UNIVERSAL SPACES FOR SONE FAMILIES OF RIM-SCATTERED SPACES

By

S. D. ILIADIS

1. Introduction.

1.1. Definitions and notations. All spaces considered in this paper are separable and metrizable and the ordinals are countable.

Let F be a subset of a space X. By $Bd(F)$, $Cl(F)$, $Int(F)$ and $|F|$ we denote the boundary, the closure, the interior and the cardinality of F , respectively. An open (respectively, closed) subset U of X' is called regular iff $U=$ $Int(Cl(U))$ (respectively, $U = Cl(int(U))$). If X is a metric space, then the diameter of F is denoted by $diam(F)$. A map f of a space X into a space Y is called *closed* iff the subset $f(F)$ of Y is closed for every closed subset F of X.

A compactum is a compact metrizable space; a continuum is a connected compactum. A space is said to be *scattered* iff every non-empty subset has an isolated point.

A space Y is said to be an *extension* of X iff X is a dense subset of Y. A space Y is said to be a *compactification* of X iff Y is a compact extension of X. Let Y and Z be extensions of X. A map π of Y into Z is called a natural projection iff $\pi(x)=x$ for every $x\in X$. Obviously, if there exist a natural projection of Y into Z , then it is uniquely determined.

A space T is said to be *universal* for a family A of spaces iff both the following conditions are satisfied: (α) $T\in A$, (β) for every $X\in A$, there exists an embedding of X in T . If ony condition (β) is satisfied, then T is called a containing space for a family A .

A partition of a space X is a set D of closed subsets of X such that (α) if F_{1} , $F_{2} \in D$ and $F_{1}\neq F_{2}$, then $F_{1}\cap F_{2}=\emptyset$, and (β) the union of all elements of D is X. The natural projection of X onto D is the map π defined as follows, if $x \in X$, then $\pi(x)=F$, where F is the uniquely determined element of D containing x. The quotient space of the partition D is the set D with a topology which is the maximal on D for which the map π is continuous. (We observe that we use the same notation for a partition of aspace and for the correspond-

Received May 8, 1991.

ing quotient space). The partition D is called upper semi–continuous iff for every $F\in D$ and for every open subset U of X containing F there exists an open subset V of X which is union of elements of D such that $F\subseteq V\subseteq U$.

Obviously, in order to define a partition D of a space X it is sufficient to define the non-degenerate elements of D. Let D^{\prime} be a subset of D (generally, let D^{\prime} be a set of subsets of a space X). We denote by $(D^{\prime})^{*}$ the union of all elements of D^{\prime} .

An ordinal α is called *isolated* iff it has the form $\beta+1$, where β is an ordinal. A non-isolated ordinal is called a limit ordinal (hence, the ordinal zero is a limit ordinal).

Every ordinal α is uniquely represented as the union of a limit ordinal β and of a non-negative integer m. In what follows, the ordinal β is denoted by $\beta(\alpha)$ and the integer m is denoted by $m(\alpha)$. Also, by $\gamma(\alpha)$ we denote the ordinal $\beta+2m+\min\{\beta, 1\}$ and by $m^{+}(\alpha)$ we denote the integer $m+\min\{\beta, 1\}$. The set $\{0, 1, \cdots\}$ is denoted by N.

Let M be a subset of a space X. For every ordinal α we define, by induction, a subset $M^{(\alpha)}$ of M as follows: $M^{(0)}=M, M^{(1)}$ is the set of all limit points of M in M. $M^{(\alpha)}=(M^{(\alpha- 1)})^{(1)}$ if $\alpha>1$ is an isolated ordinal and $M^{(\alpha)}=\bigcap_{\beta<\alpha}M^{(\beta)}$ if $\alpha>1$ is a limit ordinal. The set $M^{(\alpha)}$ is called α –derivative of M (See $[K_{2}]$, $v.I, \S 24. IV.$

We say that M has $t y p e \leq \alpha$, and we write $t y p e(M) \leq \alpha$ iff $M^{(\alpha)}=\emptyset$. If α is the least such ordinal, we say that M has type α , and we write type $(M)=\alpha$. Obviously, $type(M)=0$ iff $M=\emptyset$.

We say that a scattered subset M has type α (respectively, $\leq \alpha$) at the point $a \in M$ and we write type $(a, M)=\alpha$ (respectively, type $(a, M) \leq \alpha$) iff $a \notin M^{(\alpha)}$ and $a \in M^{(\beta)}$ for every $\beta \leq \alpha$ (respectively, $a \notin M^{(\alpha)}$). (See [l_{3}]).

We denote by $com-type(a, M)$ (compact type of M at the point a) the minimal ordinal γ for which there exists a compactification K of M such that type $(a, K)=\gamma$. (See [\[I-Z\]\)](#page-36-0). By $max(M)$ we denote the set of all points a of M for which $com-type(x, M) \leq com-type(a, M)$ for every $x \in M$.

We say that M has locally compact type γ (respectively, compact type γ) which is denoted by loc-com-type (M) (respectively, by com-type (M)) iff γ is the minimal ordinal for which there exists a locally compact extension of M (respectively, a compactification of M) having type γ . (See [\[I-Z\]\)](#page-36-0).

We observe that:

(1) A subset M of a space X is scattered iff there exists an ordinal α such that $\mathit{type}(M){\leq}\alpha.$

(2) Every scattered space is countable.

(3) A compactum is scattered iff it is countable.

(4) The type of a non-empty countable compactum is an isolated ordinal.

(5) There exist compacta having type α for every isolated ordinal α . (See [\[M-S\]\)](#page-36-1).

(6) The number of compacta having type α , where α is an ordinal, is countable. (See [\[M-S\]\)](#page-36-1).

We denote by L_{n} , $n=1,2,\cdots$, the set of all ordered n-tuples $i_{1}\cdots i_{n}$, where $i_{t}=0$ or 1, $t=1, \cdots, n$. Also, we set $L_{0}=\{\emptyset\}$ and $L=\bigcup_{n=0}^{\infty}L_{n}$. For $n=0$, by $i_{1}\cdots i_{n}$ we denote the element \emptyset of L . We say that the element $i_{1}\cdots i_{n}$ of L is a part of the element $j_{1}\cdots j_{m}$ and we write $i_{1}\cdots i_{n}\leq j_{1}\cdots j_{m}$ if either $n=0$, or $n \leq m$ and $i_{t} = j_{t}$ for every $t \leq n$. The elements of L are also denoted by $\overline{i}, \overline{j}, \overline{i}_{1}$, etc. If $i=i_{1}\cdots i_{n}$ then by $\overline{i}0$ (respectively, $\overline{i}1$) we denote the element $i_{1}\cdots i_{n}0$ (respectively, $i_{1}\cdots i_{n}1$) of L .

We denote by Λ_{n} , $n=1,2, \cdots$, the set of all ordered n-tuples $i_{1}\cdots i_{n}$, where i_{t} , $t=1, \cdots, n$, is a positive integer. We set $\Lambda=\bigcup_{n=1}^{\infty}\Lambda_{n}$. The elements of Λ are denoted by $\bar{\alpha}$, $\bar{\beta}$, etc. Let $\bar{\alpha}=i_{1}\cdots i_{n}$ and $\bar{\beta}=j_{1}\cdots j_{m}$. We say that $\bar{\alpha}$ is a part of $\overline{\beta}$ and we write $\overline{\alpha}\leq\overline{\beta}$ iff $1\leq n\leq m$ and $i_{t}=j_{t}$ for every $t\leq n$. Obviously, if $\bar{\alpha},\ \bar{\beta}{\in}\varLambda_{n}$ and $\bar{\alpha}{\leq}\bar{\beta}$ then $\bar{\alpha}{=}\bar{\beta}.$ Also, for every $\bar{\alpha}{\in}\varLambda_{n}$ the set of all elements $\bar{\beta}\!\in\!A_{n+1}$ such that $\bar{\alpha}\!\leq\!\bar{\beta}$, is a countable non-finite set.

We denote by C the Cantor ternary set. By $C_{\bar{i}}$, where $i=i_{1}\cdots i_{n}\in L,$ $n\geq 1$, we denote the set of all points of C for which the t^{th} digit in the ternary expansion, $t = 1, \dots, n$, coincides with 0 if $i_t = 0$ and with 2 if $i_t = 1$. Also, we set $C_{g}=C$. For every subset s of L_{n} , $n=0, 1, \cdots$, we set $C_{s}=\bigcup_{i\in s}C_{i}$. For every point a of C and for every integer $n \geq 0$, by $\tilde{i}(a, n)$ we denote the uniquely determined element $\overline{i} \in L_{n}$ for which $a \in C_{\overline{i}}$. For every subset F of C and for every integer $n \geq 0$, we denote by $st(F, n)$ the union of all sets $C_{\overline{i}}$, $\overline{i} \in L_n$, such that $C_{\overline{i}} \cap F \neq \emptyset$. If $F = \{a\}$ we set $st(F, n) = st(a, n)$. Obviously, $st(a, n)=C_{\tilde{i}(a,n)}$. If S is a subset of C, then the set $S\cap C_{\tilde{i}}$ is denoted by $S_{\tilde{i}}$.

Let D be a partition of a subset S of C, \overline{i} an element of L_{n} , $n=0,1, \cdots$. We set $D(1)=\{d\in D: d \text{ is not singleton}\}, D_{\overline{i}}=\{d\in D: d\cap C_{\overline{i}0}\neq\emptyset, d\cap C_{\overline{i}1}\neq\emptyset \text{ and }$ $d\subseteq C_{\overline{i}0}\cup C_{\overline{i}1}\}, b_n=\cup_{\overline{i}\in L_{n}}D_{\overline{i}}.$ It is easy to see that: (α) $D(1)=\bigcup_{n=0}^{\infty}D_{n}$, (β) $D_{\overline{i}}\cap D_{\overline{j}}=\emptyset$ if $\overline{i},\ \overline{j}\in L$ and $\overline{i}\neq \overline{j}$ and (γ) $D_{m}\cap D_{n}=\emptyset$ if $m\neq n$.

A space X is called rim-finite (respectively, rational) iff X has a basis B of open sets such that the set $Bd(U)$ is finite (respectively, countable) for every $U \in B$.

We say that a space X has $rim-type \leq \alpha$, where α is an ordinal and we write rim-type $(X) \leq \alpha$ iff X has a basis B of open sets such that type $(Bd(U))$

 $\leq \alpha$, for every $U\in B$. If α is the least such ordinal, then we say that X has *rim-type* α , and we write *rim-type*(X)= α .

In [\[G-I\]](#page-36-2) (respectively, in $[I_{2}]$ and $[I_{3}]$) the following definition is given: a space K has the property of α -intersections (respectively, the property of finite intersections) with respect to a family Sp of spaces iff the every $X\in Sp$ there exists a homeomorphism i_{x} of X in K such that if Y and Z are distinct elements of Sp, then the set $i_{Y}(Y)\cap i_{Z}(Z)$ has type \leq_{α} (respectively, the set $i_{Y}(Y)\cap i_{Z}(Z)$ is finite) (For the corresponding definitions of the present paper see Section 5.1).

1.2. Some known results. Let $\alpha>0$ be an ordinal. We denote by $R(\alpha)$ the family of all spaces having $rim\text{-}type \leq \alpha$. Natural subfamilies of $R(\alpha)$ are the family $R^{com}(\alpha)$ of all compact elements of $R(\alpha)$ and the family $R^{cont}(\alpha)$ of all elements of $R(\alpha)$ which are continua.

Another subfamily of $R(\alpha)$ is the family $R^{r+m-com}(\alpha)$ defined as follows an element X of $R(\alpha)$ belongs to $R^{r+m-com}(\alpha)$ iff X has a basis B of open sets such that for every $U\in B$, the set $Bd(U)$ is a compactum having type \leq_α .

We denote by RF the family of all rim-finite spaces and by R the family of all rational spaces.

In [\[I-Z\]](#page-36-0) some new subfamilies of $R(\alpha)$ are given. These families are denoted by $R_{c}^{k}(\alpha)$ and $R_{lc}^{k}(\alpha)$, $\alpha>0$, $k=0,1,\cdots$. A space X belongs to $R_{lc}^{k}(\alpha)$ (respectively, to $R_{c}^{k}(\alpha)$) iff X has a basis $B=\{U_{0}, U_{1}, \cdots\}$ of open sets such that type $(Bd(U_{i}))\leq\alpha$ and loc-com-type $(Bd(U_{i}))\leq\alpha$ (respectively, com-type $(Bd(U_{i}))\leq\alpha$), for every $i=0, 1, \cdots$.

It is easy to see that $R^{cont}(\alpha)\subseteq R^{com}(\alpha)\subseteq R^{rim-com}(\alpha)\subseteq R_{c}^{0}(\alpha)\subseteq\cdots\subseteq R_{c}^{k}(\alpha)\subseteq$ $R_{lc}^{k}(\alpha)\subseteq R_{c}^{k+1}(\alpha)\subseteq\cdots\subseteq R(\alpha).$

We observe that if $type(M)=\alpha$, then by Lemma 1 of [\[I-T\]](#page-36-3) it follows that M admits a compactification K having type $\leq\!\!\varphi(\alpha)$. By the proof of this lemma it follows that if $\alpha>0$ and type $(K)=\gamma(\alpha)$, theu K is the one-point compactification of some locally compact α axtension of M having type $\leq \gamma(\alpha)-1$.

From the above it follows that $R_{ic}^{m_{+}(\alpha)- 1}(\alpha)=R(\alpha)$ and hence, $R_{ic}^{k}(\alpha)=R_{c}^{k-1}(\alpha)$ $=R(\alpha)$ if $k\geq m^{+}(\alpha)-1$.

We recall some known results concerning the above mentioned families of spaces.

(1) Every element of RF has a compactification belonging to RF . (See $[K], [R_{1}].$

(2) In the family RF there is no universal element. (See [\[N\]\)](#page-37-0).

(3) In the family $R(\alpha)$ there exists a universal element having the property

of finite intersections with respect to any subfamily of $R(\alpha)$ whose power is less than or equal to the continuum. (See $[I_{3}]$).

(4) Every element of $R^{rim-com}(a)$ has a compactification belonging to $R^{com}(\alpha)$, (See $[I_{1}]$). Moreover, every element of $R^{rim-com}(\alpha)$ is topologically contained in an element of $R^{cont}(\alpha)$. (See [l₁]).

(5) In the family $R^{rim-com}(\alpha)$ there does not exist a universal element (See [l_{4}]). Hence, by (4), in the families $R^{cont}(\alpha)$ and $R^{com}(\alpha)$ there do not exist universal spaces.

(6) For the family $R^{com}(\alpha)$ there exists a containing space belong to the family $R^{cont}(\alpha+1)$. (This is a result of J.C. Mayer and E.D. Tymchatyn).

(7) For the family of all planar compacta having $rim\text{-}type \leq \alpha$ there exists a containing planar locally connected continuum having $rim\text{-} type \leq \alpha+1$. (See $[M-T]$).

(8) In the family $R_{c}^{k}(\alpha)$, where α is an isolated ordinal and $k=0, \cdots, m^{+}(\alpha)$ -1 , there is no universal element. (See [\[I-Z\]\)](#page-36-0).

(9) For a family S_p of rim-finite spaces there exists a containing rim-finite space (heving the property of finite intersections with respect to any subfamily of Sp whose the power is less than or equel to the continuum) if and only if Sp is a uniform family. (A family Sp of rim-finite spaces is called uniform iff for every $X\in Sp$ there exists an ordered basis $B(X)=\{U_{0}(X), U_{1}(X), \cdots\}$ having the properties: (a) $Bd(U_{i}(X))\cap Bd(U_{j}(X))=\emptyset$ if $i\neq j$ and (β) for every integer $k\geq 0$ there exists an integer $n(k)\geq 0$ (which is independent from the elements of S_p such that for every $x, y \in \bigcup_{i=0}^{k}(Bd(U_{i}(X))), x \neq y$, there exists an integer $j(x, y)$, $0\leq j(x, y)\leq n(k)$, for which either $x\in U_{j(x,y)}(X)$ and $y\in X\setminus Cl(U_{j(x,y)}(X))$, or $y\in U_{j(x,y)}(X)$ and $x\in X\setminus Cl(U_{j(x,y)}(X))$ (See [l₂]).

(10) In [\[G-I\],](#page-36-2) for a given subfamily Sp of $R^{com}(\alpha)$, necessary and sufficient conditions are given for the existence of a containing space (having the property of α -intersections with respect to any subfamily of S_p whose power is less than or equal to the continuum) belonging to the family $R^{r i m - com}(\alpha)$.

(11) In the family R of all rational spaces there exists a universal elemen₁ having the property of finite intersections with respect to the subfamily of all rational continua. (See $\lceil l_{6} \rceil$).

1.3. Results. In the present paper we study the family $R_{lc}^{k}(\alpha)$, where $\alpha > 0$ and $k = 0, \cdots, m^{+}(\alpha)-1$. We construct a universal element K of this family as a subset of another space T. For the construction of these spaces we need in two "kinds" of countability.

In Section 2 starting with some properties of scattered spaces we prove

128 S. D. ILIADIS

the following theorem: every element of $R_{lc}^{k}(\alpha)$ admits a compactification having rim-type $\leq \alpha+k+1$. For the proof of this theorem, we construct for every $X \in R_{lc}^{k}(\alpha)$ (See Lemma 2.4) an extension \tilde{X} with a basis $B(\tilde{X})$ whose elements have boundaries with some special properties. These properties also provide us with the above mentioned two "kinds" of countability.

In Section 3 we consider a family A of pairs (S, D) , where S is a subset of C and D is an upper semi-continuous partition of S such that $D_{\overline{i}},\,\overline{i}\in L$, is homeomorphic to an element of a given family M of scattered compacta. The elements of A are called M-representations. Using the M-representations we construct a space T which will be used in Section 5. An important fact is the countability of the family M (this is the first "kind" of countability).

In $[I_{3}]$ we have considered a set of some specific subsets of a given scattered compactum M: a subset X of M is such a subset iff $M\setminus M^{(\beta(\alpha))}\subseteq X$. We have proved that if in the above set we consider the equivalence relation: $X_{1}\sim X_{2}$ iff there exists a homeomorphism f of X_{1} onto X_{2} , then the number of equivalence classes is countable. In Section 4 of the present paper we improve this result by proving that if in the set of all pairs (X, M) , where M is a compactum, $type(M)=\alpha$ and $M\setminus M^{(\beta(\alpha))}\subseteq X$, we consider the equivalence relation $(X_{1}, M_{1})\sim(X_{2}, M_{2})$ iff there exists a homeomorphism f of M_{1} onto M_{2} such that $f(X_{1})=X_{2}$, then the number of equivalence classes is countable (this is the second "kind" of countability).

In Section 5 using the properties of the extension nentioned in Lemma 2.4 we give the notion of a c-extension of elements of the family $R_{tc}^{k}(\alpha)$. For every element of this family we consider a fixed c -extension. By a standdard manner, we correspond to every such extension an M-representation, where \bm{M} is a countable set of scattered compacta. The space T constructed in Section 3 (for the above M-representations) has $\lim_{x \to a} f \circ \lim_{x \to a} f(x) = \lim_{x \to a} f(x)$ and it contains topologically the fixed c -extensions. Using the result of Section 4, the construction of the space T can be done in such a manner that a subset K of T has type \leq_α and contains topologically every element of $R_{lc}^{k}(\alpha)$. Thus, the space T is a containing space for the family of fixed c -extensions and simultaneously the subset K is an universal element of $R_{lc}^{k}(\alpha)$. . The main result of this papers is Theorem 5.3.

We note the following corollaries of the main results: In the family $R_{lc}^{k}(a)$ there exists a universal element having the property of α_{lc}^{k} intersections (See Definitions 5.1.) with respect to any subfamily of $R_{lc}^{k}(\alpha)$ the power of which is less than or equal to the continuum.

