ , then

$U(d(x, m, r), k)\cap(CxA_{t}^{m+k})=U(m, m+k, t, F)$ .
(8) If $V(\overline{i}, m, r)\in\hat{V}$ and $d(x, q, t)\in T(1)$ , where $0\leqq q\leqq m$ , then $ V(\overline{i}, m, r)\cap$

$ d(x, q, t)=\emptyset$ .
(9) If $d_{1},$ $d_{2}\in T(1)$ and $d_{1}\neq d_{2}$ , then $ d_{1}\cap d_{2}=\emptyset$ .
(10) The union of all elements of $T$ is the set $CxA$ .

3.5. LEMMA. Let $d=d(x, m, r)\in T(1)$ and $U=U(d_{1}, n_{1})\in O$ , where $d_{1}=$

$d(y, m_{1}, r_{1})\in T(1)$ . The following are true;

(1) If $d\subseteqq U$ , then there exists an integer $n\geqq 0$ such that $U(d, n)\subseteqq U$ .
(2) If $ d\cap U=\emptyset$ , then there exists an integer $n\geqq 0$ such that $ U(d, n)\cap U=\emptyset$ .
(3) If $ d\cap U\neq\emptyset anad\cap((CxA)\backslash U)\neq\emptyset$ , then there exists an open and closed
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neighbourhood $O(x)$ of $x$ in $M_{m}(A_{r}^{m})$ such that $ d(z, m, r)\cap U\neq\emptyset anad(z, m, r)\cap$

$((CxA)\backslash U)\neq\emptyset$ for every $z\in O(x)$ .

PROOF. (1) By properties (1) $-(4)$ of Remarks 3.4 it follows that $A_{r}^{m}\subseteqq A_{r}^{m_{1^{1}}}$ .
First we suppose that $m\leqq p$ , where $p=m_{1}+n_{1}$ . Let $t$ be an arbitrary ele-

ment of $I(p)$ such that $A_{t}^{p}\subseteqq A_{r}^{m}\cap A_{r}^{m_{1^{1}}}$ and let $F=F(n(m, p, t), x)$ and $F_{1}=$

$F(n(m_{1}, p, t), y)$ .
Suppose that either $m\neq m_{1}$ or $m=m_{1}$ and $F\neq F_{1}$ . By properties (13) and (14)

of Lemma 3.2 we have $ U(m, p, t, F)\cap U(m_{1}, p, t, F_{1})=\emptyset$ .
Obviously, $ d\cap(CxA_{l}^{p})\neq\emptyset$ (See property (1) of Remarks 3.4) and since $d\subseteqq U$

we have $d\cap(CxA_{l}^{p})\subseteqq U\cap(CxA_{l}^{p})$ .
On the other hand, $U\cap(CxA_{l}^{p})=U(m_{1}, p, t, F_{1})$ (See property (7) of Remarks

3.4) and $d\cap(CxA_{t}^{p})\subseteqq U(m, p, t, F)$ (See properties (6) and (7) of Remarks 3.4).

From this follows that $(d\cap(CxA_{t}^{p}))\cap(U\cap(CxA_{t}^{p}))=\emptyset$ which is a contradiction.
Hence, $m=m_{1}$ and $F=F_{1}$ . Setting $n=n_{1}$ we have that $U(d, n)=U(d_{1}, n_{1})$ ,

that is, the integer $n=n_{1}$ is the required integer.
Now, let $m_{1}+n_{1}=p<m$ . Let $e\in l(m-1)$ and $t\in l(p)$ such that $ A_{r}^{m}\subseteqq A_{e}^{m-1}\subseteqq$

$A_{t}^{p}\subseteqq A_{r_{1}}^{m_{1}}$ and let $F=F(n(m, m, r), x)$ and $F_{1}=F(n(m_{1}, p, t), y)$ .
We have $U(d_{1}, n_{1})\cap(CxA_{t}^{p})=U(m_{1}, p, t, F_{1})$ . Since $d\subseteqq CxA_{r}^{m}\subseteqq CxA_{t}^{p}$ we

have that $d\subseteqq U(m_{1}, p, t, F_{1})=C_{S}xA_{l}^{p}$ , where $s=s(F_{1})$ . Hence, $st(\psi_{m}(g)(x), n(p, t))$

$\subseteqq C_{s}$ for every $g\in A_{r}^{m}$ .
Since $n(m-1, e)\geqq n(p, t)$ (See property (7) of Lemma 3.2) we have that

$st(\psi_{m}(g)(x), n(m-1, e))\subseteqq st(\psi_{m}(g)(x), n(p, t))$ . By proyerty (9) of Lemma 3.2 it
follows that $st((\psi_{m}(g)(F))^{*}, n(m-1, e))\subseteqq C_{s}$ . By property (11) of Lemma 3.2 we
have that $C_{s(F)}\subseteqq C_{S}$ . Hence, by property (12) of Lemma 3.2, $U(m, m, r, F)=$

$C_{s(F)}xA_{r}^{m}\subseteqq C_{s}xA_{t}^{p}=U(m_{1}, p, t, F_{1})\subseteqq U$ . 0bviously, $U(m, m, \gamma, F)=U(d, 0)$ (See

property (6) of Remarks 3.4). Hence, the integer $n=0$ is the required integer.
(2) If $ A_{r}^{m}\cap A_{r}^{m_{1^{1}}}=\emptyset$ , then by properties (1) $-(4)$ of Remarks 3.4 it follows

that for every $n\in N$, $ U(d, n)\cap U(d_{1}, n_{1})=\emptyset$ . Hence, we can suppose that
$ A_{r}^{m}\cap A_{r}^{m_{1^{1}}}\neq\emptyset$ .

Let $m\leqq p$ , where $p=m_{1}+n_{1}$ and let $t,$ $F$ and $F_{1}$ be the same as in the cor-
responding part of case (1).

If $m=m_{1}$ and $F=F_{1}$ , then $\gamma=\gamma_{1}$ and $d\subseteqq U$ which is a contradiction. Hence,

either $m\neq m_{1}$ , or $m=m_{1}$ and $F\neq F_{1}$ .
In both cases, by properties (13) and (14) of Lemma 3.2 we have that

$ U(m, p, t, F)\cap U(m_{1}, p, t, F_{1})=\emptyset$ . Since $U(d, p-m)\cap(CxA_{t}^{p})=U(m, p, t, F)$ and
$U(d_{1}, n_{1})\cap(CxA_{l}^{p})=U(m_{1}, p, t, F_{1})$ and since $t$ is an arbitrary element of $1(p)$

for which $A_{t}^{p}\subseteqq A_{r}^{m}\cap A_{r}^{m_{1^{1}}}$ we have that $ U(d, p-m)\cap U(d_{1}, n_{1})=\emptyset$ , that is, the
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integer $n=p-m$ is the required integer.
Now, let $p<m$ , hence, $A_{r}^{m}\subseteqq A_{r}^{m_{1^{1}}}$ and let $e,$ $t,$ $F$ and $F_{1}$ be the same as in

the corresponding part of case (1).

We have $U(d_{1}, n_{I})\cap(CxA_{t}^{p})=U(m_{1}, p, t, F_{1})=C_{s}xA_{l}^{p}$ , where $s=s(F_{1})$ . Hence,
$(C_{s}xA_{t}^{p})\cap d=\emptyset$ . This means that for every $g\in A_{r}^{m},$ $ st(\psi_{m}(g)(x), n(p, t))\cap C_{s}=\emptyset$ .
Since $n(m-1, e)\geqq n(p, t)$ (See property (7) of Lemma 3.2) we have $st(\psi_{m}(g)(x)$ ,
$ n(m-1, p))\cap C_{s}=\emptyset$ .

By property (9) of Lemma 3.2 it follows that $st((\psi_{m}(g)(F))^{*}, n(m-1, e))\cap C_{s}$

$=\emptyset$ . Since $n(m, r)>n(m-1, e)$ we have that $ st((\psi_{m}(g)(F))^{*}, n(m, r))\cap C_{\delta}=\emptyset$ , that
is, $ C_{s(F)}\cap C_{s}=\emptyset$ .

Thus, $(C_{s(F)}xA_{r}^{m})\cap(C_{s}xA_{t}^{p})=\emptyset$ , that is, $ U(m, m, r, F)\cap U(m_{1}, p, t, F_{1})=\emptyset$ .
Hence, $ U(m, m, \gamma, F)\cap U(d_{1}, n_{1})=\emptyset$ , that is, $ U(d, 0)\cap U(d_{1}, n_{1})=\emptyset$ and $n=0$ is
the required integer.

(3) It is easy to see that $ A_{r}^{m}\cap A_{r}^{m_{1^{1}}}\neq\emptyset$ . Let $m\leqq p$ , where $p=m_{1}+n_{1}$ and
let $t\in l(p)$ such that $A_{l}^{p}\subseteqq A_{r}^{m}$ and $A_{l}^{p}\subseteqq A_{r_{1}}^{m_{1}}$ . Let $F$ and $F_{1}$ be the same as in
the corresponding part of case (1). As in that case we prove that if $m=m_{1}$

and $F=F_{1}$ , then $d\subseteqq U$ and if either $m\neq m_{1}$ or $m=m_{1}$ and $F\neq F_{1}$ , then $ d\cap U=\emptyset$ ,

which is a contradiction,

Hence $p<m$ . Then. $A_{r}^{m}\subseteqq A_{r_{1}}^{m_{1}}$ . Let $e,$ $t,$ $F$ and $F_{1}$ be same as in the cor-
responding part of case (1).

We have $U\cap(CxA_{t}^{p})=U(m_{1}, p, t, F_{1})$ . Since $d\subseteqq CxA_{r}^{m}\subseteqq CxA_{t}^{p}$ we have
$ d\cap U(m_{1}, p, t, F_{1})\neq\emptyset$ and $ d\cap((CxA)\backslash U(m_{1}, p, t, F_{1}))\neq\emptyset$ . Moreover, if $(a, g)\in$

$d\cap((CxA)\backslash U(m_{1}, p, t, F_{1}))$ , then $(a, g)\not\in U$ .
There exist elements $g_{1}$ and $g_{2}$ of $A_{r}^{m}$ such that $\psi_{m}(g_{1})(x)\cap C_{s}\neq\emptyset$ and

$\psi_{m}(g_{2})(x)\cap(C\backslash C_{s})\neq\emptyset$ , where $s=s(F_{1})$ . Since $n(m-1, e)\geqq n(p, t)$ there exist ele-
ments $i_{1}$ and $\overline{i}_{2}$ of $C_{n(m- 1,e)}$ such that $C_{i_{1}}\subseteqq C_{s},$ $C_{\overline{i}_{2}}\subseteqq C\backslash C_{s},$ $\psi_{m}(g_{1})(x)\cap C_{\overline{i}_{1}}\neq\emptyset$

and $\psi_{m}(g_{2})(x)\cap C_{\overline{i}_{2}}\neq\emptyset$ .
By property (9) of Lemma 3.2 it follows that for every $z\in F$ we have

$\psi_{m}(g_{1})(z)\cap C_{\overline{i}_{1}}\neq\emptyset$ and $\psi_{m}(g_{2})(z)\cap C_{\overline{i}_{2}}\neq\emptyset$ . This means that $d(z, m, r)\cap U(m_{1}, p, t, F_{1})$

$\neq\emptyset$ and $ d(z, m, r)\cap((CxA)\backslash U(m_{1}, p, t, F_{1}))\neq\emptyset$ , that is, $ d(z, m, r)\cap U\neq\emptyset$ and
$ d(z, m, r)\cap((CxA)\backslash U)\neq\emptyset$ . Hence, the neighbourhood $0(x)=F$ is the required
neighbourhood of $x$ in $M_{m}(A_{r}^{m})$ .

3.6. LEMMA. Let $d=d(x, m, r)\in T(1)$ and $V=V(\overline{i}, p, t)\in\hat{V}$ . The following
are true:

(1) If $d\subseteqq V$ , then there exists an integer $n\geqq 0$ such that $U(d, n)\subseteqq V$ .
(2) If $ d\cap V=\emptyset$ , then there exists an integer $n\geqq 0$ such that $ U(d, n)\cap V=\emptyset$ .
(3) If $ d\cap V\neq\emptyset$ and $ d\cap((CxA)\backslash V)\neq\emptyset$ then there exists an open $ana$ closea
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neighbourhood $0(x)$ of $x$ in $M_{m}(A_{r}^{m})$ such that $ d(z, m, r)\cap V\neq\emptyset$ and $ d(z, m, r)\cap$

$((CxA)\backslash V)\neq\emptyset$ for every $z\in O(x)$ .

PROOF. (1) By properties (1) and (8) of Remarks 3.4 it follows that $p<m$

and $A_{r}^{m}\subseteqq A_{t}^{p}$ . Hence $n(m, r)>n(p, t)$ . Let $F=F(n(m, m, r), x)$ .
Since $d\subseteqq V$ and $n(m, r)>n(p, t)$ we have that $\psi_{m}(g)(x)\subseteqq C_{\overline{i}}$ for every $g\in A_{r}^{m}$ .

