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TILTING LATTICES OVER ORDERS ASSOCIATED
WITH SIMPLE MODULES

By

Hisaaki FujiTA and Kenji NISHIDA

Let R be a complete discrete valuation ring with quotient field K and A
a basic R-order in a separable K-algebra, and let e be a primitive idempotent
of 4. In this paper we shall study tilting /-lattices in the form of T=(1—e)A
PTrr(Je) where J is the Jacobson radical of 4 and Tr, is the transpose functor
for A-lattices.

Tilting theory was initiated by Brenner and Butler and its general
theory over artin algebras was given in Happel and Ringel [6] and Bongartz
and has been used and developed by many authors not only in the study
of representations of artin algebras but also in more general situations. Among
them tilting modules arising from suitable simple modules are concrete and
typical ones (see and [5]). While almost all general results in [4] are
reconstructed in the case of orders by Roggenkamp [8], it seems also to be
desirable to provide an order version of such tilting modules and study its

fundamental properties, which is the aim of this paper.

In Section 1, we shall recall some definitions and notation which will be
used throughout the paper. In Section 2, we shall show that T=(1—e)4 P
Try(Je) is a tilting A-lattice if and only if Je is not A-reflexive and Ae is not
isomorphic to a direct summand of the projective cover of Je (Theorem 2.1).
We call such a tilting A-lattice Brenner-Butler type (BB-type for short). We
shall also show that T is a tilting A-lattice of BB-type if and only if T is a
tilting left /-lattice of BB-type and A=End (T) where I'=End«T) (Theorem
2.4). As an application of Theorem 2.1 we shall show that a non-hereditary,
basic tiled R-order of finite global dimension always has tilting lattices of BB-
type (Proposition 2.5). As a special class of BB-type, in Section 3, we shall
introduce the notion of tilting lattices of Auslander-Platzeck-Reiten type (APR-
type for short), which arise from almost split sequences starting from certain
projective modules. It should be noted that in the case of orders we cannot
consider simple projective modules. We shall replace simplicity by injectivity
of its radical. (See Theorem 3.1.) In Section 4, we shall precisely describe the
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categories I, ¥, S and ¢ associated with a tilting A-lattice T (see §1 for
definition) when T is of BB-type. Let T be a tilting A-lattice of BB-type and
put I'=End4T). In general, even if A is of finite representation type and if
T is of APR-type, I’ is not of finite representation type (see or Example
7.2). However, we shall show that whenever T is a tilting left [I-lattice of
APR-type, if A is of finite representation type then so is I (Corollary 4.3).
So, in Section 5, we shall consider when ;T is of APR-type and show that 7T
is of APR-type if and only if the middle term of the almost split sequence
starting from Homg(Je, R) is an injective A-lattice which does not contain
Hompg(Ae, R) as a direct summand (Proposition 5.2). In Section 6, global dimen-

sion of I' is determined when A is of global dimension two and 7 is of APR-
type. Examples are gathered in Section 7.

1. Preliminaries

In this section we shall recall some definitions and notation which will be
used throughout this paper.

Rings are associative with identity. Modules are finitely generated and
unital over a ring, which are usually right modules unless otherwise stated.
For modules M and N, we denote by M|N if M is isomorphic to a direct
summand of N. For a module M over a ring S, pds(M ) (resp. ids(M)) denotes
the projective (resp. injective) dimension of M.

Let 4 be an R-order in a separable K-algebra A where R is a complete
discrete valuation ring with a unique maximal ideal #R and the quotient field
K. J denotes the Jacobson radical of 4 and A=A4/J. A A-module is called a
A-lattice if it is finitely generated free as an R-module. An R-order A is said
to be of finite representation type if the number of isomorphism classes of in-

decomposable A-lattices is finite. A -lattice T is said to be a tilting A-lattice
provided ;

(i) pdaT)=L
(ii) Exti(T, T)=0.
(iii) There exists a short exact sequence of -lattices

0 ‘A \To ‘Tl 0

where T, T,=add(T)={X: X is a direct summand of a finite direct sum of
copies of T}.

