ANALYSIS OF THE ACTION OF A PSEUDODIFFERENTIAL OPERATOR OVER $\left(C_{\Omega \mid X}\right)_{T_{M}^{*} X}$

By
Andrea D'Agnolo and Giuseppe Zampieri

Abstract

Let M be a real analytic manifold, $\Omega \subset M$ an open set, X a complexification of M, P a pseudodifferential operator on X.

Using the action of P over holomorphic functions on suitable domains of X, by [B-S], and the theory of representation of microfunctions at the boundary $\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{M}^{*}}^{*}$, by [S-Z], [Z], we show that P defines in a natural manner a sheaf morphism of $\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{M}}^{*}$. Let us note that the hypotheses on $\partial \Omega$ are here weaker than in [K 2] where $\partial \Omega$ is supposed to be analytic.

We also easily prove that P is an isomorphism of $\left(\mathcal{C}_{\Omega_{\mid X}}\right)_{T_{M}^{*} X}$ out of $T_{h}^{*} X \cap$ char (P) (both by composition rule and by non-characteristic deformation).

We shall apply the method of this paper in our forthcoming work on regularity at the boundary for solutions of P (cf. [D'A-Z]).

0. Preliminaries.

Let M be a C^{ω}-manifold, X a complexification of M. We denote by $T^{*} M, T^{*} X$ the cotangent bundles to M, X, and by $T_{H}^{*} X$ the conormal bundle to M in X; in particular we denote by $T_{X}^{*} X$ the zero section of $T^{*} X$. We set

For subsets $S, V \subset X$ one denotes by $C(S, V)$ the normal cone to S along V and by $N(S)$ the normal cone to S in X; these are objects of $T X$ (cf. [K-S]).

We will denote by \mathscr{B}_{M} (resp. $\mathcal{C}_{M \mid X}$) the sheaf of hyperfunctions on M (resp. of microfunctions).

Let Ω be an open subset of M and let $\mathcal{C}_{\Omega: X}$ be the complex of sheaves defined in [S] (cf. also [K 1]). In this paper we shall assume that:
(1) Ω is C^{ω}-convex.
(2) $H^{0}\left(\mathcal{C}_{\Omega_{\mid X}}\right)=\left(C_{\Omega \mid X}\right)_{T_{M}^{*} X}$.
(One can prove that if Ω has a C^{2}-boundary then (1) and (2) are satisfied.)
Let γ be an open subset of $\bar{\Omega} \times{ }_{M} T_{M} X$ with convex conic fibers; a domain $U \subset X$ is said to be an Ω-tuboid with profile γ iff $C(X \backslash U, \bar{\Omega}) \cap \gamma_{1}=\varnothing$ for some open set $\gamma_{1} \subset T X$ with convex conic fibers such that $\bar{\gamma}_{1} \supset \sigma(N(\Omega)), \rho\left(\gamma_{1}\right) \supset \gamma$. Here

$$
T_{M} X \stackrel{\rho}{\longleftarrow} M \times{ }_{X} T X \stackrel{\sigma}{\longleftarrow} T M
$$

are the canonical maps.
If one chooses coordinates $x \in M, z=x+\sqrt{-1} y \in X$ then U is an Ω-tuboid with profile γ iff for every $\gamma^{\prime} \Subset \gamma$ there exists $\varepsilon=\varepsilon_{\gamma^{\prime}}$ such that

$$
U \supset\left\{(x, y) \in \Omega \times_{M} \gamma^{\prime} ;|y|<\varepsilon \operatorname{dist}(x, \partial \Omega) \wedge 1\right\} .
$$

(Here we identify $T_{M} X \cong X$ in local coordinates.)
For example if $\Omega=\left\{x_{1}>0\right\}$ and $\gamma=\bar{\Omega} \times\left\{y_{n}>0\right\}$, the set

$$
U=\left\{(x, y) \in X ; x \in \Omega, y_{n} x_{1}>y^{\prime 2}\right\}
$$

is an Ω-tuboid with profile γ.
We now recall how sections of $\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{M}^{*} X}^{*}$ can be represented as boundary values of holomorphic functions (cf. [S-Z], [Z]).