Hence, by property (9) of Lemma 3.2 it follows that $(\psi_{m}(g)(F))^{*}\subseteqq C_{\overline{i}}$ .
By property (11) of Lemma 3.2 and since $n(m, r)>n(p, t)$ we have $C_{S(F)}$

$\subseteqq C_{\overline{i}}$ . Since $A_{r}^{m}\subseteqq A_{t}^{p}$ we have $C_{s(F)}xA_{r}^{m}\subseteqq C_{\overline{i}}xA_{t}^{p}$ . Hence, $U(m, m, \gamma F)=$

$U(d, 0)\subseteqq V(\overline{i}, p, t)$ . Thus, the integer $n=0$ is the required integer.
(2) If $ A_{r}^{m}\cap A_{t}^{p}=\emptyset$ , then for any integer $n\in N,$ $ U(d, n)\cap V=\emptyset$ . Hence, we

can suppose that $ A_{r}^{m}\cap A_{l}^{p}\neq\emptyset$ .
Let $m\leqq p$ . Then, $A_{t}^{p}\subseteqq A_{r}^{m}$ . Let $F=F(n(m, p, t), x)$ . By the definition of

the elements of $\hat{V}$ it follows that $ U(m, p, t, F)\cap(C_{\overline{i}}xA_{t}^{p})=\emptyset$ . Setting $n=m_{2}-m$

we have $U(d, n)\cap(CxA_{l}^{p})=U(m, p, t, F)$ . Hence, $ U(d, n)\cap V(\overline{i}, p, t)=\emptyset$ , that is,

the integer $n=m_{2}-m$ is the required integer.
Now, let $p<m$ . Then, $A_{r}^{m}\subseteqq A_{t}^{p}$ . Let $e\in l(m-1)$ such that $A_{r}^{m}\subseteqq A_{e}^{m-1}$ and

$F=F(n(m, m, r), x)$ .
We have $U(d, O)=U(m, m, \gamma, F)=C_{\epsilon(F)}xA_{r}^{m}$ (See property (12) of Lemma

3.2). Hence, $ U(d, O)\cap V\neq\emptyset$ if and only if $ C_{s(F)}\cap C_{\overline{i}}\neq\emptyset$ .
If $g\in A_{r}^{m}$ , then $st((\psi_{m}(g)(F))^{*}, n(m, r))=C_{s(F)}$ (See property (11) of Lemma

3.2). Since $ d\cap V=\emptyset$ it follows that $ st(\psi_{m}(g)(x), n(p, t))\cap C_{\overline{i}}=\emptyset$ . Since $n(m-1, e)$

$\geqq n(p, t)$ , we have $st(\psi_{m}(g)(x), n(m-1, e))\subseteqq st(\psi_{m}(g)(x), n(p, t))$ and, hence,
$ st(\psi_{m}(g)(x), n(m-1, e))\cap C_{\overline{i}}=\emptyset$ .

By property (9) of Lemma 3.2 it follows that $st(\psi_{m}(g)(x), n(m-1, e))=$

$st((\psi_{m}(g)(F))^{*}, n(m-1, e))$ . Since $n(m, r)>n(m-1, e)$ we have $st((\psi_{m}(g)(F))^{*}$ ,
$n(m, r))\subseteqq st((\psi_{m}(g)(F))^{*}, n(m-1, e))$ and, hence, $ st((\psi_{m}(g)(F))^{*}, n(m, r))\cap C_{\overline{i}}=\emptyset$ ,

that is, the integer $n=0$ is the required integer.
(3) As in case (1) we have $p<m$ and $A_{r}^{m}\subseteqq A_{t}^{p}$ . Let $e\in l(m-1)$ such that

$A_{r}^{m}\subseteqq A_{e}^{m- 1}$ and let $F=F(n(m, m, r), x)$ .
Since $ d\cap V\neq\emptyset$ there exists $g_{1}\in A_{r}^{m}$ such that $\psi_{m}(g_{1})(x)\cap C_{\overline{i}}\neq\emptyset$ . Also, since

$ d\cap((CxA)\backslash V)\neq\emptyset$ there exists $g_{2}\in A_{r}^{m}$ such that $\psi_{m}(g_{2})(x)\cap(C\backslash C_{\overline{i}})\neq\emptyset$ . Since
$n(m-1, e)\geqq n(p, t)$ there exist $\overline{i}_{1},\overline{i}_{2}\in L_{n(m-1.e)}$ such that $C_{\overline{i}_{1}}\subseteqq C_{\overline{i}},$ $C_{\overline{i}_{2}}\subseteqq C\backslash C_{i}’$ ,
$\psi_{m}(g_{1})(x)\cap C_{\overline{i}_{1}}\neq\emptyset$ and $\psi_{m}(g_{2})(x)\cap C_{\overline{i}_{2}}\neq\emptyset$ .

By property (9) of Lemma 3.2, for every $g\in A_{r}^{m}$ and for every $z\in F$ we
have $\psi_{m}(g)(z)\cap C_{\overline{i}_{1}}\neq\emptyset$ and $\psi_{m}(g)(z)\cap C_{i_{2}}\neq\emptyset$ , and, hence, $\psi_{m}(g)(z)\cap C_{\overline{i}}\neq\emptyset$ and
$\psi_{m}(g)(z)\cap(C\backslash C_{l}s)\neq\emptyset$ , that is, $ d(z, m, r)\cap V\neq\emptyset$ and $ d(z, m, r)\cap((CxA)\cap V)\neq\emptyset$ .
Thus, the neighbourhood $0(x)=F$ is the required neighbourhood of $x$ in $M_{m}(A_{r}^{m})$ .
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3.7. LEMMA. Let $d=\{(a, g)\}$ , where $g=(S, D),$ $V,$ $V_{1}\in\hat{V}$ and $U,$ $U_{1}\in\hat{U}$ .
The following are true;

(1) If $d\subseteqq C_{\overline{i}}xA_{r}^{m}$ , then there exists an element $W$ of $\hat{U}\cup\hat{V}$ such that $ d\subseteqq$

$W\subseteqq C_{\overline{i}}xA_{r}^{m}$ .
(2) If $ V\cap V_{1}\neq\emptyset$ , then either $V\subseteqq V_{1}$ or $V_{1}\subseteqq V$ .
(3) If $d\subseteqq V\cap U$ , then there exists an element $W$ of $\hat{U}\cup\hat{V}$ such that $d\subseteqq W$

$\subseteqq V\cap U$ .
(4) If $d\subseteqq U\cap U_{1}$ , then there exists an element $W$ of $\hat{U}\cap\hat{V}$ such that $d\subseteqq W$

$\subseteqq U\cap U_{1}$ .
(5) If $ d\cap V=\emptyset$ , then there exists an element $W$ of $\hat{U}\cup\hat{V}$ such that $d\subseteqq W$

and $ W\cap V=\emptyset$ .
(6) If $ d\cap U=\emptyset$ , then there exists an element $W$ of $\hat{U}\cup\hat{V}$ such that $d\subseteqq W$

and $ W\cap U=\emptyset$ .

PROOF. Let $\overline{i}\in L_{n}$ and let $k$ be an integer such that $k-1\geqq\max\{n, m\}$ .
There exists an integer $p\geqq k$ such that $ st(a, n(p, t))\cap st((D_{q})^{*}, n(p, t))=\emptyset$

for every $q\leqq k$ , where $r=r(p, g)$ .
Let $j\in L_{n(p.t)}$ and $a\in C_{\overline{j}}$ . Suppose that $j\not\in s(p, t)$ . Then, the set $W=$

$C_{\overline{j}}xA_{t}^{p}$ belongs to $\hat{V}$ . Obviously, we have $\{(a, g)\}\subseteqq W,$ $C_{\overline{j}}\subseteqq C_{\overline{i}}$ and $A_{l}^{p}\subseteqq A_{r}^{m}$ .
Hence, $W\subseteqq V$ , that is, $W$ is the required element of $\hat{U}\cup\hat{V}$ . Suppose that $\overline{j}\in$

$s(p, t)$ , that is, $\overline{j}\in s(q, p, t, F)$ for some $q,$ $0\leqq q\leqq p$ , and some $F\in(M_{q}(A_{t}^{p}))^{n(q.p.l)}$ .
Hence, $C_{\overline{j}}\subseteqq st((\psi_{q}(g)(F))^{*}, n(p, t))$ (See property (11) of Lemma 3.2). This means
that $ st(a, n(p, t))\cap st((D_{q})^{*}, n(p, t))\neq\emptyset$ and, hence, $k<q$ .

Let $x\in F$ and $\psi_{q}(g)(x)\cap C_{\overline{j}}\neq\emptyset$ . Since $q>n$ we have that $\psi_{q}(g)(x)\subseteqq C_{\overline{i}}$ . Let
$Q=F(n(q, q, e), x)$ , where $e=r(q, g)$ . Since $n(q-1, r(q-1, g))>n$ we have that
$st(\psi_{q}(g)(x), n(q-1, r(q-1, g)))\subseteqq C_{\overline{i}}$ and, hence $st(\psi_{q}(g)(Q))^{*},$ $n(q-1, r(q-1, g)))$

$\subseteqq C_{\overline{i}}$ (See property (9) of Lemma 3.2). Since $n(q, e)>r(p-1, g))$ we have
$st((\psi_{q}(g)(Q))^{*}, n(q, e))=C_{s(q)}\subseteqq C_{\overline{i}}$ .

By properties (11) and (12) of Lemma 3.2 it follows that $U(q, q, e, Q)=$

$C_{s(Q)}xA_{e}^{q}\subseteqq C_{\overline{i}}xA_{e}^{q}\subseteqq V$ .
Since $\{(a, g)\}\subseteqq U(q, q, e, Q)=U(d(x, q, e), O)\in\hat{U}$ , the set $W=U(q, q, e, Q)$ is

the required element of $O\cup\hat{V}$ .
(2) Let $V=V(\overline{i}, m, r)$ and $V_{1}=V(\overline{j}, p, t)$ . Since $ V\cap V_{1}\neq\emptyset$ we have $A_{r}^{m}\cap A_{t}^{p}$

$\neq\emptyset$ and $ C_{\overline{i}}\cap C_{\overline{j}}\neq\emptyset$ . Let $m\leqq p$ . Then, $A_{t}^{p}\subseteqq A_{r}^{m}$ and since $n(p, t)\geqq n(m, r)$ ,
$C_{\overline{j}}\subseteqq C_{\overline{i}}$ . Hence, $V_{1}\subseteqq V$ . Similarly, if $p\leqq m$ , then $V\subseteqq V_{1}$ .

(3) Let $U=U(d(x, m, r), n)$ and $V=V(\overline{i}, p, t)$ . We have $\{(a, g)\}\subseteqq$

$U(m, q, e, F)=C_{s(F)}xA_{e}^{q}\subseteqq U$ , where $q=m+n,$ $e=r(q, g)$ and $F=F(n(m, q, e), x)$ .
Let $k=\max\{p, q\}$ and $n_{1}=\max\{n(p, t), n(q, e)\}$ . Let $s$ be a subset of all
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elements $j$ of $L_{n_{1}}$ for which $C_{\overline{j}}\subseteqq C_{\overline{i}}\cap C_{s(F)}$ . Then, $C_{s}=C_{\overline{i}}\cap C_{s(F)}$ . Also, we
have $A_{t}^{p}\cap A_{e}^{q}=A_{r(k.g)}^{k}$ . Then, $d\subseteqq(C_{\overline{i}}xA_{t}^{p})\cap(C_{s(F)}xA_{e}^{q})=C_{s}xA^{k_{r(k.g)}}\subseteqq V\cap U$ .
Hence, the proof of this case follows from case (1).

(4) Let $U=(U(d(x, m, r), n)$ and $U_{1}=U(d(x_{1}, m_{1}, r_{1}), n_{1})$ . As in case (3)

we have $d\subseteqq C_{s(F)}xA_{e}^{q}\subseteqq U$ , where $q=m+n,$ $e=r(q, g)$ and $F=F(n(m, q, e), x)$ .
Similarly, $d\subseteqq C_{*(F_{1})}xA_{e_{1}}^{q_{1}}\subseteqq U_{1}$ , where $q_{1}=m_{1}+n_{1}$ , $e_{1}=r(q_{1}, g)$ and $F_{1}=$

$F(n(m_{1}, q_{1}, e_{1}), x)$ .
Let $p=\max\{q, q_{1}\}$ and $k=\max\{n(q, g), n(q_{1}, g)\}$ . There exists a subset $s$

of $L_{k}$ such that $C_{s}=C_{s(F)}\cap C_{s(F_{1})}$ . Hence, $d\subseteqq(C_{\$(F)}xA_{e}^{q})\cap(C_{\iota(F_{1})}xA_{e_{1}}^{q_{1}})=$

$C_{s}xA_{t}^{p}\subseteqq U\cap U_{1}$ , where $t=r(p, g)$ . The rest of the proof of this case follows
from case (1).

(5) Let $V=V(\overline{i}, m, r)$ and let $a\in C_{\overline{j}}$ , where $j\in L_{n(m.r)}$ . Since $ d\cap V=\emptyset$ we
have that either $ C_{\overline{i}}\cap C_{\overline{j}}=\emptyset$ or $ A_{r}^{m}\cap A_{r}^{m_{(m.g)}}=\emptyset$ . Hence, $(C_{\overline{j}}xA_{r}^{m_{(m.g)}})\cap(C_{\overline{i}}xA_{r}^{m})$

$=\emptyset$ . Since $\{(a, g)\}\subseteqq C_{\overline{j}}xA_{r}^{m_{(m,g)}}$ , the existence of the set $W$ follows from
case (1).

(6) Let $U=U(d(x, m, r), n)$ . Let $\overline{i}$ be an element of $L_{k}$ , where $k=$

$n(m+n, r(m+n, g))$ , such that $a\in C_{\overline{i}}$ . Then, it is easy to see that $(C_{\overline{i}}xA_{r(m+n.g)}^{m+n})$

$\cap U=\emptyset$ . Hence, the proof of this case also follows from case (1).

3.8. LEMMA. Let $d_{1},$ $d_{2}\in T$ and $d_{1}\neq d_{2}$ . Then, there exist elements $W_{1}$ and
$W_{2}$ of $0\cup\hat{v}$ such that $d_{1}\subseteqq W_{1},$ $ d_{2}\subseteqq W_{2}anaW_{1}\cap W_{2}=\emptyset$ .