We denote the A-dual Hom,(, A) by ( )*¥ and R-dual Homg(, R) by ( )*.
The Morita duality functor for mod-R is denoted by D=Homg(, I,) where I,
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is the minimal injective cogenerator for mod-R. A A-module X is called A-
reflexive if the canonical map X—X*## is an isomorphism. Tr; denotes the
transpose functor between left and right A-lattices. Namely, let Y be a left
or right A-lattice and f: P—Y a projective cover of Y. Then Try(Y)=
Coker(f#). Besides, usual transpose functor is denoted by Tr. Namely, let X

be a left or right 4-module and P, A Py — X — 0 a minimal projective presenta-
tion of X. Then Tr(X)=Coker(g#*). The Auslander-Reiten translate for /-
lattices is denoted by 7. Namely, for a A-lattice X, tX=(Try(X))* and 7' X=
Tro(X*).

We now recall the basic results of tilting theory for orders from [8]. Let
T be a tilting A-lattice and I'=End 7). Then put

g={X: X is a A-lattice and ExtY(T, X)=0},
F={Y:Y is a A-module and Hom, 7, Y )=0},
S={Z: Z is a I'-lattice and ZQrT is R-torsionfree},
G={W: W is a ['-module and WX rT=0}.

THEOREM 1.1 ([8, Theorem 2.8]). i) The functor F=HomT, —) induces

an equivalence between I and S with its inverse —QrT.
it) The functor Ext)(T, —) induces an equivalence between F and Y with

its inverse Torl(—, T).
iii) For every A-lattice X, there exists an exact sequence

0 X' X— X" 0, X'eq and X"€9.

iv) For every ['-lattice Y, there exists an exact sequence

0—Y Y’ Y~ 0, Y'es and Y’eg.

v) T is also a tilting left I'-lattice.
Vi) Endr(rT)EA.

2. Tilting lattices of BB-type

In this section we shall consider an analogue of a result of Brenner and
Butler [5, Theorem IX] for orders. A short exposition of [5, Theorem IX]
can be found in [9, §2].

THEOREM 2.1. Let A be a basic R-order in A, J=rad(A), A=A/], ¢ a
primitive idempotent of A and f: P—Je a projective cover ofJe. Assume that
Je is not projective and put T=(1—e)APTrr(Je). Then T is a tilting A-lattice
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if and only if Je is not A-reflexive and Ae is not isomorphic to a direct summand
of P.
In this case, Je and Tri(Je) are indecomposable.

DEFINITION. A tilting A-lattice T satisfying the conditions of Theorem
2.1 is called BB-type.
The proof of Theorem 2.1 follows from the next two lemmas.

LEMMA 2.2. The following statements are equivalent.
(a) pdA(T)zl.

(b) Je is not A-reflexive.

(¢) Homj(Je, A)=Hom (Ae, A)=ed, canonically.

(d) Exti(Ae, A)=0.

In this case, Je and Trp(Je) are indecomposable.

PROOF. (a) is equivalent to pdTr.(Je))=1. By the exact sequence 0—

(]e)*'f—ﬁP*aTrL(je)—»O, this is equivalent to (Je)* being projective. Since
JeC(Je)¥*C Ae, if Je is not A-reflexive then (Je)**=/e, hence (Je)¥=e,
which is projective. If (Je)* is projective and if Je is /A-reflexive then Je=
(Je)** is projective, which contradicts to the assumption. Thus (a), (b) and (¢)
are equivalent. Apply ( )* to 0—Je— Ade— A2—0. Then we obtain an exact
sequence

0=(A&)* —> (Ae)* (Je)* Exti(de, A)—> 0.

Hence (c) is equivalent to (d). It follows from (d) and [1, Chapter I, Lemma
9.17 that Je and hence Tr.(Je) are indecomposable.

LEMMA 2.3. If the conditions of Lemma 2.2 hold then the following state-
ments are equivalent.

(a) Exti(T, T)=0.

(b) Ext)(Tri(Je), Tri(fe)=0.

(¢) Ae is not isomorphic to a direct summand of P.

(d) Exti(4e, A2)=0.

Proor. First we show that Ext}(Tr.(Je), (1—e)4)=0. By Lemma 2.2(c),
we obtain the following exact sequence:
(e) 0 —> (Ae)¥ —> P¥ —> Try(Je)—> 0

Since P and Ae are finitely generated projective, applying Hom(—, (1—e)A)
to (e), we obtain the following commutative diagram with exact rows:
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Hom 4(P#, (1—e)A) — Hom (Ae)*, (1—e)A) = Ext}(Tr.(Je), (1—e)A4) — 0

2 R

(1—e)AQsP (1—e)AR e (1—e) AR 46 — 0

Hence Exti(Trp(Je), (1—e)A)=(1—e) AR A42=0, because A is basic. Thus (a)
and (b) are equivalent. Next apply Hom,(—, Trz(Je)) to (e). Then similarly
we obtain Exti(Trz(Je), Tri(Je)=Tr.(Je)R42. Hence (b) is equivalent to
that e is not isomorphic to a direct summand of P#. This is equivalent to
(¢). The equivalence of (c¢) and (d) is well known. This completes the proof.