Take $f \in \pi_{*} \Gamma_{r_{\circ}}\left(\left(C_{\Omega \mid X}\right)_{T_{H}^{*}}^{*}\right)(S), S$ a ball in a local chart $M \cong \boldsymbol{R}^{n}, \pi: T_{M}^{*} X$ $\rightarrow M$ the projection, $\gamma \subset \bar{\Omega} \times{ }_{M} T_{M} X$ open with convex conic fibers over S and with $\pi(\gamma)=S \cap \bar{\Omega}$. Then one can write f as the boundary value $b(F), F \in \mathcal{O}_{X}(U), U$ being both an Ω-tuboid with profile γ and a domain of holomorphy. At this subject we refer the reader to [Z]. Note here that the results of [S-Z], [Z] concerning the representation of the stalks $\left(\pi_{*} \Gamma_{\gamma^{\circ} a}\left(\left(C_{\left.\Omega_{1 X}\right)_{T_{M}}^{*}}\right)\right)_{x}, x \in \pi(\gamma)\right.$, easily extend to global sections over vectors spaces.

For $f \in \Gamma_{\Omega}\left(\mathscr{B}_{M}\right)_{\dot{x}}, \dot{x} \in \partial \Omega$, one denotes by $S S_{\Omega}(f)$ the support of f identified to a section of $\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{M}^{*} X}^{*}$ in $\pi^{-1}(\dot{x})$. On account of the above characterization one proves that given $(\dot{x}, \sqrt{-1} \dot{\eta}) \in T_{M}^{*} X$ one has $(\dot{x}, \sqrt{-1} \dot{\eta}) \notin S S_{\Omega}(f)$ iff $f=$ $\sum b\left(F_{j}\right)$ with F_{j} holomorphic in $U_{j}, U_{j} \Omega$-tuboid whose profile γ_{j} verifies $\sqrt{-1} \dot{\eta}$ $\notin\left(\left(\gamma_{j}\right)_{\dot{x}}\right)^{* a}$.

One also gets the following decomposition of microsupport.
Let $f \in \Gamma_{\Omega}\left(\mathscr{B}_{M}\right)(S)$ and decompose $\dot{\pi}^{-1}(S) \cap S S_{\Omega}(f) \subset \cup_{j} \gamma_{j}^{* a},\left(\left(\gamma_{j}^{* a}\right)_{x}\right.$ closed proper convex $\left.\forall x \in \pi\left(\gamma_{j}\right)=S \cap \bar{\Omega}\right)$. Then one can write $f=\Sigma b\left(F_{j}\right), F_{j} \in \mathcal{O}_{x}\left(U_{j}\right), U_{j}$ Ω-tuboid (of holomorphy) with profile γ_{j}.

Let $P \in \mathcal{E}_{X, t *}$ be a pseudodifferential operator of order m defined in a neighborhood of a point $t^{*} \in \dot{T}_{M}^{*} X$. Fix a system of coordinates near $t^{*}: x=\left(x_{1}, \cdots, x_{n}\right)$ $\in M \cong \boldsymbol{R}^{n}, z=x+\sqrt{-1} y \in X \cong \boldsymbol{C}^{n},(z ; \zeta) \in T^{*} X \cong \boldsymbol{C}^{n} \times \boldsymbol{C}^{n}, \zeta=\xi+\sqrt{-1} \eta,(x ; \sqrt{-1} \eta)$ $\in T_{M}^{*} X \cong \boldsymbol{R}^{n} \times \sqrt{-1} \boldsymbol{R}^{n}, t^{*}=(\dot{x} ; \sqrt{-1} \dot{\eta}), \stackrel{\eta}{\eta}=(0, \cdots, 0,1)$.