Also, for the family $R_{c}^{k}(\alpha)$, there exists a containing space belonging to the

family $R_{l}^{k}(\alpha)$ and, hence, there exists a containing continuum having rim-type $\leq \alpha-k+1$. In particular, for $k=0$ (since $R^{com}(\alpha)\subseteq R_{c}^{0}(\alpha)$) we have: There exists a continuum having $\text{rim-type} \leq \alpha+1$ which is containing space for all compacta having $rim\text{-}type \leq \alpha$. (This is a result of J.C. Mayer and E.E. Tymcharyn).

2. Extensions of elements of $R_{lc}^{k}(\alpha)$.

2.1. LEMMA. Let M be a scattered space having type $\alpha=\beta(\alpha)+m(\alpha)>0$. Let X be a zero-dimensional metric compactification of M. Then, there is a compactification K of M for which the natural projection π of X onto K exists and such that:

- (1) type(K)=com-type(M) (and, hence, by Lemma 1 of [I-T], type(K) $\leq \gamma(\alpha)$).
- (2) $type(M\cup (K\setminus K^{(\beta(\alpha))}))=\alpha.$
- (3) loc-com-type(M)=loc-com-type(M \cup (K \setminus K^{(β (α)))</sub> and}
- (4) if $K=\{z_{1}, z_{2}, \cdots\}$, then $\lim_{i\to\infty}(d\overline{ia}m(\pi^{-1}(z_{i})))=0$.

PROOF. We prove the Iemma by induction on the ordinal $com-type(M)$. The proof can be done in such a manner that besides properties (1) – (4) of the lemma the following properties will be also true:

- (5) for a given $\epsilon>0$, $diam(\pi^{-1}(z))<\epsilon$ for every $z\in K$, and
- (6) for every $a \in M$, type(a, K)=com-type(a, M)

Let com-type(M)=1. We set $K=M$. Then, K is a compactification of M having properties $(1)-(6)$.

Suppose that for every space M for which $1 \leq$ com-type(M) \lt γ there exists a compactification K of M having properties (1)–(6). Since for every scattered space M, com-type(M) is an isolated ordinal, we may suppose that γ is also an isolated ordinal.

Let M be a space such that com-type $(M)=\gamma$ and $\epsilon>0$ be a number. Suppose that $type(M)=\alpha$. By Lemma 1 of [\[I-T\]](#page-36-3) it follows that $\beta(\alpha)=\beta(\gamma)$.

First we suppose that $max(M)$ is infinite. By Lemma 2.4 of [\[I-Z\]](#page-36-0) it follows that com-type(a, M)= $\gamma-1$, for every $a\in\max(M)$.

Let $F=C(\max(M))\$ max(M). (The closure is considered in the space X). Let F_{1} , \cdots , F_{n} be open and closed non-empty subsets of F such that (α) F= $F_{1}\cup\cdots\cup F_{n}$, (β) $F_{i}\cap F_{j}=\emptyset$ if $i\neq j$, and (γ) diam($F_{i}\rangle<\epsilon$ for every $i=1, \cdots, n$.

There exist open and closed subsets U_{ij} , $i=1, \cdots, n, j=1,2, \cdots$, of X such that: (α) $U_{11}\cup U_{21}\cup\cdots\cup U_{n1}=X$, (β) $U_{i(j+1)}\subseteq U_{ij}$, (γ) $(U_{ij}\cup U_{i(j+1)})\cap max(M)$ $\neq \emptyset$, (δ) $U_{i1}\cap U_{j1}=\emptyset$, if $i\neq j$, and $(\varepsilon)\cap_{j=1}^{\infty}U_{ij}=F_{i}$.

130 S. D. ILIADIS

Let $M_{ij}=(U_{ij}\setminus U_{i(j+1)})\cap M, i=1, \cdots, n, j=2,2, \cdots$. Obviously, $\mathit{max}(M_{ij})=$ $M_{ij}\cap max(M)$ and, hence, the set $max(M_{ij})$ is finite and com-type(a, $M_{ij}= \gamma-1$ for every $a\in\max(M_{ij})$. By Lemma 2.4 of [\[I-Z\],](#page-36-0) com-type(M_{ij})= $\gamma-1$.

Hence, by induction, there is a compactification K_{ij} of M_{ij} , $i=1, \cdots, n, j=$ 1, 2, \cdots , for which the natural projection π_{ij} of $U_{ij}\setminus U_{i(j+1)}$ onto K_{ij} exists and such that properties (1)-(6) are true, where in place of ε in property (5) we take the number ε/j .

Let $K=(\bigcup_{i,j}K_{ij})\bigcup\{F_{1}, \cdots, F_{n}\}.$ We topologize K as follows: a subset V of K is an open subset iff V has the following properties: (α) the set $V\cap K_{ij}$, $i=1, \cdots, n$, $j=1,2,\cdots$, is an open subset of K_{ij} , and (β) if $F_{i} \in V$, then V contains all but finitely many of the sets K_{ij} , $j=1,2, \cdots$.

Let π be the map of X onto K defined as follows: if $x \in U_{ij}\setminus U_{i(j+1)}$, then $\pi(x)=\pi_{ij}(x)$ and if $x\in F_{i}$, $i=1, \cdots, n$, then $\pi(x)=F_{i}$.

It is easy to see that K is a compactification of M and π the natural projection of X onto K .

Since K_{ij} is an open and closed subset of K and $type(K_{ij}) \leq \gamma-1$ we have type(F_{i} , K)= γ and, hence, type(K)=com-type(M)= γ , that is, property (1) is satisfied.

By induction, $type(M_{ij}\cup (K_{ij}\setminus K_{ij}^{(\beta(\alpha))}))\leq\alpha$. Hence, since $M\cup (K\setminus K^{(\beta(\alpha))})=$ $\bigcup_{i}(M_{ij}\bigcup(K_{ij}\setminus K_{ij}^{(\beta(\alpha))})\big)$ we have type $(M\bigcup(K\setminus K^{(\beta(\alpha))}))=\alpha$, that is, property (2) is satisfied.

Since the subset $K\setminus \{F_{1}, \cdots, F_{n}\}$ is a locally compact extension of $M\cup (K\setminus K^{(\beta(\alpha))})$ and type $(K\setminus \{F_{1}, \cdots, F_{n}\})=\gamma-1$ we have loc-com-type $(M\cup (K\setminus K^{(\beta(\alpha))}))\leq\gamma-1$. Since the set $max(M)$ is infinite and com-type(M)= γ , by Lemma 2.4 of [\[I-Z\]](#page-36-0) it follows that $loc-com-type(M)=\gamma-1$, that is, property (3) is true.

Properties (4) and (5) follow by the construction of K .

For every $x \in M_{ij}$ we have type(x, K_{ij})=type(x, K)=com-type(x, M). Hence, property (6) is also true.

Now, we suppose that $max(M)$ is finite. Then, by Lemma 2.4 of [\[I-Z\],](#page-36-0) com-type(a, M)= γ , for every $a\in\max(M)$. Let $\max(M)=\{a_{1}, \cdots, a_{n}\}$ and let U_{ij} , $i=1, \cdots, n$, $j=1, 2, \cdots$, be open and closed subsets of X such that: (α) $U_{11}\cup\cdots\cup U_{n1}=X, (\beta)\ U_{i(j+1)}\subseteq U_{ij}, (\gamma)\ U_{ij}\setminus U_{i(j+1)}\neq\emptyset, (\delta)\ U_{i1}\cap U_{j1}=\emptyset, \text{ if } i\neq j,$ and ($\varepsilon)\cap_{j=1}^{\infty}U_{ij}=\{a_{i}\}.$

Let $M_{ij}=(U_{ij}\setminus U_{i(j+1)})\cap M$. Then, either com-type $(M_{ij})\leq\gamma-1$, or com $type(M_{ij})=\gamma$ and the set $max(M_{ij})$ is infinite. Hence, by induction, there is a compactification K_{ij} of M_{ij} (for which the natural projection π_{ij} of $U_{ij}\setminus U_{i(j+1)}$ onto K_{ij} exists) having properties (1)-(6).

Let K and π be the compactification of M and the natural projection of X onto K, respectively, constructed from K_{ij} in the same manner as in case, where the set $max(M)$ is infinite (replacing the set $\{F_{1}, \cdots, F_{n}\}$ by the set $\textit{max}(M) = \{a_{1}, \cdots, a_{n}\}\$ and the subset F_{i} , in the definition of π , by the subset ${a_i}\;$ of X).

By construction, $type(K_{ij}){\leq}\gamma$. On the other hand, for a given i, there exists an integer j_{0} such that $type(K_{ij}) \leq \gamma-1$ for every $j\geq j_{0}$. (See Section 2.2.4 of [\[I-Z\]\)](#page-36-0). Hence, $type(a_i, K)=\gamma$. Thus, $type(K)=com-type(M)=\gamma$. Hence, property (1) is satisfied.

Since the subset K_{ij} of K is an open subset and since $type(a_{i}, K)=\gamma$, property (6) is also satisfied.

For the proof of property (2) it is sufficient to prove that $(M\cup (K\setminus K^{(\beta(\alpha))}))^{(\beta(\alpha))}$ $=M^{(\beta(\alpha))}$. Obviously, $M^{(\beta(\alpha))}\subseteq(M\cup(K\setminus K^{(\beta(\alpha))}))$. Let $x\in(M\cup(K\setminus K^{(\beta(\alpha))}))^{(\beta(\alpha))}$. Then, it is clear that $x \notin K\setminus K^{(\beta(\alpha))}$. Hence, $x \in M$. If $x \in M\setminus M^{(\beta(\alpha))}$, then com-type(x, M) $\leq \beta(\alpha)$ and, therefore, type(x, K) $\leq \beta(\alpha)$, that is, $x \in K\setminus K^{(\beta(\alpha))}$ which is impossible. Hence, $x \in M^{(\beta(\alpha))}$ and property (2) is satisfied.

Since the set $max(M)$ is finite, by Lemma 2.4 of [\[I-Z\]](#page-36-0) it follows that loc $com\text{-}type(M)=com\text{-}type(M)=type(K).$ Hence, $loc\text{-}com\text{-}type(M)\cup (K\backslash K^{(\beta(\alpha))}))=$ $type(K)$ and property (3) is satisfied.

Since for a fixed i, $\lim_{j\rightarrow 0} (diam(U_{ij}\setminus U_{i(j+1)}))=0$, properties (4) and (5) follow by the construction of K .

2.2. LEMMA. Let M be a locally finite union of closed subset M_{1} , M_{2} , \cdots such that loc-com-type($M_{i}){\leq}\alpha$, $i{=}1,2, \cdots$. Then, loc-com-type(M) ${\leq}\alpha$.

PROOF. Let $a \in M$. There exist an open neighbourhood U of a in M and a set $\{n_{1}, \dots, n_{t}\}$ of integers such that $U=(U\cap M_{n_{1}})\cup\cdots\cup(U\cap M_{n_{i}})$. Since, loc-com-type($M_{n_{i}}$) \leq a we have loc-com-type($U\cap M_{n_{i}}$) \leq a, $i=1, \ \cdots, \ t.$

By Theorem 2.5 of [\[I-Z\]](#page-36-0) it follows that $loc\text{-}com\text{-}type(U) \leq \alpha$. Hence, by Lemma 2.4 of [\[I-Z\],](#page-36-0) com-type(a, U)=com-type(a, M) $\leq \alpha$. By the same lemma we have loc-com-type(M) $\leq \alpha$.

2.2.1. COROLLARY. Let $X \in R_{l}^{k}(a)$ (See the Introduction). Then, every pair of disjoint closed subsets of X can be separated by a subset M such that type(M) $\leq \alpha$ and loc-com-type(M) $\leq \alpha+k$.

The proof follows by Lemma 2.2 and Lemma 4 of [\[I-T\].](#page-36-3) This corollary is used in the proof of the following Lemma 2.3.

2.3. LEMMA. Let $X \in R_{lc}^{k}(\alpha)$ and $B=\{U_{0}, U_{1}, \cdots\}$ be a basis of open sets of X such that for every i, $type(Bd(U_{i}))\leq\alpha$ and loc-com-type($Bd(U_{i})\leq\alpha+k$. Let F be the family of all pairs $A_{m}=(U_{i_{m}}, U_{j_{m}})$ such that $Cl(U_{i_{m}})\subseteq U_{j_{m}}$ and $U_{i_{m}}$, $U_{j_{m}}\in B$. Let D denote the set of triadic rationals in the open interval (0, 1). Then, there exists a sequence (f_{m}) of continus functions $f_{m}: X\rightarrow[0,1]$ such that for integers $m, r, m \neq r$ and $d \in D$:

- (1) $f_{m}(Cl(U_{i_{m}}))=\{0\},$
- (2) $f_{m}(X\setminus U_{j_{m}})=\{1\}$,
- (3) type $(f_{m}^{-1}(d))\leq\alpha$ and loc-com-type $(f_{m}^{-1}(d))\leq\alpha+k$,
- (4) $Bd(f_{m}^{-1}([0, d)))=Bd(f_{m}^{-1}((d, 1]))=f_{m}^{-1}(d)$,
- (5) $f_{r}(f_{m}^{-1}(d))\cap D=\emptyset$, and
- (6) $f_{r}(f_{m}^{-1}(d))$ is a closed subset of $[0, 1]$ of dimension ≤ 0 .

This lemma, except condition 3, is the same as Lemma 7 of [\[I-T\]](#page-36-3) and it is proven similarly.

2.4. LEMMA. Let $X \in R_{\iota c}^{k}(\alpha)$. There exist an extension \tilde{X} of X and a basis $B(\tilde{X})=\{V_{0}, V_{1}, \cdots\}$ of open sets of \tilde{X} such that:

- (1) the set $Bd(V_{i}), \; i{=}0, \, 1, \, \cdots, \; is \; a \; compactum,$
- (2) $V_{i} = Int(Cl(V_{i})), i = 0, 1, \cdots,$
- (3) $B d(V_{i}) \cap B d(V_{j}) = \emptyset$ if $i \neq j$,
- (4) $type(Bd(V_{i})) \leq \alpha+k+1$,
- (5) type(($Bd(V_{i})\cap X\cup (Bd(V_{i})\backslash (Bd(V_{i}))^{(\beta(\alpha))})\leq\alpha$ and
- (6) loc-com-type(($Bd(V_{i})\cap X\cup (Bd(V_{i})\backslash (Bd(V_{i}))^{(\beta(\alpha))}))\leq\alpha+k$.

The proof is similar to the proof of theorem 8 of [\[I-T\].](#page-36-3) The extension \tilde{X} is constructed in the same manner as the space Z is constructed in the proof of Theorem 8 of [\[I-T\].](#page-36-3) Instead of Theorem ³ of [\[I-T\]](#page-36-3) which was used in the proof of Theorem 8 of [\[I-T\]](#page-36-3) we have use Lemma 2.1.

2.5. THEOREM. Let $X \in R_{lc}^{k}(\alpha)$. Then, X admits a compacification having $\mathit{rim-type} \leq \alpha+k+1$.

This theorem is proved using properties (1)-(4) of extension \tilde{X} of X of Lemma 2.4 and Theorem 2 of $[I_1]$.

3. Construction of specific spaces.

3.1. DEFINITIONS AND NOTATIONS. Let M be a scattered space. A finite cover ω of M is called a *decomposition* iff every element of ω is an open and closed subset of M and the intersection of any two distinct elements of ω is empty.

A decomposition ω is a subdivision of a decomposition ω^{\prime} of M iff every element of ω is contained in an element of ω^{\prime} .

A sequence ω^{n} , $n\in N$, of decompositions of M is called a *decreasing sequence* of decompositions iff (α) the decomposition ω^{n+1} , $n \in N$, is a subdivision of the decomposition ω^{n} and (β) the set of all elements of all ω^{n} , $n\in N$, is a basis of open sets of M .

In what follows by \bm{M} we denote a countable set of scattered compacta. We suppose that two distinct elements of M are not homeomorphic.

Also, we suppose that for every $M \in M$ there exists a fixed decreasing sequence of decompositions of M. The n^{th} decomposition of this sequence is denoted by M^{n} , $n \in N$.

Let $x\in M\in M$ and $n\in N$. We denote by $F(n, x)$ the element F of M^{n} for which $x \in F$.

A pair $g=(S, D)$ is called an *M-representation* if $f: (\alpha)$ S is a subset of C, (β) D is an upper semi-continuous partition of S, (γ) every element of $D(1)$ consists of exactly two points, and (δ) for every $q\in N$, D_{q} is homeomorphic to an element of M .

In Section 3, we denote by A a family of M-representations the power of which is less than or equal to the continuum. We suppose that for distinct elements $g=(S, D)$ and $f=(S', D')$ of A it may happen that $S=S^{\prime}$ and $D=D^{\prime}$.

For every element $g=(S, D)$ of A and for every $q\in N$ by $M_{q}(g)$ we denote the element of M which is homeomorphic to D_{q} and by $\phi_{q}(g)$ a fixed homeomorphism of $M_{q}(g)$ onto D_{q} .

Let A' be a subfamilly of A such that for some $q\in N$, $M_{q}(g)=M_{q}(f)$ for any elements $g, \; f$ of A^{\prime} . In this case the element $M_{q}(g)$ of \pmb{M} is also denoted by $M_{q}(A^{\prime})$ and we shall say that the element $M_{q}(A^{\prime})$ of **M** is then determined.

For any subfamilly A^{\prime} of A and for any subset C^{\prime} of C we denoted by $C^{\prime}\times A^{\prime}$ the subset of $C^{\prime}\times A^{\prime}$ consisting of all elements (a, g) of $C^{\prime}\times A^{\prime}$ such that if $g=(S, D)$, then $a \in S$.

A *decomposition* Ω of A is a countable set of subfamilies of A such that: (a) the intersection of any two distinct elements of Ω is empty and (β) the union of all elements of Ω is A .

A decomposition Ω is a subaivision of a decomposition Ω^{\prime} of A iff every element of \varOmega is contained in an element of \varOmega^{\prime} .

A sequence Ω^{n} , $n\in N$, of decompositions of A is called a decreasing sequence af decompositions iff: $(\alpha) \Omega^{n+1}$ is a subdivision of Ω^{n} , $n\in N$, and (β) if g and

f are distinct elements of A, then there exists an integer n such that g and f belong to distinct elements of $\varOmega^{n}.$

Since the power of A is less than or equal to the continuum, the existence of decreasing sequence of decompositions of A is easily proved.

In what follows, we suppose that there exists a fixed such sequence of A denoted by Ω^{n} , $n\in \mathbb{N}$. Moreover, without loss of generality, we may suppose that for every $E \in \Omega^{n}$ and for every q, $0 \leq q \leq n$, the element $M_{q}(E)$ is determined.

3.2. LEMMA. For every integer $m\in N$ there exist:

(1) A decomposition $A^{m} = \{A_{r}^{m} : r \in l(m)\}$ of A which is a subaivision of Ω^{m} (hence, for every $r\in l(m)$ and for every integer q, $0\leq q\leq m$, the element $M_{q}(A_{\tau}^{m})$ of M is determined). In what follows, we denote by r an arbitrary element of $I(m)$ and by q an integer such that $0 \leq q \leq m$.

(2) An integer $n(q, A_{r}^{m})\geq m$ (denoted also by $n(q, m, r)$).

(3) An integer $n(A_{r}^{m})>m$ (denoted also by $n(m, r)$).

(4) A subset $s(F)$ of $L_{n(m,\tau)}$ for every $F\in(M_{q}(A_{r}^{m}))^{n(q,m,\tau)}$ (denoted also by $s(q, m, r, F)$).

(5) A subset $U(F)$ of $C \times A$ for every $F \in (M_{q}(A_{r}^{m}))^{n(q,m,r)}$ (denoted also by $U(q, m, r, F)$ such that:

(6) If $m\geq 1$, then A^{m} is a subdivision of A^{m-1} (hence, the sequence A^{0} , A^{1} , \cdots is a decreasing sequence of decompositions of A).

(7) If $m\geq 1$, $t\in I(m-1)$ and $A_{r}^{m}\subseteq A_{l}^{m-1}$, then $n(m, r) > n(m-1, t)$.

(8) If $t\in I(q)$ and $A_{r}^{m}\subseteq A_{t}^{q}$, then $n(q, m, r)=n(q, q, t)+m-q$.