THEOREM 2.4. Suppose the same assumptions of Theorem 2.1 and put ['=
End«T). Then T is a tilting A-lattice of BB-type if and only if T isa tilting
left I'-lattice of BB-type and A=Endr(T).

PROOF. Put J'’=rad(") and I'=I"/J’, and let ¢’eI” be the map of the
composition of the projection T—Trz(Je) and the injection Trp(Je)—T. Assume
that 7 is a tilting /-lattice of BB-type. We first claim that Te=Tr.(e’]’).
By Lemma 2.2, we have an exact sequence:

(e) 0—s e pP# Try(Je)—> 0

Applying the functor F to (e) we obtain an exact sequence:
(*) 0—> F(ed)—> F(P#*)—> F(Try(Je)) — ExtY(T, ed)—> 0

Applying —QrT to (x) we obtain a commutative diagram with exact rows

F(P)®rT — F(Tr(JeN®@rT — Ext)(T, e )@, T — 0
R 2
P#

Tr.(Je)RrT 0

so that ExtY(T, eA)® rT=0. Since Try(Je)=Tr(A8é), Ext(T, ed)=Hom (T,
Tro(Je))=Hom (2, A¢) is a division ring, so that (x) is a minimal projective
resolution of a simple I"-module ExtY(T, ed)=~¢’l. Hence we have an exact
sequence :

(e1) 0 e'J’ e'l’ ExtY(T, ed)— 0

Apply —XQrT to (e;). Since ExtY(T, eA)QrT =0, we obtain an exact sequence :
(e) 0—> Torf(ExtY(T, ed), T)—> ¢’ J'QrT —> ' I'QrT —> 0

Since T is R-torsionfree, by (e,) we get an isomorphism Hom (e’ /' QrT, T)=
Hom(e'I’"®rT, T). Thus we obtain a commutative diagram with exact rows:
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0 — Homp(e'J', ) Hom p(F (P#*), I') — Try(e’J') — 0

12 R

0 — Hom(e’/’@rT, T) — Hom«F (P*)QrT, T)

[t R

0 — Hom (Tr.(Je), T) — Hom(P*#, T) — Hom led, T)— 0

Hence Tri(e’J’)=Te. Since T(l—e)= Hom/(1—e)A, T)=Hom((1—e")T, T)=
F'd—e), T=I'Q—e)YPTr(e’]’) is a tilting left I'-lattice of BB-type, because
e’J’ is not projective. This completes the proof.

We end this section with an application of Theorem 2.1 to tiled R-orders
of finite global dimension. For the definitions and elementary properties of
tiled R-orders and their quivers, we refer the reader to and [10].

PROPOSITION 2.5. Let A be a basic tiled R-order in (K), of finite global
dimension and not hereditary. Then there exists a primitive idempotent e of A
such that (1—e)A®Try(Je) is a tilting A-lattice.

PROOF. Let e, ---, e, be the primitive idempotents of /4. Since A is of
finite global dimension, the quiver of A has no loop, i.e., Exti(48,, A2;)=0 for
any e¢; (1=</<n). Suppose that every Je; is A-reflexive (1=/<n). Then
Exti(A4é;, A)+0. Hence, there exists a left A-module E; such that ACE.C
n~'A and E;/A=/Aé,, so that A&; is embedded in A/xA. Since A is of finite
global dimension, 4/xA has finite 4/xA-injective dimension. Let

0— A/sd —> Ey—> -+ —> E;—> 0

be a minimal injective resolution of 4/xA, and let S be a simple A/xA-sub-

module of E,. Then Ext%,.«S, A/ A)#0. Since S is embedded in A/xA, we
obtain an exact sequence

EXttA/,-,A(A/TL'A, A/ﬂ.‘A) —_—> EXtij/,,A(S, /1/71.'/1)——) 0.
Hence Extys(A/mnA, A/mA)+0, so that t=0. This contradicts to 4 being not
hereditary. Thus Theorem 2.1 completes the proof.

3. Tilting lattices of APR-type

In this section we shall introduce the notion of a tilting A-lattice of APR-
type, which arises from a property of an almost split sequence. This is an
order version of the tilting modules first studied in Auslander, Platzeck and

Reiten [2].

