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A REMARK ON ARTIN-SCHREIER CURVES WHOSE
HASSE-WITT MAPS ARE THE ZERO MAPS

By

Susumu IROKAWA and Ryuji SASAKI

1. Introduction

Let X be a complete non-singular algebraic curve over an algebraically
closed field 2 of positive characteristic p. Let F:®x—0Ox be the Frobenius
homomorphism F(a)=a?, and denote the induced p-linear map HYX, Ox)—
HY(X, O0x) again by F, which is called the Hasse-Witt map. The dimension of
the semi-simple subspace H'(X, Ox); of H'(X, Oy) is denoted by ¢(X) and called
the p-rank of a curve X, which is equal to the p-rank of the Jacobian variety
of X.

Let =#: X—Y be a p-cyclic covering of complete non-singular curves over Z.
Then the Deuring-Safarevi¢ formula is the following:

o(X)—14+r=p(c(Y)—1+47r) (1.1)

where » is the number of the ramification points with respect to = (see Subrao
[10], Deuring [3], Safarevi¢ [8]).

An algebraic curve X, which is not birationally equivalent to P!, is called
an Artin-Schreier curve if there is a p-cyclic covering = : X—P!. Then the p-
rank ¢(X) of X is immediately known by the above formula, however the rank
of the Hasse-Witt map is not known. In this article, we shall prove the fol-
lowing.

THEOREM. Let X be an Artin-Schreier curve dejined over an algebraically
closed field k, of positive characteristic p. Then the Hasse-Witt map of X is the
zero map if and only if X is birationally equivalent to the complete non-singular
algeraic curve defined by the equation

yP—y=x'
for some divisor | (122) of p-+1.

The Jacobian variety of a curve X is isomorphic to the product of super-
singular ellitic curves if and only if the Cartier operator is the zero map
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(Nygaard [7]). Since the Cartier operator is the transpose of the Hasse-Witt
map, our theorem gives the Artin-Schreier curves whose Jacobian variety is
isomorphic to the product of super-singular elliptic curves.

2. Basic for H(X, 2%)

Let X be an Artin-Schreier curve, hence there is a p-cyclic coverning
w: X—P'. Let k(X) and k(P') denote the function fields, and we regard k(P?)
as contained in k(X). The fields k(X) and k(P') can be expressed in the fol-
lowing :
k(X)=k(x, y) and k(P')=k(x)
where
yP—y=f(x), f(x)ek(x).

Moreover, we can assume that f(x) satisfies the following conditions:

G(x)
ﬁ(x—_al)el (x_.an)en

(2.1)

where

(1) G(x) is a polynomial in k[x],

(2) e;’s are positive integers prime to p,

3) ai#a; if i1#j and G(a;)#0 for /=1, ---, n,

(4) deg G(x)—(ey+ - +en)=e, is a positive integer relatively prime to p.
Then the points of P! which ramify in = : X— P! are exactly {a,, -, a,, }.
If we denote by P,, ---, P, and P, the points in X lying over a,, ---, &, and oo,
then the divisor of the differential dx on X is given by

div (dx)= 3 (es+1Xp—DIPi=(2p —(ea+1)Xp—1)Ps.. (2.2)
Hence the genus g(X) of X is given by the formula
28(X)—2=deg (div (dx)):i‘:% (st 1) p—1)—2p . 2.3)

In the sequel, for a real number, a, we denote by [a] the largest integer not
exceeding a. Further we denote by |S| the cardinality of a finite set S.
We define finite sets of differentials;

Ho:{yrxbdxl(eo+l)(1)—1)"‘7’90_(b+2)p20 ’

_ 0=<bgLe—2,0r=p—1}
and for each =1, ---, n,
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Hi:{___yrdx l(e;+1)p—1)—re;—ap=0, 1<a<e, 0§r§ﬁ—2}‘-

(x—ay)®

Then we have the following;

LEMMA.