(9) If $m\geq 1$, $t\in I(m-1)$, f , $g\in A_{t}^{m}\subseteq A_{t}^{m-1}$ and $x\in F\in(M_{m}(A_{t}^{m}))^{n(m,m,r)}$, then $st(\phi_{m}(g)(x), n(m-1, t))=st((\phi_{m}(f)(F))^{*}, n(m-1, t)).$

(10) If $m \geq 1$, $q < m$, $t \in I(m-1)$, $g = (S, D) \in A_{r}^{m} \subseteq A_{t}^{m-1}$, $d \in D$, $F \in$ $(M_{q}(g))^{n(q,m,\tau)}$, $Q\in(M_{q}(g))^{n(q,m,\tau)-1}$, $F\subseteq Q$ and $d\cap st((\psi_{q}(g)(F))^*, n(m, r))\neq\emptyset$, then $d \subseteq st((\phi_{q}(g)(Q))^{*}, n(m-1, t)).$

(11) If $g\in A_{r}^{m}$ and $F\in(M_{q}(A_{r}^{m}))^{n(q,m,r)}$, then $st((\phi_{q}(g)(F))^{*}, n(m, r))=C_{s(F)}$.

(12) $U(F)=C_{s(F)}\times A_{r}^{m}$ for every $F\in(M_{q}(A_{r}^{m}))^{n(q,m,r)}$.

(13) If $F\in(M_{k}(A_{r}^{\mathfrak{m}}))^{n(k,m,r)}$ and $Q\in(M_{q}(A_{r}^{\mathfrak{m}}))^{n(q,m,r)}$, where $0\leq k\leq q$, then $U(F)\cap U(Q)=\emptyset$.

(14) If F, $Q \in (M_{q}(A_{r}^{m}))^{n(q,m,r)}$ and $F\neq Q$, then $U(F)\cap U(Q)=\emptyset$.

PROOF. We prove the lemma by induction on integer m .

Let $m=0$. Let $E \in \Omega^{0}$. For every $g \in E$ there exists an integer $n(g)>0$ such that if $F, Q \in (M_{0}(g))^{0}$, then $st((\psi_{0}(g)(F))^{*}, n(g)(\bigcap st((\psi_{0}(g)(Q))^{*}, n(g))=0$.

We observe that if f, $g\in Q$, then $M_{0}(f)=M_{0}(g)$.

Now, we define the decomposition A^{0} of A as follows: two elements g and f of A belong to the same element of A^{0} iff there exists an element $E\in\Omega^{0}$ such that: (α) g, $f\in E$, (β) $n(g)=n(f)$ and (γ) st $((\psi_{0}(g)(F))^{*}, n(g))=st((\psi_{0}(f)(F))^{*}$, $n(f)$ for every $F\in(M_{0}(g))^{0}=(M_{0}(f))^{0}$.

Obviously, A^{0} is a countable set and by the construction, A^{0} is a subdivision of Ω^{0} . Let $A^{0} = \{A_{r}^{0} : r\in I(0)\}.$

For every $r\in l(0)$ we set $n(0, A_{r}^{0})=0$ and $n(A_{r}^{0})=n(g)$, where $g\in A_{r}^{0}$. Obviously, the integer $n(A_{r}^{0})$ is independent from $g\in A_{r}^{0}$.

For every $F\in(M_{0}(A_{r}^{0}))^{0}$ we denote by $s(F)$ the set of all elements \overline{i} of $L_{n(0, r)}$ for which $C_{\overline{i}}\subseteq st((\phi_{0}(g)(F))^{*}, n(g))$, where $g\in A_{r}^{0}$. Obviously, the set $s(F)$ is independent from $g \in A_{r}^{0}$.

Finally, we set $U(F)=C_{s(F)}\times A_{r}^{0}$ for every $F\in(M_{0}(A_{r}^{0}))^{0}$. It is easy to see that properties (8), (11), (12) and (14) of the lemma are satisfied.

Suppose that the lemma is proved for every m , $0 \leq m \leq p$. We prove the lemma for $m = p$.

Let $E \in \Omega^{p}$, $t \in l(p-1)$ and $g=(S, D) \in E \cap A_{t}^{p-1}$. Since the map $\phi_{p}(g)$ is continuous, for every $x \in M_{p}(g)$ there exists an open neighbourhood $O(x)$ of x in $M_{p}(g)$ such that for every $y\in O(x)$ we have $st(\phi_{p}(g)(x), n(p-1, t))=$ $st(\phi_{p}(g)(y), n(p-1, t))$. (For example, we can suppose that $O(x)=$ $(\phi_{p}(g))^{-1}(O(\phi_{p}(g)(x)))$, where $O(\phi_{p}(g)(x))$ is the set of all elements of D_{p} which are contained in the open set $st(\phi_{p}(g)(x)$ ' $n(p-1, t))$ of C). The set of all such neighbourhoods $O(x)$ is an open cover of $M_{p}(g)$. Hence, since $M_{p}(g)$ is a compactum there exists an integer $n_{0}(g)\geq 0$ such that every element of $(M_{p}(g)^{n_{0}(g)})$ is contained in the neighbourhood $O(x)$ for some x.

There exists an integer $n_{1}(g)\geq 0$ such that $st((\psi_{k}(g)(F))^{*}, n_{1}(g))\cap st((\psi_{q}(g)(Q))^{*}$, $n_{1}(g)=\emptyset$ for every $F\in(M_{k}(g))^{n(k,p-1,t)+1}$ and for every $Q\in(M_{q}(g))^{n(q,p-1,t)+1}$, where $0\leq k\leq p-1$, $0\leq q\leq p-1$ and either $k\neq q$ or $k=q$ and $F\neq Q$.

Also, since D is an upper semi-continuous partition of S , there exists an integer $n_{2}(g)\geq 0$ such that if $0\leq q\leq p-1$, $d\in D$, $F\in(M_{q}(g))^{n(q, p-1, l)+1}$, $Q\in$ $(M_{q}(g))^{n(q, p-1, t)+1}, F\subseteq Q$ and $d\bigcap st((\psi_{q}(g)(F))^*, n_{2}(g))\neq\emptyset$, then $d\subseteq st((\psi_{q}(g)(Q))^*,$ $n(p-1, t)$.

There exists an integer $n_{3}(g)\geq 0$ such that if F and Q are distinct elements of $(M_{p}(g))^{n_{0}(g)}$, then $st((\psi_{p}(g)(F))^{*}, n_{3}(g))\cap st((\psi_{p}(g)(Q))^{*}, n_{3}(g))=\emptyset$.

Finally, there exists an integer $n_{4}(g)\geq 0$ such that if $0\leq q\leq p-1$, $F\in$ $(M_{q}(g))^{n(q,p-1,t)+1}, \ Q \in (M_{p}(g))^{n_{0}(\mathcal{S})}$, then $st((\psi_{q}(g)(F))^{*}, n_{4}(g^{\prime})\cap st((\psi_{p}(g)(Q))^{*},$ $n_4(g) = \emptyset.$

Let $n(g)=max\{n_{1}(g), n_{2}(g), n_{3}(g), n_{4}(g), p+1, n(p-1, t)+1\}$.

136 S. D. ILIADIS

We now define the decomposition A^{p} . Let g, $f\in A$. The elements g and f belong to the same element of A^{p} iff there exist an element E of Ω^{p} and an element $t\in I(p-1)$ such that: (α) g, $f\in E\cap A_{t}^{p-1}$ (hence, $M_{q}(g)=M_{q}(f)$ for every ${q, 0\leq q\leq p}$, ${(\beta)}$ ${n(g)=n(f)}$, ${(\gamma)}$ ${n_{0}(g)=n_{0}(f)}$, ${(\delta)}$ if ${0\leq q\leq p-1}$ and $F\in$ $(M_{q}(g))^{n(q,p-1,\,t)+1}=(M_{q}(f))^{n(q,p-1,\,t)+1}$, then $st((\psi_{q}(g)(F))^{*}, n(g))=st((\psi_{q}(f)(F))^{*},$ $n(f)$, and (ε) if $F\in(M_{p}(g))^{n_{0}(g)}=(M_{p}(f))^{n_{0}(f)}$, then $st((\psi_{p}(g)(F))^{*}, n(g))=$ $st((\phi_{p}(f)(F))^{*}, n(f)).$

It is easy to see that the set A^{p} is countable. Let $A^{p}=\{A_{r}^{p} : r\in I(p)\}$.

Property (6) of the lemma follows by the definition of the decomposition A^{p} . Let $r\in I(p)$. We define the integers $n(p, r)$ and $n(q, p, r)$ for $0\leq q\leq p$ setting $n(p, r)=n(g), n(p, p, r)=n_{0}(g),$ where $g\in A_{r}^{p}$ and $n(q, p, r)=n(q, p-1, t)$ $+1$ if $0 \leq q \leq p-1$, where $t \in I(p-1)$ such that $A_{r}^{p} \subseteq A_{t}^{p-1}$.

Property (7) of the lemma follows by the definition of the number $n(g)$. Also, if $t\in I(p-1)$, $q\leq p-1$ and $e\in I(q)$ such that $A_{r}^{m}\subseteq A_{t}^{m-1}\subseteq A_{e}^{q}$, then we have $n(q, p, r)=n(q, p-1, t)+1=n(q, q, e)+p-1-q+1=n(q, q, e)+p-q$, that is, property (8) of the lemma is satisfied.

Property (9) of the lemma follows by the definition of the integer $n_{0}(g)$ (considering that $n(p, p, r) = n_{0}(g)$) and by property (ε) of the definition of the set A^{p} (from which it follows that $st((\phi_{p}(g)(F))^{*}, n(p-1, t))=st((\phi_{p}(f)(F))^{*}$, $n(p-1, t))$).

Property (10) of the lemma follows by the definition of the integers $n_{2}(g)$ and $n(g)$ (considering that $n(q, p, r) = n(q, p-1, t)+1$).

The set $s(F)$, where $F\in(M_{q}(A_{r}^{p}))^{n(q,p,r)}$ is defined as follows: an element \overline{i} of $L_{n(p,r)}$ belongs to $s(F)$ iff $C_{\overline{i}}\subseteq st((\psi_{q}(g)(F))^{*}, n(p, r))$, where $g\in A_{r}^{p}$. By properties (δ) and (ε) of the definition σ , the decomposition A^{p} it follows that $s(F)$ is independent from $g \in A_{r}^{p}$.

Property (11) of the lemma follows immediately from the above definition of the set $s(F)$.

The set $U(F)$, where $F\in(M_{q}(A_{r}^{p}))^{n(q,p,r)}$, is defined setting $U(F)=C_{s(F)}\times A_{r}^{p}$. Then, property (12) of the lemma is clear.

Finally, properties (13) and (14) of the lemma follows by the definition of the integers $n_{1}(g), n_{3}(g), n_{4}(g)$ and $n(g)$ and the definition of the sets $s(F)$ and $U(F)$.

3.3. NOTATIONS. For every $q\in N$ and $g\in A$ we denote by $r(q, g)$ the elements $t\in I(q)$ for which $g\in A_{t}^{q}$.

Let $m\in N$ and $r\in I(m)$. We denote by $s(m, r)$ the union of all sets $s(q, m, r, F)$, where $0\leq q\leq m$ and $F\in((M_{q}(A_{r}^{m}))^{n(q,m,r)})$. Obviously, $s(m, r)\subseteqq L_{n(m-r)}$.

Let $m\in N$, $r\in I(m)$ and $x\in M_{m}(A_{r}^{m})$. Obviously, if $(a, g)\in C\times A_{r}^{m}$, then $g\in A_{r}^{m}$ and $M_{m}(A_{r}^{m})=M_{m}(g)$. We denote by $d(x, m, r)$ the set of all elements $(a, g) \in C \times A_{r}^{m}$ for which $\phi_{m}(g)(x)=a$. We denote by $T(1)$ the set of all subsets of $C \times A$ of the form $d(x, m, r)$. By T we denote the union of the set $T(1)$ and the set of all singletons $\{(a, g)\}\$, where (a, g) belongs to $C \times A$ and does not belong to any $d(x, m, r) \in T(1)$.

Let $d(x, m, r)$ be a fixed element of $T(1)$ and let $k\in N$. We denote by $U(d(x, m, r), k)$ the union of all sets of the form $U(m, m+k, t, F)$, where $t\in$ $l(m+k)$ such that $A_{l}^{m+k}\subseteq A_{r}^{m}$ and $x\in F\in(M_{m}(A_{r}^{m+k}))^{n(m,m+k,t)}$.

Since $M_{m}(A_{l}^{m+k})=M_{m}(A_{r}^{m})$ and by property (8) of Lemma 3.2, $n(m, m+k, t)$. $t = n(m, m, r)+k$ we have $(M_{m}(A_{t}^{m+k}))^{n(m,m+k,t)}=(M_{m}(A_{r}^{m}))^{n(m,m,r)+k}$. This means that F is independent from the elements t of $I(m+k)$ for which $A_{t}^{m+k}\subseteq A_{r}^{m}$.

We observe that for every $y \in F$ we have $U(d(x, m, r), k)=U(d(y, m, r), k)$.

We denote by \hat{U} the set of all sets of the form $U(d, k)$, where $d=d(x, m, r)$ $\in T(1)$ and $k\in N$.

Let $m\in N$, $r\in I(m)$ and $\overline{i}\in L_{m(m,\,r)}$ such that $\overline{i}\notin\mathcal{S}(m, r)$. Then, we set $V(\hat{i}, m, r) = C_{\tilde{i}} \times A_{r}^{m}$. We denote by \hat{V} the set of all sets of the form $V(\tilde{i}, m, r)$.

REMARKS. It is not difficult to prove that:

(1) For every $d(x, m, r) \in T(1)$, $d(x, m, r) \subseteq C \times A_{r}^{m}$.

(2) If $g\in A_{r}^{m}$ and $d(x, m, r)\in T(1)$, then $d(x, m, r)\cap (C\times\{g\})=\phi_{m}(g)(x)\times\{g\}$ \neq $\psi.$

(3) For every $d\in T(1)$ and $k\in N, d\subseteq U(d, k)$.

(4) For every $d(x, m, r)\in T(1)$ and $k\in N$, $U(d(x, m, r), k)\subseteq C\times A_{r}^{m}$.

(5) Follet every $d\in T(1)$ and $k\in N$, $U(d, k+1)\subseteq U(d, k)$.

(6) If $x \in F\in(M_{m}(A_{r}^{m}))^{n(m, m, r)}$, then $U(d(x, m, r), 0)=U(m, m, r, F)$.

(7) If $t\in I(m+k)$, $A_{t}^{m+k}\subseteq A_{t}^{m}$ and $x\in F\in(M_{m}(A_{t}^{m+k}))^{n(m,m+k,t)}$, then $U(d(x, m, r), k)\cap (C \times A_{t}^{m+k})=U(m, m+k, t, F)$.

(8) If $V(\overline{i}, m, r)\in\hat{V}$ and $d(x, q, t)\in T(1)$, where $0\leq q\leq m$, then $V(\overline{i}, m, r)\cap$ $d(x, q, t) = \emptyset.$

(9) If d_{1} , $d_{2}\in T(1)$ and $d_{1}\neq d_{2}$, then $d_{1}\cap d_{2}=\emptyset$.

(10) The union of all elements of T is the set $C \times A$.

3.5. LEMMA. Let $d=d(x, m, r)\in T(1)$ and $U=U(d_{1}, n_{1})\in \hat{U}$, where $d_{1}=$ $d(y, m_{1}, r_{1}) \in T(1)$. The following are true:

(1) If $d\subseteq U$, then there exists an integer $n\geq 0$ such that $U(d, n)\subseteq U$.

(2) If $d \cap U = \emptyset$, then there exists an integer $n \geq 0$ such that $U(d, n) \cap U = \emptyset$.

(3) If $d\cap U\neq\emptyset$ and $d\cap((C\times A)\setminus U)\neq\emptyset$, then there exists an open and closed

neighbourhood $O(x)$ of x in $M_{m}(A_{r}^{m})$ such that $d(z, m, r)\cap U\neq\emptyset$ and $d(z, m, r)\cap$ $((C \times A) \setminus U)\neq \emptyset$ for every $z\in O(x)$.

PROOF. (1) By properties (1)-(4) of Remarks 3.4 it follows that $A_{r}^{m}\subseteq A_{r_{1}}^{m_{1}}$.

First we suppose that $m \leq p$, where $p=m_{1}+n_{1}$. Let t be an arbitrary element of $I(p)$ such that $A_{t}^{p}\subseteq A_{r}^{m}\cap A_{r_{1}}^{m_{1}}$ and let $F=F(n(m, p, t), x)$ and $F_{1}=$ $F(n(m_{1}, p, t), y)$.

Suppose that either $m \neq m_{1}$ or $m=m_{1}$ and $F \neq F_{1}$. By properties (13) and (14) of Lemma 3.2 we have $U(m, p, t, F) \cap U(m_{1}, p, t, F_{1}) = \emptyset$.

Obviously, $d\cap(C \times A_{\ell}^{p})\neq\emptyset$ (See property (1) of Remarks 3.4) and since $d\subseteq U$ we have $d\cap(C \times A_{l}^{p})\subseteq U\cap(C \times A_{l}^{p}).$

On the other hand, $U\cap (C \times A_{l}^{p})=U(m_{1}, p, t, F_{1})$ (See property (7) of Remarks 3.4) and $d\cap (C \times A_{t}^{p})\subseteq U(m, p, t, F)$ (See properties (6) and (7) of Remarks 3.4). From this follows that $(d\cap(C \times A_{t}^{p}))\cap(U\cap(C \times A_{t}^{p}))=\emptyset$ which is a contradiction.

Hence, $m=m_{1}$ and $F=F_{1}$. Setting $n=n_{1}$ we have that $U(d, n)=U(d_{1}, n_{1}),$ that is, the integer $n=n_{1}$ is the required integer.

Now, let $m_{1}+n_{1}=p\lt m$. Let $e\in l(m-1)$ and $t\in l(p)$ such that $A_{r}^{m}\subseteq A_{e}^{m-1}\subseteq I$ $A_{t}^{p}\subseteq A_{r_{1}}^{m_{1}}$ and let $F=F(n(m, m, r), x)$ and $F_{1}=F(n(m_{1}, p, t), y)$.

We have $U(d_{1}, n_{1})\cap (C \times A_{t}^{p})=U(m_{1}, p, t, F_{1})$. Since $d\subseteq C \times A_{r}^{m}\subseteq C \times A_{t}^{p}$ we have that $d\subseteq U(m_{1}, p, t, F_{1})=C_{s}\times A_{i}^{p}$, where $s=s(F_{1})$. Hence, $st(\phi_{m}(g)(x), n(p, t))$ \subseteq C_s for every $g\in A_{r}^{m}$.

Since $n(m-1, e) \geq n(p, t)$ (See property (7) of Lemma 3.2) we have that $st(\phi_{m}(g)(x), n(m-1, e))\subseteq st(\phi_{m}(g)(x), n(p, t))$. By proyerty (9) of Lemma 3.2 it follows that $st((\psi_{m}(g)(F))^{*}, n(m-1, e))\subseteq C_{s}$. By property (11) of Lemma 3.2 we have that $C_{s(F)}\subseteqq C_{s}$. Hence, by property (12) of Lemma 3.2, $U(m, m, r, F)=$ $C_{s(F)} \times A_{r}^{m} \subseteq C_{s} \times A_{t}^{p}=U(m_{1}, p, t, F_{1})\subseteq U$. Obviously, $U(m, m, r, F)=U(d, 0)$ (See property (6) of Remarks 3.4). Hence, the integer $n=0$ is the required integer.

(2) If $A_{r}^{m}\cap A_{r_{1}}^{m_{1}}=\emptyset$, then by properties (1)-(4) of Remarks 3.4 it follows that for every $n\in N$, $U(d, n)\cap U(d_{1}, n_{1})=\emptyset$. Hence, we can suppose that $A_{r}^{m}\cap A_{r}^{m_{1}}\neq\emptyset.$

Let $m\leq p$, where $p=m_{1}+n_{1}$ and let t, F and F_{1} be the same as in the corresponding part of case (1).