One can write the symbol of P as

$$
\sum_{-\infty}^{m} P_{l}(z, \zeta), \quad P_{l} \in \mathcal{O}_{T * X}(\tilde{U} \times \widetilde{W})
$$

$\tilde{U} \times \widetilde{W}$ open subset of $T^{*} X, \widetilde{W} \supset\left\{\zeta:\left|\zeta_{i}\right| \leqq k_{0}\left|\zeta_{n}\right|, i=1, \cdots, n-1\right\}, \tilde{U} \ni \dot{x}, P_{l}$ homogeneous in ζ of degree l,

$$
\sup _{\left(z \in \tilde{U},|\zeta i| \leqslant k_{0}\left|\xi_{n}\right|\right)}|\zeta|^{l}\left|P_{-l}(z, \zeta)\right| \leqq M_{0}^{l+1} l!.
$$

In [B-S] Bony and Schapira have shown that, under these conditions, if one fixes a complex hyperplane $\Sigma=\left\{z:\langle z, \dot{\eta}\rangle=\dot{x}_{n}+\sqrt{-1} \varepsilon\right\}$ it is possible to define an "action" for P over holomorphic functions on suitable domains.

Definition 0.1. Let $k>0$. An open convex subset U of \boldsymbol{C}^{n} is said to be $k-\Sigma$-plat if:

$$
\begin{aligned}
& \forall z \in U, \forall \tilde{z} \in \Sigma \text { such that }\left|z_{n}-\tilde{z}_{n}\right| \geqq k\left|z_{i}-\tilde{z}_{i}\right|, \\
& i=1, \cdots, n-1 \text { we have } \tilde{z} \in U \cap \Sigma .
\end{aligned}
$$

We refer the reader to $[\mathrm{B}-\mathrm{S}]$ for the definition of the operator P_{Σ} over holomorphic functions defined in domains $k_{0}-\Sigma$-plat with diameter $\leqq 1 / M_{0}$.

1. Definition of the action.

Let $P \in \mathcal{E}_{X}(V)$ be a pseudodifferential operator on an open set $V \subset \dot{T}_{M}^{*} X$.
Our aim is to define an action for P over sections of $\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{M}^{*}}$. More precisely, if α is the map

$$
\alpha: \pi^{-1}\left(\Gamma_{\Omega}\left(\mathscr{B}_{M}\right)\right) \longrightarrow\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{M}^{*} X},
$$

we will show how P operates on $\left.\alpha\left(\pi^{-1}\left(\Gamma_{\Omega}\left(\mathscr{B}_{M}\right)\right)\right)\right|_{V}$.
To this end we will proceed in several steps.
First we will make the operator act on cohomology classes of holomorphic functions defined on Ω-tuboids with prescribed profile. Since each germ of $\alpha\left(\pi^{-1}\left(\Gamma_{\Omega}\left(\mathscr{B}_{M}\right)\right)\right)$ is represented as boundary value of a holomorphic function defined on a domain as above we can interpret the previous action as an action over $\left(\alpha\left(\pi^{-1}\left(\Gamma_{\Omega}\left(\mathscr{B}_{M}\right)\right)\right)\right)_{(x, \sqrt{-1} \eta)}$, for every $(x, \sqrt{-1} \eta) \equiv V$.

Finally we will show how P operates on $\left.\alpha\left(\pi^{-1}\left(\Gamma_{\Omega}\left(\mathscr{B}_{M}\right)\right)\right)\right|_{V}$ glueing up the actions over each fiber.

Let $(\dot{x}, \sqrt{-1} \dot{\eta}) \in V$ with $\dot{x} \in \partial \Omega$.
We fix a system of local coordinates so that $\dot{\eta}=(0, \cdots, 0,1), \Omega=\{x ; \rho(x)>0\}$ (where $\rho(x)=x_{1}-\varphi\left(x_{2}, \cdots, x_{n}\right)$ for a convex function φ), and the symbol of P is defined on a set $\tilde{U} \times \tilde{V}$ as in the previous section.