D) 1Hyl= 5 (e—1Xp—1)

1
2) [Hilz—é‘(eri-l)(,b——l)
3) |H0|+|H1|++|Hn|:g<X)
4) LT_L,’I H; forms a basis for H(X, Qx).

PROOF. By the conditions defining the set |H,|, we have

1=7r=0. (2.4)

For each b with 0<b<¢,—2, the number of » satisfying (2.4) is given by
by—e—1)p-—1

€9

Hence we have

b=0

eo-2 eo~2 _b_l _l
Hol =33 plb)= o [ (=201

b=0 eo
Since (p, ey)=1, the set {(e,—1)p, (e,c—2)p, ---, 1-p, 0} gives a complete set of
representatives of Z modulo ¢,Z, hence so does {(¢,—1)p—1, (ep—2)p—1, ---,
1-p—1,0—1}. Therefore we have

-2 ‘e -2
_Q__|_l+ +ﬂ___: 02{
=0

(20 €y €y

(eo—b—1)p—1 _[(eo——b—l)p—l ]}

€o €o

(eo—1)p—1 . €2
€9

=(e0—1) 2 50— Hol.

It follows that

(P 1)eo—1)e—2)
2e,

| Hol=(er— D020
=2i—o<eo—1>{2<eo—1>p—2—<p+1><e0—2>}

=1 (e 1XP—1).

This completes the proof of 1).
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As the equality in 2) is proved in the same way, we shall omit its proof.
3) is a direct consequence of 1), 2) and
As is easily seen, the divisors of the rational functions x, ¥y and x—a; on
X, are given by
div (x)=(x)o—p P,

div (N)=(— J e:Ps,

div (x —a)=p(P;—FPy),

where (x), and (y), are the divisors of zeros of x and y, respectively. It fol-
lows that

y'dx

div <(—_—_x—ai)“

Y=o+ B et 1Xp—D—re—ap) P

+{(eot+1)Xp—1)—re,+(a—2)p} P
and

div (37 x°dx)=r(D+b(x)o+ 3 {(e:+1Xp—1)—7e:} P

+{(eot+1)Xp—1)—re,—(b+2)p} P, .
Thus we see that every element in H; (0<:/=<n) is a holomorphic 1-form. The
elements in Q’Hi are linearly independent over £k, since otherwise [k(x, y):

k(x)] would be smaller than p. Thus, by 3), we get 4).

3. Proof of the theorem

We adopt the same notation as before. Let C: HY(X, 2x)—H%X, 2x) be
the Cartier operator of X. (For the definition and properties of C, we refer
to Cartier [1], [2] and Seshadri [9].) Then it satisfies

C((foP+S1Px+ - +[pa"xP )dx)=fpdx, 3.1
because x is a separable element of 2(x, y) over % and any element f in k(x, y)
can be uniquely written in the form
f=fP+f1Px+ -+ fpPxP7h

Since the Cartier operator is the transpose of the Hasse-Witt map F: H'(X, Ox)
—HYX, Oy), it suffices to determine Artin-Schreier curves whose Cartier operator
is the zero map.

Now we shall prove the “if” part. Let X be the curve defined by

yP—y=x'
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where [ is a divisor of p-+1 and /=2. By theLemmal in the section 2, we can

write a basis for H°(X, Q%) in the following way;

..................

where 0=r<p—(r+1)/I—1 and s,=[I—1—((r+1)/+1)/p]. Then we have

1—2230231; Tt .

Since y"=(y?—x')", we have

C(y™x*dx) :c( )3 (/:)y””"”(—xl)”x” dx)

k=0
1/p

——__—2(2) (__l)h/pyr—hC(xlh+bdx)’

R=0

where (h> is the binomial coefficient. To prove that C is the zero map, it is

sufficient to show
C(xt**dx)=0
for all », b and A satisfying

0<r=p—1, 0=h<r and 0=b<Zs,.