PROOF. We consider the cases:
(1) $d_{1}=\{(a_{1}, g_{1})\}$ and $d_{2}=\{(a_{2}, g_{2})\}$ ,

(2) $d_{1}=\{(a, g)\}$ and $d_{2}=d(x, m, r)\propto^{--}T(1)$ , and
(3) $d_{1}=d(x_{1}, m_{1}, r_{1})\in T(1)$ and $d_{2}=d(x_{2}, m_{2}, r_{2})\in T(1)$ .
In the first case either $a_{1}=a_{2}$ or $a_{1}=a_{2}$ and $g_{1}\neq g_{2}$ . If $a_{1}\neq a_{2}$ , then there

exist an integer $n$ and distinct elements $\overline{i}$ and $j$ of $L_{n}$ such that $a_{1}\in C_{\overline{i}}$ and
$a_{2}\in C_{\overline{j}}$ . Then, we set $V_{1}=C_{\overline{i}g_{1}}xA_{r(0.)}^{0}$ and $V_{2}=C_{\overline{i}}xA_{r(0_{g_{2}})}^{0}$ .

If $a_{1}=a_{2}$ and $g_{1}\neq g_{2}$ , then there exists an integer $m$ such that $ r(m, g_{1})\neq$

$r(m, g_{2})$ . Then, we set $V_{1}=C_{g}xA_{r(m.g_{1}}^{m}$ ) and $V_{2}=C_{g}xA_{r}^{m_{(m.g_{2})}}$ .
In both subcases we have $d_{1}\subseteqq V_{1},$ $d_{2}\subseteqq V_{2}$ and $ V_{1}\cap V_{2}=\emptyset$ . By case (1) of

Lemma 3.7 there exist elements $W_{1}$ and $W_{2}$ of $0\cup\hat{v}$ such that $d_{1}\subseteqq W_{1}\subseteqq V_{1}$ and
$d_{2}\subseteqq W_{2}\subseteqq V_{2}$ . Hence, $ W_{1}\cap W_{2}=\emptyset$ .

In the second case if $g\not\in A_{r}^{m}$ , then there exists an element $W_{1}$ of $0\cup\hat{v}$

such that $d_{1}\subseteqq W_{1}\subseteqq C_{S}xA_{r}^{m_{(m.g)}}$ . Let $W_{2}=U(d(x, m, r), 0)$ . Then, $ W_{1}\cap W_{2}=\emptyset$ .
Let $g\in A_{r}^{m}$ . Then, $a\not\in\psi_{m}(g)(x)$ . There exists an integer $p\geqq m$ such that

$ st(a, n)\cap st((D_{m})^{*}, n)=\emptyset$ , where $n=n(p, r(p, g))$ . Let $\overline{i}\in L_{n}$ such that $a\in C_{\overline{i}}$ .
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Then, $\overline{i}\not\in s(m, p, e, F)=s(F)$ , where $e=r(p, g)$ and $F=F(n(m, p, e), x)$ (See pro-
perty (11) of Lemma 3.2).

Let $W_{2}=U(d(x, m, r), p-m)$ . We have $W_{2}\cap(C_{\ovalbox{\tt\small REJECT}}xA_{e}^{p})=U(m, p, e, F)$ . Since
$U(m, p, e, F)=C_{g(F)}xA_{e}^{p}$ and since $i\in s(F)$ we have of $d\not\in 7V_{2}$ .

By property (6) of Lemma 3.7 it follows that there exists an element $W_{1}$

of $O\cup\hat{V}$ such that $d\subseteqq W_{1}$ and $W_{1}\cap W_{2}$ .
Finally in the third case we consider the following subcases: $(a)m_{1}=m_{2}$

and $r_{1}\neq r_{2},$ $(\beta)m_{1}=m_{2}$ and $r_{1}=r_{2}$ . and $(\gamma)m_{1}\neq m_{2}$ .
In the first subcase we set $W_{1}=U(d(x_{1}, m_{1}, r_{1}), 0)$ and $W_{2}=U(d(x_{2}, m_{2}, r_{2}), 0)$ .

0bviously, $d_{1}\subseteqq W_{1},$ $d_{2}\subseteqq W_{2}$ and $ W_{1}\cap W_{2}=\emptyset$ .
In the second subcase let $n_{1}\geqq n(m_{1}, m_{1}, r_{1})$ be an integer such that there

exist two distinct elements $F_{1}$ and $F_{2}$ of $(M_{m_{1}}(A_{r_{1}}^{m_{1}}))^{n_{1}}$ for which $x_{1}\in F_{1}$ and
$x_{2}\in F_{2}$ . Let $n=n_{1}-n(m_{1}, m_{1}, r_{1})$ . We set $W_{1}=U(d(x_{1}, m_{1}, r_{1}), n)$ and $W_{2}=$

$U(d(x_{2}, m_{2}, r_{2}), n)$ and we prove that $ W_{1}\cap W_{2}=\emptyset$ .
Indeed, if $W_{1}\cap W_{2}\neq 0$ , then there exists an element $r\in l(m_{1}+n)$ such that

$A_{r}^{m_{1}+n}\subseteqq A_{r}^{m_{1^{1}}}$ and $(W_{1}\cap(C_{g}xA_{r}^{m_{1}+n}))\cap(W_{2}\cap(C_{g}xA_{r}^{m_{1}+n}))\neq\emptyset$ . We have $ W_{1}\cap$

$(C_{g}xA_{r}^{m_{1}+n})=U(m_{I}, m_{1}+n, r, F_{1})$ and $W_{2}\cap(CffxA_{r}^{m_{1}+n})=U(m_{2}, m_{2}+n, r, F_{2})$ .
Hence, $ U(m_{1}, t_{1}, m_{1}+n, F_{1})\cap U(m_{2}, m_{2}+n, r, F_{2})\neq\emptyset$ . By property (14) of Lemma
3.2 this is a contradiction.

In the third subcase, without loss of generality, we can suppose that $m_{1}<m_{2}$ .
Then, either $A_{r_{2}}^{m_{2}}\subseteqq A_{r_{1}}^{m_{1}}$ , or $ A_{r_{2}}^{m_{2}}\cap A_{r_{1}}^{m_{1}}=\emptyset$ . If $A_{r}^{m_{2^{2}}}\subseteqq A_{r_{1}}^{m_{1}}$ , then we set $W_{1}=$

$U(d(x_{1}, m_{1}, r_{1}), m_{2}-m_{1})$ and $W_{2}=U(d(x_{2}, m_{2}, r_{2}), 0)$ . Obviously, we have $W_{1}\cap W_{2}$

$=U(m_{1}, m_{2}, r_{2}, F_{1})\cap U(m_{2}, m_{2}, r_{2}, F_{2})=\emptyset$ , where $F_{1}=F(n(m_{1}, m_{2}, r_{2}), x_{1})$ and $F_{2}=$

$F(n(m_{2}, m_{2}, r_{2}), x_{2})$ .
If $ A_{r}^{m_{2^{2}}}\cap A_{r}^{m_{1^{1}}}=\emptyset$ , then it is sufficient to put $W_{1}=U(d(x_{1}, m_{1}, r_{1}), 0)$ and $W_{2}=$

$U(d(x_{2}, m_{2}, r_{2}), 0)$ .

3.9. LEMMA. Let $d\in T$ and $d\subseteqq W\in\hat{U}\cup\hat{V}$ . There exists an element $W_{1}$ of
$\hat{U}\cup\hat{V}$ such that $d\subseteqq W_{1}\subseteqq W$ and every element of $T(1)$ intersecting $W_{1}$ , is con-
tainea in $W$.

PROOF. First we suppose that $d=d(x, m, r)$ . By property (1) of Lemma
3.5 and property (1) of Lemma 3.6 if follows that there exists an integer $n\geqq 0$

such that $U(d(x, m, r), n)\subseteqq W$ .
We prove that the set $W_{1}=U(d(x, m, r), n+1)$ is the required element of

$\hat{U}\cup\hat{V}$ . Indeed, let $d_{1}=d(x_{1}, m_{1}, r_{1})\in T(1)$ and $(a, g)\in d_{1}\cap W_{1}$ . We have
$U(d(x, m, r), n+1)\cap(C_{g}xA_{t}^{p})=U(m, p, t, F)$ , where $p=n+m+1,$ $t=r(m+n+1, g)$

and $F=F(n(m, p, t), x)$ .
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If $m_{1}<p$ , then we can consider the set $U(m_{1}, p, t, F_{1})$ , where $F_{1}=$

$F(n(m_{1}, p, t), x_{1})$ . Since $(a, g)\in U(m, p, t, F)\cap U(m_{1}, p, t, F_{1})$ by properties (13)

and (14) of Lemma 3.2 it follows that $m=m_{1}$ and $F=F_{1}$ . In this case, by the
definition of the elements of the set $\hat{U}$ it follows that $d_{1}\subseteqq U(d(x, m, r), n+1)$

$\subseteqq U(d(x, m, r), n)$ .
Hence, we can suppose that $m+n+1<m_{1}$ . We have $(a, g)\in U(m, p, t, F)=$

$C_{s(F)}xA_{t}^{p}$ . Hence, $a\in C_{s(F)}$ .
Let $a\in C_{\overline{i}}$ and $\overline{i}\in L_{k}$ , where $k=n(m_{1}-1, r(m_{1}-1, g))$ . Since $a\in C_{s(F)}$ and

$k\geqq n(p, t)$ we have $C_{\overline{i}}\subseteqq C_{s(F)}$ .
By property (9) of Lemma 3.2 it follows that if $g_{1}=(S_{1}, D_{1})\in A_{r}^{m_{(}}\iota_{m-1.g)}$

then $\psi_{m1}(g_{1})(x_{1})\cap C_{\overline{i}}\neq\emptyset$ (we observe that $a\in\psi_{m_{1}}(g)(x_{1})$), that is $\psi_{m_{2}}(g_{1})(x_{1})\cap$

$st((\psi_{m}(g_{1})(F))^{*}, n(p, t))\neq 0$ . By property (10) of Lemma 3.2 it follows that
$\psi_{m}(g_{1})(x_{1})\subseteqq st((\psi_{m}(g_{1})(Q))^{*},$ $n(m+n, r(m+n, g))=C_{s(Q)}$ , where $Q=F(n(m,$ $m+n$ ,

$r(m+n, g)),$ $x$ ). This means that $d_{1}\subseteqq C_{\epsilon(Q)}xA_{r(m+n,g)}^{m+n}=U(m, m+n, r(m+n, g))$

$\subseteq U(d(x, m, r), n)$ .
Now, we suppose that $d=\{(a, g)\}$ , where $g=(S, D)$ . It is easy to see that

there exists an integer $m\geqq 0$ such that $(a, g)\in C_{\overline{i}}\times A_{r}^{m_{(m.g)}}\subseteqq W$ , where $\overline{i}\in$

$L_{n(m,r(m.g}))$ . Let $q_{0}$ be an integer such that $q_{0}-1>n(m, r(m, g))$ . Since $D$ is
an upper semi-continuous partition of $S$ there exists an integer $p\geqq q_{0}$ such that
$ st(a, n(p, t))\cap st((D_{q})^{*}, n(p, t))=\emptyset$ , for every $q\leqq q_{0}$ , where $t=r(p, g)$ .

Let $s$ be the subset of $L_{n(p.t)}$ for which $a\in C_{s}$ and either $s=\{\overline{j}\}$ and $ j\not\in$

$s(p, t)$ or $s=s(q, p, t, F)=s(F)$ for some $q$ , $0\leqq q\leqq p$ , and some $F=$

$F(n(q, p, t), M_{q}(g))$ .
We set $W_{1}=C_{S}xA_{t}^{p}\in\hat{V}$ and we prove that $W_{1}\subseteqq C_{\overline{i}}xA_{r}^{m_{(m,g)}}$ . This is clear

if $s=\{j\}$ . Suppose that $s=S(F)$ . Then, $ st(a, n(p, t))\cap st((D_{q})^{*}, n(p, t))\neq\emptyset$ and,
hence, $q_{0}<q$ .

Let $x\in F$ and $\psi_{q}(g)(x)\cap st(a, n(p, t))\neq\emptyset$ . Since $q>n(m, r(m, g))$ and
$st(a, n(p, t))\subseteqq C_{\overline{i}}$ we have that $\psi_{q}(g)(x)\subseteqq C_{\overline{i}}$ .

Let $Q=F(n(q, q, r(q, g)), x)$ . Since $n(q-1, r(q-1, g))>n(m, r(m, g))$ by pro-
perty (9) of Lemma 3.2 it follows that $(\psi_{q}(g)(Q))^{*}\subseteqq C_{\overline{i}}$ and hence, $st((\psi_{q}(g)(Q))^{*}$ ,
$n(q, r(q, g)))=C_{\epsilon(Q)}\subseteqq C_{\overline{i}}$ .

By properties (11) and (12) of Lemma 3.2 it follows that $U(q, q, r(q, g), Q)$

$=C_{S(Q)}xA_{r(q.g)}^{q}\subseteqq C_{\overline{j}}xA_{r}^{m_{(m.g)}}$ . Since $U(q, p, t, F)=U(q, q, r(q, g), Q)$ we have
$W_{1}\subseteqq C_{\overline{i}}xA_{r}^{m_{(m,g)}}$ .

Now, we prove that if $d_{1}\in T(1)$ and $ d_{1}\cap W_{1}\neq\emptyset$ , then $d_{1}\subseteqq C_{\overline{i}}xA_{r(m.g)}^{m}$ . In-
deed, let $d_{1}=d(x_{1}, m_{1}, t_{1})$ and $(a_{1}, g_{1})\in d_{1}\cap W_{1}$ .