THEOREM 3.1. Let e be a primitive idempotent of a basic R-order A and
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put J=rad(A). Then the following statements are equivalent.
(a) (Je)Y*=ed and Je is not projective as a left A-module.
(b) There exists an almost split sequence

0 e 9ZLE ¢ 7 ed)—> 0

such that E is projective.
In this case T=(1—e)APt Y (ed) is a tilting A-lattice of BB-type.

DEFINITION. A tilting /A-lattice T satisfying the conditions of Theorem 3.1

is called APR-type.
The next lemma explains the conditin (a) of Theorem 3.1, which will play
a key role in the proof of the theorem.

LEMMA 3.2. Let e be a primitive idempotent of an R-order A. Then the
following statements are equivalent.

(@) (ef)y*=Ae.

(b) e] is an indecomposable injective A-lattice.

(a’) (Jey*=eA.

(b)) Je is an indecomposable injective left A-lattice.

PROOF. By the exact sequence 0—(eAd)*—(e])*—Aé—0, we can show that
(a) and (b) are equivalent. Next, we show that (a) implies (a’), which will
complete the proof. By (a), we have a commutative diagram with exact rows:

0— (ed)* —> (eJ)¥* —> A6 —> 0

b

0— Je — Ade — Adz—>0

Hence (a’) holds.

PROOF OF THEOREM 3.1. Put P=e¢d and S=eAd/eJ. Assume that (a)(Je)*
=~e/ and that /e is not projective. Then there exists an almost split sequence

¢

(e) 00— P— E—7t'P—0.

Note that 7 !'P=Trpy(P*)=Tr(Je)**=Tri(Je).
We first show that T=(1—e)APTr.(Je) is a tilting A-lattice. By [1,
Chapter I, Lemmas 7.7 and 7.8], we have an exact sequence

0 —> Je —> (Je)¥¥ — Ext%(Tr(Je), 4) —> 0.
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Let P,—P,—Je—0 be a minimal projective presentation of ,/e. Then we have
an exact sequence 00— Try(Je)— P¥—>Tr(Je)—0. Thus Ext%(Tr(Je), A4)=
Exty(Tr.(Je), A)=Ext(z™'P, A)+0, so that Je is not A-reflexive. Consider an
exact sequence of -lattices

00— 77" P—> X —>7'P—> 0.
If it does not split then we have a commutative diagram with exact rows:

0O— ' P— X TP 0

b

0— P E TP 0

Since 77'P is not projective, we have Im fCeJ. By Lemma 3.2, ¢/ is an in-
jective A-lattice. Thus f can be extended to X, which implies that the second
row splits, a contradiction. Therefore Exti(z™'P, +7'P)=0, so that it follows
from Theorem 2.1 and its proof that T is a tilting /-lattice of BB-type.

Next, we show that E is projective. Let f: P’—7 'P be a projective cover
of z7'P and put Y=Ker f. Then we have a commutative diagram with exact
rows:

06—y Eap Ly cp—
(*) hl kl H
0—P2E 2 ip— g

Then by Lemma 3.2, h is surjective, so that it splits, i.e., there is h’': P—Y
such that Ah’=1p. Since T is a tilting A-lattice, P is not a direct summand
of P’. Hence gh’ is not a splitting monomorphism. Hence there exists k’:
E—P’ with k'¢=gh’, so that there is /: v7'P—t7'P with [p=/fk’. Attach the
almost split sequence (e) just above to the diagram () by the maps [, &/, h'.
Then, if / is not surjective then we have a map m: 77'P—E with [=¢m and
hence we have a map a: E—P with a¢p=hh’=1p, a contradiction. Thus [ is
surjective, so that it is an isomorphism. Hence ¢=/"'fk’ factors through P’.
Hence there is £”: E—P’ such that ¢=fk”. Then we have ¢pkk”=¢. Since
¢ is right minimal, 22” is an isomorphism, so that E is projective.

Conversely, assume the condition (b). Then FE is projective. If P|E, then
there exists an irreducible map P—r"'P. Thus ¢ 'P|E, a contradiction, so
that Pf E. By the exact sequence

j
0 — (de)f —> (Je)* —> S —> 0
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we have f: P—(Je)* such that pf: P—S is a projective cover of S. If f is
not a splitting monomorphism, then there is g: E—(Je)* with f=g¢. Thus
we have pg¢d=pf+0, so that 0=pg: E—S and P|E, a contrapiction. There-
fore f is a splitting monomorphism, so that P=(Je)*, because rankz(Ade)=

rankg(eA).