By [(8.1), C(x****dx)+0 if and only if (A+b=—1 (mod p). Suppose there exist

h and b satisfying
0<hsr<p-—1, 0sbss,
and
lh+b=:ip—1

for some :>0. Let p-+1=/m. Then we have

lh+b=i(lm—1)—1=ilm—i—1<ilm
and

. lh+b+1 _I(p—1)+1—-1
1= < <

L.
p p

hence

h<im—1 and /<[-1. (3.2)

If h=im—t, t=1, then »=im—t=h; hence
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b=(t—i—1=8.=Sim

2[1_1_(zm—t+1)l+1

; |si-2.

By [3.2), we have t=1. Then,
Lh-+b<(m—1)+Sim_

e L, imi+1
—(im 1)z+[1 1- 7 }
<@m—W+l—i—2=iml—i—-2
<iml—i—1=ip—1.

This is a contradiction. Thus we have C(x'**°dx)=0.

Next we shall prove the “only if” part. Let X be an Artin-Schreier curve
whose Hasse-Witt map is the zero map; hence the p-rank ¢(X) is zero. Then
by we see that X is defined by an equation

yP—y=[f(x),
where
f(x)=x"4+a, x" '+ - +a,, for n=2 and (n, p)=1.
As above,
Hy={y"x’dx|(es+1)p—1)—re,—(b+2)p =0,

0<b<e,—2, 0<r<p—1}
forms a basis for H% X, Q). Since
C(y"x*dx)=C((y?—f)" x°d x)
s r\1/p e
=3 () (=hreyrre(sratda),

we have
C(frx®dx)=0 3.3)

for all h, » and b satisfying 0ZhA<r<p—1, 0<b<n—2 and

(n+1(p—1)—(b+2)p—rn=0. (3.4)
By with =0, we have
Cldx)=C(xdx)= - =C(x*dx)=0

where s,=[n—1—(n+1)/p]. Since C(x?"'dx)=dx, we must have [n—1—(n+1)/p]
<p—2. It follows that n<p-+1 noticing that (p, n)=1. Assume n<p; hence
n<p—1. Then there exists /=1 such that
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In+1=p<(+Dn-+1.
Again by (p, n)=1, we have

In+1<p=(+1)n—1. (3.5)
Therefore we have

deg (fH)=In,

deg (flxsz>=zn+[n—1—%]:(1-;1);1—3.
Suppose p—1=in-+b, 0=<b=<s;. Then we have f'x’=x?"'+4g(x) where g(x) is
polynomial in 2[x] of degree <p—2; hence we have
C(ftxbdx)=dx .
This contradicts to [3.3) Therefore we have
p—1=Iin+s,+1l=in+n-—-2. (3.6)

By [3.5) and [3.6), we have
p—1=({+1)n—2, i.e. p-Fl={+Dn.

Thus in any case we have
p+1=in 3.7)

for some /=1. Since (n, p)=1, we can write

f=x"+aux'+ - +ao
with /=<n—2 and

fl=xt"+laxt+Evr4 - 4agt. 3.8)
(1) Assume n=3 and /[=2. If 1</<n—2, then
H1
0§n—i—2§n—3=sl:[n---l—ﬁt%:r—}

and
i+{l—Dn+n—i—2=in—2=p—1.

By we have
C(fitxm2dx)=(a;)""?dx=0.
Hence f must be of the form
f(x)=x"4a,.
(2) Assume n=4 and [=1. If 2</<n—2, then
2n+l]
y/

O._<:n——z'—2§n——4=sl=[n—l—
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and
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i+n—i—2=n—2=p—1.

By the same reason as above, we have

f(x)=x"+ax+a,.
(3) If n=2, then we have
f(x)=x%+a,.
(4) If n=3 and /=1, then we have p=2 and
flx)=x*4+a,x+a,.

On the other hand, the curves defined by

are

are

(1]
[2]
(3]
[4]
(5]

[6]
[7]

(8]
[9]

[10]

yP—y=xP*'+ax+b, (a, besk),
isomorphic to each other and all the curves defined by
yP—y=x"+a, (ask),

isomorphic to each other. This completes the proof.
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