Let

$$
S=\{x ;|x-\dot{x}|<r\},
$$

with $r<1 / M_{0}$ such that $S \subset \tilde{U}$ and let Γ be an open proper convex cone of \boldsymbol{R}^{n} such that

$$
\Gamma^{* a} \subset\left\{\eta ;\left|\eta_{i}\right|<k \eta_{n}, i=1, \cdots, n-1\right\}, k<\frac{k_{0}}{5} .
$$

For $b>0$ let

$$
\begin{equation*}
U=U_{\Gamma . b}=((S \cap \Omega)+\sqrt{-1} \Gamma) \cap\{z ;|y|<b \rho(x)\} \tag{1.1}
\end{equation*}
$$

Let $F \in \mathcal{O}_{X}(U)$; we shall now define how P operates on $f=\alpha(b(F))$.
For $\bar{x} \in \partial \Omega \cap S, \eta \in \Gamma^{* a},|\eta|=1, \nu \in N_{+}$, let

$$
\begin{gathered}
\Sigma=\Sigma_{\bar{x}, \eta, \nu}=\left\{z ;\langle z-\bar{x}, \eta\rangle=\sqrt{-1} \frac{1}{\nu}\right\} \\
\Omega_{\bar{x}}=\bar{x}+\left\{x ; x_{1}>\frac{1}{k}\left|x^{\prime}\right|\right\}
\end{gathered}
$$

let $\rho_{\bar{x}}$ be the function defined by $\Omega_{\bar{x}}=\left\{x ; \rho_{\bar{x}}>0\right\}$. Observe that $\Omega \cap S=\bigcup \bigcup_{\bar{x}} \cap S$ for k small.

Consider

$$
\begin{gathered}
U_{\bar{x}}=U_{\bar{x}, \Gamma, b}=\left(\left(S \cap \Omega_{\bar{x}}\right)+\sqrt{-1} \Gamma\right) \cap\left\{z ;|y|<b \rho_{\bar{x}}(x)\right\}, \\
U_{\bar{x}, \nu}=\left\{z ;\left|z_{n}-\tilde{z}_{n}\right| \geqq k\left|z_{i}-\tilde{z}_{i}\right|, \tilde{z} \in \Sigma_{\bar{x}, \dot{\eta}, \nu} \Longrightarrow \tilde{z} \in U \cap \Sigma_{\bar{x}, \dot{\eta}, \nu}\right\},
\end{gathered}
$$

a $k-\sum_{\bar{x}, \dot{\eta}, \nu}$-plat set.
One can rewrite

$$
U_{\bar{x}, \nu}=\left\{z=\left(z^{\prime}, z_{n}\right) \in X ;\left|z_{n}-\bar{x}_{n}-\frac{\sqrt{-1}}{\nu}\right|<k \operatorname{dist}\left(\left(z^{\prime}, \bar{x}_{n}+\frac{\sqrt{-1}}{\nu}\right), \Sigma_{\bar{x}, \eta, \nu} \backslash U\right)\right\},
$$

and hence deduce at once the convexity of $U_{\bar{x}, \nu}$.
Remark 1.2. $U_{\bar{x}, \nu}$ is $\left(1 / 2\left(k_{0}-k\right)-|\eta-\eta \quad \eta|\right)-\Sigma_{\bar{x}, \eta, \nu, \nu}$-plat (due to $|\eta-\check{\eta}|<k$, $\left.k<k_{0} / 5\right)$ thus $U_{\bar{x}, \nu}$ is $\left(k_{0}-k\right)-\sum_{\bar{x}, \eta, \nu}$-plat and moreover it contains the largest $1 / 2\left(k_{0}-k\right)-\sum_{\bar{x}, \eta, \nu}$-plat set V such that

$$
V \cap \Sigma_{\bar{x}, \eta, \nu}=U_{\bar{x}, \nu} \cap \Sigma_{\bar{x}, \eta, \nu} .
$$

One has
Lemma 1.3. For every $S^{\prime} \Subset S$ there exists $b^{\prime}=b_{s^{\prime}}^{\prime}<b$ and for every $\Gamma^{\prime} \Subset \Gamma$ there exists $b^{\prime \prime}=b_{\Gamma^{\prime \prime}}^{\prime \prime}$ so that for every \bar{x} :
(1) $\bigcup_{\nu}^{\bigcup}\left(U_{\bar{x}, थ} \cap U_{\bar{x}}\right) \supset\left(\Omega_{\bar{x}}+\sqrt{-1} \Gamma\right) \cap\left\{z ; y_{n}<b^{\prime} \rho_{\bar{x}}(x)\right\} \cap B^{\prime}$,
(2) $\bigcup_{\nu}^{\bigcup}\left(U_{\bar{x}, \nu} \cap\left\{z: y_{n}<1 / \nu\right\}\right) \supset\left\{z ; x \in \Omega_{\bar{x}}, y \in-b^{\prime \prime} \rho_{\bar{x}}(x) \hat{\eta}+\Gamma^{\prime}, y_{n}<b^{\prime} \rho_{\bar{x}}(x)\right\} \cap B^{\prime}$, where $B^{\prime}=S^{\prime}+\sqrt{-1} \boldsymbol{R}^{n}$.