If $m_{1}\leqq p$ , then we can consider the set $U(m_{1}, p, t, F_{1})=U(F_{1})$ , where $F_{1}=$

$F(n(m_{1}, p, t), x_{1})$ . Obviously, $d_{1}\cap W_{1}\subseteqq U(F_{1})\cap W_{1}$ . It $s=\{\overline{j}\}$ and $j\not\in s(p, t)$ , then
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$ U(F_{1})\cap W_{1}=\emptyset$ which is contradiction. Hence, $s=s(F)$ and since $U(m_{1}, p, t, F_{1})$

$\cap U(q, p, t, F)\neq\emptyset$ by properties (13) and (14) of Lemma 3.2 it follows that $m_{1}=q$

and $F=F_{1}$ . Hence, $d_{1}\subseteqq U(F)=W_{1}\subseteqq C_{\overline{i}}xA_{r}^{m_{(m,g)}}$ .
Thus we can suppose that $p<m_{1}$ . Obviously, $A_{r(m_{1}.g_{1})}^{m_{1}}\subseteqq A_{l}^{p}$ . Since $a_{1}\in C_{s}$

and $n(m_{1}-1, r(m_{1}-1),$ $g_{1}$ )) $\geqq n(p, t)$ by property (9) of Lemma 3.2 it follows that
if $g_{0}$ is an arbitrary element of $A_{r(m_{1},g_{1}}^{m_{1}}$ ), then $\psi_{m_{1}}(g_{0})(x_{1})\cap C_{s}\neq\emptyset$ . Since $m_{1}>$

$n(m, r(m, g))$ we have that $\psi_{m_{1}}(g_{0})(x_{1})\subseteqq C_{\overline{i}}$ , that is, $d_{1}\subseteqq C_{\overline{i}}xA_{r}^{m_{(m,g)}}$ .

3.10. DEFINITIONS AND NOTATIONS. For every $U=U(d, n)\in\hat{U}$ (respectively,
$V=V(\overline{i}, m, r)\in\hat{V})$ we denote by $0(U)$ or by $0(d, n)$ (respectively, by 0(V) or
by $O(\overline{i}, m, r))$ the set of all elements $d\in T$ such that $d\subseteqq U$ (respectively, $d\subseteqq V$ ).

We denote by $qj$ (respectivety, by $\mathcal{V}$) the set of all sets of the form $0(U)$ ,
$U\in\hat{U}$ (respectively, $O(V),$ $V\in\hat{V}$ ). AIso, we set $B=qi\cup \mathcal{V}$ .

Let $m\in N,$ $r\in I(m)$ and $F$ be a subset of $M_{m}(A_{r}^{m})$ . We denote by $d(F)$ the
subset of $T$ consisting of all elements $d(x, m, r)$ , where $x\in F$.

By $d(m, r)$ we denote the map of $M_{m}(A_{r}^{m})$ onto $d(M_{n}(A_{r}^{m}))$ defined as fol-
lows: $d(m, r)(x)=d(x, m, r)$ . Obviously, the map $d(m, r)$ is one-to-one.

We say that a pair $(S, D)$ , where $S$ is a subset of $C$ and $D$ is an upper
semi-continuous partition of $C$ , has the dense property iff for every $k=0,1,$ $\cdots$

and for every $a\in d\in D_{k}$ the point $a$ is $0$ limit point of the set $S\backslash (D_{k})^{*}$ .

3.11. THEOREM. The set $B$ is a countable basis of open sets for a topology
$\tau$ on the set T. The space $T$ (that is, the set $T$ with topology $\tau$ ) is a Hausdorff
regular space. The bounaary of every element of $B$ is a countable free union
of subsets of $T$ which are homeomorphic to closed subsets of elements of $M$.
Moreover, if every element of the family $A$ has the aense property, then the
boundary of every element of $B$ is a countable free union of subsets of $T$ which
are homeomorphic to simultaneously open and closed subsets of elements of $M$.

PROOF. If $m,$ $n\in N,$ $r\in l(m),$ $F\in(M_{m}(A_{r}^{m}))^{k}$ , where $k=n(m, m, r)+n$ , and
$x,$ $y\in F$, then $U(d(x, m, r), n)=U(d(y, m, r), n)$ . From this and since for every
$m\in N$ the set $A^{m}$ is countable it folIows that the set $\hat{U}$ , as well as, the set $\hat{V}$

are countable. Hence, $B$ is a countable set.
It is easy to see that the union of all elements of $B$ is the set $T$ . Hence

in order to prove that $B$ is a basis of open sets for a topology on the set $T$ it
is sufficient to prove that if $d\in T,$ $W_{1},$ $W_{2}\in\hat{U}\cup\hat{V}$ and $d\in O(W_{1})\cap O(W_{2})$ , then
there exists an element $W$ of $\hat{U}\cup\hat{V}$ such that $d\in O(W)\subseteqq O(W_{1})\cap O(W_{2})$ , that is,
$d\subseteqq W\subseteqq W_{1}\cap W_{2}$ . This follows immediately from the properties (1) of Lemma
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3.5, (1) of Lemma 3.6, (5) of Remarks 3.4 and from properties (2), (3) and (4)

of Lemma 3.7.
Let $\tau$ be the topology on $T$ for which $B$ is a basis of open sets. By Lemma

3.8 it follows that the space $T$ is a Hausdorff space.
We observe that by properties (2) of Lemma 3.5, (2) of Lemma 3.6 and by

(5) and (6) of Lemma 3.7 it follows that in the space $T$ the boundary of every
element of $B$ is contained in the subset $T(1)$ of $T$ . Hence, by Lemma 3.9 it
follows that the space $T$ is regular.

Let $m\in N$ and $r\in l(m)$ . We prove that the map $d(m, r)$ of $M_{m}(A_{r}^{m})$ onto
$d(M_{m}(A_{r}^{m}))$ is a homeomorphism. Indeed, by properties (1) of Lemma 3.5, (1)

of Lemma 3.6 and (5) of Remarks 3.4 it follows that the set $\{U(d(x, m, r), n)$ ,

$n\in N\}$ is a basis of open neighbourhoods of $d(x, m, r)$ (in the space $T$ ).

On the other hand, the set $\{F(n(m, m, r)+n, x):n\in N\}$ is a basis of open

neighbourhoods of $x$ in $M_{m}(A_{r}^{m})$ (See Definitions and notations 3.1).

Also, by the construction of elements of $\hat{U}$ it follows that an element
$d(y, m, r)$ of $d(M_{m})A_{r}^{m}))$ belongs to $U(d(x, m, r), n)$ if and only if $ y\in$

$F(n(m, m, r)+n, x)$ . From this it follows that the map $d(m, r)$ is a homeo-
morphism.

Let $m\in N$ and $r\in l(m)$ . Let $V=C_{s}xA_{r}^{m}$ , where $s$ is a subset of $L_{n(m.r)}$

such that either $s=\{\overline{i}\}$ and $\overline{i}\not\in s(m, r)$ or $s=s(F)$ for some element $F$ of
$M_{q}(A_{r}^{m})^{n(q.m.r)},$ $0\leqq q\leqq m$ . We grove that for every $p>n(m, r)$ and $t\in I(p)$ is
$y\in M_{p}(A_{t}^{p})$ and $ d(y, p, t)\cap V\neq\emptyset$ (hence, $A_{l}^{p}\subseteqq A_{r}^{m}$ ), then $d(y, p, t)\subseteqq V$ .

Indeed, let $(a, g)\in d(y, p, t)\cap V$ . Let $a\in C_{\overline{j}}$ , where $\overline{j}\in L_{n(p-1.r(p-1.g))}$ . Since
$n(p-1, r(p-1, g))>p-1\geqq n(m, r)$ we have that $C_{j}\subseteqq C_{s}$ . By property (9) of
Lemma 3.2 it follows that $\psi_{p}(g_{1})(y)\cap C_{\overline{j}}\neq\emptyset$ for every $g_{1}\in A_{t}^{p}$ . Since $p>n(m, r)$

we have that $\psi_{p}(g_{1})(.\gamma)\subseteqq C_{s}$ and, hence, since $A_{\iota}^{p}\subseteqq A_{r}^{m}$ we have that $d(y, p, t)$

$\subseteqq C_{s}xA_{r}^{m}=V$ .
Now, let $s=\{l\}-$ and $\overline{i}\not\in s(m, r)$ , that is, $V=V(\overline{i}, m, r)\in\hat{V}$ . Then, by pro-

perty (8) of Remarks 3.4 and by Lemma 3.6 (properties (1) and (2)) it follows
that the boundary $Bd(O(V))$ of the element $O(V)$ of $B$ is contained in the set
$B(k, m, r)$ , where $k=n(m, r)$ , which is the union of all sets of the form
$(M_{q}(A_{e}^{q}))$ , where $m<q\leqq k$ and $e\in l(q)$ such that $A_{e}^{q}\subseteqq A_{r}^{m}$ .

We prove that the set $B(k, m, r)$ is the free union of the corresponding

sets $d(M_{q}(A_{e}^{q}))$ . For this it is sufficient to prove that for every $q,$ $m\leqq q\leqq k$ , and
for every $e\in l(q)$ for which $A_{e}^{q}\subseteqq A_{r}^{m}$ , there exists and open subset $H(q, e, m, r)$

$H(q, e)$ of $T$ such that $B(k, m, r)\cap H(q, e)=d(M_{q}(A_{e}^{q}))$ .
For every $F\in(M_{q}(A_{e}^{q}))^{n(q.q.e)+k- q}$ by $x(F)$ we denote a point of $F$. We set

$H(q, e)=\bigcup_{F}O(d(x(F), q, e), k-q)$ . Obviously, $H(q, e)$ is an open subset of $T$ .
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Also, it is easy to see that $d(M_{q}(A_{e}^{q}))\subseteqq Q(k, m, r)\cap H(q, e)$ .
Let $d(y, q_{1}, e_{1})\in B(k, m, r)\cap H(q, e)$ . We prove that $d(y, q_{1}, e_{1})\in d(M_{q}(A_{e}^{q}))$ .

Indeed since $d(y, q_{1}, e_{1})\in B(k, m, r)$ we have $m<q_{1}\leqq k$ and $A_{e^{1}}^{q_{1}}\subseteqq A_{r}^{m}$ . There
exists an elemcnt $F$ of $(M_{q}(A_{e}^{q}))^{n(q.q.e)+k-q}$ such that $d(y, q_{1}, e_{1})\cap U(d(x(F), q, e)$ ,

$ k-q)\neq\emptyset$ . Let $(a, g)$ belongs to this intersection. Consider the sets
$U(q_{1}, k, r(k, g), F_{1})=U(F_{1})$ and $U(q, k, r(k, g), F)=U(F)$ , where $F_{1}=$

$F(n(q_{1}, k, r(k, g)), y)$ . Since $(a, g)\in U(F)\cap U(F_{1})$ by properties (13) and (14) of
Lemma 3.2 it follows that $q=q_{1}$ and $F=F_{1}$ , that is, $d(y, q_{1}, e_{1})\in d(M_{q}(A_{e}^{q}))$ .

Thus, $B(k, m, r)\cap H(q, e)=d(M_{q}(A_{e}^{q}))$ and hence, the boundary of the set
$O(\overline{i}, m, r)$ is a countable free union of subsets of $T$ which are homeomorphic

to closed subsets of elements of $M$.
Suppose now that $U=U(d(x_{1}, m_{1}, r_{1}), n_{1})$ be an arbitrary element of $0$ .

Let $m=m_{1}+n_{1}$ . We prove that the boundary $Bd(O(U))$ of the set $O(U)$ is con-
tained in the union of all sets of the form $B(n(m, r),$ $m,$ $r$), where $r\in l(m)$ and
$A_{r}^{m}\subseteqq A_{r_{1}}^{m_{1}}$ .

Indeed, let $d(y, p, t)\in Bd(O(U))$ and let $(a, g)\in d(y, p, t)\cap U$ . There exist
an integer $q,$ $0\leqq q\leqq m$ , an element $r\in l(m)$ and an element $F\in(M_{q}(A_{r}^{m}))^{n(q.m.r)}$

such that $(a, g)\in U(q, m, r, F)=U(F)$ . If $p\leqq m$ , then we can consider the set
$U(p, m, \gamma, Q)=U(Q)$ , where $Q=F(n(p, m, r), y)$ . (We observe that $r(m,$ $g)=r$).

Then, $(a, g)\in U(F)\cap U(Q)$ and, hence, $p=q$ and $F=Q$ , that is, $d(y, p, t)\subseteqq U$ ,

which is a contradiction. Hence, $m<p$ .
On the other hand, since $U(F)=C_{s(F)}xA_{r}^{m},$ $ d(y, p, t)\cap U\neq\emptyset$ and $d(y, p, t)$

$\subsetneqq U$ by the preceding it follows that $p\leqq n(m, r)$ . Hence, $ d(y, p, t)\in$

$B(n(m, r),$ $m,$ $r$).

Let $k=n(m, r)$ . For a fixed $r\in l(m)$ as we already proved the set $B(k, m, r)$

is the free union of the corresponding sets $d(M_{q}(A_{e}^{q}))$ . Since the union of all
elements of $H(q, e, m, r)$ is contained in the set $CxA_{r}^{m}$ we have that the union
of sets $B(k, m, r)$ for all $r\in l(m)$ for which $A_{r}^{m}\subseteqq A_{r_{1}}^{m_{1}}$ is also free.

Hence, the boundary of the set $O(d(x_{1}, m_{1}, r_{1}), m_{1})$ is a countable free union
of subsets of $T$ which are homeomorphic to closed subset of elements of $M$.

Finally, suppose that every element of the family $A$ has the dense property.

In this case we prove that if $0(W)\in B$ and $d=d(x, m, r)\in T(1)$ such that
$ d(x, m, r)\cap W\neq\emptyset$ and $ d(x, m, r)\cap((CxA)\backslash W)\neq\emptyset$ , then $d\in Bd(O(W))$ .