If $m=m_{1}$ and $F=F_{1}$, then $r=r_{1}$ and $d\subseteq U$ which is a contradiction. Hence, either $m \neq m_{1}$, or $m=m_{1}$ and $F\neq F_{1}$.

In both cases, by properties (13) and (14) of Lemma 3.2 we have that $U(m, p, t, F)\cap U(m_{1}, p, t, F_{1})=\emptyset$. Since $U(d, p-m)\cap(C\times A_{t}^{p})=U(m, p, t, F)$ and $U(d_{1}, n_{1})\cap (C \times A_{l}^{p})=U(m_{1}, p, t, F_{1})$ and since t is an arbitrary element of $I(p)$ for which $A_{t}^{p}\subseteq A_{t}^{m}\cap A_{t}^{m_{1}}$ we have that $U(d, p-m)\cap U(d_{1}, n_{1})=\emptyset$, that is, the

integer $n=p-m$ is the required integer.

Now, let $p\lt m$, hence, $A_{r}^{m}\subseteq A_{r_{1}}^{m_{1}}$ and let *e*, *t*, *F* and F_{1} be the same as in the corresponding part of case (1).

We have $U(d_{1}, n_{1})\cap (C \times A_{t}^{p})=U(m_{1}, p, t, F_{1})=C_{s} \times A_{t}^{p}$, where $s=s(F_{1})$. Hence, $(C_{s} \times A_{t}^{p})\cap d=0$. This means that for every $g\in A_{r}^{m}$, $st(\phi_{m}(g)(x), n(p, t))\cap C_{s}=\emptyset$. Since $n(m-1, e) \geq n(p, t)$ (See property (7) of Lemma 3.2) we have $st(\phi_{m}(g)(x),$ $n(m-1, p) \cap C_{s} = \emptyset.$

By property (9) of Lemma 3.2 it follows that $st((\phi_{m}(g)(F))^{*}, n(m-1, e))\cap C_{s}$ $t = \emptyset$. Since $n(m, r) > n(m-1, e)$ we have that $st((\phi_{m}(g)(F))^*, n(m, r))\cap C_{\boldsymbol{s}}=\emptyset$, that is, $C_{s(F)}\cap C_{s}=\emptyset$.

Thus, $(C_{s(F)}\times A_{r}^{m})\cap(C_{s}\times A_{t}^{p})=\emptyset$, that is, $U(m, m, r, F)\cap U(m_{1}, p, t, F_{1})=\emptyset$. Hence, $U(m, m, r, F)\cap U(d_{1}, n_{1})=\emptyset$, that is, $U(d, 0)\cap U(d_{1}, n_{1})=\emptyset$ and $n=0$ is the required integer.

(3) It is easy to see that $A_{r}^{m}\cap A_{r_{1}}^{m_{1}}\neq\emptyset$. Let $m\leq p$, where $p=m_{1}+n_{1}$ and let $t\in I(p)$ such that $A_{l}^{p}\subseteqq A_{r}^{m}$ and $A_{l}^{p}\subseteqq A_{r_{1}}^{m_{1}}$. Let F and F_{1} be the same as in the corresponding part of case (1). As in that case we prove that if $m=m_{1}$ and $F=F_{1}$, then $d\subseteq U$ and if either $m\neq m_{1}$ or $m=m_{1}$ and $F\neq F_{1}$, then $d\cap U=\emptyset$, which is a contradiction,

Hence $p < m$. Then. $A_{r}^{m} \subseteq A_{r_{1}}^{m_{1}}$. Let *e*, *t*, *F* and F_{1} be same as in the corresponding part of case (1).

We have $U\cap (C\times A_{t}^{p})=U(m_{1}, p, t, F_{1})$. Since $d\subseteq C\times A_{t}^{m}\subseteq C\times A_{t}^{p}$ we have $d\cap U(m_{1}, p, t, F_{1})\neq\emptyset$ and $d\cap((C\times A)\setminus U(m_{1}, p, t, F_{1}))\neq\emptyset$. Moreover, if $(a, g)\in$ $d\cap((C\mathbin{\times} A)\backslash U(m_{1}, p, t, F_{1}))$, then $(a, g)\notin U$.

There exist elements g_{1} and g_{2} of A_{r}^{m} such that $\psi_{m}(g_{1})(x)\cap C_{s}\neq\emptyset$ and $\psi_{m}(g_{2})(x)\cap(C\backslash C_{s})\neq\emptyset$, where $s=s(F_{1})$. Since $n(m-1, e)\geq n(p, t)$ there exist elements $\overline{i_{1}}$ and $\overline{i_{2}}$ of $C_{n(m- 1,e)}$ such that $C_{i_{1}}\subseteq C_{s}$, $C_{\overline{i_{2}}}\subseteq C\setminus C_{s}$, $\psi_{m}(g_{1})(x)\cap C_{\overline{i_{1}}}\neq\emptyset$ and $\phi_{m}(g_{2})(x)\cap C_{\overline{i}_{2}}\neq\emptyset$.

By property (9) of Lemma 3.2 it follows that for every $z\in F$ we have $\phi_{m}(g_{1})(z)\cap C_{\overline{i}_{1}}\neq\emptyset$ and $\phi_{m}(g_{2})(z)\cap C_{\overline{i}_{2}}\neq\emptyset$. This means that $d(z, m, r)\cap U(m_{1}, p, t, F_{1})$ $\neq\emptyset$ and $d(z, m, r)\cap((C\times A)\setminus U(m_{1}, p, t, F_{1}))\neq\emptyset$, that is, $d(z, m, r)\cap U\neq\emptyset$ and $d(z, m, r) \cap ((C \times A) \setminus U)\neq \emptyset$. Hence, the neighbourhood $O(x)=F$ is the required neighbourhood of x in $M_{m}(A_{r}^{m}).$

3.6. LEMMA. Let $d = d(x, m, r) \in T(1)$ and $V = V(\overline{i}, p, t) \in \hat{V}$. The following are true:

- (1) If $d\subseteq V$, then there exists an integer $n\geq 0$ such that $U(d, n)\subseteq V$.
- (2) If $d\cap V=\emptyset$, then there exists an integer $n\geq 0$ such that $U(d, n)\cap V=\emptyset$.
- (3) If $d\cap V\neq\emptyset$ and $d\cap((C\times A)\setminus V)\neq\emptyset$ then there exists an open and closed

neighbourhood $O(x)$ of x in $M_{m}(A_{r}^{m})$ such that $d(z, m, r)\cap V\neq\emptyset$ and $d(z, m, r)\cap V$ $((C \times A) \backslash V)\neq \emptyset$ for every $z\in O(x)$.

PROOF. (1) By properties (1) and (8) of Remarks 3.4 it follows that $p\leq m$ and $A_{r}^{m}\subseteq A_{t}^{p}$. Hence $n(m, r) > n(p, t)$. Let $F=F(n(m, m, r), x)$.

Since $d\subseteq V$ and $n(m, r) > n(p, t)$ we have that $\phi_{m}(g)(x) \subseteq C_{\overline{i}}$ for every $g\in A_{r}^{m}$. Hence, by property (9) of Lemma 3.2 it follows that $(\psi_{m}(g)(F))^{*}\subseteqq C_{\overline{i}}$.

By property (11) of Lemma 3.2 and since $n(m, r) > n(p, t)$ we have $C_{s(F)}$ $\subseteq C_{\overline{i}}$. Since $A_{r}^{m}\subseteq A_{t}^{p}$ we have $C_{s(F)}\times A_{r}^{m}\subseteq C_{\overline{i}}\times A_{t}^{p}$. Hence, $U(m, m, r, F)=$ $U(d, 0) \subseteq V(\overline{i}, p, t)$. Thus, the integer $n=0$ is the required integer.

(2) If $A_{r}^{m}\cap A_{t}^{p}=\emptyset$, then for any integer $n\in N$, $U(d, n)\cap V=\emptyset$. Hence, we can suppose that $A_{r}^{m}\cap A_{l}^{p}\neq\emptyset$.

Let $m \leq p$. Then, $A_{t}^{p} \subseteq A_{r}^{m}$. Let $F=F(n(m, p, t), x)$. By the definition of the elements of \hat{V} it follows that $U(m, p, t, F) \cap (C_{\overline{i}} \times A_{\overline{i}}^{p}) = \emptyset$. Setting $n=m_{2}-m$ we have $U(d, n) \cap (C \times A_{l}^{p}) = U(m, p, t, F)$. Hence, $U(d, n) \cap V(\overline{i}, p, t) = \emptyset$, that is, the integer $n=m_{2}-m$ is the required integer.

Now, let $p < m$. Then, $A_{r}^{m} \subseteq A_{t}^{p}$. Let $e \in I(m-1)$ such that $A_{r}^{m}\subseteq A_{e}^{m-1}$ and $F=F(n(m, m, r), x)$.

We have $U(d, 0)=U(m, m, r, F)=C_{\epsilon(F)}\times A_{r}^{m}$ (See property (12) of Lemma 3.2). Hence, $U(d, 0)\cap V\neq\emptyset$ if and only if $C_{\boldsymbol{\mathfrak{s}}(F)}\cap C_{\boldsymbol{\mathfrak{i}}}\neq\emptyset$.

If $g\in A_{r}^{m}$, then $st((\phi_{m}(g)(F))^{*}, n(m, r))=C_{s(F)}$ (See property (11) of Lemma 3.2). Since $d\bigcap V=\emptyset$ it follows that $st(\phi_{m}(g)(x), n(p, t))\bigcap C_{\overline{i}}=\emptyset$. Since $n(m-1, e)$ $\geq n(p, t)$, we have $st(\phi_{m}(g)(x), n(m-1, e))\subseteq st(\phi_{m}(g)(x), n(p, t))$ and, hence, $st(\phi_{m}(g)(x), n(m-1, e))\cap C_{\overline{i}}=\emptyset.$

By property (9) of Lemma 3.2 it follows that $st(\phi_{m}(g)(x), n(m-1, e))=$ $st((\psi_{m}(g)(F))^{*}, n(m-1, e))$. Since $n(m, r) > n(m-1, e)$ we have $st((\psi_{m}(g)(F))^{*},$ $n(m, r)\leq st((\phi_{m}(g)(F))^{*}, n(m-1, e))$ and, hence, $st((\phi_{m}(g)(F))^{*}, n(m, r))\cap C_{\overline{i}}=\emptyset$, that is, the integer $n=0$ is the required integer.

(3) As in case (1) we have $p < m$ and $A_{r}^{m} \subseteq A_{t}^{p}$. Let $e \in l(m-1)$ such that $A_{r}^{m}\subseteq A_{e}^{m-1}$ and let $F=F(n(m, m, r), x)$.

Since $d\cap V\neq\emptyset$ there exists $g_{1}\in A_{r}^{m}$ such that $\psi_{m}(g_{1})(x)\cap C_{\overline{i}}\neq\emptyset$. Also, since $d\cap((C\times A)\setminus V)\neq\emptyset$ there exists $g_{2}\in A_{r}^{m}$ such that $\phi_{m}(g_{2})(x)\cap(C\setminus C_{\overline{i}})\neq\emptyset$. Since $n(m-1, e) \geq n(p, t)$ there exist $\overline{i}_1, \overline{i}_2 \in L_{n(m-1,e)}$ such that $C_{\overline{i}_1} \subseteq C_{\overline{i}}, C_{\overline{i}_2} \subseteq C\setminus C_{\overline{i}}$, $\phi_{m}(g_{1})(x)\cap C_{\overline{i}_{1}}\neq\emptyset$ and $\phi_{m}(g_{2})(x)\cap C_{\overline{i}_{2}}\neq\emptyset$.

By property (9) of Lemma 3.2, for every $g\in A_{r}^{m}$ and for every $z\in F$ we have $\psi_{m}(g)(z)\cap C_{\overline{i},\overline{z}}\phi$ and $\psi_{m}(g)(z)\cap C_{\overline{i},\overline{z}}\phi$, and, hence, $\psi_{m}(g)(z)\cap C_{\overline{i}}\phi$ and $\psi_{m}(g)(z)\cap(C\smallsetminus C_{i})\neq\emptyset$, that is, $d(z, m, r)\cap V\neq\emptyset$ and $d(z, m, r)\cap((C\times A)\cap V)\neq\emptyset$. Thus, the neighbourhood $O(x)=F$ is the required neighbourhood of x in $M_{m}(A_{r}^{m})$.

3.7. LEMMA. Let $d=\{(a, g)\},$ where $g{=}(S, D)$, V , $V_{1}{\in}V$ and U , $U_{1}{\in}U$. The following are true;

(1) If $d\subseteqq C_{\overline{i}}\times A_{r}^{m}$, then there exists an element W of $\hat{U}\cup\hat{V}$ such that $d\subseteqq$ $W\subseteq C_{\overline{i}}\times A_{r}^{m}$.

(2) If $V\cap V_{1}\neq\emptyset$, then either $V\subseteq V_{1}$ or $V_{1}\subseteq V$.

(3) If $d\subseteq V\cap U$, then there exists an element W of $\hat{U}\cup\hat{V}$ such that $d\subseteq W$ $\subseteq V\cap U$.

(4) If $d\subseteq U\cap U_{1}$, then there exists an element W of $\hat{U}\cap\hat{V}$ such that $d\subseteq W$ $\subseteq U\cap U_{1}.$

(5) If $d\cap V=\emptyset$, then there exists an element W of $\hat{U}\cup\hat{V}$ such that $d\subseteq W$ and $W\cap V=\emptyset$.

(6) If $d\cap U=\emptyset$, then there exists an element W of $\hat{U}\cup\hat{V}$ such that $d\subseteq W$ and $W \cap U = \emptyset$.

PROOF. Let $\overline{i} \in L_{n}$ and let k be an integer such that $k-1\geq\max\{n, m\}$.

There exists an integer $p\geq k$ such that $st(a, n(p, t))\cap st((D_{q})^{*}, n(p, t))=\emptyset$ for every $q \leq k$, where $t=r(p, g)$.

Let $j \in L_{n(p,t)}$ and $a \in C_{\overline{j}}$. Suppose that $\overline{j} \notin s(p, t)$. Then, the set $W=$ $C_{\overline{j}} \times A_{t}^{p}$ belongs to \hat{V} . Obviously, we have $\{(a, g)\}\subseteqq W$, $C_{\overline{j}}\subseteqq C_{\overline{i}}$ and $A_{t}^{p}\subseteqq A_{r}^{m}$. Hence, $W{\subseteq}V$, that is, W is the required element of $\hat{U}\cup\hat{V}$. Suppose that $\bar{j}{\in}$ $s(p, t)$, that is, $\overline{j}\in s(q, p, t, F)$ for some $q, 0\leq q\leq p$, and some $F\in(M_{q}(A_{t}^{p}))^{n(q, p, t)}$. Hence, $C_{\overline{j}}\subseteq st((\psi_{q}(g)(F))^{*}, n(p, t))$ (See property (11) of Lemma 3.2). This means that $st(a, n(p, t))\cap st((D_{q})^{*}, n(p, t))\neq\emptyset$ and, hence, $k\leq q$.

Let $x \in F$ and $\phi_{q}(g)(x) \cap C_{\overline{j}} \neq \emptyset$. Since $q > n$ we have that $\phi_{q}(g)(x) \subseteq C_{\overline{i}}$. Let $Q=F(n(q, q, e), x)$, where $e=r(q, g)$. Since $n(q-1, r(q-1, g))>n$ we have that $st(\phi_{q}(g)(x), n(q-1, r(q-1, g)))\subseteq C_{\overline{i}}$ and, hence $st(\phi_{q}(g)(Q))^{*}, n(q-1, r(q-1, g)))$ $\subseteq C_{\overline{i}}$ (See property (9) of Lemma 3.2). Since $n(q, e) > r(p-1, g)$ we have $st((\phi_{q}(q)(Q))^{*}, n(q, e))=C_{s(q)}\subseteqq C_{\overline{i}}.$

By properties (11) and (12) of Lemma 3.2 it follows that $U(q, q, e, Q)$ = $C_{s(Q)}\times A_{e}^{q}\subseteq C_{\overline{i}}\times A_{e}^{q}\subseteq V$.

Since $\{(a, g)\}\subseteq U(q, q, e, Q)=U(d(x, q, e), 0)\in\hat{U}$, the set $W=U(q, q, e, Q)$ is the required element of $\hat{U} \cup \hat{V}$.

(2) Let $V=V(\overline{i}, m, r)$ and $V_{1}=V(\overline{j}, p, t)$. Since $V\cap V_{1}\neq\emptyset$ we have $A_{r}^{m}\cap A_{t}^{p}$ $\neq\emptyset$ and $C_{\overline{i}}\cap C_{\overline{j}}\neq\emptyset$. Let $m\leq p$. Then, $A_{t}^{p}\subseteqq A_{r}^{m}$ and since $n(p, t)\geq n(m, r)$, $C_{\overline{j}} \subseteq C_{\overline{i}}$. Hence, $V_{1} \subseteq V$. Similarly, if $p \leq m$, then $V \subseteq V_{1}$.

(3) Let $U=U(d(x, m, r), n)$ and $V=V(\overline{i}, p, t)$. We have $\{(a, g)\}\subseteq$ $U(m, q, e, F)=C_{s(F)}\times A_{e}^{q}\subseteq U$, where $q=m+n$, $e=r(q, g)$ and $F=F(n(m, q, e), x)$.

Let $k=\max\{p, q\}$ and $n_{1}=\max\{n(p, t), n(q, e)\}$. Let s be a subset of all

elements \overline{j} of $L_{n_{1}}$ for which $C_{\overline{j}}\subseteq C_{\overline{i}}\cap C_{s(F)}$. Then, $C_{\overline{s}}=C_{\overline{i}}\cap C_{s(F)}$. Also, we have $A_{t}^{p}\cap A_{\epsilon}^{q}=A_{r(k,g)}^{\kappa}$. Then, $d\subseteq(C_{\tilde{i}}\times A_{t}^{p})\cap(C_{s(F)}\times A_{\epsilon}^{q})=C_{s}\times A_{r(k,g)}^{\kappa}\subseteq V\cap U$. Hence, the proof of this case follows from case (1).

(4) Let $U=(U(d(x, m, r), n)$ and $U_{1}=U(d(x_{1}, m_{1}, r_{1}), n_{1})$. As in case (3) we have $d\subseteq C_{s(F)}\times A_{e}^{q}\subseteq U$, where $q=m+n$, $e=r(q, g)$ and $F=F(n(m, q, e), x)$. Similarly, $d\subseteq C_{s(F_{1})}\times A_{e_{1}}^{q_{1}}\subseteq U_{1}$, where $q_{1}=m_{1}+n_{1}$, $e_{1}=r(q_{1}, g)$ and $F_{1}=$ $F(n(m_{1}, q_{1}, e_{1}), x)$.

Let $p=\max\{q, q_{1}\}$ and $k=\max\{n(q, g), n(q_{1}, g)\}$. There exists a subset s of L_{k} such that $C_{s}=C_{s(F)}\cap C_{s(F_{1})}$. Hence, $d\subseteq(C_{s(F)}\times A_{e}^{q})\cap(C_{s(F_{1})}\times A_{e_{1}}^{q})=$ $C_{s} \times A_{t}^{p} \subseteq U\cap U_{1}$, where $t=r(p, g)$. The rest of the proof of this case follows from case (1).

(5) Let $V = V(\overline{i}, m, r)$ and let $a \in C_{\overline{j}}$, where $\overline{j} \in L_{n(m, r)}$. Since $d\cap V = \emptyset$ we have that either $C_{\overline{i}} \cap C_{\overline{j}}=\emptyset$ or $A_{r}^{m}\cap A_{r(m,g)}^{m}=\emptyset$. Hence, $(C_{\overline{j}}\times A_{r(m,g)}^{m})\cap(C_{\overline{i}}\times A_{r}^{m})$ $=$ 9. Since $\{(a, g)\}\subseteq C_{\overline{j}}\times A_{r(m,g)}^{m}$, the existence of the set W follows from case (1) .