4. The categories 9, ¥, S and &

In this section we shall give a precise description of the categories I, &, S
and ¢ for a tilting lattice of BB-type. Let ¢ be a primitive idempotent of A
and T=(1—e)APTr(Je) a tilting A-lattice of BB-type. Put S=eA/eJ a simple
A-module, I'=End(T), and S=Ext(T, ed). It follows from the proof of
Theorem 2.4 that S is a simple I"-module such that S=e¢’["/e’]’ where J'=

rad(I") and e’ is the map T—Tr.(Je)—-T.

PROPOSITION 4.1. Let T=(1—e)APTrr(Je) be a tilting A-lattice of BB-type.
Then

(a) 9={X: X is a A-lattice with Hom X, S)=0},

(b)) F={Y :Y=S5™ for some integer m=0},

(¢) 8S={Z: Z is a [-lattice with Hom(Z*, D(§)):O}

={Z: Z is a [-lattice with ExtXS, Z)=0},
(d) g={W: W=8™ for some integer n=0}.
Furthermore, we have S=Ext{(T, S)=Exti(T, (Je)*).

PROOF. (a) Since S does not appear in the top of Trr(Je), we have
Hom (T, S)=0. Thus if X=g then Hom/(X, S)=0. Conversely, suppose
Hom/(X, S)=0. Then edf P(X) where P(X) is a projective cover of X.
Hence P(X)=4q, so that X=4.

(b) Let Y=g, i.e., Homy (T, Y)=0 and Y +#0. Then the top of ¥V is a
finite direct sum of copies of S. Note that Y/ is also in ¥. By Lemma 2.3,
we have Exti(S, S)=Ext}(D(S), D(S))=0. Hence the short exact sequence (—
YJ/Y J?*>Y /Y J:>Y /Y J—O0 splits. Hence Y /=0 and Y =S for some positive

integer m.
(c) Let Z be a I'-lattice. We first claim that ExtXS Z)=Hom(Z*, D(S)).

Apply Homp( , Z) and Homp(Z*, ) to the exact sequences
0—e'J —el' -850 and 0— (e'I)*— (e’ ]y — D(S)— 0,

respectively. Then we have a commutative diagram with exact rows:
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0 —> Homp(e'l", Z) — Homr(e’'J’, Z) — ExtKS, Z) —— 0

1 R

0 — Homp(Z*, (¢’")*) — Hom(Z*, (¢’]’)*) — Hom(Z*, D(S)) — 0

Hence ExtXS, Z)~Homp(Z*, D(S)). 1t follows from [8, (2.10)] that Z&S if
and only if ExtNT, Z*)=0. So, since T is a tilting left I'-lattice of BB-type
by Theorem 2.4, (a) completes the proof of (c).

(d) Let Weg. By the category equivalence =g and (a), W=ExtY(T, S™)
for some m=0. Since Ext}(S, S)=0, Homy(e/, S)=0, so that e/J=g by (a).
Hence from the short exact sequence 0—eJ—eA—S—0, we have S=Ext(T, eA)
=Ext(T, S).

Finally, note that Ext(T, (Je)*)=Ext}(T, S) from the exact sequence 0—
(Ae)*—(Je)y*—>S—0. This completes the proof.

COROLLARY 4.2. Let T=(1—e)ADTr(Je) be a tilting A-lattice of APR-
type. Then I={X: X is a A-lattice with eAd ) X}.

PRrROOF. There exists an almost split sequence
00— ed— E —7t%(ed)— 0
such that E is projective. This induces an exact sequence of functors:
0 —> Hom(z"%eA), —) —> Hom(E, —) —> Hom(eA, —)
— Exti(z7%(ed), —)— 0

Then by [1, Chapter II, Proposition 4.4], Ext)(z"'(ed), —) is a simple functor
over the category of /-lattices such that for an indecomposable A-lattice Y,
Exti(z™%eA), Y)+#0 if and only if Y=eA. Hence X=g if and only if ed }t X.

COROLLARY 4.3. Let T=(1—e)APTr(Je) be a tilting A-lattice of BB-type
and a tilting left I'-lattice of APR-type. Then if A is of finite representation
type then so is I.

PrROOF. Put rg={L: L is a left I'-lattice with ExtXT, L)=0}. Since
I=8={L*: L&erg} by [8, (2.10)], rg has only finitely many isomorphism
classes of indecomposable objects. By Corollary 4.2, I'e’ is the only indecom-
posable left I'-lattice outside rg. This completes the proof.