Indeed, obviously, $d\not\in O(W)$ . Let $g\in A_{r}^{m}$ such that $(\psi_{m}(g)(x)x\{g_{1}\})\cap W\neq\emptyset$ .
Let $O(U)$ be an arbitrary neighbourhood of $d$ in $T$ . We prove that $O(U)\cap O(W)$ .
$\neq\emptyset$ . We can suppose that $U=U(d(x, m, r), n)$ for some integer $n\in N$.

Let $\psi_{m}(g)(x)=\{a, b\}\in D(1)$ . We can suppose that $(a, g)\in W$ and that there
exists an integer $q$ such that $(a, g)\in V=C_{s}xA^{q_{r(q,g)}}\subseteqq U\cap W$ , where $s$ is a sub-
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set of $L_{n(q.r(q.g))}$ and either $s=\{i\}$ and $\overline{i}\in s(q, r(q, g))$ or $s=s(F)$ for some ele-
ment $F$ of $(M_{k}(A^{q_{r(qg}})))^{n_{1}}$ , where $n_{1}=n(k, q, r(q, g))$ and $0\leqq k\leqq m$ . Let $ V\cap$

$(Cx\{g\})=Ox\{g\}$ . Then, $O$ is an open neighbourhood of $a$ in $C$ .
Since $g$ has the dense property there exists a point $c\in O\cap(S\backslash (D_{m})^{*})$ such

that either $c\in S\backslash (D(1))^{*}$ or $c\in d_{1}\in D_{p}$ and $p>n(q, r(q, g))$ . In the first case,
$\{(c, g)\}\in O(V)\subseteqq O(U)\cap O(W)$ , and hence $ 0(U)\cap O(W)\neq\emptyset$ .

In the second case, let $y\in M_{p}(A_{r(p.g)}^{p})$ such that $c\in\psi_{p}(g)(y)$ . As we proved
above, $d(y, p, r(p, g))\subseteqq V$ . Hence, $d(y, p, r(p, g))\in O(V)\subseteqq O(U)\cap O(W)$ and
$ O(U)\cap O(W)\neq\emptyset$ . Thus, $d\in Bd(O(W))$ .

By properties (3) of Lemma 3.5 and (3) of Lemma 3.6 it follows that the
boundary of every element of $B$ is a countable free union of subsets of $T$

which are homeomorphic to simultaneously open and closed subsets of elements
of $M$.

4. Some properties of scattered spaces.

Definitions and notations. Let $a=\beta+m$ be an ordinal, where $\beta=\beta(\alpha)$ and
$m=m(a)>0$ .

We denote by $Tr(a)$ the set of all triads $\tau=(a, X, M)$ such that: $(a)M$ is
$a$ compactum having type $a,$ $(\beta)M^{(\alpha-1)}=\{a\}$ , and $(\gamma)X$ is a subset of $M$ for
which $M\backslash M^{(\beta)}\subseteqq X$. We observe that if $U$ is an open and closed neighbourhood
of $a$ in $M$, then the triad $(a, X\cap U, U)=\tau(U)$ is an element of $Tr(\alpha)$ .

Let $\tau_{1}=(a_{1}, X_{1}, M_{1})$ and $\tau_{2}=(a_{2}, X_{2}, M_{2})$ be two elements of $T_{r}(\alpha)$ . We say
that $\tau_{1}$ and $\tau_{2}$ are equivalent and we write $\tau_{1}\sim\tau_{2}$ iff there exist: $(\alpha)$ an open
and closed neighbourhood $U$ of $a_{1}$ in $M_{1},$ $(\beta)$ an open and closed neighbourhood
$V$ of $a_{2}$ in $M_{2}$ , and $(\gamma)$ a homeomorphism $f$ of $U$ onto $V$ such that $f(U\cap X_{1})=$

$V\cap X_{2}$ (Obviously, in this case $f(a_{1})=f(a_{2})$).

It is easy to prove that the relation $\sim$ on the set $Tr(\alpha)$ is an equivalent

relation. We denote by $ETr(\alpha)$ the set of all equivalence classes of this rela-
tion. For every $\tau\in T_{r}(\alpha)$ we denote by $e(\tau)$ the equivalence class of $ETr(\alpha)$

which contains the element $\tau$ .
Let $\tau=(a, X, M)\in Tr(\alpha)$ . An open and closed neighbourhood $U$ of $a$ in $M$

is called stanaard iff tor every $\tau_{1}=(a_{1}, X_{1}, M_{1})\in e(\tau)$ there exists an open and
closed neighbourhood $V$ of $a_{1}$ in $M_{1}$ and a homeomorphism $f$ of $U$ onto $V$ such
that $f(U\cap X)=V\cap X_{1}$ . In this case we say that the element $\tau$ has a standara

neighbourhood. It is clear that it an element of an equivalence class of $ETr(\alpha)$

has a standard neighbourhood, then every element of this class has also a
standard neighbourhood.
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The element $\tau$ is called standara iff the neighbourhood $U=M$ of $a$ is
standard. Obviously, if $U$ is a standard neighbourhood of $a$ in $M$, then $\tau(U)$

is a standard element of $e(\tau)$ .
It is easy to prove that an open and closed ueighbourhood $U$ of $a$ in $M$ is

standard if and only if for every neighbourhood $W$ of $a$ in $M$ there exist an
open and closed neighbourhood $V$ of $a$ in $M$, which is contained in $W$ and a
homeomorphism $f$ of $U$ onto $V$ such that $f(U\cap X)=V\cap X$.

We denote by $P(\alpha)$ the set of all pairs $\zeta=(X, M)$ such that $M$ is a com-
pactum having type $a$ and $X$ is a subset of $M$ for which $M\backslash M^{(\beta)}\subseteqq X$.

We say that the pairs $\zeta_{1}=(X_{1}, M_{1})$ and $\zeta_{2}=(X_{2}, M_{2})$ of $P(a)$ are equivalent

and we write $\zeta_{1}\sim\zeta_{2}$ iff there exists a homeomorphism $f$ of $M_{1}$ onto $M_{2}$ such
that $f(X_{1})=X_{2}$ .

It is clear that the relation $\sim$ on the set $P(a)$ is an equivalent relation.
We denote by $EP(a)$ the set of all equivalent classes of this relation and for
every $\zeta\in P(a)$ by $e(\zeta)$ the equivalence class of $EP(a)$ which contains the ele-
ment $\zeta$ .

4.2. LEMMA. For every isolated ordinal a the set $ETr(a)$ is finite and every

element of this set contains a stanaard element of $Tr(a)$ .

PROOF. Let $\alpha=\beta-m$ , where $\beta=\beta(a)$ and $m=m(\alpha)>0$ . We prove the
lemma by induction on integer $m$ .

Let $m=1$ . Let $\tau_{1}=(a_{1}, X_{1}, M_{1})\in Tr(a)$ and $\tau_{2}=(a_{2}, X_{2}, M_{2})\in Tr(\alpha)$ such
that $X_{1}=M_{1}$ and $X_{2}=M\backslash M^{(\beta)}=M\backslash \{a_{2}\}$ .

Let $\tau=(a, X, M)$ be an element of $Tr(a)$ . Then, $M^{(\beta)}=M^{(\alpha-1)}=\{a\}$ and,
hence, either $X=M$ or $X=M\backslash M^{(\beta)}=M\backslash \{a\}$ . By [M-S] it follows that there
exist a homeomorphism $f_{1}$ of $M_{1}$ onto $M$ and a homeomorphism $f_{2}$ of $M_{2}$ onto
$M$. We have that if $X=M$, then $f_{1}(X_{1})=X$ and if $X=M\backslash M^{(\beta)}$ , then $f_{2}(X_{2})$

$=X$. Hence, either $e(\tau)=e(\tau_{1})$ or $e(\tau)=e(\tau_{2})$ , that is, $ETr(a)=\{e(\tau_{1}), e(\tau_{2})\}$ .
Also, by the above it follows that the elements $\tau_{1}$ and $\tau_{2}$ are standard.

Now, we suppose that the lemma is proved for every $m$ for which $1\leqq m<n$

and we prove it for $m=n$ .
Let $ETr(a_{1})=\{e^{1}(\alpha-1), \cdots, e^{t}(a-1)\}$ . For every $k=1,$ $\cdots,$

$t$ we denote by
$\tau^{k}(a-1)=(c^{k}, X^{k}, M^{k})$ a fixed standard element of $e^{k}(\alpha-1)$ .

Let $\tau_{j}=(a_{j}, X_{j}, M_{j}),$ $j=1,2$ , be two arbitrary elements of $Tr(\alpha)$ . Whithout
loss of generality we can suppose that the spaces $M_{1}$ and $M_{2}$ are metric.

Let $M_{j^{(\alpha-2)}}\backslash M_{j^{(\alpha-1)}}=\{b_{j1}, b_{j2}, \cdots\},$ $j=1,2,$ $\cdots$ . Every element of these sets
is isolated (in the corresponding relative topology). Let $W_{ji}^{0}$ be an open and
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closed neighbourhood of $b_{ji}$ in $!\eta f_{j}$ such that $W_{ji}^{0}\cap M_{j^{(\alpha-2)}}=\{b_{ji}\}$ . Then the triad
$\tau_{ji}=(b_{ji}, X_{j}\cap W_{ji}^{0}, W_{ji}^{0})$ is an element of $Tr(\alpha)$ and the element $e(\tau_{ji})$ of $ETr(\alpha)$

is independent from the neighbourhood $W_{ji}^{0}$ , that is, if $W_{ji}^{\prime}$ is another such
neighbourhood of $b_{ji}$ in $M_{j}$ and $\tau_{j^{\prime}i}=(b_{ji}, X_{j}\cap W_{ji}^{\prime}, W_{ji}^{\prime})$ , then $e(\tau_{ji})=e(\tau_{ji}^{\prime})$ . We
denote by $e_{ji}$ the element $e(\tau_{ji})$ .

There exists an open and closed neighbourhood $W_{fi}$ of $b_{ji}$ in $M_{j},$ $j=1,2$ ,
$i=1,2,$ $\cdots$ , such that: $(\alpha)W_{ji}\cap M_{j^{(a- 2)}}=\{b_{ji}\}$ , $(\beta)W_{ji_{1}}\cap W_{ji_{2}}=\emptyset$ if $i_{1}\neq i_{2}$ , $(\gamma)$

$\lim_{i\rightarrow\infty}(diam(W_{ji}))=0,$ $(\delta)a_{j}\in(M_{j}\backslash W_{j})^{(\alpha-2)}$ , where $ W_{j}=W_{j1}\cup W_{j2}c/\cdots$ and $(\epsilon)$ if

$e_{ji}=e^{k(ji)}(a-1)$ , then there exists a homeomorphism $f_{ji}$ of $M^{k(ji)}$ onto $W_{ij}$ such
that $f_{ji}(X^{k(ji)})=X_{j}\cap W_{ji}$ . We observe that by the properties of the sets $W_{ji}$

it follows that $W_{j},$ $j=1,2,$ $\cdots$ , is an open subset of $M_{j}$ such that $Cl(W_{j})\backslash W_{j}$

$=\{a_{j}\}$ .
Let $V_{j}$ be an open and closed neighbourhood of $a_{j}$ in $M_{j}\backslash W_{j}$ such that

$(V_{j})^{(\alpha-2)}=\{a_{j}\}$ . Then, the triad $\tau^{j}=(a_{j}, X_{j}\cap V_{j}, V_{j})$ is an element of $Tr(\alpha-1)$ .
We can suppose that if $e(\tau^{j})=e^{k(j)}(a-1)$ , then there exists a homeomorphism
$f_{j}$ of $M^{k(f)}$ onto $\Lambda j$ such that $f_{j}(X^{k(j)})=X_{j}\cap V_{j}$ .

There exists an open and closed neighbourhood $U_{j},$ $j=1,2$ , of $a_{j}$ in $M_{j}$

such that: $(\alpha)U_{j}\cap(M_{f}\backslash W_{j})=V_{j},$ $(\beta)$ if for some integer $i=1,2,$ $\cdots,$
$ W_{ji}\cap U_{j}\neq\emptyset$ ,

then $W_{ji}\subseteqq U_{j}$ , and $(\gamma)$ if for some integer $i,$ $W_{ji}\subseteqq U_{j}$ , then theJe exists an in-
creasing sequence of integers $i_{1},$ $i_{2},$ $\cdots$ for which $W_{ji_{q}}\subseteqq U_{j}$ and $e_{ji}=e_{ji_{q}},$ $q=$

$1,2,$ $\cdots$ .
Now, we prove that $\tau_{1}\sim\tau_{2}$ if the following conditions are true: $(a)e(\tau^{1})$

$=e(\tau^{2})$ and $(\beta)$ if for some integer $k\in\{1, \cdots, t\}$ there exists an integer $i(1)\geqq 1$

such that $W_{1i(1)}\subseteqq U_{1}$ and $e_{1i(1)}=e^{k}(a-1)$ , then there exists an integer $i(2)\geqq 1$

such that $W_{2i(2)}\subseteqq U_{2}$ and $e_{2i(2)}=e^{k}(\alpha-1)$ .
Indeed, it is not difficult to prove that between the set $U_{1}\cap(M_{1}^{(\alpha- 1)}\backslash M_{1}^{(\alpha-1)}$

and the set $U_{2}\cap(M_{2}^{(\alpha- 2)}\backslash M_{2^{(\alpha- 1)}})$ there exists an one-to-one correspondence such
that if $b_{1p}$ corresponds to $b_{2q}$ , then $e_{1p}=e_{2q}$ .