(6) Let $U=U(d(x, m, r), n)$. Let \overline{i} be an element of L_{k} , where $k=$ $n(m+n, r(m+n, g))$, such that $a\in C_{\overline{i}}$. Then, it is easy to see that $(C_{\overline{i}}\times A_{r(m+n,g)}^{m+n})$ $\bigcap U=\emptyset$. Hence, the proof of this case also follows from case (1).

3.8. LEMMA. Let d_{1} , $d_{2} \in T$ and $d_{1}\neq d_{2}$. Then, there exist elements W_{1} and $W_{\bm{\mathsf z}}$ of $\hat{U}\cup\hat{V}$ such that $d_{1}\subseteqq W_{1}$, $d_{2}\subseteqq W_{\bm{\mathsf z}}$ and $W_{1}\cap W_{2}=\emptyset$.

PROOF. We consider the cases:

(1) $d_{1}=\{(a_{1}, g_{1})\}$ and $d_{2}=\{(a_{2}, g_{2})\},$

(2) $d_{1}=\{(a, g)\}\$ and $d_{2}=d(x, m, r)\in T(1)$, and

(3) $d_{1}=d(x_{1}, m_{1}, r_{1})\in T(1)$ and $d_{2}=d(x_{2}, m_{2}, r_{2})\in T(1)$.

In the first case either $a_{1}=a_{2}$ or $a_{1}=a_{2}$ and $g_{1}\neq g_{2}$. If $a_{1}\neq a_{2}$, then there exist an integer n and distinct elements \overline{i} and \overline{j} of L_{n} such that $a_{1}\in C_{\overline{i}}$ and $a_{2} \in C_{\overline{j}}$. Then, we set $V_{1}=C_{\overline{i}} \times A_{r(0,g_{1})}^{0}$ and $V_{2}=C_{\overline{i}} \times A_{r(0,g_{2})}^{0}$.

If $a_{1}=a_{2}$ and $g_{1}\neq g_{2}$, then there exists an integer m such that $r(m, g_{1})\neq$ $r(m, g_{2})$. Then, we set $V_{1}=C_{g} \times A_{r(m,g_{1})}^{m}$ and $V_{2}=C_{g} \times A_{r(m,g_{2})}^{m}$.

In both subcases we have $d_{1}\subseteq V_{1}$, $d_{2}\subseteq V_{2}$ and $V_{1}\cap V_{2}=\emptyset$. By case (1) of Lemma 3.7 there exist elements W_{1} and W_{2} of $\hat{U}\cup\hat{V}$ such that $d_{1}\subseteq W_{1}\subseteq V_{1}$ and $d_{2} \subseteq W_{2} \subseteq V_{2}$. Hence, $W_{1} \cap W_{2}=\emptyset$.

In the second case if $g\neq A_{r}^{m}$, then there exists an element W_{1} of $\hat{U}\cup\hat{V}$ such that $d_{1}\subseteq W_{1}\subseteq C_{\mathcal{B}}\times A_{r(m,g)}^{m}$. Let $W_{2}=U(d(x, m, r), 0)$. Then, $W_{1}\cap W_{2}=\emptyset$.

Let $g\in A_{r}^{m}$. Then, $a\!\notin\!\psi_{m}(g)(x)$. There exists an integer $p\geq m$ such that $st(a, n) \cap st((D_{m})^{*}, n) = \emptyset$, where $n = n(p, r(p, g))$. Let $\overline{i} \in L_{n}$ such that $a \in C_{\overline{i}}$.

Then, $\overline{i} \notin s(m, p, e, F) = s(F)$, where $e = r(p, g)$ and $F = F(n(m, p, e), x)$ (See property (11) of Lemma 3.2).

Let $W_{2}=U(d(x, m, r), p-m)$. We have $W_{2}\cap(C_{\mathbf{g}}\times A_{e}^{p})=U(m, p, e, F)$. Since $U(m, p, e, F)=C_{s(F)}\times A_{e}^{p}$ and since $i\in s(F)$ we have of $d\not\in W_{2}$.

By property (6) of Lemma 3.7 it follows that there exists an element W_{1} of $\hat{U} \cup \hat{V}$ such that $d\mathcal{\subseteq} W_{1}$ and ${W}_{1}\cap {W}_{2}.$

Finally in the third case we consider the following subcases: (a) $m_{1}=m_{2}$ and $r_{1}\neq r_{2},$ (β) $m_{1}=m_{2}$ and $r_{1}=r_{2}$. and (γ) $m_{1}\neq m_{2}$.

In the first subcase we set $W_{1}=U(d(x_{1}, m_{1}, r_{1}), 0)$ and $W_{2}=U(d(x_{2}, m_{2}, r_{2}), 0)$. Obviously, $d_{1}\subseteqq W_{1}$, $d_{2}\subseteqq W_{2}$ and $W_{1}\cap W_{2}=\emptyset$.

In the second subcase let $n_{1}\geq n(m_{1}, m_{1}, r_{1})$ be an integer such that there exist two distinct elements F_{1} and F_{2} of $(M_{m_{1}}(A_{r_{1}}^{m_{1}}))^{n_{1}}$ for which $x_{1}\in F_{1}$ and $x_{2} \in F_{2}$. Let $n = n_{1}-n(m_{1}, m_{1}, r_{1})$. We set $W_{1}=U(d(x_{1}, m_{1}, r_{1}), n)$ and $W_{2}=$ $U(d(x_{2}, m_{2}, r_{2}), n)$ and we prove that ${W}_{1}\cap {W}_{2}=\emptyset$.

Indeed, if $W_1\cap W_{2}\neq 0$, then there exists an element $r\in l(m_{1}+n)$ such that $A_{r}^{m_{1}+n}\subseteqq A_{r_{1}}^{m_{1}}$ and $(W_{1}\cap(C_{g}xA_{r}^{m_{1}+n}))\cap(W_{2}\cap(C_{g}xA_{r}^{m_{1}+n}))\neq\emptyset$. We have $W_{1}\cap$ $(S_{g} \times A_{r}^{m_{1}+n})=U(m_{1}, m_{1}+n, r, F_{1})$ and $W_{2}\cap(C_{g} \times A_{r}^{m_{1}+n})=U(m_{2}, m_{2}+n, r, F_{2})$. Hence, $U(m_{1}, t_{1}, m_{1}+n, F_{1})\bigcap U(m_{2}, m_{2}+n, r, F_{2})\neq\emptyset$. By property (14) of Lemma 3.2 this is a contradiction.

In the third subcase, without loss of generality, we can suppose that m_{1} <m₂. Then, either $A_{r_{2}}^{m_{2}}\subseteq A_{r_{1}}^{m_{1}}$, or $A_{r_{2}}^{m_{2}}\cap A_{r_{1}}^{m_{1}}=\emptyset$. If $A_{r_{2}}^{m_{2}}\subseteq A_{r_{1}}^{m_{1}}$, then we set $W_{1}=$ $U(d(x_{1}, m_{1}, r_{1}), m_{2}-m_{1})$ and $W_{2}=U(d(x_{2}, m_{2}, r_{2}), 0)$. Obviously, we have $W_{1}\cap W_{2}$ $\mathcal{L} = U(m_{1}, m_{2}, r_{2}, F_{1})\bigcap U(m_{2}, m_{2}, r_{2}, F_{2})=\emptyset$, where $F_{1}=F(n(m_{1}, m_{2}, r_{2}), x_{1})$ and $F_{2}=$ $F(n(m_{2}, m_{2}, r_{2}), x_{2}).$

If $A_{r_{2}}^{m_{2}}\cap A_{r_{1}}^{m_{1}}=\emptyset$, then it is sufficient to put $W_{1}=U(d(x_{1}, m_{1}, r_{1}), 0)$ and $W_{2}=$ $U(d(x_{2}, m_{2}, r_{2}), 0)$.

3.9. LEMMA. Let $d\!\in\! T$ and $d\!\subseteq\!\! W\!\!\in\!\!\hat{U}\!\cup\!\hat{V}$. There exists an element W_{1} of $\hat{U}\cup\hat{V}$ such that $d\subseteq\!\! W_{1}\!\subseteq\! W$ and every element of $T(1)$ intersecting $W_{1},$ is contained in W .

PROOF. First we suppose that $d=d(x, m, r)$. By property (1) of Lemma 3.5 and property (1) of Lemma 3.6 if follows that there exists an integer $n\geq 0$ such that $U(d(x, m, r), n) \subseteq W$.

We prove that the set $W_{1}=U(d(x, m, r), n+1)$ is the required element of $\hat{U}\backslash\overline{V}$. Indeed, let $d_{1}=d(x_{1}, m_{1}, r_{1})\in T(1)$ and $(a, g)\in d_{1}\cap W_{1}$. We have $U(d(x, m, r), n+1)\cap (C_{g} \times A_{t}^{p})=U(m, p, t, F),$ where $p=n+m+1, t=r(m+n+1, g)$ and $F=F(n(m, p, t), x)$.

If $m_{1} < p$, then we can consider the set $U(m_{1}, p, t, F_{1})$, where $F_{1}=$ $F(n(m_{1}, p, t), x_{1})$. Since $(a, g)\in U(m, p, t, F)\cap U(m_{1}, p, t, F_{1})$ by properties (13) and (14) of Lemma 3.2 it follows that $m=m_{1}$ and $F=F_{1}$. In this case, by the definition of the elements of the set \hat{U} it follows that $d_{1}\subseteq U(d(x, m, r), n+1)$ $\subseteq U(d(x, m, r), n)$.

Hence, we can suppose that $m+n+1\leq m_{1}$. We have $(a, g)\in U(m, p, t, F)=$ $C_{s(F)} \times A_{t}^{p}$. Hence, $a \in C_{s(F)}$.

Let $a\in C_{\overline{i}}$ and $\overline{i}\in L_{k}$, where $k=n(m_{1}-1, r(m_{1}-1, g))$. Since $a\in C_{s(F)}$ and $k\geq n(p, t)$ we have $C_{\overline{i}}\subseteq C_{s(F)}$.

By property (9) of Lemma 3.2 it follows that if $g_{1}=(S_{1}, D_{1})\in A_{r}^{m}(\{1}_{m-1,g})$, then $\psi_{m1}(g_{1})(x_{1})\cap C_{\overline{i}}\neq\emptyset$ (we observe that $a\in\psi_{m_{1}}(g)(x_{1})$), that is $\psi_{m_{2}}(g_{1})(x_{1})\cap$ $st((\psi_{m}(g_{1})(F))^{*}, n(p, t))\neq 0$. By property (10) of Lemma 3.2 it follows that $\phi_{m}(g_{1})(x_{1})\subseteq st((\phi_{m}(g_{1})(Q))^{*}, n(m+n, r(m+n, g))=C_{s(Q)},$ where $Q=F(n(m, m+n, g))$ $r(m+n, g)$, x). This means that $d_{1}\subseteq C_{s(Q)}\times A_{r(m+n,g)}^{m+n}=U(m, m+n, r(m+n, g))$ $\subseteq U(d(x, m, r), n)$.

Now, we suppose that $d=\{(a, g)\}\$, where $g=(S, D)$. It is easy to see that there exists an integer $m\geq 0$ such that $(a, g)\in C_{\overline{i}}\times A_{r(m,g)}^m\subseteq W$, where $i\in$ $L_{n(m,r(m,g))}$. Let q_{0} be an integer such that $q_{0}-1>n(m, r(m, g))$. Since D is an upper semi-continuous partition of S there exists an integer $p \geq q_{0}$ such that $st(a, n(p, t)) \cap st((D_{q})^{*}, n(p, t)) = \emptyset$, for every $q \leq q_{0}$, where $t = r(p, g)$.

Let s be the subset of $L_{n(p,t)}$ for which $a\in C_{s}$ and either $s=\{\overline{j}\}\$ and $\overline{j}\notin\overline{S}_{s}$ $s(p, t)$ or $s=s(q, p, t, F)=s(F)$ for some q, $0\leq q\leq p$, and some $F=$ $F(n(q, p, t), M_{q}(q)).$

We set $W_{1}=C_{s}\times A_{t}^{p}\in\hat{V}$ and we prove that $W_{1}\subseteq C_{\bar{\imath}}\times A_{r(m,g)}^{m}$. This is clear if $s=\{\overline{j}\}\$. Suppose that $s=S(F)$. Then, $st(a, n(p, t))\cap st((D_{q})^{*}, n(p, t))\neq\emptyset$ and, hence, $q_{0} < q$.

Let $x \in F$ and $\phi_{q}(g)(x)\cap st(a, n(p, t))\neq\emptyset$. Since $q>n(m, r(m, g))$ and $st(a, n(p, t))\subseteqq C_{\tilde{i}}$ we have that $\phi_{q}(g)(x)\subseteqq C_{\tilde{i}}$.

Let $Q=F(n(q, q, r(q, g)), x)$. Since $n(q-1, r(q-1, g))>n(m, r(m, g))$ by property (9) of Lemma 3.2 it follows that $(\phi_{q}(g)(Q))^{*}\subseteq C_{\overline{i}}$ and hence, $st((\phi_{q}(g)(Q))^{*}$, $n(q, r(q, g))=C_{\boldsymbol{s}(q)}\subseteq C_{\tilde{i}}.$

By properties (11) and (12) of Lemma 3.2 it follows that $U(q, q, r(q, g), Q)$ $=C_{S(Q)} \times A_{r(q,g)}^{q} \subseteq C_{\overline{j}} \times A_{r(m,g)}^{m}$. Since $U(q, p, t, F) = U(q, q, r(q, g), Q)$ we have $W_{1}\subseteqq C_{\overline{i}}\times A_{r(m,g)}^{m}$

Now, we prove that if $d_{1}\in T(1)$ and $d_{1}\cap W_{1}\neq\emptyset$, then $d_{1}\subseteq C_{\overline{i}}\times A_{r(m,g)}^{m}$. Indeed, let $d_{1}=d(x_{1}, m_{1}, t_{1})$ and $(a_{1}, g_{1})\in d_{1}\cap W_{1}$.

If $m_{1}\leq p$, then we can consider the set $U(m_{1}, p, t, F_{1})=U(F_{1})$, where $F_{1}=$ $F(n(m_{1}, p, t), x_{1})$. Obviously, $d_{1}\cap W_{1}\subseteq U(F_{1})\cap W_{1}$. It $s=\{\overline{j}\}\$ and $\overline{j}\notin s(p, t)$, then $U(F_{1})\cap W_{1}=\emptyset$ which is contradiction. Hence, $s=s(F)$ and since $U(m_{1}, p, t, F_{1})$ $\bigcap U(q, p, t, F)\neq\emptyset$ by properties (13) and (14) of Lemma 3.2 it follows that $m_{1}=q$ and $F=F_{1}$. Hence, $d_{1}\subseteq U(F)=W_{1}\subseteq C_{\overline{i}}\times A_{r(m,g)}^{m}$.

Thus we can suppose that $p < m_{1}$. Obviously, $A_{r(m_{1},g_{1})}^{m_{1}}\subseteq A_{l}^{p}$. Since $a_{1} \in C_{s}$ and $n(m_{1}-1, r(m_{1}-1), g_{1}) \geq n(p, t)$ by property (9) of Lemma 3.2 it follows that if g_{0} is an arbitrary element of $A_{r(m_{1},g_{1})}^{m_{1}}$, then $\psi_{m_{1}}(g_{0})(x_{1})\cap C_{s}\neq\emptyset$. Since $m_{1}>$ $n(m, r(m, g))$ we have that $\phi_{m_{1}}(g_{0})(x_{1})\subseteqq C_{\bar{i}}$, that is, $d_{1}\subseteqq C_{\bar{i}}\times A_{r(m,g)}^{m}$.

3.10. DEFINITIONS AND NOTATIONS. For every $U=U(d, n)\in\hat{U}$ (respectively, $V=V(\overline{i}, m, r)\in\hat{V}$ we denote by $O(U)$ or by $O(d, n)$ (respectively, by $O(V)$ or by $O(\overline{i}, m, r)$) the set of all elements $d\in T$ such that $d\subseteq U$ (respectively, $d\subseteq V$).

We denote by \mathcal{V} (respectivety, by \mathcal{V}) the set of all sets of the form $O(U)$, $U\!\!\in\!\!\tilde{U}$ (respectively, $\mathit{O}(V),\;V\!\in\!\hat{V}$). Also, we set $\boldsymbol{B}\!\!=\!\mathrm{U}\!\cup\!\text{C}\!\mathit{V}.$

Let $m\in N,$ $r\in I(m)$ and F be a subset of $M_{m}(A_{r}^{m})$. We denote by $d(F)$ the subset of T consisting of all elements $d(x, m, r)$, where $x \in F$.

By $d(m, r)$ we denote the map of $M_{m}(A_{r}^{m})$ onto $d(M_{n}(A_{r}^{m}))$ defined as follows: $d(m, r)(x)=d(x, m, r)$. Obviously, the map $d(m, r)$ is one-to-one.

We say that a pair (S, D) , where S is a subset of C and D is an upper semi-continuous partition of C, has the *dense property* iff for every $k=0,1, \cdots$ and for every $a\in d\in D_{k}$ the point a is 0 limit point of the set $S\diagdown (D_{k})^{*}$.

3.11. THEOREM. The set \bm{B} is a countable basis of open sets for a topology τ on the set T. The space T (that is, the set T with topology τ) is a Hausdorff regular space. The boundary of every element of \bm{B} is a countable free union of subsets of T which are homeomorphic to closed subsets of elements of M . Moreover, if every element of the family A has the dense property, then the boundary of every element of \bm{B} is a countable free union of subsets of T which are homeomorphic to simultaneously open and closed subsets of elements of M .

PROOF. If $m, n \in N$, $r \in l(m), F \in (M_{m}(A_{r}^{m}))^{k}$, where $k=n(m, m, r)+n$, and x, $y \in F$, then $U(d(x, m, r), n)=U(d(y, m, r), n)$. From this and since for every $m{\in}N$ the set A^{m} is countable it follows that the set \hat{U} , as well as, the set \hat{V} are countable. Hence, \boldsymbol{B} is a countable set.

It is easy to see that the union of all elements of \bm{B} is the set T . Hence in order to prove that \bm{B} is a basis of open sets for a topology on the set T it is sufficient to prove that if $d\in T$, W_{1} , $W_{2}\in\hat{U}\cup\hat{V}$ and $d\in O(W_{1})\cap O(W_{2})$, then there exists an element W of $\hat{U}\cup\hat{V}$ such that $d\in O(W)\subseteq O(W_{1})\cap O(W_{2})$, that is, $d\subseteq W\subseteq W_{1}\cap W_{2}$. This follows immediately from the properties (1) of Lemma

3.5, (1) of Lemma 3.6, (5) of Remarks 3.4 and from properties (2), (3) and (4) of Lemma 3.7.

Let τ be the topology on T for which **B** is a basis of open sets. By Lemma 3.8 it follows that the space T is a Hausdorff space.

We observe that by properties (2) of Lemma 3.5, (2) of Lemma 3.6 and by (5) and (6) of Lemma 3.7 it follows that in the space T the boundary of every element of \bm{B} is contained in the subset $T(1)$ of T . Hence, by Lemma 3.9 it follows that the space T is regular.

Let $m\in N$ and $r\in l(m)$. We prove that the map $d(m, r)$ of $M_{m}(A_{r}^{m})$ onto $d(M_{m}(A_{r}^{m}))$ is a homeomorphism. Indeed, by properties (1) of Lemma 3.5, (1) of Lemma 3.6 and (5) of Remarks 3.4 it follows that the set $\{U(d(x, m, r), n),$ $n\in N\}$ is a basis of open neighbourhoods of $d(x, m, r)$ (in the space T).

On the other hand, the set $\{F(n(m, m, r)+n, x):n\in N\}$ is a basis of open neighbourhoods of x in $M_{m}(A_{r}^{m})$ (See Definitions and notations 3.1).

Also, by the construction of elements of \hat{U} it follows that an element $d(y, m, r)$ of $d(M_{m})A_{r}^{m})$ belongs to $U(d(x, m, r), n)$ if and only if $y \in$ $F(n(m, m, r)+n, x)$. From this it follows that the map $d(m, r)$ is a homeomorphism.