Proof. (1) can be easily proved by taking b^{\prime} such that $\bigcup_{\nu}\left(U_{\bar{x}, \nu} \cap U_{\bar{x}}\right) \cap$ $\left\{z ; x \in S^{\prime}, y_{n}<b^{\prime} \rho_{\bar{x}}(x)\right\}$ is a convex set. As for (2) one sees that for some $b^{\prime \prime}$ one has that for every z in the right hand side of (2) there exists ν such that:

$$
\left|w_{n}-z_{n}\right|>k\left|w^{\prime}-z^{\prime}\right|, \quad w \in \sum_{\bar{x}, \hat{\eta}, \nu} \Longrightarrow w \in U_{\bar{x}} \cap \Sigma_{\bar{x}, \bar{\eta}, \nu}=U_{\bar{x}, \nu} .
$$

To this end $b^{\prime \prime}$ has to be chosen small with respect to ε where ε is such that

$$
\Gamma^{\prime * a} \subset\left\{\eta ;\left|\eta^{\prime}\right|<(k-\varepsilon) \eta_{n}\right\} .
$$

In particular $\bigcup_{\nu}\left(U_{\bar{x}, \nu} \cap U_{\bar{x}}\right)$ is a $\Omega_{\bar{x}}$-tuboid with profile $\bar{\Omega}_{\bar{x}}+\sqrt{-1} \Gamma$ and $\bigcup_{\nu}\left(U_{\bar{x}, \nu} \cap\left\{z: y_{n}<1 / \nu\right)\right\}$ is a $\Omega_{\bar{x}}$-tuboid with profile $\bar{\Omega}_{\bar{x}}+\sqrt{-1} R^{n}$.

Remark 1.4. We also observe that ($U_{\bar{x}, \nu+1} \cap U_{\bar{x}, \nu}$) is $k-\Sigma_{x, \eta, \nu-\text { plat and }}$

$$
\left(U_{\bar{x}, \nu+1} \cap U_{\bar{x}, \nu}\right) \cap \Sigma_{\bar{x}, \eta}^{\eta, \nu+1}=\left(U_{\tilde{x}} \cap U_{\bar{x}, \nu}\right) \cap \Sigma_{\bar{x}, \hat{y}, \nu+1}
$$

Set

$$
\tilde{U}_{\bar{x}, \nu}=U_{\bar{x}, \nu} \cap\left\{z ; y \in-b^{\prime \prime} \rho_{\bar{x}}(x) \dot{\eta}+\Gamma^{\prime}, y_{n}<b^{\prime} \rho_{\bar{x}}(x)\right\},
$$

and note that, by a suitable choice of $b^{\prime}, b^{\prime \prime}, \tilde{U}_{\bar{x}, \Perp} \cap B^{\prime}$ and $\bigcup_{\nu} \tilde{U}_{\bar{x}, \nu} \cup B^{\prime}$ are Stein domains (cf. the statement before Remark 1.2). $P_{\sum_{\bar{x}, j, 2,2}} F \in \mathscr{O}_{x}^{\nu}\left(U_{\bar{x}, \nu} \cap U_{\bar{x}}\right)$ as defined in [B-S]. By [B-S, Théorème 2.5.1], and by Remark 1.4, we get

$$
\begin{equation*}
P_{\sum_{\bar{x}, \dot{\eta}, \nu}} F-P_{\sum_{\bar{x}, \dot{\eta}, \nu}} F \in \mathcal{O}_{x}\left(U_{\bar{x}, \nu} \cap U_{\bar{x}, \nu \nu}\right) . \tag{1.5}
\end{equation*}
$$