We construct a homeomorphism $f$ of $U_{1}$ onto $U_{2}$ as follows: on the set $V_{1}$

we set $f=f_{2}\circ f_{1}^{-1}$ . Let $W_{1p}\subseteqq U_{1}$ . Then, $b_{1p}\in U_{1}$ and if $b_{1p}$ corresponds to $b_{2q}$ ,

then on the set $W_{1p}$ we set $f=f_{2q}\circ f_{1p}^{-1}$ . Obviously, $f$ is a homeomorphism of
$U_{1}$ onto $U_{2}$ such that $f(X_{1}\cap U_{1})=X_{2}\cap U_{2}$ . Hence, $\tau_{1}\sim\tau_{2}$ .

From the above it follows that the number of equivalence classes of the set
$Tr(\alpha)$ is finite, that is, the set $ETr(\alpha)$ is finite.

In order to complete the lemma it is sufficient to prove that every element
of $ETr(\alpha)$ contains a standard element of $Tr(\alpha)$ . For this, since $\tau_{1}$ is an
abitrary element of $Tr(\alpha)$ , it is sufficient to prove that $\tau_{1}(U_{1})$ is a standard
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element.
Let $W$ be an arbitrary neighbourhood of $a$ in $M_{1}$ . Let $V$ be an open and

closed neighbourhood of $a_{1}$ in $M_{1}\backslash W_{1}$ such that: $(\alpha)V\subseteqq W$ and $(\beta)$ there exists
a homeomorphism $f_{V}$ of $M^{k(1)}$ onto $V$ for which $f_{V}(X^{k(1)})=X_{1}(rV$ .

There exists a neighbourhood $U^{\prime}$ of $a_{1}$ in $M_{1}$ such that: $(\alpha)U^{\prime}\subseteqq W,$ $(\beta)$

$U^{\prime}\cap(M_{1}\backslash W_{I})=V$ and $(\gamma)$ if for some integer $i,$ $ W_{1i}\cap U^{\prime}\neq\emptyset$ , then $W_{1\ell}\subseteqq U^{\prime}$ .
A homeomorphism $f^{\prime}$ of $U_{1}$ onto $U^{\prime}$ for which $f^{\prime}(X_{1}\cap U_{1})=X_{1}\cap U^{\prime}$ can be

constructed in the same manner as we constructed the homeomorphism $f$ of $U_{1}$

onto $U_{2}$ . Hence, $\tau(U_{1})$ is a standard element.

4.3. THEOREM. For every isolated orainal a the set $EP(\alpha)$ is countable.

PROOF. Let $a=\beta+m$ , where $\beta=\beta(a)$ and $m=m(\alpha)\geqq 1$ . We prove the
theorem by induction on integer $m$ .

Let $m=1$ . For every $i=1,2,$ $\cdots$ we denote by $M_{i}$ a compactum such that
$|M_{i^{(\alpha-1)}}|=|M_{i}^{(\beta)}|=i$ . Hence, if $X_{1}$ and $X_{2}$ are two subsets of $M_{k}$ for which
$M\backslash M^{(\beta)}\subseteqq X_{1}\cap X_{2}$ , then $X_{1}=X_{2}$ iff $X_{1}\cap M^{(\alpha-1)}=X_{2}\cap M^{(\alpha-1)}$ . Therefore, the
number of such set is finite. Let $X_{i1},$ $\cdots$ , $X_{it(i)}$ be these sets and let $\zeta_{ij}=$

$(X_{ij}, M_{i}),$ $i=1,2,$ $\cdots$ , $j=1,$ $\cdots$ , $t(i)$ .
Let $\zeta=(X, M)$ be an arbitrary element of $P(\alpha)$ and let $|M^{(\alpha-1)}|=i$ . Then,

by [M-S] there exists a homeomorphism $f$ of $M_{i}$ onto $M$. There exists an
integer $j,$ $ 1\leqq$ ] $\leqq t(i)$ , such that $X_{ij}=f^{-1}(X)$ . Hence, $f(X_{ij})=X$, that is, $\zeta\sim\zeta_{ij}$ .
From this it follows that the set $EP(a)$ is countable.

We suppose that the theorem is proved for every $m$ for which $1\leqq m<n$ and
we prove the theorem for $m=n$ .

Let $\tau^{1}=(c_{I}, X^{1}, M^{1})$ , -, $\tau^{2}=(c^{p}, X^{p}, M^{p})$ be standard elements of $Tr(\alpha-1)$

such that $ETr(a-1)=\{e(\tau^{1}), \cdots, e(\tau^{p})\}$ . Also, let $\zeta(1)=(X(1), M(1))$ , $\zeta(2)=$

$(X(2), M(2)),$ $\cdots$ be elements of $P(\alpha-1)$ such that $EP(\alpha-1)=\{e(\zeta(1)), e(\zeta(2)), \cdots\}$ .
Now, let $\zeta_{j}=(X_{j}, M_{j}),$ $j=1,2$ , be two arbitrary elements of the set $P(\alpha)$ ,

such that $|M_{j^{(\alpha-1)}}|=\{a_{j1}, \cdots , a_{jl}\}$ . Without loss of generality we can suppose
that the spaces $M_{1}$ and $M_{2}$ are metric. There exists en open and closed subset
$U_{ji}$ of $M_{j},$ $j=1,2,$ $t=1,$ $\cdots,$

$i$ , such that: $(a)U_{ji_{1}}\cap U_{ji_{2}}=\emptyset$ if $i_{1}\neq i_{2},$ $(\beta)U_{j1}\cup\cdots$

$\cup U_{ji}=M_{j}$ , and $(\gamma)a_{ji}\in U_{ji}$ .
Let $U_{jl}\cap(M_{j^{(\alpha-2)}}\backslash M_{j^{(\alpha-1)}})=\{b_{ji}^{1}, b_{ji}^{2}, \cdots\}$ . Let $(W_{ji}^{k})^{0}$ be an arbitrary neigh-

bourhood of $b_{ji}^{k}$ in $M_{j},$ $k=1,2,$ $\cdots$ , such that: $(\alpha)(W_{ji}^{k})^{0}\subseteqq U_{ji}$ and $(\beta)(W_{ji}^{k})^{0}\cap$

$M_{j^{(\alpha-2)}}=\{b_{j}^{k}\}$ . We denote by $e_{ji}^{k}$ the element $e(\tau_{;\iota}^{k})$ of $ETr(\alpha-1)$ , where $\tau_{ji}^{k}=$

$(b_{ji}^{k}, X_{j}\cap(W_{ji}^{k})^{0},$ $(W_{ji}^{k})^{0})$ . Obviously, the element $e_{ji}^{k}$ is independent from the
neighbourhood $(W_{ji}^{k})^{0}$ .
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For every $j=1,2,$ $i=1,$ $\cdots$ , $t,$ $k=1,2,$ $\cdots$ , let $W_{fi}^{k}$ be an open and closed
neighbourhood of $b_{J}^{k_{i}}$ in $M_{j}$ such that: $W_{ji}^{k}\subseteqq U_{ji}$ , $(\beta)W_{fi}^{k}\cap M_{j}^{(\alpha-2)}=\{b_{ji}^{k}\}$ , $(\gamma)$

$ W_{ji}^{k_{I}}\cap W_{ji}^{k_{2}}=\emptyset$ , if $k_{1}\neq k_{2},$
$(\delta)\lim_{k\rightarrow\infty}(diam(W_{ji}^{k}))=0,$

$(\epsilon)$ the set $(U_{ji}\backslash W_{ji})^{(\alpha-2)}$ , where

$ W_{ji}=W_{ji}^{1}\cup W_{ji}^{2}\cup\cdots$ contains at least two distinct points and the point $a_{ji}$ be-
longs to this set, and $(\zeta)$ if $e_{ji}^{k}=e(\tau^{r(kji)})$ , then there exists a homeomorphism
$f_{ji}^{k}$ of $M^{r(kji)}$ onto $W_{ji}^{k}$ such that $f_{ji}^{k}(X^{r(kji)})=X_{f}\cap W_{ji}^{k}$ . Obviously, $W_{ji}$ is an
open subset of $M_{j}$ such that $Cl(W_{ji})\backslash W_{ji}=\{a_{ji}\}$ .

Let $V_{ji}$ be an open and closed neighbourhood of $a_{ji}$ in $M_{ji}\backslash W_{ji}$ such that
$V_{ji}\subseteqq U_{ji}$ and $(V_{ji})^{(a-2)}=\{a_{fi}\}$ . The triad $\tau_{ji}=(a_{ji}, X_{j}\cap V_{ji}, V_{ji})$ is an element
of $Tr(\alpha-1)$ . We suppose that if $e(\tau_{ji})=e(\tau^{r(ji)})$ , then there exists a homeo-
morphism $f_{jl}$ of $M^{r(ji)}$ onto $V_{ji}$ such that $f_{ji}(X^{r(ji)})=X_{j}\cap V_{ji}$ .

We observe that the set $H_{ji}=U_{Ji}\backslash (W_{ji}\cup V_{ji})$ is an open and closed subset
of $M_{j}$ and by property $(\epsilon)$ of the sets $W_{ji}^{k}$ it follows that $(H_{ji})^{(\alpha-2)}\neq\emptyset$ . Hence,

the pair $\zeta_{fi}=(X_{j}\cap H_{ji}, H_{ji})$ is an element of $P(a-1)$ .
If $e(\zeta_{ji})=e(\zeta(q(ji)))$ , then by $g_{ji}$ we denote a homeomorphism of $M(q(ji))$

onto $H_{ji}$ such that $g_{fi}(X(q(ji)))=X_{j}\cap H_{ji}$ .
Now, we prove that $\zeta_{1}\sim\zeta_{2}$ if the following conditions are true: $(\alpha)$ for a

given element $e(\tau^{r})$ of $ETr(\alpha-1)$ and for a fixed integer $i$, the number of ele-
ments $b_{1i}^{k}$ of the set $\{b_{1i}^{1}, b_{1i}^{2}, \cdots\}$ for which $e(\tau^{r})=e_{1i}^{k}$ is the same with the
number of the elements $b_{2i}^{k}$ of the set $\{b_{2i}^{1}, b_{2i}^{2}, \cdots\}$ for which $e_{2i}^{k}=e(\tau^{r}),$ $(\beta)$ for
every integer $i=6,$ $\cdots,$

$t,$ $e(\tau_{1i})=e(\tau_{2i})$ , and $(\gamma)$ for every integer $i=1,$ $\cdots$ , $t$ ,

$e(\zeta_{1j})=e(\zeta_{2i})$ .
Indeed, by the above condition $(\alpha)$ it follows that for every integer $i$ , be-

tweed the elements of the set $\{b_{1i}^{1}, b_{1i}^{2}, \cdots\}$ and the elements of the set $\{b_{2i}^{1}$ ,
$b_{2i}^{2},$ $\cdots$ } there exists an one-to-one correspondence such that if $b_{1i}^{k}$ corresponds

to $b_{2i}^{r}$ , then $e_{1i}^{k}=e_{2i}^{r}$ .
We construct a homeomorphism $f$ of $M_{1}$ onto $M_{2}$ as follows: for every

integer $i$ , on the set $V_{1i}$ we set $f=f_{2i}\circ f_{Ii}^{-1}$ and on the set $H_{1i}$ we set $f=$

$g_{2i}\circ g_{1i}^{-1}$ . If the point $b_{1i}^{k}$ corresponds to $b_{2i}^{r}$ , then on the set $W_{1i}^{k}$ we set $f=$

$f_{2i^{\circ}}^{r}(f_{1i}^{k})^{-1}$ . It is easy to prove that $f$ is a homeomorphism of $M_{1}$ onto $M_{2}$ such
that $f(X_{1})=X_{2}$ .

From the above it follows that the set $EP(\alpha)$ is countable.

4.3.1. REMARK. From Theorem 4.3 it follows Lemma 2 of Section I.3 of
$[l_{3}]$ , that is, for a given isolated ordinal $\alpha$ the set of all (mutually non-homeo-
morphic) spaces $X$ for which there exists a compactum $K$ having type $\alpha$ , such
that $X\subseteqq K$ and $K\backslash K^{\beta(\alpha)}\subseteqq X$, is countable.

Also, from Lemma 4.2 it follows Lemma 1 of Section I.2 of $[l_{3}]$ .
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5. Universal spaces.

5.1. DEFINITIONS. Let $a>0$ be an ordinal and $k\in N$ such that $0\leqq k\leqq m^{+}(\alpha)-1$ .
Let $X\in R_{\iota c}^{k}(a)$ . An extension $\tilde{X}$ of $X$ is called a c-extension (respectively, lc-
extension) iff $\tilde{X}$ has a basis $B(\tilde{X})=\{V_{0}, V_{1}, \cdots\}$ of open sets such that:

(1) the set $Bd(V_{i}),$ $i=0,1,$ $\cdots$ , is a compactum (respectively, a locally com-
pact subset of $\tilde{X}$ ),

(2) type$(Bd)V_{i}))\leqq a+k+1$ ,

(3) type$((Bd(V_{i})\cap X)\cup(Bd(V_{i})\backslash (Bd(V_{i}))^{(\beta(\alpha))}))\leqq a$ ,
(4) loc-com-type$((Bd(V_{i})\cap X)\cup(Bd(V_{i})\backslash (Bd(V_{i}))^{(\beta(\alpha))}))\leqq\alpha+k$ .

We observe that by Lemma 2.4 for every element $X\in R_{\iota c}^{k}(\alpha)$ there exists a
c-extension of $X$. Also, if $\tilde{X}$ is a c-extension of $X$, then using the method of
the proof of Lemma 1 of $[l_{1}]$ we can construct a basis $B(\tilde{X})=\{V_{0}, V_{1}, \cdots\}$ of
open sets of $\tilde{X}$ having properties (1) $-(6)$ of Lemma 2.4.