REMARK. When T is a tilting A-lattice of APR-type and A is of finite
representation type, I' is not necessarily of finite representation type. (See
Example 7.2.)
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5. When is 7 of APR-type?

Let T=(1—e)APTr.(Je) be a tilting A-lattice of BB-type. In this section
we shall study when T is a tilting left ['-lattice of APR-type. To this end,
we need a connecting sequence for F((Ae)*)=Homy(T, (Ae)*). Namely, we shall

prove the following.
PROPOSITION 5.1. Let

(%) 0 —> (Je)* —> E —> Try(Je) —> 0

be an almost split sequence starting from (Je)*. Then there is an almost split

sequence of I’-lattices

(k) 0 —> F((Ae)*) —> F(E)—> ']’ —> 0.

PROOF. By the exact sequence 0—(Ae)*—(Je)*—S—0, we have F((Ae)*)=
F((Je)*). Applying F to (x), we have an exact sequcence

)
0— F((Jey*) — F(E)— F(Try(Je)) — Ext(T, (Je)y*) — ExtT, E)—0.

It follows from Proposition 4.1 that Exti(7, (Je)*)=S. Hence Ker d=e’J’ and
we obtain the exact sequence (x*). Since & is surjective, ExtY(T, E)=0, i.e.,
Ec=a. It follows from Proposition 4.1(c) that e¢’J’&S. Hence (xx) does not
split. It follows from the proof of Theorem 2.4 that e’J'=Tr,(Te). Hence
T IF(Ae)*)=Try(F((Aey*)*)=Try(Te)=e’J’. Finally we claim that the exact
sequence (**) belongs to the socle of the left End(F((Ae)*))-module Extf(e’]’,
F((Ade)*)). Take a=rad(Endr(F((Ae)*))) and consider the following pushout
diagram

0 — F((4e)*) --ﬁ—> F(E) > o' ]’ > 0

“l Ll

0 — F((de)*) — X e'J' — 0

where the first row is (xx). Then there exists f<End (4e)*) such that a=
F(f) and that f=f,f, for some f,: (Jey*—(Ade)* where f,: (Ade)y*—(Je)* is the
map induced from the inclusion map Je—de. Since (Ae)* is an injective A-
lattice, there exists g: E—(/e)* such that f,=gi where 7: (Je)*—>E. Thus
a=F(f.f)=F(gif)=F(g)F(if,)=F(g)B, so that the second row splits. This
completes the proof.
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PROPOSITION 5.2. Let T=(1—e)APBTr(Je) be a tilting A-lattice of BB-
type, and let

0—> (Jey* — E —> Try(Je) — 0

be an almost split sequence. Then the following statements are equivalent.
(a) E is an injective A-lattice and (Ae)* f E.
(b) F(E) is an injective I'-lattice.
(c) e’J’ is an injective I'-lattice.
(d) T is a tilting left I'-lattice of APR-type.

PROOF. Let f=/ be a primitive idempotent with f+e and let f'eI" be
the map T—fA—T. Then F(Af)=(Tfy=("f'y*. Hence (a) implies (b).
Conversely assume (b). It is shown in the proof of Proposition 5.1 that F=q.
Hence F(E)eS. Since (I'e’)*&S by Proposition 4.1(c), (I'e’)* f F(E). Hence
by Theorem 1.1(i), (a) holds.

It follows from Theorem 2.4 and Lemma 2.2 that e¢’J’ is an indecoposable
I-lattice. Hence by Theorem 3.1, (¢) and (d) are equivalent.

Let X be a ['-lattice. By Theorem 1.1 and Proposition 4.1 (d) we have an
exact sequence

(e) 0— X—> F(¥)—> §™» 0
where Y= 9. From Proposition 5.1, we have an almost split sequence
(e2) 0 —> F((de)*) —> F(E)—> ']’ —> 0.

Note that by [8, (2.3) (iv)], for any Z= T, ExtH{F(Z), F((Ae)*))=Exty(Z, (Ae)*)
=0 (z=1, 2, ---). Now assume that F(E) is an injective ['-lattice. Then by
(ey), ExtHKX, e’ J)=ExtK X, F((4e)*)). By (e,), we have an exact sequence

0=ExtHF(Y), F((Ae)*)) — ExtH X, F((Ae)*))—»Ext}(§, F({(Ae)y*)) .
On the other hand, by (e,) we have an exact sequence
ExtH{F((Ade)*), F((Ae)*))— ExtHe']’, F((Ae)*)) — ExtHF(E), F((Ae)*))

Since both ends are zero, Ext}(S, F((Ae)*))=Extk(e’J’, F((Ade)*)=0. Hence
ExtH X, ¢’J’)=0. Thus e’J’ is an injective [ -lattice.
Conversely assume that ¢’J’ is an injective ['-lattice. Then using (e,), we

can show that for any Z= T, Ext{F(Z), F(E))=0. By (e,), we have an exact
sequence

0=ExtX{F(Y), F(E)) — ExtNX, F(E)) —> ExtXS, F(E)™ .