Let $m\in N$ and $r\in I(m)$. Let $V=C_{s}\times A_{r}^{m}$, where s is a subset of $L_{n(m,r)}$ such that either $s=\{\overline{i}\}\$ and $\overline{i}\notin\overline{s}(m, r)$ or $s=s(F)$ for some element F of $M_{q}(A_{r}^{m})^{n(q,m,r)}$, $0 \leq q \leq m$. We grove that for every $p>n(m, r)$ and $t\in I(p)$ is $y\in M_{p}(A_{t}^{p})$ and $d(y, p, t)\cap V\neq\emptyset$ (hence, $A_{t}^{p}\subseteq A_{r}^{m}$), then $d(y, p, t)\subseteq V$.

Indeed, let $(a, g) \in d(y, p, t) \cap V$. Let $a \in C_{\overline{j}}$, where $\overline{j} \in L_{n(p-1, r(p-1, g))}$. Since $n(p-1, r(p-1, g)) > p-1 \geq n(m, r)$ we have that $C_{j} \subseteq C_{s}$. By property (9) of Lemma 3.2 it follows that $\phi_{p}(g_{1})(y)\cap C_{\overline{j}}\neq\emptyset$ for every $g_{1}\in A_{t}^{p}$. Since $p>n(m, r)$ we have that $\phi_{p}(g_{1})(y)\subseteq C_{s}$ and, hence, since $A_{\iota}^{p}\subseteq A_{r}^{m}$ we have that $d(y, p, t)$ $\subseteq C_{s} \times A_{r}^{m}=V$.

Now, let $s = \{\overline{i}\}$ and $\overline{i} \notin s(m, r)$, that is, $V = V(\overline{i}, m, r) \in \hat{V}$. Then, by property (8) of Remarks 3.4 and by Lemma 3.6 (properties (1) and (2)) it follows that the boundary $Bd(O(V))$ of the element $O(V)$ of **B** is contained in the set $B(k, m, r)$, where $k=n(m, r)$, which is the union of all sets of the form $(M_{q}(A_{e}^{q}))$, where $m\lt q\leq k$ and $e\in I(q)$ such that $A_{e}^{q}\subseteqq A_{r}^{m}$.

We prove that the set $B(k, m, r)$ is the free union of the corresponding sets $d(M_{q}(A_{e}^{q}))$. For this it is sufficient to prove that for every q, $m \leq q \leq k$, and for every $e\in I(q)$ for which $A_{e}^{q}\subseteq A_{r}^{m}$, there exists and open subset $H(q, e, m, r)$ $H(q, e)$ of T such that $B(k, m, r)\cap H(q, e)=d(M_{q}(A_{e}^{q})).$

For every $F \in (M_{q}(A_{\ell}^{q}))^{n(q,q,e)+k-q}$ by $x(F)$ we denote a point of F. We set $H(q, e)=\bigcup_{F}O(d(x(F), q, e), k-q)$. Obviously, $H(q, e)$ is an open subset of T. Also, it is easy to see that $d(M_{q}(A_{\ell}^{q}))\subseteq Q(k, m, r)\cap H(q, e)$.

Let $d(y, q_{1}, e_{1})\in B(k, m, r)\cap H(q, e)$. We prove that $d(y, q_{1}, e_{1})\in d(M_{q}(A_{e}^{q}))$. Indeed since $d(y, q_{1}, e_{1}) \in B(k, m, r)$ we have $m \leq q_{1} \leq k$ and $A_{e_{1}}^{q_{1}} \subseteq A_{r}^{m}$. There exists an element F of $(M_{q}(A_{\ell}^{q}))^{n(q,q,e)+k-q}$ such that $d(y, q_{1}, e_{1})\cap U(d(x(F), q, e),$ $k-q)\neq\emptyset.$ Let (a, g) belongs to this intersection. Consider the sets $U(q_{1}, k, r(k, g), F_{1})=U(F_{1})$ and $U(q, k, r(k, g), F)=U(F)$, where $F_{1}=$ $F(n(q_{1}, k, r(k, g)), y)$. Since $(a, g)\in U(F)\cap U(F_{1})$ by properties (13) and (14) of Lemma 3.2 it follows that $q=q_{1}$ and $F=F_{1}$, that is, $d(y, q_{1}, e_{1})\in d(M_{q}(A_{e}^{q}))$.

Thus, $B(k, m, r) \cap H(q, e) = d(M_{q}(A_{e}^{q}))$ and hence, the boundary of the set $O(i, m, r)$ is a countable free union of subsets of T which are homeomorphic to closed subsets of elements of *.*

Suppose now that $U=U(d(x_{1}, m_{1}, r_{1}), n_{1})$ be an arbitrary element of \hat{U} . Let $m=m_{1}+n_{1}$. We prove that the boundary $Bd(O(U))$ of the set $O(U)$ is contained in the union of all sets of the form $B(n(m, r), m, r)$, where $r \in I(m)$ and $A_{r}^{m} \subseteq A_{r_{1}}^{m_{1}}$.

Indeed, let $d(y, p, t) \in Bd(O(U))$ and let $(a, g) \in d(y, p, t) \cap U$. There exist an integer q, $0 \leq q \leq m$, an element $r \in I(m)$ and an element $F \in (M_{q}(A_{r}^{m}))^{n(q,m,r)}$ such that $(a, g) \in U(q, m, r, F) = U(F)$. If $p \leq m$, then we can consider the set $U(p, m, r, Q)=U(Q)$, where $Q=F(n(p, m, r), y)$. (We observe that $r(m, g)=r$). Then, $(a, g) \in U(F) \cap U(Q)$ and, hence, $p=q$ and $F=Q$, that is, $d(y, p, t) \subseteq U$, which is a contradiction. Hence, $m < p$.

On the other hand, since $U(F)=C_{s(F)}\times A_{r}^{m}$, $d(y, p, t)\cap U\neq\emptyset$ and $d(y, p, t)$ $\not\subseteq U$ by the preceding it follows that $p\leq n(m, r)$. Hence, $d(y, p, t)\in$ $B(n(m, r), m, r)$.

Let $k=n(m, r)$. For a fixed $r\in I(m)$ as we already proved the set $B(k, m, r)$ is the free union of the corresponding sets $d(M_{q}(A_{\ell}^{q}))$. Since the union of all elements of $H(q, e, m, r)$ is contained in the set $C \times A_{r}^{m}$ we have that the union of sets $B(k, m, r)$ for all $r\in l(m)$ for which $A_{r}^{m}\subseteq A_{r_{1}}^{m_{1}}$ is also free.

Hence, the boundary of the set $O(d(x_{1}, m_{1}, r_{1}), m_{1})$ is a countable free union of subsets of T which are homeomorphic to closed subset of elements of M .

Finally, suppose that every element of the family A has the dense property. In this case we prove that if $O(W) \in B$ and $d=d(x, m, r) \in T(1)$ such that $d(x, m, r)\cap W\neq\emptyset$ and $d(x, m, r)\cap((C\boxtimes A)\backslash W)\neq\emptyset$, then $d\in Bd(O(W))$.

Indeed, obviously, $d\notin O(W)$. Let $g\in A_{r}^{m}$ such that $(\phi_{m}(g)(x)\times\{g_{1}\})\bigcap W\neq\emptyset$. Let $O(U)$ be an arbitrary neighbourhood of d in T. We prove that $O(U)\cap O(W)$. $\neq\emptyset$. We can suppose that $U=U(d(x, m, r), n)$ for some integer $n\in N$.

Let $\psi_{m}(g)(x)=\{a, b\}\in D(1)$. We can suppose that $(a, g)\in W$ and that there exists an integer q such that $(a, g) \in V = C_{s} \times A^{q}_{r(q,g)} \subseteq U\cap W$, where s is a subset of $L_{n(q,r(q,g))}$ and either $s=\{\overline{i}\}\$ and $\overline{i}\in s(q, r(q, g))$ or $s=s(F)$ for some element F of $(M_{k}(A^{q}_{r(q,g)}))^{n_{1}}$, where $n_{1}=n(k, q, r(q, g))$ and $0 \leq k \leq m$. Let $V\cap$ $(C \times \{g\}) = O \times \{g\}.$ Then, O is an open neighbourhood of a in C.

Since g has the dense property there exists a point $c\in O\cap (S\setminus (D_{m})^{*})$ such that either $c \in S\setminus (D(1))^{*}$ or $c \in d_{1} \in D_{p}$ and $p>n(q, r(q, g))$. In the first case, $\{(c, g)\}\in O(V) \subseteq O(U) \cap O(W)$, and hence $O(U)\cap O(W)\neq\emptyset$.

In the second case, let $y\in M_{p}(A_{r(p,g)}^{p})$ such that $c\in\phi_{p}(g)(y)$. As we proved above, $d(y, p, r(p, g))\subseteq V$. Hence, $d(y, p, r(p, g))\in O(V)\subseteq O(U)\cap O(W)$ and $O(U)\cap O(W)\neq\emptyset$. Thus, $d\in Bd(O(W))$.

By properties (3) of Lemma 3.5 and (3) of Lemma 3.6 it follows that the boundary of every element of \bm{B} is a countable free union of subsets of T which are homeomorphic to simultaneously open and closed subsets of elements of M .

4. Some properties of scattered spaces.

Definitions and notations. Let $\alpha=\beta+m$ be an ordinal, where $\beta=\beta(\alpha)$ and $m=m(\alpha)$ >0.

We denote by $Tr(\alpha)$ the set of all triads $\tau=(a, X, M)$ such that: (α) M is α compactum having type α , (β) $M^{(\alpha-1)}=\{a\}$, and (γ) X is a subset of M for which $M\setminus M^{(\beta)}\subseteqq X$. We observe that if U is an open and closed neighbourhood of a in M, then the triad $(a, X \cap U, U) = \tau(U)$ is an element of $Tr(\alpha)$.

Let $\tau_{1}=(a_{1}, X_{1}, M_{1})$ and $\tau_{2}=(a_{2}, X_{2}, M_{2})$ be two elements of $T_{r}(\alpha)$. We say that τ_{1} and τ_{2} are *equivalent* and we write $\tau_{1}\sim\tau_{2}$ iff there exist: (α) an open and closed neighbourhood U of a_{1} in M_{1} , (β) an open and closed neighbourhood V of a_{2} in M_{2} , and (γ) a homeomorphism f of U onto V such that $f(U\cap X_{1})=$ $V\cap X_{2}$ (Obviously, in this case $f(a_{1})=f(a_{2})$).

It is easy to prove that the relation " \sim " on the set $Tr(\alpha)$ is an equivalent relation. We denote by $ETr(\alpha)$ the set of all equivalence classes of this relation. For every $\tau \in T_{r}(\alpha)$ we denote by $e(\tau)$ the equivalence class of $ETr(\alpha)$ which contains the element τ .

Let $\tau=(a, X, M)\in \mathcal{Tr}(\alpha)$. An open and closed neighbourhood U of a in M is called *standard* iff tor every $\tau_{1}=(a_{1}, X_{1}, M_{1})\in e(\tau)$ there exists an open and closed neighbourhood V of a_{1} in M_{1} and a homeomorphism f of U onto V such that $f(U\cap X)=V\cap X_{1}$. In this case we say that the element τ has a standard neighbourhood. It is clear that it an element of an equivalence class of $ETr(\alpha)$ has a standard neighbourhood, then every element of this class has also a standard neighbourhood.

The element τ is called *standard* iff the neighbourhood $U=M$ of a is standard. Obviously, if U is a standard neighbourhood of a in M, then $\tau(U)$ is a standard element of $e(\tau)$.

It is easy to prove that an open and closed ueighbourhood U of a in M is standard if and only if for every neighbourhood W of a in M there exist an open and closed neighbourhood V of a in M , which is contained in W and a homeomorphism f of U onto V such that $f(U\cap X)=V\cap X$.

We denote by $P(\alpha)$ the set of all pairs $\zeta=(X, M)$ such that M is a compactum having type α and X is a subset of M for which $M\setminus M^{(\beta)}\subseteq X$.

We say that the pairs $\zeta_{1}=(X_{1}, M_{1})$ and $\zeta_{2}=(X_{2}, M_{2})$ of $P(\alpha)$ are *equivalent* and we write $\zeta_{1}\sim\zeta_{2}$ iff there exists a homeomorphism f of M_{1} onto M_{2} such that $f(X_{1})=X_{2}$.

It is clear that the relation " \sim " on the set $P(\alpha)$ is an equivalent relation. We denote by $EP(\alpha)$ the set of all equivalent classes of this relation and for every $\zeta \in P(\alpha)$ by $e(\zeta)$ the equivalence class of $EP(\alpha)$ which contains the element ζ .

4.2. LEMMA. For every isolated ordinal α the set $ETr(\alpha)$ is finite and every element of this set contains a standard element of $Tr(\alpha)$.

PROOF. Let $\alpha=\beta-m$, where $\beta=\beta(\alpha)$ and $m=m(\alpha)>0$. We prove the lemma by induction on integer m .

Let $m=1$. Let $\tau_{1}=(a_{1}, X_{1}, M_{1})\in Tr(\alpha)$ and $\tau_{2}=(a_{2}, X_{2}, M_{2})\in Tr(\alpha)$ such that $X_{1}=M_{1}$ and $X_{2}=M\diagdown M^{(\beta)}=M\diagdown \{a_{2}\}.$

Let $\tau=(a, X, M)$ be an element of $Tr(\alpha)$. Then, $M^{(\beta)}=M^{(\alpha-1)}=\{a\}$ and, hence, either $X = M$ or $X = M\setminus M^{(\beta)}=M\setminus \{a\}$. By [\[M-S\]](#page-36-1) it follows that there exist a homeomorphism f_{1} of M_{1} onto M and a homeomorphism f_{2} of M_{2} onto M. We have that if $X=M$, then $f_{1}(X_{1})=X$ and if $X=M\setminus M^{(\beta)}$, then $f_{2}(X_{2})$ $=X$. Hence, either $e(\tau)=e(\tau_{1})$ or $e(\tau)=e(\tau_{2})$, that is, $ETr(\alpha)=\{e(\tau_{1}), e(\tau_{2})\}$. Also, by the above it follows that the elements τ_{1} and τ_{2} are standard.

Now, we suppose that the lemma is proved for every m for which $1\leq m\leq n$ and we prove it for $m=n$.

Let $ETr(\alpha_{1})=\{e^{i}(\alpha-1), \cdots, e^{t}(\alpha-1)\}$. For every $k=1, \cdots, t$ we denote by $\tau^{k}(\alpha-1)=$ $(c^{k},$ $X^{k},$ $M^{k})$ a fixed standard element of $e^{k}(\alpha-1)$.

Let $\tau_{j}=(a_{j}, X_{j}, M_{j}),$ $j=1, 2$, be two arbitrary elements of $Tr(\alpha)$. Whithout loss of generality we can suppose that the spaces M_{1} and M_{2} are metric.

Let $M_{j}^{(\alpha-2)}\diagdown M_{j}^{(\alpha-1)}=\{b_{j1}, b_{j2}, \cdots\}, \ j=1,2, \cdots$. Every element of these sets is isolated (in the corresponding relative topology). Let W_{ji}^{0} be an open and

150 S. D. ILIADIS

closed neighbourhood of $b_{j\bar \imath}$ in M_{j} such that $W_{j\bar \imath}^{0}\cap M_{j}^{(\alpha-2)}=\{b_{j\bar \imath}\}$. Then the triad $\tau_{ji}=(b_{ji}, X_{j}\cap W_{ji}^{0}, W_{ji}^{0})$ is an element of $Tr(\alpha)$ and the element $e(\tau_{ji})$ of $ETr(\alpha)$ is independent from the neighbourhood W_{ji}^{0} , that is, if W_{ji}^{\prime} is another such neighbourhood of b_{ji} in M_{j} and $\tau_{ji}^{\prime}=(b_{ji}, X_{j}\cap W_{ji}^{\prime}, W_{ji}^{\prime})$, then $e(\tau_{ji})=e(\tau_{ji}^{\prime})$. We denote by e_{ji} the element $e(\tau_{ji})$.

There exists an open and closed neighbourhood W_{ji} of b_{ji} in M_{j} , $j=1, 2,$ $i=1, 2, \cdots$, such that: (a) $W_{ji}\cap M_{j}^{(a-2)}=\{b_{ji}\},$ (β) $W_{ji_{1}}\cap W_{ji_{2}}=\emptyset$ if $i_{1}\neq i_{2}$, (γ) $\lim_{j\rightarrow\infty}(diam(W_{ji}))=0,$ ($\delta)$ $a_{j}\in(M_{j}\vee W_{j})^{(\alpha-2)}$, where $W_{j}=W_{j1}\cup W_{j2}\cup\cdots$ and ($\varepsilon)$ if $e_{ji}=e^{k(ji)}(a-1)$, then there exists a homeomorphism f_{ji} of $M^{k(ji)}$ onto W_{ij} such that $f_{ji}(X^{k(ji)})=X_{j}\cap W_{ji}$. We observe that by the properties of the sets W_{ji} it follows that W_{j} , $j=1,2, \cdots$, is an open subset of M_{j} such that $Cl(W_{j})\backslash W_{j}$ $=$ $\{a_{j}\}\.$

Let V_{j} be an open and closed neighbourhood of a_{j} in $M_{j}\rightarrow W_{j}$ such that $(V_j)^{(\alpha-2)} = \{a_{j}\}.$ Then, the triad $\tau^{j}=(a_{j}, X_{j}\cap V_{j}, V_{j})$ is an element of $Tr(\alpha-1)$. We can suppose that if $e(\tau^{j})=e^{k(j)}(a-1)$, then there exists a homeomorphism f_{j} of $M^{k(f)}$ onto Λ_j such that $f_{j}(X^{k(j)})=X_{j}\cap V_{j}$.

There exists an open and closed neighbourhood U_{j} , $j=1, 2$, of a_{j} in M_{j} such that: (*a*) $U_{j}\cap (M_{j}\backslash W_{j})=V_{j}$, (β) if for some integer $i=1, 2, \cdots, W_{ji}\cap U_{j}\neq\emptyset$, then $W_{ji}\sqsubseteq U_{j}$, and (γ) if for some integer i, $W_{ji}\sqsubseteq U_{j}$, then the ue exists an increasing sequence of integers i_{1}, i_{2}, \cdots for which $W_{ji_{q}}\subseteq U_{j}$ and $e_{ji}=e_{ji_{q}}, q=$ $1, 2, \cdots$.

Now, we prove that $\tau_{1}\sim\tau_{2}$ if the following conditions are true: (a) $e(\tau^{1})$ $\mathcal{L} = e(\tau^{2})$ and (β) if for some integer $k \in \{1, \dots, t\}$ there exists an integer $i(1) \geq 1$ such that $W_{1i(1)}\subseteq U_{1}$ and $e_{1i(1)}=e^{k}(a-1)$, then there exists an integer $i(2)\geq 1$ such that $W_{2i(2)}\subseteqq U_{2}$ and $e_{2i(2)}=e^{k}(\alpha-1)$.

Indeed, it is not difficult to prove that between the set $U_{1}\cap(M_{1}^{(\alpha- 1)}\backslash M_{1}^{(\alpha- 1)})$ and the set $U_{2}\cap(M_{2}^{(\alpha- 2)}\backslash M_{2}^{(\alpha- 1)})$ there exists an one-to-one correspondence such that if b_{1p} corresponds to b_{2q} , then $e_{1p}=e_{2q}$.

We construct a homeomorphism f of U_{1} onto U_{2} as follows: on the set V_{1} we set $f = f_{2} \circ f_{1}^{-1}$. Let $W_{1p} \subseteq U_{1}$. Then, $b_{1p} \in U_{1}$ and if b_{1p} corresponds to b_{2q} , then on the set W_{1p} we set $f = f_{2q} \cdot f_{1p}^{-1}$. Obviously, f is a homeomorphism of U_{1} onto U_{2} such that $f(X_{1}\cap U_{1})=X_{2}\cap U_{2}$. Hence, $\tau_{1}\sim\tau_{2}$.

From the above it follows that the number of equivalence classes of the set $Tr(\alpha)$ is finite, that is, the set $ETr(\alpha)$ is finite.