Let $K$ be a space, $Sp$ be a family of spaces, $(Sp)_{1}$ be a subfamily of $Sp$

and let $\mathcal{P}$ be a property of topological spaces. We say that the space $K$ has
the property of $\mathcal{P}$-intersections with respect to subfamily $(Sp)_{1}$ of $Sp$ iff for
every $X\in Sp$ there exists a homeomorphism $i_{X}$ of $X$ into $K$ such that if $Y$ and
$Z$ are distinct elements of $Sp$ and $Y\in(Sp)_{1}$ , then the set $i_{Y}(Y)\cap i_{Z})Z)$ has pro-
perty $\mathcal{P}$ .

For every $X\in Sp$ let $i_{X}$ be a homeomorphism of $X$ into $K$. We say that
the space $K$ has the property of $\mathcal{P}$-intersections with respect to subfamily
$\{i_{X} : X\in(Sp)_{1}\}$ of all homeomorphisms $i_{X}$ iff for every $Y\in(Sp)_{1}$ and for every
$Z\in Sp$ , the set $i_{Y}(Y)\cap i_{Z}(Z)$ has the property $\mathcal{P}$ .

In particular, if $\mathcal{P}$ means that the corresponding intersection $(a)$ is finite,
$(\beta)$ has $type\leqq\alpha,$ $(\gamma)$ is compact and has $tyye\leqq\alpha,$ $(\delta)$ has $ type\leqq\alpha$ and comfact
$type\leqq\alpha+k$ , and $(\epsilon)$ has $type\leqq a$ and locally compact $type\leqq a+k$ , then instead
of phrase $\mathcal{P}$-intersections” we will use, respectively, the words: $(\alpha)$ “finite
intersections”, $(\beta)$ “a-intersections”, $(\gamma)$ “compact a-intersections”, $(\delta)$ $a_{c}^{k}$-inter-
sections”, and $(\epsilon)$ $\alpha_{lc}^{k}$-intersections”.

We observe that the notion of “the property of finite intersections” given
in $[l_{3}]$ is different from that of the present paper, because in $[I_{3}]$ we suppose
that both spaces $Y$ and $Z$ belong to the corresponding subfamily. But, it is
not difficult to see that the universal space $T$ for the family $R(\alpha)$ constructed
in $[l_{3}]$ has the property of finite intersections (in sense of the present paper)

with respect to a given subfamily of $R(a)$ whose cardinality is less than on
equal to the continuum.
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The same is true with the notion of “the property of $\alpha$ -intersections” (in

actually, with the notion of “the property of compact a-intersections”) given
in [G-I].

5.2. REPRESENTATIONS. For every $X\in R_{lc}^{k}(\alpha)$ let $\tilde{X}$ be a c-extension of $X$

and $B(\tilde{X})=\{V_{0}(\tilde{X}), V_{1}(\tilde{X}), \cdots\}$ be an ordered basis of open sets of $\tilde{X}$ having
properties (1) $-(6)$ of Lemma 2.4.

We recall the contruction (with respect to the ordered basis $B(\tilde{X})$ ) of the
subset $S(\tilde{X})$ of $C$ , the upper semi-continuous partition $D(\tilde{X})$ of $S(\tilde{X})$ , the map
$q(\tilde{X})$ of $S(\tilde{X})$ onto $\hat{X}$ and the homeomorphism $i(\tilde{X})$ of $D(\tilde{X})$ onto $\tilde{X}$ given in
Sections I.5 and I.8 of $[I_{1}]$ .

For every $i=0,1,$ $\cdots$ , we set $V_{i}^{0}(\tilde{X})=Cl(V_{i}(\tilde{X}))$ and $V_{l}^{1}(\tilde{X})=\tilde{X}\backslash V_{i}(\tilde{X})$ . For
every $\overline{i}=i_{1}\cdots i_{n}\in L_{n}$ , we set $\tilde{X}_{g}=C$ if $n=0$ and $\tilde{X}_{\overline{i}}=V_{0}^{i_{1}}(\tilde{X})\cap\cdots\cap V_{n-1}^{i_{n}}(\tilde{X})$ if
$n\geqq 1$ . The point $a\in C$ belongs to $S(\tilde{X})$ if and only if $\tilde{X}_{\overline{i}(a.0)}\cap\tilde{X}_{\overline{i}(a,1)}\cap\cdots\neq\emptyset$ .
The last set is a singleton for every point a of $S(\tilde{X})$ . We define the $q(\tilde{X})$ of
$S(\tilde{X})$ onto $\tilde{X}$ setting $q(\tilde{X})(a)=x$ , where $a\in S(\tilde{X})$ and $\{x\}=\tilde{X}_{\overline{i}(a,0)}\cap\tilde{X}_{\overline{i}(a.1)}\cap\cdots$ .
Finally, we set $D(\tilde{X})=\{(q(\tilde{X}))^{-1}(x):x\in\tilde{X}\}$ and define $i(\tilde{X})$ setting $i(\tilde{X})((q(\tilde{X}))^{-1}(x))$

$=x$ .

5.2.1. LEMMA. For every $X\in R_{lc}^{k}(\alpha)$ , the pair $(S(\tilde{X}), D(\tilde{X}))$ has the dense
property.

PROOF. Let $n\in N$ and $a\in d\in(D(\tilde{X}))_{n}$ . There exist elements $x\in Bd(V_{n}(\tilde{X})$

and $b\in C$ such that $d=\{a, b\}=(q(\tilde{X}))^{-1}(x)$ . Let $x_{1},$ $x_{2},$ $\cdots$ be a sequence of
points of $\tilde{X}$ snch that $\lim_{i\rightarrow\infty}x_{i}=x,$

$x_{i}\in V_{n}(\tilde{X})$ if $a<b$ and $x_{i}\in\tilde{X}\backslash Cl(V_{n}(\tilde{X}))$ if

$b<a,$ $i=1,2,$ $\cdots$ . If $n\geqq 1$ we can suppose that $x_{i}\not\in Cl(V_{0}(\tilde{X})(j\cdots\cup V_{n- 1}(\tilde{X}))$ .
By the construction of the sets $\tilde{X}_{\overline{i}}$ it follows that there exists an element

\’i of $L_{n}$ such that $a\in C_{\overline{i}_{0}}$ and $b\in C_{\overline{i}1}$ if $a<b$ and $a\in C_{\overline{i}1}$ and $b\in C_{\overline{i}0}$ if $b<a$ .
Also, for every $i=1,2,$ $\cdots$ , we have that the set $(q(\tilde{X}))^{-1}(x_{i})$ is contained in
that of the sets $C_{\overline{i}0}$ and $C_{\overline{i}1}$ which contains the point $a$ .

Since $D(\tilde{X})$ is an upper semi-continuous parlition of $S(\tilde{X})$ we have $\lim_{i\rightarrow\infty}d_{i}=d$ .
where $d_{i}=(q(\tilde{X}))^{-1}(x_{i}),$ $i=1,2,$ $\cdots$ . Hence, if $a_{i}\in d_{i}$ , then $\lim_{i\rightarrow\infty}a_{i}=a$ , that is,

the point $a$ is a limit point of the set $S(\tilde{X})\backslash ((D(\tilde{X}))_{n})^{*}$ . This means that the
pair $(S(\tilde{X}), D(\tilde{X}))$ has the dense property.

5.2.2. THE FAMILY A OF REPRESENTATI0NS. Let $R_{1}$ be a subfamily of
$R_{lc}^{k}(\alpha)$ the cardinality of which is less than or equal to the continuum and let
$R_{2}=R_{lc}^{k}(\alpha)\backslash R_{1}$ .
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For every $X\in R_{2}$ we set $\hat{S}(X)=C$ and we denote by $\hat{D}(X)$ the set which is
the union of the set $D(\tilde{X})$ and all singletons $\{x\}$ , where $x\in C\backslash (\bigcup_{n=0}^{\infty}((D(\tilde{X}))_{n})^{*})$ .
It is easy to see that $\hat{D}(X)$ is an upper semi-continuous partition of $\hat{S}(X)$ and
the quotient space $D(\tilde{X})$ is homeomorphic to a subset of the quotient space
$\hat{D}(X)$ .

Let $A_{2}$ be the family of all pair $(\hat{S}(X),\hat{D}(X)),$ $X\in R_{2}$ . It is easy to see
that the cardinality of $A_{2}$ is less than or equal to the continuum.

For every $X\in R_{1}$ we set $\hat{S}(X)=S(\tilde{X})$ and $D(X)=D(\tilde{X})$ . Let $A_{1}$ be the set

of all pairs $(\hat{S}(X),\hat{D}(X)),$ $X\in R_{1}$ . If $X$ and $Y$ are distinct elements of $R_{1}$ , then
$(\hat{S}(X),\hat{D}(X))$ and $(\hat{S}(Y),\hat{D}(Y))$ are considered as distinct elements of $A_{1}$ , while
it is possible $\hat{S}(X)=\hat{S}(Y)$ and $\hat{D}(X)=\hat{D}(Y)$ .

Let $A$ be the free $un[on$ of $A_{1}$ and $A_{2}$ . (Hence, if $g_{1}\in A_{1}$ and $g_{2}\in A_{2}$ , then
$g_{1}$ and $g_{2}$ are distinct elements of $A$). Obviously, the cardinality of $A$ is less

than or equall to the continuum.
By Lemma 5.2.1 it follows that every element of $A$ has the dense property.

In the present section we denote by $M$ the set of all scattered compacta
$M$ such that either type $(M)\leqq\beta(\alpha)$ or type$(M)=\beta(a)+n$ , where $n=1,2,$ $\cdots$ . We
suppose that distinct elements of $M$ are not homeomorphic.

Let $ EP(\beta(a))=EP(\beta(a)+1)\cup EP(\beta(a)+2)\cup\cdots$ . By Theorem 4.3 the set
$EP(\beta(\alpha))$ is countable. Let $e\in EP(\beta(\alpha))$ . We denote by $M(e)$ the element $M$

of $M$ (if there exists such element) for which for some subset $F$ of $M,$ $(F, M)$

$\in e$ . 0bviously, if there exists the element $M(e)$ , then it is uniquely deter-
mined, while the subset $F$ of $M(e)$ for whch $(F, M(e))\in e$ , in general, is not

unique. We denote by $F(e)$ a fixed subset of $M$ such that $(F(e), M(e))\in e$ .
For every $X\in R_{lc}^{k}(a)$ and $q\in N$ by the construction of the pair $(\hat{S}(X),\hat{D}(X))$

it follows that $(\hat{D}(X))_{q}=(D(\tilde{X}))_{q}$ . Since $(D(\tilde{X}))_{q}$ is homeomorphic to $Bd(V_{q}(\tilde{X}))$

(See the proof of Lemma 11 of $[l_{3}]$ ) by properties (1) and (4) of Lemma 2.4 it
follows that the pair $g(X)=(\hat{S}(X),\hat{D}(X))$ is an M-representation. By $M_{q}(g(X))$

we denote the element of $M$ which is homeomorphic to $(\hat{D}(X))_{q}$ . If type $((\hat{D}(X))_{q})$

$\leqq\beta(\alpha)$ , then by $\psi_{q}(g(X))$ we denote a fixed homeomorphism of $M_{q}(g(X))$ onto
$(\hat{D}(X))_{q}$ .

Suppose that type$((\hat{D}(X))_{q})=\beta(\alpha)+n$ . Let $F_{q}(\tilde{X})=(Bd(V_{q}(\tilde{X}))\cap X)\cup(Bd(V_{q}(\tilde{X}))$

$\backslash (Bd(V_{q}(\tilde{X}))^{(\beta(\alpha))})$ . Then, the pair $(F_{q}(\tilde{X}), Bd(V_{q}(\tilde{X})))$ belongs to an element $e$

of $EP(\beta(\alpha))$ and, hence, there exists the pair $(F(e), M(e))$ . By $\psi_{q}(g(X))$ we
denote a fixed homeomorphism of $M_{q}(g(X))=M(e)$ onto $(\hat{D}(X))_{q}$ for which
$\psi_{q}(g(X))(F(e))=(i(\tilde{X}))^{-1}(F_{q}(\tilde{X}))$ . (We observe that by the construction of the
homeomorphism $i(\tilde{X})$ it follows that $i(\tilde{X})(D(\tilde{X}))_{q})=Bd(V_{q}(\tilde{X})))$ .

We suppose that for every $M\in M$ there exists a fixed decreasing sequence
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of decompositions of $M$.
Also we suppose that there exists a fied decreasing sequence of decomposi-

tions of $A$ such that if $E$ is an element of $q^{th}$ decompositions, then the ele-
ment $M_{q}(E)$ of $M$ is determined (for notations see Section 3.1). Moreover, since
the set $EP(\beta(\alpha))$ is countable, we can suppose that if type$(M_{q}(E))=\beta(\alpha)+n$ and
$(\hat{S}(X), D(X))$ and $(\hat{S}(Y),\hat{D}(Y))$ are two elements of $E$ , then the pairs
$(F_{q}(\tilde{X}), Bd(V_{q}(\tilde{X})))$ and $(F_{q}(\tilde{Y}), Bd(V_{q}(\tilde{Y})))$ belong to the same element of
$EP(\beta(\alpha))$ .

5.3. THEOREM. Let $R_{1}$ be a subfamily of $R_{kc}^{k}(\alpha)$ the cardinality of which is
less than or equal to the continuum. For every element $X\in R_{lc}^{k}(\alpha)$ let $\tilde{X}$ be a
c-extension of X. Then, there exist:

(1) an element KE $R_{kc}^{k}(\alpha)$ ,
(2) a space $T$ which is an lc-extension of $K$,

(3) a homeomorphism $i_{X}$ of $X$ into $K$ for every $X\in R_{lc}^{k}(\alpha)$ , and
(4) a homeomorphism $j_{\tilde{X}}$ of $\tilde{X}$ into $T$, for every XE $R_{lc}^{k}(\alpha)$ , which is an

extension of $i_{X}$ , that is, $j_{\tilde{X}}|_{X}=i_{X}$ , such that:
(5) the space $K$ has the property of $\alpha_{lc}^{k}$ -intersections with respect to the

subfamily $\{i_{X} : X\in R_{1}\}$ of all homeomorphisms $i_{X},$ $X\in R_{lc}^{k}(a)$ .
(6) the space $T$ has the property of compact $(a+k+1)$-intersections with

respect to subfamily $\{j_{\tilde{X}} : X\in R_{1}\}$ of all homeomorphisms $j_{\tilde{X}},$ $X\in R_{lc}^{k}(\alpha)$ . More-
over,

(7) the set $j_{\dot{X}}(\tilde{X})$ is a closed subset of $T$, for every $X\in R_{1}$ .