Since (a;) is an almost split sequence, applying Hom( , F(E)) to (e;), we obtain
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that Extje’J’, F(E))=0. Hence ExtX(S, F(E))=0 and hence ExtH X, F(E))=0.
This completes the proof.

REMARK. If T is a tilting A-lattice of APR-type then in (a) of Proposition
5.2, we can delete the condition (Ae)*} E. In fact, assume (/Ae)*|E. Then
there is an irreducible map (Trz(Je))*—Ade. Thus (Trz(Je))*|Je. Since Je is
indecomposable, Try(Je)=(Je)*=e, a contradiction.

LEMMA 5.3. Let L be an indecomposable I'-lattice and let f: e’ J'—L be an
irreducible map. Then L=e'l’ or else LES.

Proor. Let LS. Then it follows from Proposition 4.1(c) that by the
exact sequence 0—e’J’ —i»e’]"-e §—0, Homp(e'T", L)=Homp(e’J’, L). Hence
there exists g&Hompp(e’l’, L) such that f=gi. Since f is irreducible, g is a
splitting epimorphism, so that L=e’l".

Decompose E= éEi where E; are indecomposable. It follows from [3,

i=1

6.1 Corollary] that if 4 is of finite representation type then m<4 and when
m=4 one of the E,; is a projective and injective /-lattice.

COROLLARY 5.4. Let T be a tilting A-lattice of APR-type and let A be of
Jfinite representation type and m=3 or 4. Then if E; (1=i<3) and Try(Je) are
not injective A-lattices then I’ is of infinite representation type.

Proor. It follows from Proposition 5.2 that e¢’/’ is not an injective /-
lattice. Hence there is an almost split sequence

00— ¢ J —> éLi@e’F——)r"(e’j’)ﬁO.
i=1

Since F(E;) are not injective [ '-lattices, we obtain that n=3. By Lemma 5.3,
L.eS (1<i<n). Thus none of L; (=1, 2, 3) and ¢’]’ are projective and in-
jective ['-lattices. Hence by [3, 6.1 Corollary], [’ is of infinite representation

type.

6. A remark on global dimension of /[’

Let T be a tilting A-lattice and '’=End7). Then we have gl. dim['<
gl. dim A+1 by [8, (2.13)]. In this section we shall study global dimension of

I’ in our cases.
For a A-lattice X, .£idsX) denotes the /-lattice injective dimension.

Namely, Lid(X)=n<oo if Ext%* (Y, X)=0 for all A-lattices ¥ and Ext%(Z, X)
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#+0 for some A-lattice Z. It is known that £id(X)=pd( X*)=id(X)—1 if
one of them is finite.

PROPOSITION 6.1. Let T=(1—e)APTr.(Je) be a tilting A-lattice of BB-type
and put I'=End(T). If F((Ae)*) is a projective I'-lattice, that is, (Ae)*=
Try(Je) or (Ae)*|(1—e)A, then gl.dim I'<gl.dim A.

ProoF. We first show that for Xe T if L£id,(X)=t then .Lidp(F(X))<t.
By the duality ( )*, we have a minimal injective -lattice resolution

fO ft
(%) 0—> X —> Jg—> s —> I, —> 0.

Suppose that (Ae)*|I, and let p: I,—~(Ade)* be a projection. Then the map
F(P)F(fe): F(I,.,1)—F((Ae)*) splits by assumption. It follows from the category
equivalence =S that pf, also splits. This contradicts to the minimality of
(). Thus (Ade)* )y I, so that F(I,) is an injective [’-lattice by the proof of
Proposition 5.2. On the other hand, for an injective A-lattice I, .Lidr(F(I)£1,
because F(A*)=T* and pdr(T)<1. Since X, I;=9, we obtain an exact sequence
of I'-lattices

0 F(X) F(ly)— -+ —> F(;)— 0.

Therefore, £idr(F(X))<t. Now suppose that gl.dim A=n<co, Then Lid«T)
<n-—1, so that .Lid([)=Lidr(F(T))<n—1. Hence idr(I")<n. Since gl.dim I"
is finite, we have gl.dim I'=id(I")<n. This completes the proof.