In order to complete the lemma it is sufficient to prove that every element of $ETr(\alpha)$ contains a standard element of $Tr(\alpha)$. For this, since τ_{1} is an abitrary element of $Tr(\alpha)$, it is sufficient to prove that $\tau_{1}(U_{1})$ is a standard element.

Let W be an arbitrary neighbourhood of a in M_{1} . Let V be an open and closed neighbourhood of a_{1} in $M_{1}\backslash W_{1}$ such that: (α) $V\subseteq W$ and (β) there exists a homeomorphism f_{V} of $M^{k(1)}$ onto V for which $f_{V}(X^{k(1)})=X_{1}\cap V$.

There exists a neighbourhood U' of a_{1} in M_{1} such that: (α) $U^{\prime}\subseteq W$, (β) $U^{\prime}\cap (M_{1}\backslash W_{1})=V$ and (γ) if for some integer $i, W_{1i}\cap U^{\prime}\neq\emptyset$, then $W_{1i}\subseteq U^{\prime}$.

A homeomorphism f^{\prime} of U_{1} onto U^{\prime} for which $f^{\prime}(X_{1}\cap U_{1})=X_{1}\cap U^{\prime}$ can be constructed in the same manner as we constructed the homeomorphism f of U_{1} onto U_{2} . Hence, $\tau(U_{1})$ is a standard element.

4.3. THEOREM. For every isolated orainal α the set $EP(\alpha)$ is countable.

PROOF. Let $\alpha=\beta+m$, where $\beta=\beta(\alpha)$ and $m=m(\alpha)\geq 1$. We prove the theorem by induction on integer m .

Let $m=1$. For every $i=1,2,\cdots$ we denote by M_{i} a compactum such that $|M_{i}^{(\alpha-1)}|=|M_{i}^{(\beta)}|=i$. Hence, if X_{1} and X_{2} are two subsets of M_{k} for which $M\setminus M^{(\beta)}\subseteqq X_{1}\cap X_{2}$, then $X_{1}=X_{2}$ iff $X_{1}\cap M^{(\alpha-1)}=X_{2}\cap M^{(\alpha-1)}$. Therefore, the number of such set is finite. Let $X_{i1}, \dots, X_{i\ell(i)}$ be these sets and let $\zeta_{ij}=$ $(X_{ij}, M_{i}), i=1,2, \cdots, j=1, \cdots, t(i).$

Let $\zeta=(X, M)$ be an arbitrary element of $P(\alpha)$ and let $|M^{(\alpha-1)}|=i$. Then, by [\[M-S\]](#page-36-1) there exists a homeomorphism f of M_{i} onto M . There exists an integer j, $1 \leq j \leq t(i)$, such that $X_{ij}=f^{-1}(X)$. Hence, $f(X_{ij})=X$, that is, $\zeta \sim \zeta_{ij}$. From this it follows that the set $EP(\alpha)$ is countable.

We suppose that the theorem is proved for every m for which $1\leq m\leq n$ and we prove the theorem for $m=n$.

Let $\tau^{1}=(c_{1}, X^{1}, M^{1}), \cdots, \tau^{2}=(c^{p}, X^{p}, M^{p})$ be standard elements of $Tr(\alpha-1)$ such that $ETr(\alpha-1)=\{e(\tau^{1}), \cdots, e(\tau^{p})\}$. Also, let $\zeta(1)=(X(1), M(1)), \; \zeta(2)=$ $(X(2), M(2)), \cdots$ be elements of $P(\alpha-1)$ such that $EP(\alpha-1)=\{e(\zeta(1)), e(\zeta(2)), \cdots\}$.

Now, let $\zeta_{j}=(X_{j}, M_{j}),$ $j=1, 2$, be two arbitrary elements of the set $P(\alpha)$, such that $|M_{j}^{(\alpha-1)}| = \{a_{j1}, \cdots , a_{jt}\}.$ Without loss of generality we can suppose that the spaces M_{1} and M_{2} are metric. There exists en open and closed subset U_{ji} of M_{j} , $j=1, 2, t=1, \cdots, i$, such that: (α) $U_{ji_{1}}\cap U_{ji_{2}}=\emptyset$ if $i_{1}\neq i_{2}$, (β) $U_{j1}\cup\cdots$ $\bigcup U_{ji}=M_{j}$, and (γ) $a_{ji}\in U_{ji}$.

Let $U_{ji}\cap (M_{j}^{(\alpha-2)}\setminus M_{j}^{(\alpha-1)})=\{b_{ji}^{1}, b_{ji}^{2}, \cdots\}$. Let $(W_{ji}^{k})^{0}$ be an arbitrary neighbourhood of b_{ji}^{k} in M_{j} , $k=1,2, \cdots$, such that: (α) (W_{ji}^{k})^o $\subseteq U_{ji}$ and (β) (W_{ji}^{k})^o \cap $M_{j}^{(\alpha-2)} = \{b_{j}^{k}\}\text{.}$ We denote by e_{ji}^{k} the element $e(\tau_{ji}^{k})$ of $ETr(\alpha-1)$, where $\tau_{ji}^{k}=$ $(b_{ji}^{k}, X_{j}\cap(W_{ji}^{k})^{0}, (W_{ji}^{k})^{0})$. Obviously, the element e_{ji}^{k} is independent from the neighbourhood $(W_{ji}^{k})^{\circ}$.

For every $j=1, 2, i=1, \cdots, t, k=1, 2, \cdots$, let W_{ji}^{k} be an open and closed neighbourhood of b_{ji}^{k} in M_{j} such that: $W_{ji}^{k}\subseteq U_{ji}$, $(\beta)W_{ji}^{k}\cap M_{j}^{(\alpha-2)}=\{b_{ji}^{k}\},$ (γ) $W_{ji}^{k_{1}}\cap W_{ji}^{k_{2}}=\emptyset$, if $k_{1}\neq k_{2}$, (δ) $\lim_{k\rightarrow\infty}(diam(W_{ji}^{k}))=0$, (ε) the set $(U_{ji}\vee W_{ji})^{(\alpha-2)}$, where $W_{ji}=W_{ji}^{1}\cup W_{ji}^{2}\cup\cdots$ contains at least two distinct points and the point a_{ji} belongs to this set, and ζ if $e_{ji}^{k}=e(\tau^{r(kji)})$, then there exists a homeomorphism f_{ji}^{k} of $M^{r(kji)}$ onto W_{ji}^{k} such that $f_{ji}^{k}(X^{r(kji)})=X_{j}\cap W_{ji}^{k}$. Obviously, W_{ji} is an open subset of M_{j} such that $Cl(W_{ji})\setminus W_{ji} = \{a_{ji}\}.$

Let V_{ji} be an open and closed neighbourhood of a_{ji} in $M_{ji}\bigr\downarrow W_{ji}$ such that $V_{ji}\subseteq U_{ji}$ and $(V_{ji})^{(a-2)}=\{a_{ji}\}\$. The triad $\tau_{ji}=(a_{ji}, X_{j}\cap V_{ji}, V_{ji})$ is an element of $Tr(\alpha-1)$. We suppose that if $e(\tau_{ji})=e(\tau^{r(ji)})$, then there exists a homeomorphism f_{ji} of $M^{r(ji)}$ onto V_{ji} such that $f_{ji}(X^{r(ji)})=X_{j}\cap V_{ji}$.

We observe that the set $H_{ji}=U_{ji}\langle W_{ji}\cup V_{ji}\rangle$ is an open and closed subset of M_{j} and by property (ε) of the sets W_{ji}^{k} it follows that $(H_{ji})^{(\alpha-2)}\neq\emptyset$. Hence, the pair $\zeta_{ji}=(X_{j}\cap H_{ji}, H_{ji})$ is an element of $P(\alpha-1)$.

If $e(\zeta_{ji})=e(\zeta(q(ji)))$, then by g_{ji} we denote a homeomorphism of $M(q(ji))$ onto H_{ji} such that $g_{ji}(X(q(ji)))=X_{j}\cap H_{ji}$.

Now, we prove that $\zeta_{1}\sim\zeta_{2}$ if the following conditions are true: (α) for a given element $e(\tau^{r})$ of $ETr(\alpha-1)$ and for a fixed integer *i*, the number of elements b_{1i}^{k} of the set $\{b_{1i}^{1}, b_{1i}^{2}, \cdots\}$ for which $e(\tau^{r})=e_{1i}^{k}$ is the same with the number of the elements b_{2i}^{k} of the set $\{b_{2i}^{1}, b_{2i}^{2}, \cdots\}$ for which $e_{2i}^{k}=e(\tau^{r})$, (β) for every integer $i=6, \cdots, t$, $e(\tau_{1i})=e(\tau_{2i})$, and (γ) for every integer $i=1, \cdots, t$, $e(\zeta_{1i})=e(\zeta_{2i}).$

Indeed, by the above condition (α) it follows that for every integer *i*, betweed the elements of the set $\{b_{1i}^{1}, b_{1i}^{2}, \cdots\}$ and the elements of the set $\{b_{2i}^{1},$ b_{2i}^{2}, \cdots } there exists an one-to-one correspondence such that if b_{1i}^{k} corresponds to b_{2i}^{r} , then $e_{1i}^{k}=e_{2i}^{r}$.

We construct a homeomorphism f of M_{1} onto M_{2} as follows: for every integer *i*, on the set V_{1i} we set $f=f_{2i}\circ f_{1i}^{-1}$ and on the set H_{1i} we set $f=$ $g_{2i} \circ g_{1i}^{-1}$. If the point b_{1i}^{k} corresponds to b_{2i}^{r} , then on the set W_{1i}^{k} we set $f=$ $f_{2i^{\circ}}^{r}(f_{1i}^{k})^{-1}$. It is easy to prove that f is a homeomorphism of M_{1} onto M_{2} such that $f(X_{1})=X_{2}$.

From the above it follows that the set $EP(\alpha)$ is countable.

4.3.1. REMARK. From Theorem 4.3 it follows Lemma 2 of Section I.3 of $\lceil l_{3} \rceil$, that is, for a given isolated ordinal α the set of all (mutually non-homeomorphic) spaces X for which there exists a compactum K having type α , such that $X \subseteq K$ and $K\diagdown K^{\beta(\alpha)} \subseteq X$, is countable.

Also, from Lemma 4.2 it follows Lemma 1 of Section I.2 of $[I_3]$.

5. Universal spaces.

5.1. DEFINITIONS. Let $\alpha > 0$ be an ordinal and $k \in N$ such that $0 \leq k \leq m^{+}(\alpha)-1$. Let $X \in R_{\iota}^{k}(a)$. An extension \tilde{X} of X is called a *c-extension* (respectively, *lc*extension) iff \tilde{X} has a basis $B(\tilde{X})=\{V_{0}, V_{1}, \cdots\}$ of open sets such that:

(1) the set $Bd(V_i)$, $i=0, 1, \dots$, is a compactum (respectively, a locally compact subset of \tilde{X}),

- (2) $type(Bd)V_{i})\leq \alpha+k+1$,
- (3) $type((Bd(V_{i})\cap X)\cup(Bd(V_{i})\setminus (Bd(V_{i}))^{(\beta(\alpha))}))\leq\alpha$
- (4) loc-com-type $((Bd(V_{i})\cap X)\cup (Bd(V_{i})\backslash (Bd(V_{i}))^{(\beta(\alpha))}))\leq\alpha+k$.

We observe that by Lemma 2.4 for every element $X \in R_{\iota c}^{k}(\alpha)$ there exists a c-extension of X. Also, if \tilde{X} is a c-extension of X, then using the method of the proof of Lemma 1 of $[I_{1}]$ we can construct a basis $B(\tilde{X})=\{V_{0}, V_{1}, \cdots\}$ of open sets of \tilde{X} having properties (1)-(6) of Lemma 2.4.

Let K be a space, S_p be a family of spaces, $(S_p)_{1}$ be a subfamily of S_p and let \mathcal{P} be a property of topological spaces. We say that the space K has the property of \mathcal{P} -intersections with respect to subfamily $(Sp)_{1}$ of Sp iff for every $X\in Sp$ there exists a homeomorphism i_{X} of X into K such that if Y and Z are distinct elements of S_p and $Y\in(S_p)_{1}$, then the set $i_{Y}(Y)\bigcap i_{Z}(Z)$ has property $\mathcal{P}.$

For every $X\in Sp$ let i_{X} be a homeomorphism of X into K. We say that the space K has the property of \mathcal{P} -intersections with respect to subfamily $\{i_{X} : X\in(Sp)_{1}\}$ of all homeomorphisms i_{X} iff for every $Y\in(Sp)_{1}$ and for every $Z\!\in\!S\!\!\:\!p,$ the set $i_{Y}(Y)\!\cap\!i_{Z}(Z)$ has the property $\mathscr{P}.$

In particular, if \mathcal{P} means that the corresponding intersection (α) is finite, (β) has type \leq_α , (γ) is compact and has tyye \leq_α , (δ) has type \leq_α and comfact type $\leq \alpha+k$, and (ϵ) has type $\leq \alpha$ and locally compact type $\leq \alpha+k$, then instead of phrase " \mathcal{P} -intersections" we will use, respectively, the words: (α) "finite intersections", (β) " α -intersections", (γ) "compact α -intersections", (δ) " α_{c}^{k} -intersections", and (ε) " α_{lc}^{k} -intersections".

We observe that the notion of "the property of finite intersections" given in $[I_{3}]$ is different from that of the present paper, because in $[I_{3}]$ we suppose that both spaces Y and Z belong to the corresponding subfamily. But, it is not difficult to see that the universal space T for the family $R(\alpha)$ constructed in $\lceil l_{3} \rceil$ has the property of finite intersections (in sense of the present paper) with respect to a given subfamily of $R(\alpha)$ whose cardinality is less than on equal to the continuum.

The same is true with the notion of "the property of α -intersections" (in actually, with the notion of "the property of compact α -intersections") given in [\[G-I\].](#page-36-2)

5.2. REPRESENTATIONS. For every $X \in R_{lc}^{k}(\alpha)$ let \tilde{X} be a c-extension of X and $B(\tilde{X})=\{V_{0}(\tilde{X}), V_{1}(\tilde{X}), \cdots\}$ be an ordered basis of open sets of \tilde{X} having properties $(1)-(6)$ of Lemma 2.4.

We recall the contruction (with respect to the ordered basis $B(\tilde{X})$) of the subset $S(\overline{X})$ of C, the upper semi-continuous partition $D(\overline{X})$ of $S(\overline{X})$, the map $q(\tilde{X})$ of $S(\tilde{X})$ onto \tilde{X} and the homeomorphism $i(\tilde{X})$ of $D(\tilde{X})$ onto \tilde{X} given in Sections I.5 and I.8 of $[I_1]$.

For every $i=0, 1, \cdots$, we set $V_{i}^{0}(\tilde{X})=Cl(V_{i}(\tilde{X}))$ and $V_{i}^{1}(\tilde{X})=\tilde{X}\diagdown V_{i}(\tilde{X})$. For every $i=i_{1}\cdots i_{n}\in L_{n}$, we set $\widetilde{X}_{g}=C$ if $n=0$ and $\widetilde{X}_{\overline{i}}=V_{0}^{i_{1}}(\tilde{X})\cap\cdots\cap V_{n-1}^{i_{n}}(\tilde{X})$ if $n\geq 1$. The point $a\in C$ belongs to $S(\tilde{X})$ if and only if $\tilde{X}_{\tilde{t}(a,0)}\cap\tilde{X}_{\tilde{t}(a,1)}\cap\cdots\neq\emptyset$. The last set is a singleton for every point a of $S(\tilde{X})$. We define the $q(\tilde{X})$ of $S(\tilde{X})$ onto \tilde{X} setting $q(\tilde{X})(a)=x$, where $a\in S(\tilde{X})$ and $\{x\}=\tilde{X}_{\tilde{t}(a,0)}\cap\tilde{X}_{\tilde{t}(a,1)}\cap\cdots$. Finally, we set $D(\tilde{X})=\{(q(\tilde{X}))^{-1}(x):x\in\tilde{X}\}$ and define $i(\tilde{X})$ setting $i(\tilde{X})((q(\tilde{X}))^{-1}(x))$ $= x.$

5.2.1. LEMMA. For every $X \in R_{lc}^{k}(\alpha)$, the pair $(S(\tilde{X}), D(\tilde{X}))$ has the dense property.

PROOF. Let $n \in N$ and $a \in d\in(D(\tilde{X}))_{n}$. There exist elements $x \in Bd(V_{n}(\tilde{X}))$ and $b \in C$ such that $d = \{a, b\} = (q(\tilde{X}))^{-1}(x)$. Let x_{1}, x_{2}, \cdots be a sequence of points of \widetilde{X} snch that $\lim\limits x_{i}\!=\!x,$ $x_{i}\!\in\!V_{n}(\widetilde{X})$ if $a\!<\!b$ and $x_{i}\!\in\!\widetilde{X}\diagdown\! Cl(V_{n}(\widetilde{X}))$ if $b < a$, $i = 1, 2, \cdots$. If $n \geq 1$ we can suppose that $x_i \notin Cl(V_0(\tilde{X}) \cup \cdots \cup V_{n-1}(\tilde{X}))$.

By the construction of the sets $\tilde{X}_{\overline{i}}$ it follows that there exists an element \overline{i} of L_{n} such that $a\in C_{\overline{i}_0}$ and $b\in C_{\overline{i}_1}$ if $a\lt b$ and $a\in C_{\overline{i}_1}$ and $b\in C_{\overline{i}_0}$ if $b\lt a$. Also, for every $i=1,2, \cdots$, we have that the set $(q(\tilde{X}))^{-1}(x_{i})$ is contained in that of the sets $C_{\overline{i}0}$ and $C_{\overline{i}1}$ which contains the point a .

Since $D(\tilde{X})$ is an upper semi-continuous parlition of $S(\tilde{X})$ we have $\lim_{i\rightarrow\infty}d_{i}=d$. where $d_{i} = (q(\tilde{X}))^{-1}(x_{i}), i = 1, 2, \cdots$. Hence, if $a_{i} \in d_{i}$, then $\lim_{i \to \infty} a_{i} = a$, that is, the point *a* is a limit point of the set $S(\tilde{X})\setminus ((D(\tilde{X}))_{n})^{*}$. This means that the pair $(S(\tilde{X}), D(\tilde{X}))$ has the dense property.

5.2.2. THE FAMILY A OF REPRESENTATIONS. Let R_{1} be a subfamily of $R_{l}^{k}(\alpha)$ the cardinality of which is less than or equal to the continuum and let $R_{2}=R_{lc}^{k}(\alpha)\diagdown R_{1}$

For every $X \in R_{2}$ we set $\hat{S}(X)=C$ and we denote by $\hat{D}(X)$ the set which is the union of the set $D(\tilde{X})$ and all singletons $\{x\}$, where $x \in C \setminus (\bigcup_{n=0}^{\infty}((D(\tilde{X}))_{n})^{*}).$ It is easy to see that $\hat{D}(X)$ is an upper semi-continuous partition of $\hat{S}(X)$ and the quotient space $D(\tilde{X})$ is homeomorphic to a subset of the quotient space $D(X).$

Let A_{2} be the family of all pair $(\hat{S}(X),\hat{D}(X)), X \in R_{2}$. It is easy to see that the cardinality of A_{2} is less than or equal to the continuum.

For every $X\in R_{1}$ we set $\hat{S}(X)=S(\tilde{X})$ and $\hat{D}(X)=D(\tilde{X})$. Let A_{1} be the set of all pairs $(\hat{S}(X), \hat{D}(X)), X \in R_{1}$. If X and Y are distinct elements of R_{1} , then $(\hat{S}(X),\hat{D}(X))$ and $(\hat{S}(Y),\hat{D}(Y))$ are considered as distinct elements of A_{1} , while it is possible $\hat{S}(X) = \hat{S}(Y)$ and $\hat{D}(X) = \hat{D}(Y)$.

Let A be the free union of A_{1} and A_{2} . (Hence, if $g_{1} \in A_{1}$ and $g_{2} \in A_{2}$, then g_{1} and g_{2} are distinct elements of A). Obviously, the cardinality of A is less than or equall to the continuum.