Put

$$
H_{\nu, \nu^{\prime}}=P_{\sum_{\bar{x} \cdot \frac{\eta}{\eta}, \nu}} F-P_{\sum_{\bar{x}, \eta, \nu^{\prime}}} F ;
$$

these functions satisfy

$$
\begin{aligned}
& H_{\nu, \nu^{\prime}}+H_{\nu^{\prime}, \nu}=0 \\
& H_{\nu, \nu^{\prime}}+H_{\nu^{\prime}, \nu^{\prime \prime}}+H_{\nu^{\prime \prime}, \nu}=0 .
\end{aligned}
$$

Since $H^{1}\left(\cup \tilde{U}_{\bar{x}, \nu \cap} \cap B^{\prime}, \mathcal{O}_{X}\right)=0$ then there exists $G_{\nu} \in \mathcal{O}_{X}\left(\tilde{U}_{\bar{x}, \nu} \cap B^{\prime}\right)$ such that $G_{\nu}-G_{\nu^{\prime}}=\tilde{H}_{\nu, \nu^{\prime}}^{\nu}$ in $\tilde{U}_{\bar{x}, \nu \prime} \cap \tilde{U}_{\bar{x}, \nu^{\prime}} \cap B^{\prime}$.

Summarizing up, to every $F \in \mathcal{O}_{X}(U)$, we can associate a function

$$
\begin{equation*}
P_{\Sigma_{\bar{x}, \hat{y}}} F \in \mathcal{O}_{X}\left(\cup_{\nu} \tilde{U}_{\bar{x}, \nu} \cap U_{\bar{x}} \cap B^{\prime}\right) \tag{1.6}
\end{equation*}
$$

setting

$$
\left.P_{\sum_{\bar{x}, \vec{\eta}}} F\right|_{\tilde{v}_{\bar{x}, \downarrow \sim} \cap U_{\bar{x}} \cap B^{\prime}}=P_{\bar{x}_{\bar{x}, \vec{\eta}, \nu}} F-\left.G_{\nu}\right|_{\tilde{v}_{\bar{x}, \nu} \cap U_{\bar{x}} \cap B^{\prime}} .
$$

This function satisfies

$$
P_{\bar{x}_{\bar{x}, \eta}} F=P_{\bar{x}_{\bar{x}, \eta, \nu}} F \quad \text { in } \quad H_{\bar{X} \backslash U_{\bar{x}}}\left(\tilde{U}_{\bar{x}, \nu \sim} \cap B^{\prime}, \mathcal{O}_{x}\right) \simeq \simeq \frac{\Gamma\left(\tilde{U}_{\bar{x}, \nu} \cap U_{\bar{x}} \cap B^{\prime}, \mathcal{O}_{X}\right)}{\Gamma\left(\tilde{U}_{\bar{x}, \nu} \cap B^{\prime}, \mathcal{O}_{x}\right)} .
$$

Remark 1.7.

(i) Let $\left\{\mu_{\nu}\right\}, \mu_{\nu} \backslash 0$, be another sequence and let $P_{\bar{x}_{\bar{x}, \eta}^{\prime}} F$ be a function defined as in (1.6) (with $1 / \nu$ replaced by μ_{ν}). Similarly as before we get

$$
P_{\Sigma_{\bar{x}, \eta}}^{\prime} F-P_{\sum_{\bar{x}, \eta}} F \in \mathcal{O}_{X}\left(\cup_{\nu}\left(U_{\bar{x}, \nu} \cup U_{\bar{x}, \mu_{\nu}}\right)\right) .
$$

On the other hand, since

$$
N\left(\cup_{\nu}\left(\tilde{U}_{\bar{x}, \nu} \cap \tilde{U}_{\bar{x}, \mu_{\nu}}\right)\right) \cap \sigma\left(\left(S^{\prime} \cap \bar{\Omega}_{\bar{x}}\right) \times_{M} \dot{T} M\right) \neq \varnothing .
$$

then $\alpha\left(b\left(P_{\bar{x}_{\bar{x}, \eta}} F\right)\right)=\alpha\left(b\left(P_{\sum_{\bar{x}, \eta}^{\prime}}^{\prime} F\right)\right)$ in $\pi^{-1}\left(\Omega_{\bar{x}} \cap S^{\prime}\right)$.
(ii) In the same way one proves that $\left.\alpha\left(b\left(P_{\overline{\bar{x}}_{\bar{x}, \eta} F}\right)\right)\right|_{\pi-1\left(\bar{\Omega}_{\bar{x}} \cap S^{\prime}\right)}$ does not depend neither on the choice of the constant b nor on the sets Γ, S (as long as the conditions of Remark 1.2 are satisfied).