When A has global dimension two, gl.dim I’ is completely determined as
follows, provided that 7 is of APR-type.

COROLLARY 6.2. Assume that gl.dim A=2 and that T is of APR-type. Then

@) if (dey*=Try(Je) or (Ae)*|(1—e)A, then gl.dim I'=2, and (b) otherwise,
gl.dim I"=3.

PROOF. (a) follows from Proposition 6.1. (b) It follows from Proposition
5.1 that there exists an almost split sequence
0 — F(Ae)*) —> F(E)—> ¢’ ]’ —> 0.

Since T is a tilting A-lattice of APR-type, E<add((1—e)A), so that F(E) is
projective. Hence, since F((4e)*) is not projective, pdp(§)_>__3. Therefore
gl.dim/’=3 by [8, (2.13)].
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7. Examples

All examples here are tiled R-orders in the full matrix ring (K), for some
n=4. For 1<:<n, let ¢; be the matrix in (K ), such that the (7, 7)-entry is 1
and the others are 0. For an integer m=1, an ideal ™R of R is denoted by = ™.

It is often said that R-orders of global dimension two have a lot of similar
properties as hereditary artin algebras. While such algebras always have APR-
tilts, there is a tiled R-order of global dimension two which does not have
tilting lattices of APR-type. Note also that we have shown in § 2 that every
tiled R-order of finite global dimension has tilting lattices of BB-type.

ExAaMPLE 7.1. Let A be the tiled R-order

R R R R
& R R R
nw? # R R
n® #®* ® R

—t

in (K),. Then gl.dimA=2. By Theorem 3.
have tilting /-lattices of APR-type.

Next we give an R-order 4 with a tilting /-lattice T of APR-type such
that gl.dimA=gl.dim/’=2 where ['=End/(T) and that while A is of finite
representation type, I is not.

, we can verify that 4 does not

ExAMPLE 7.2. Let A be the tiled R-order

R mnmn w =«
t R n n =
T ®# R » =
R R R R =
R R R R R

in (K). Then gl.dimA=2. The Auslander-Reiten quiver of A is given by

”Rn'n'mz\R”R"”, wRRrx,;

~
RRRRR-+?rRrxrzx—» 1| —RrRrxw,~RRRrm,~?RRRRm,-?RRRRR
N AR RRrrm ”
e Rrern RRrrr, ,

identify

R
where 1”? stands for the set {(;) :x,yeR and x=y mod n:} and “p” (“4”) means
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) RrRrer
that it is a projective (injective) A-lattice. Put T=(1—e;)AP I and I'=

wRRrxm
End(T). Since (Jes)*=e;A, T is a tilting A-lattice of APR-type. Hence, it
follows from Corollary 6.2 that gl.dim/’=2. Further, it follows from Corollary
5.4 that I" is of infinite representation type.
We remark that the example in is similar to ours, but in that example
I’ has global dimension three by Corollary 6.2.
The last example provides an R-order A having no tilting -lattices of

APR-type, but it has a tilting A-lattice T of BB-type such that 7T is of APR-
type where I'=End(T).

ExaMPLE 7.3. Let A4 be the tiled R-order

4
]

R n Pt nm
R R = =«
R nm R n =
R R R =
R R R R R

in (K),. Then gl.dim4=3 and A has no tilting A-lattice of APR-type by
Theorem 3.1. Let T=(1—e,)AD(Rrrrx). Then T is a tilting /-lattice of
BB-type. The Auslander-Reiten quiver of A is given by

P X P »
pRﬂ'Rﬂ'ﬂ'i: RrRR=x, : RRRR= :: RRRRRt::Rm"rx/, RreRrx
P ed RRR”’: - - }R”n”nzi \’pRR”“”

RR”““\ pRnngnznziﬂR”"ﬂ mwey
identify

Put I'=End(T). It follows from Proposition 5.2 that 7 is a tilting left /-
lattice of APR-type. Further,

™~
q

[

L

a
8 3 839

~

I
oo R
oo Ry Y
oo A
ook d A
)

and the Auslander-Reiten quiver of [’ is given by
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—~?"RRRRR; <,
_~»?"RRRRm ~ Rrrrrt, _sRrmrm, —?RRrrw

PRRRrrw
7 —
?RRrrm S Rt 3 Ramn'n®;
identify
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