PROOF. We use all notions and notations of Sections 5.2 and 5.2.2. Let $T$

be a space of Theorem 3.11 constructed for the family $A$ of M-representations
of Section 5.2.2.

Now we define the subspace $K$ of $T$ as follows: every element $d$ of $T$ of
the form $\{(a, g)\}$ , where $(a, g)\in CxC$ , belongs to $K$. Let $d\in T(1)$ . Then,

there exist an integer $m\in N$, an element $r$ of $1(m)$ and an element $x$ of $M_{m}(A_{r}^{m})$

such that $d=d(x, m, r)$ . If type$(M_{m}(A_{r}^{m}))<\beta(\alpha)$ , then we consider that $d\in K$.
Let type$(M_{m}(A_{r}^{m}))=\beta(\alpha)+n$ . By the properties of the fixed decreasing sequence
of decompositions of $A$ it follows that there exists an element $e$ of $EP(\beta(\alpha))$

such that for every $X\in R_{lc}^{k}(a)$ for which $g(X)=(\hat{S}(X), D(X))\in A_{r}^{m}$ we have
$(F_{m}(\tilde{X}), Bd(V_{m}(\tilde{X})))\in e$ . Hence, $M_{m}(A_{r}^{m})=M_{m}(g(X))=M(e)$ and $F(e)=$

$(\psi_{m}(g(X)))^{-1}(F_{m}(\tilde{X}))$ . We consider that $d\in K$ iff $x\in F(e)$ .
By the definition of the set $F_{m}(\tilde{X})$ and properties of a c-extension of $X$

(see Section 5.1) it follows that: $(\alpha)(d(M_{m}(A_{r}^{m}))\backslash (d(M_{m}(A_{r}^{m})))^{(\beta(\alpha))})\subseteqq d(M_{m}(A_{r}^{m}))$
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$\cap K$, $(\beta)type(d(M_{m}(A_{r}^{m}))\cap K)\leqq\alpha$ , $(\gamma)type(d(M_{m}(A_{r}^{m})))\leqq a+k+1$ , $(\delta)$ loc-com-
type$(d(M_{m}(A_{r}^{m}))\cap K)\leqq a+k$ .

We observe that the above properties $(a)-(\delta)$ are true if we replace the set
$d(M_{m}(A_{r}^{m}))$ by an open and closed subset of it. Hence, these properties are
also true if we replace the set $d(M_{m})A_{r}^{m}))$ by a set which is a free union of
simultaneously open and closets of sets $d(M_{m}(A_{r}^{m})),$ $m\in N,$ $r\in l(m)$ .

Consider the basis $B$ of the space $T$ . Let $0(W)\in B$ . By Theorem 5.3 the
set $Bd(O(W))$ is a free union of simultaneously open and closed subsets of sets
$d(M_{m}(A_{r}^{m}))$ . Hence, properties $(\alpha)-(\delta)$ are true if we replace the set $d(M_{m}(A_{r}^{m}))$

by the set $Bd(O(W))$ . From the it follows that $K\in R_{lc}^{k}(a)$ . Since the set
$Bd(O(W))$ is a locally compact subset of $T$ we also have that the space $T$ is
an lc-extension of the space $K$.

Let $T(\tilde{X})$ be the subset of $T$ consisting of all elements $z$ of $T$ for which
$ z\cap(Cx\{g(X)\})\neq\emptyset$ . We observe that for every $z\in T(\tilde{X})$ there exists an element
$d\in\hat{D}(X)$ such that $z\cap(Cx\{g(X)\})=dx\{g(X)\}$ . Also, for every $d\in\hat{D}(X)$ there
exists an element $z\in T(\tilde{X})$ such that the above relation is true. Hence, setting
jp $(d)=z$ we have an one-to-one map of $\hat{D}(X)$ onto $T(\tilde{X})$ . It is easy to verify,

that $j_{\hat{X}}((\hat{D}(X))_{q})=d(M_{q}(A^{q_{r(q.g^{(}X))}}))$ , for every $q\in N$.
We prove that $j_{\hat{X}}$ is a homeomorphism. Let $j_{\hat{X}}(d)=z$ . Let $z\in O(W)\in B$ .

Since the space $T$ is regular there exists an element $O(W_{1})$ of $B$ such that
$z\in O(W_{1})\subseteqq Cl(O(W_{1}))\subseteqq O(W)$ . By the construction of the element of the set
$O\cup\hat{V}$ , there exists an open subset $V$ of $\hat{S}(X)$ such that $d\subseteqq V$ and $Vx\{g(X)\}$

$\subseteqq W_{1}$ . Let $U$ be the set of all elements $d^{\prime}$ of $\hat{D}(X)$ for which $d^{\prime}\subseteqq V$ . Then,
$U$ is an open subset of $\hat{D}(X)$ containing $d$ . If $d^{\prime}\in U$ , then jp $(d^{\prime})\cap W_{1}\neq\emptyset$ and,
hence, $j_{\hat{X}}(d^{\prime})\in O(W)$ , that is, $j_{\hat{X}}(U)\subseteqq O(W)$ . Thus, $\zeta_{\hat{X}}$ is a continuous map.
Let $U$ be an open subset of $\hat{D}(X)$ containing $d$ . Let $V=(\hat{p}(X))^{-1}(U)$ , where
$\hat{p}(X)$ is the natural projection of $\hat{S}(X)$ onto $\hat{D}(X)$ . There exists an element $W$

of $\hat{U}\cap\hat{V}$ such that $W\cap Cx\{g(X)\})\subseteqq Vx\{g(X)\}$ and $z\subseteqq W$ . Hence, $z\in O$ )$W$).

If $z^{\prime}\in O(W)\cap T(\tilde{X})$ , then $z\subseteqq W$ and therefore $z^{\prime}\cap(Cx\{g(X)\})\subseteqq Vx\{g(X)\}$ , that
is, if $d’=(\int p)^{-1}(z^{\prime})$ , then $d^{\prime}\subseteqq V$ . This means that $d’\in U$ . Hence, $(]_{\hat{X}})^{-1}(O(W)$

$\cap T(\tilde{X}))\subseteqq U$ and the map $(]_{\hat{X}})^{-1}$ is continuous. Thus, $(]_{\hat{X}})^{-1}$ is a homeomorphism
of $\hat{D}(X)$ onto $T(\tilde{X})$ .

Since $D(\tilde{X})$ is a subset of $D(x)$ we can consider the restriction $jp|_{D(\hat{X})}$ of
$j_{\hat{X}}$ onto $D(\tilde{X})$ . We set $j_{\hat{X}}=(J\hat{x}|_{D(\hat{X})})\circ(i(\tilde{X}))^{-1}$ . Obviously, the map $j_{\hat{X}}$ is a
homeomorphism of $\tilde{X}$ into a subset of $T(\tilde{X})$ .

If $X\in R_{1}$ , then $D(\tilde{X})=\hat{D}(X)$ and, hence, $jx=j_{\hat{x}^{o}}(i(\tilde{X}))^{-1}$ , that is, the map
$j_{\hat{X}}$ is a homeomorphism of $\tilde{X}$ onto $T(\tilde{X})$ .

Set $i_{X}=j_{\hat{X}}|_{X}$ . Hence, the map $i_{X}$ is a homeomorphism of $X$ into $T(\tilde{X})$ .
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Let $X$ and $Y$ be distinct elements $R_{lc}^{k}(\alpha)$ such that $X\in R_{1}$ . There exists
an integer $m\in N$ such that $r(q, g(X))=r(q, g(Y))$ for every $0\leqq q<m$ and
$r(m, g(X))\neq r(m, g(Y))$ . It is clear that an element $z$ of $T$ belongs to $T(\tilde{X})$

$\cap T(\tilde{Y})$ if and only if $d\in d(M_{q}(A^{q_{r(q.g^{(}X))}}))$ for some $q,$ $0\leqq q<m$ . Hence, the
subset $T(X)\cap T(Y)$ of $T$ is a compact subset having $type\leqq\alpha+k+1$ .

Since $(D)\tilde{Y}))_{q}=(D(Y))_{q}$ for every $q\in N$, we have $j_{\hat{Y}}((D(Y))_{q})\subseteqq jp(\tilde{Y})$ . Hence
$T(\tilde{X})\cap T(\tilde{Y})=jp(\tilde{X})\cap]p(\tilde{Y})$ , that is, property (6) of the theorem is true.

Since for every $q,$ $0\leqq q<m$ , there exists an element $e\in EP(\beta(a))$ such that
$K\cap d(M_{q}(A^{q_{r(q.g(X))}}))=d(F(e))$ it follows that the set $i_{X}(X)\cap i_{Y}(Y)$ has $\iota ype\leqq\alpha$ ,

and locally compact type $\leqq\alpha+k$ , that is, property (5) of the theorem is true.
Hence, in order to complete the proof of the theorem it is sufficient to

prove property (7). For this, since jp $(\tilde{X})=T(\tilde{X})$ if XE $R_{1}$ , it is sufficient to
prove that the set $T(\tilde{X})$ is a closed subset of $T$ .

Let $z\in T\backslash T(\tilde{X})$ . If $z$ has the ferm $d(y, m, r)$ for some $m\in N,$ $r\in l(m)$ and
$y\in M_{m}(A_{r}^{m})$ , then $g(X)\not\in A_{r}^{m}$ . Hence, $z\in O(U)$ and $ 0(U)\cap T(\hat{X})=\emptyset$ , where $U=$

$U(d(y, m, r), 0)$ .
Let $z=\{(a, g)\}$ . There exists an integer $m\in N$ and distinct elements $\tau$ and

$7_{1}$ of $1(m)$ such that $g\in A_{r}^{m}$ and $g(X)\in A_{r}^{m}$ . Then, $z\subseteqq C_{g}xA_{r}^{m}$ . By Lemma 3.7
case (1), there exists an element $W$ of the set $0\cup\hat{V}$ such that $z\subseteqq W\subseteqq C_{g}xA_{r}^{m}$ .
Hence, $z\in O(W)$ and $ O(W)\cap T(\tilde{X})=\emptyset$ .

Thus, in both cases, the element $z$ has an open neighbourhood which do
not intersect the subspace $T(\tilde{X})$ . Hence, $T(\tilde{X})$ is closed.

5.4. COROLLARIES. (1) In the family $R_{lc}^{k}(\alpha)$ there exists a universal ele-
ment having the property of $\alpha_{lc}^{k}$-intersections with respect to any subfamily of
$R_{lc}^{k}(\alpha)$ the cardinality of which is less than or equal to the continuum.

(2) For the family $R_{c}^{k}(\alpha)$ there exists $a$ containing space belaining to $R_{lc}^{k}(\alpha)$ .
(3) For the family $R_{c}^{k}(\alpha)$ there exists $a$ containing continuum having type

$\leqq\alpha+k+1$ and the property of $\alpha_{c}^{k+1}$ -intersections with respect to a fixed subfamily

of $R_{c}^{k}(\alpha)$ the cardinality of which is less than or equal to the continuum.
This corollary follows from Theorem 5.3 (See property (6)), Theorem 2.5 and

Theorem 3 of $[l_{1}]$ .
In particular, if $k=0$ and since $R^{com}(a)\subseteqq R_{c}^{0}(a)$ we have:
There exists a continuum having rim-type $\leqq\alpha+1$ which is $a$ containing space

for all compacta having rim-type $\leqq\alpha$ .
(4) In the family $R(\alpha)$ (that is, in the family $R_{lc}^{k}(\alpha)$ , where $k=m^{+}(\alpha)-1$ )

there exists a universal element (See [I,]).
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5.5. SOME PROBLEMS. (1) Does there exist a universal element of the
family $R_{lc}^{h}(\alpha)$ , where $a>0$ and $k=0,$ $\cdots,$ $m^{+}(a)-1$ , having the property of $\mathcal{P}-$

intersections with respect to a given subfamily of $R_{lc}^{k}(a)$ the cardinality of
which is less than or equal to the continuum if $\mathcal{P}$-intersections” means $(\alpha)$

finite intersections, $(\beta)$ compact a-intersections, $(\gamma)a_{lc}^{n}$-intersections, where $n=$

$0,$ $\cdots$ , $k-1$ and $(\delta)a_{c}^{n}$-intersections, where $n=0,$ $\cdots,$
$k$ ?

(2) Let $K$ be a universal element of the family $R_{lc}^{k}(\alpha)$ , where $a=0,$ $\cdots,$
$m^{+}(\alpha)$ ,

and let $R_{1}$ be a fixed subfamily of $R_{lc}^{k}(a)$ the cardinality of which is less than
or equal to the continuum. Does the space $K$ have the property of $(a)$ finite
intersections, $(\beta)$ compact a-intersections, $(\gamma)\alpha$-intersections, $(\delta)a_{lc}^{n}$-intersections,

where $n=0,$ $\cdots$ , and $(\epsilon)\alpha_{c}^{n}$-intersections, where $n=0,$ $\cdots$ , with respect to the
subfamily $R_{1}$ ?

(3) Are the results and problems of the present paper true if we replace
all corresponding famillies of spaces by their plant part? (Plane part of a family
$A$ is the subfamily consisting of all elements of $A$ admitting an embedding in
the plane).
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