By Lemma 5.2.1 it follows that every element of A has the dense property.

In the present section we denote by M the set of all scattered compacta M such that either $type(M) \leq \beta(\alpha)$ or $type(M)=\beta(\alpha)+n$, where $n=1, 2, \cdots$ We suppose that distinct elements of M are not homeomorphic.

Let $EP(\beta(\alpha))=EP(\beta(\alpha)+1)\cup EP(\beta(\alpha)+2)\cup\cdots$. By Theorem 4.3 the set $\mathcal{E}P(\beta(\alpha))$ is countable. Let $e\in \mathcal{E}P(\beta(\alpha))$. We denote by $M(e)$ the element M of M (if there exists such element) for which for some subset F of M, (F, M) \in e. Obviously, if there exists the element $M(e)$, then it is uniquely determined, while the subset F of $M(e)$ for whch $(F, M(e))\in e$, in general, is not unique. We denote by $F(e)$ a fixed subset of M such that $(F(e), M(e))\in e$.

For every $X \in R_{ic}^{k}(a)$ and $q\in N$ by the construction of the pair $(\hat{S}(X),\hat{D}(X))$ it follows that $(\hat{D}(X))_{q} = (D(\tilde{X}))_{q}$. Since $(D(\tilde{X}))_{q}$ is homeomorphic to $Bd(V_{q}(X))$ (See the proof of Lemma 11 of $[I_{3}]$) by properties (1) and (4) of Lemma 2.4 it follows that the pair $g(X)=(\hat{S}(X),\hat{D}(X))$ is an *M*-representation. By $M_{q}(g(X))$ we denote the element of M which is homeomorphic to $(\hat{D}(X))_{q}$. If $type((\hat{D}(X))_{q})$ $\leq \beta(\alpha)$, then by $\psi_{q}(g(X))$ we denote a fixed homeomorphism of $M_{q}(g(X))$ onto $(D(X))_{q}$.

Suppose that $type((\hat{D}(X))_{q}) = \beta(\alpha)+n$. Let $F_{q}(\tilde{X})=(Bd(V_{q}(\tilde{X}))\cap X)\cup(Bd(V_{q}(\tilde{X}))$ $\bigwedge (Bd(V_{q}(\tilde{X}))^{(\beta(\alpha))})$. Then, the pair $(F_{q}(\tilde{X}), Bd(V_{q}(\tilde{X})))$ belongs to an element e of $EP(\beta(\alpha))$ and, hence, there exists the pair $(F(e), M(e))$. By $\phi_{q}(g(X))$ we denote a fixed homeomorphism of $M_{q}(g(X))=M(e)$ onto $(\hat{D}(X))_{q}$ for which $\phi_{q}(g(X))(F(e)) = (i(\tilde{X}))^{-1}(F_{q}(\tilde{X})).$ (We observe that by the construction of the homeomorphism $i(\tilde{X})$ it follows that $i(\tilde{X})(D(\tilde{X}))_{q})=Bd(V_{q}(\tilde{X})))$.

We suppose that for every $M \in M$ there exists a fixed decreasing sequence

of decompositions of M .

Also we suppose that there exists a fied decreasing sequence of decompositions of A such that if E is an element of q^{th} decompositions, then the element $M_{q}(E)$ of M is determined (for notations see Section 3.1). Moreover, since the set $EP(\beta(\alpha))$ is countable, we can suppose that if type($M_{q}(E)=\beta(\alpha)+n$ and $(\hat{S}(X), \hat{D}(X))$ and $(\hat{S}(Y), \hat{D}(Y))$ are two elements of E , then the pairs $(F_{q}(\tilde{X}), Bd(V_{q}(\tilde{X})))$ and $(F_{q}(\tilde{Y}), Bd(V_{q}(\tilde{Y})))$ belong to the same element of $\boldsymbol{L}\boldsymbol{P}(\boldsymbol{\beta}(\boldsymbol{\alpha})).$

5.3. THEOREM. Let R_{1} be a subfamily of $R_{k}(\alpha)$ the cardinality of which is less than or equal to the continuum. For every element $X\in R_{lc}^{k}(\alpha)$ let \tilde{X} be a c -extension of X . Then, there exist:

(1) an element $K \in R_{kc}^{k}(\alpha)$,

(2) a space T which is an lc-extension of K ,

(3) a homeomorphism i_{X} of X into K for every $X\!\!\in\! R_{lc}^{k}(\alpha),$ and

(4) a homeomorphism $j_{\tilde{\boldsymbol{X}}}$ of \tilde{X} into T , for every $X \in R_{lc}^{k}(\alpha)$, which is an extension of i_{X} , that is, $j_{\tilde{X}}|_{X} = i_{X}$, such that:

(5) the space K has the property of α_{lc}^{k} -intersections with respect to the subfamily $\{i_{X} : X \in R_{1}\}$ of all homeomorphisms i_{X} , $X \in R_{lc}^{k}(\alpha)$.

(6) the space T has the property of compact $(a+k+1)$ -intersections with respect to subfamily $\{j_{\tilde{X}} : X \in R_{1}\}$ of all homeomorphisms $j_{\tilde{X}}, X \in R_{lc}^{k}(\alpha)$. Moreover,

(7) the set $j_{\tilde{\mathcal{X}}}(\tilde{X})$ is a closed subset of T , for every $X\!\!\in\! R_{1}.$

PROOF. We use all notions and notations of Sections 5.2 and 5.2.2. Let T be a space of Theorem 3.11 constructed for the family A of M-representations of Section 5.2.2.

Now we define the subspace K of T as follows: every element d of T of the form $\{(a, g)\}\$, where $(a, g)\in C \times C$, belongs to K. Let $d\in T(1)$. Then, there exist an integer $m\in N$, an element r of $I(m)$ and an element x of $M_{m}(A_{r}^{m})$ such that $d=d(x, m, r)$. If $type(M_{m}(A_{r}^{m}))<\beta(\alpha)$, then we consider that $d\in K$. Let $type(M_{m}(A_{r}^{m}))=\beta(\alpha)+n$. By the properties of the fixed decreasing sequence of decompositions of A it follows that there exists an element e of $\mathcal{E}P(\beta(\alpha))$ such that for every $X\in R_{lc}^{k}(a)$ for which $g(X)=(\hat{S}(X), \hat{D}(X))\in A_{r}^{m}$ we have $(F_{m}(\tilde{X}), Bd(V_{m}(\tilde{X}))\equiv e$. Hence, $M_{m}(A_{r}^{m})=M_{m}(g(X))=M(e)$ and $F(e)=$ $(\varphi_{m}(g(X)))^{-1}(F_{m}(\tilde{X}))$. We consider that $d\in K$ iff $x\in F(e)$.

By the definition of the set $F_{m}(\tilde{X})$ and properties of a c-extension of X (see Section 5.1) it follows that: $(\alpha)(d(M_{m}(A_{r}^{m}))\setminus (d(M_{m}(A_{r}^{m})))^{(\beta(\alpha))})\subseteq d(M_{m}(A_{r}^{m}))$

 $\bigcap K$, (β) type(d($M_{m}(A_{r}^{m})\bigcap K)\leq\alpha$, (γ) type(d($M_{m}(A_{r}^{m}))\leq\alpha+k+1$, (δ) loc-com $type(d(M_{m}(A_{r}^{m}))\cap K)\leq \alpha+k$.

We observe that the above properties $(\alpha)-(\delta)$ are true if we replace the set $d(M_{m}(A_{r}^{m}))$ by an open and closed subset of it. Hence, these properties are also true if we replace the set $d(M_{m})A_{r}^{m}$) by a set which is a free union of simultaneously open and closets of sets $d(M_{m}(A_{r}^{m}))$, $m\in N, r\in I(m)$.

Consider the basis \bm{B} of the space T . Let $O(W) \in \bm{B}$. By Theorem 5.3 the set $Bd(O(W))$ is a free union of simultaneously open and closed subsets of sets $d(M_{m}(A_{r}^{m}))$. Hence, properties $(\alpha)-(\delta)$ are true if we replace the set $d(M_{m}(A_{r}^{m}))$ by the set $Bd(O(W))$. From the it follows that $K\in R_{lc}^{k}(\alpha)$. Since the set $Bd(O(W))$ is a locally compact subset of T we also have that the space T is an lc -extension of the space K .

Let $T(\tilde{X})$ be the subset of T consisting of all elements z of T for which $z \cap (C \times \{g(X)\}) \neq \emptyset$. We observe that for every $z \in T(\tilde{X})$ there exists an element $d\in\hat{D}(X)$ such that $z\cap(C\times\{g(X)\})=d\times\{g(X)\}\$. Also, for every $d\in\hat{D}(X)$ there exists an element $z \in T(\tilde{X})$ such that the above relation is true. Hence, setting $j_{\hat{X}}(d)=z$ we have an one-to-one map of $\hat{D}(X)$ onto $T(\tilde{X})$. It is easy to verify, that $j_{\hat{X}}((\hat{D}(X))_{q}){=}d(M_{q}(A^q_{r(q_{,\hat{S}}(X))}))$, for every $q{\in}N$.

We prove that $j_{\hat{X}}$ is a homeomorphism. Let $j_{\hat{X}}(d)=z$. Let $z\in O(W)\in B$. Since the space T is regular there exists an element $O(W_{1})$ of B such that $z\in O(W_{1})\subseteq O(W_{1})\subseteq O(W)$. By the construction of the element of the set $\hat{U}\cup\hat{V}$, there exists an open subset V of $\hat{S}(X)$ such that $d\subseteq V$ and $V\times\{g(X)\}$ $\subseteq W_{1}$. Let U be the set of all elements d' of $\hat{D}(X)$ for which $d^{\prime}\subseteq V$. Then, U is an open subset of $\hat{D}(X)$ containing d. If $d^{\prime} {\in} U$, then $j_{\hat{X}}(d^{\prime})\cap W_{1}\neq\emptyset$ and, hence, $j_{\hat{X}}(d')\in O(W)$, that is, $j_{\hat{X}}(U)\subseteq O(W)$. Thus, $\zeta_{\hat{X}}$ is a continuous map. Let U be an open subset of $\hat{D}(X)$ containing d. Let $V = (\hat{p}(X))^{-1}(U)$, where $\hat{p}(X)$ is the natural projection of $\hat{S}(X)$ onto $\hat{D}(X)$. There exists an element W of $\hat{U}\cap\hat{V}$ such that $W\cap C\ge \{g(X)\}\subseteq V\times \{g(X)\}$ and $z\subseteq W$. Hence, $z\in O(W)$. If $z^{\prime}\!\in\!O(W)\cap T(\tilde{X})$, then $z\!\subseteq\!W$ and therefore $z^{\prime}\!\cap\!(C\!\times\!\{g(X)\})\!\subseteq\! V\!\times\!\{g(X)\}$, that is, if $d'=(j_{\hat{X}})^{-1}(z^{\prime})$, then $d'\subseteq V$. This means that $d'\in U$. Hence, $(j_{\hat{X}})^{-1}(O(W))$ $\bigcap T(\tilde{X})\subseteq U$ and the map $(j_{\hat{X}})^{-1}$ is continuous. Thus, $(j_{\hat{X}})^{-1}$ is a homeomorphism of $\hat{D}(X)$ onto $T(\tilde{X})$.

Since $D(\tilde{X})$ is a subset of $\hat{D}(X)$ we can consider the restriction $j_{\hat{X}}|_{D(\hat{X})}$ of $j_{\hat{X}}$ onto $D(\tilde{X})$. We set $j_{\hat{X}}=(j_{\hat{X}}|_{D(\hat{X})})\circ(i(\tilde{X}))^{-1}$. Obviously, the map $j_{\hat{X}}$ is a homeomorphism of \tilde{X} into a subset of $T(\tilde{X})$.

If $X\in R_{1}$, then $D(\tilde{X})=\hat{D}(X)$ and, hence, $j_{\hat{X}}=j_{\hat{X}}\circ(i(\tilde{X}))^{-1}$, that is, the map $j_{\hat{X}}$ is a homeomorphism of \tilde{X} onto $T(\tilde{X})$.

Set $i_{X} = j_{\hat{X}}|_{X}$. Hence, the map i_{X} is a homeomorphism of X into $T(\tilde{X})$.

Let X and Y be distinct elements $R_{lc}^{k}(\alpha)$ such that $X \in R_{1}$. There exists an integer $m\in N$ such that $r(q, g(X))=r(q, g(Y))$ for every $0\leq q\leq m$ and $r(m, g(X)) \neq r(m, g(Y))$. It is clear that an element z of T belongs to $T(\tilde{X})$ $\cap T(\tilde{Y})$ if and only if $d\in d(M_{q}(A^{q}_{r(q,g(X))}))$ for some q, $0\leqq q\leq m$. Hence, the subset $T(X)\cap T(Y)$ of T is a compact subset having $type\leq\alpha+k+1$.

Since $(D(\tilde{Y}))_{q}=(\tilde{D}(Y))_{q}$ for every $q\in N$, we have $j_{\mathfrak{F}}((\tilde{D}(Y))_{q})\subseteq j_{\mathfrak{F}}(\tilde{Y})$. . Hence $T(\widetilde{X})\cap T(\widetilde{Y}){\equiv}j_{\hat{X}}(\widetilde{X})\cap j_{\hat{Y}}(\widetilde{Y}),$ that is, property (6) of the theorem is true.

Since for every q, $0 \leq q < m$, there exists an element $e \in EP(\beta(\alpha))$ such that $K\cap d(M_{q}(A^{q}_{r(q_{r}(g(X))}))=d(F(e))$ it follows that the set $i_{X}(X)\cap i_{Y}(Y)$ has $type\leq\alpha$, and locally compact type $\leq \alpha+k$, that is, property (5) of the theorem is true.

Hence, in order to complete the proof of the theorem it is sufficient to prove property (7). For this, since $j_{\hat{X}}(\tilde{X}) = T(\tilde{X})$ if $X \in R_{1}$, it is sufficient to prove that the set $T(\tilde{X})$ is a closed subset of T.

Let $z \in T\diagdown T(\tilde{X})$. If z has the ferm $d(y, m, r)$ for some $m\in N,$ $r\in I(m)$ and $y\!\in\! M_{m}(A_{r}^{\mathfrak{m}}),$ then $g(X)\!\notin\! A_{r}^{\mathfrak{m}}.$ Hence, $z\!\in\!O(U)$ and $O(U)\!\cap\!T(\hat{X})\!=\!\emptyset$, where $U\!=\!$ $U(d(y, m, r), 0)$.

Let $z=\{(a, g)\}\$. There exists an integer $m\in N$ and distinct elements τ and τ_1 of $I(m)$ such that $g\in A_{r}^{m}$ and $g(X)\in A_{r}^{m}$. Then, $z\subseteq C_{g}xA_{r}^{m}$. By Lemma 3.7 case (1), there exists an element W of the set $\hat{U}\cup\hat{V}$ such that $z\subseteq W\subseteq C_{g}xA_{r}^{m}$. Hence, $z \in O(W)$ and $O(W) \cap T(\tilde{X}) = \emptyset$.

Thus, in both cases, the element z has an open neighbourhood which do not intersect the subspace $T(\tilde{X})$. Hence, $T(\tilde{X})$ is closed.

5.4. COROLLARIES. (1) In the family $R_{l}^{k}(\alpha)$ there exists a universal element having the property of α_{l}^{k} -intersections with respect to any subfamily of $R_{l\epsilon}^{k}(\alpha)$ the cardinality of which is less than or equal to the continuum.

(2) For the family $R_{c}^{k}(\alpha)$ there exists a containing space belaining to $R_{lc}^{k}(\alpha)$. (3) For the family $R_{c}^{k}(\alpha)$ there exists a containing continuum having type $\leq \alpha+k+1$ and the property of α_{c}^{k+1} intersections with respect to a fixed subfamily of $R_{c}^{k}(\alpha)$ the cardinality of which is less than or equal to the continuum.

This corollary follows from Theorem 5.3 (See property (6)), Theorem 2.5 and Theorem 3 of $[I_1]$.

In particular, if $k=0$ and since $R^{com}(\alpha)\subseteq R_{c}^{0}(\alpha)$ we have:

There exists a continuum having rim-type $\leq \alpha+1$ which is a containing space for all compacta having rim-type $\leq \alpha$.

(4) In the family $R(\alpha)$ (that is, in the family $R_{lc}^{k}(\alpha)$, where $k=m^{+}(\alpha)-1$) there exists a universal element (See $[I_3]$).

5.5. SOME PROBLEMS. (1) Does there exist a universal element of the family $R_{lc}^{k}(\alpha)$, where $\alpha > 0$ and $k=0, \cdots, m^{+}(\alpha)-1$, having the property of \mathcal{P} intersections with respect to a given subfamily of $R_{lc}^{k}(a)$ the cardinality of which is less than or equal to the continuum if " \mathcal{P} -intersections" means (α) finite intersections, (β) compact α -intersections, (γ) α_{lc}^{n} -intersections, where $n=$ $0, \cdots, k-1$ and (δ) α_{c}^{n} -intersections, where $n=0, \cdots, k$?

(2) Let K be a universal element of the family $R_{lc}^{k}(\alpha)$, where $\alpha = 0, \dots, m^{+}(\alpha)$, and let R_{1} be a fixed subfamily of $R_{l}^{*}(a)$ the cardinality of which is less than or equal to the continuum. Does the space K have the property of (α) finite intersections, (β) compact α -intersections, $(\gamma)\alpha$ -intersections, $(\delta)\alpha_{l}^{n}$ -intersections, where $n = 0, \dots$, and (s) α_{c}^{n} -intersections, where $n = 0, \dots$, with respect to the subfamily R_{1} ?

(3) Are the results and problems of the present paper true if we replace all corresponding famillies of spaces by their *plant part*? (Plane part of a family A is the subfamily consisting of all elements of A admitting an embedding in the plane).

References

- [G-I] D. N. Georgiou and S. D. Iliadis, Containing spaces and a—uniformities Topology, theory and applications II, Colloq. Math. Soc. J. Bolyai 55, North-Holland, Amsterdam, (1992).
- $[I_1]$ S.D. Iliadis, On the rim—type of spaces, Lecture Notes in Mathematics 1060 (1984), pp. 45-54, (Procending of the International Topological Conference, Leningrad, 1982).
- $[I_{2}]$ S.D. Iliadis, Rim-finite spaces and the property of universality, Houston J. of Math., 12-1 (1986), 55-78.
- $[I_{3}]$ S.D. Iliadis, Rational spaces of a given rim-type and the property of universality, Topology Proceedings, ¹¹ (1986), 65-113.
- $[I_4]$ S.D. Iliadis, The rim-type of spaces and the property of universality, Houston J. of Math. 13 (1987), 373-388.
- $[I_{5}]$ S.D. Iliadis, Rational spaces and the property of universality, Fund. Math. 131 (1988), 167-184.
- [I-T] S. D. Iliadis and E. D. Tymcharyn, Compactifications of rational spaces of minimum rim-type, Houston J. of Math. Vol. 17, No. 3, (1991), pp. 311-323.
- [I-Z] S.D. Iliadis and S.S[.] Zafiridon, Rim-scattered spaces and the property of universality, Topology, theory and applications II, Colloq. Math. Soc. J. Bolyai 55, North-Holland, Amsterdam, (1992).
- $[K_{1}]$ K. Kuratowski, Quelques theoremes sur le plongement topologique des espaces. Fund. Math., 30 (1938), 8-13.
- $[K_{2}]$ K. Kuratowski, Topology, Vol. I, New York, 1966.
- [M-S] S. Mazurkiewicz and W. Sierpinski, Contribution a la topologie des ensembles demombrables, Fund. Math., ¹ (1920), 17-27.
- [M-T] J.C. Mayer and E.D. Tymchatyn, Containing spaces for planar rational compacta, Dissertationes Mathematicae, CCC, Warszawa, 1990.
- [N] G. Nöbeling, Über regular-eindimensionale Räume, Math. Ann. 104(1) (1931), 81-91.

Department of Mathematics University of Patras Patras, Greece