And now we consider Ω instead of $\Omega_{\bar{x}}$.
Due to the convexity of Ω we observe that

$$
\hat{U}=\left(\bigcup_{\nu, \bar{x} \in \partial \Omega_{\cap S}}\right) \tilde{U}_{\bar{x}, \nu} \cap B^{\prime}
$$

is still a Stein domain.
Reasoning as before we get
Proposition 1.8. To any $F \in \mathcal{O}_{X}(U)$ we can associate a holomorphic function

$$
P_{\Sigma_{\vartheta}} F \in \mathcal{O}_{X}(\hat{U} \cap U),
$$

such that

$$
P_{\Sigma_{\dot{\eta}}} F=P_{\bar{x}_{\bar{x}, \dot{\eta}}} F \text { in } H_{\bar{X} \backslash \hat{U} \cap U)}\left(\cup_{\nu} \tilde{U}_{\bar{x}, \nu} \cap B^{\prime}, \mathcal{O}_{X}\right) \text {. }
$$

Note that, on the same line as Lemma 1.3, one proves that $\hat{U} \cap U$ is a Ω tuboid with profile $\bar{\Omega}+\sqrt{-1} \Gamma$.

REMARK 1.9. By its very definition it is clear that $\alpha\left(b\left(P_{\left.\left.\Sigma_{\hat{\eta}} F\right)\right)\left.\right|_{\pi^{-1}(W)}}\right.\right.$ (for $W \subset \Omega)$ equals $\left.P_{\sum_{\hat{\eta}}} \alpha(b(F))\right|_{\pi^{-1}(W)}$ defined in [B-S].

The compatibility with the action of P on $\mathcal{C}_{M \mid X}$ is thus assured.
Let $f \in \alpha\left(\pi^{-1} \Gamma_{\Omega}\left(\mathscr{B}_{M}\right)(W), W=S+\sqrt{-1}\right.$ int $\Gamma^{* a}$; on account of the first section we can write $f=b(F), F \in \mathcal{O}_{X}(U), U$ being an Ω-tuboid with profile ($S \cap \bar{\Omega}$) $+\sqrt{-1} \Gamma$, i. e. $\forall S^{\prime} \Subset S, \forall \Gamma^{\prime} \Subset \Gamma, \exists b$ so that $U \supset U^{\prime}$ where

$$
\begin{equation*}
U^{\prime}=\left(\left(S^{\prime} \cap \Omega\right)+\sqrt{-1} \Gamma^{\prime}\right) \cap\{z:|y|<b \rho(x)\}, \tag{1.10}
\end{equation*}
$$

According to Proposition 1.8 we can define an holomorphic function $P_{S_{\eta}}\left(\left.F\right|_{U^{\prime}}\right)$ and by Remark $\left.1.7 P_{\Gamma_{\eta}^{(}}\left(\left.F\right|_{U^{\prime}}\right)\right|_{S+\sqrt{-1}}$ int $\Gamma^{*} a$ does not depend on U^{\prime}.

It does not depend on the choice of the representative F neither. In fact if $\left.b\left(F-F^{\prime}\right)\right|_{w}=0$ then $b\left(F-F^{\prime}\right)=\Sigma_{j} b\left(F_{j}\right), F_{j} \in \mathcal{O}_{X}\left(U_{j}^{\prime}\right), U_{j}^{\prime}=\left(\left(S^{\prime} \cap \Omega\right)+\sqrt{-1} \Gamma_{j}^{\prime}\right) \cap$ $\left\{z:|y|<b_{j} \rho(x)\right\}$ where $\Gamma_{j}^{\prime} \Subset \Gamma_{j}$ with $\Gamma_{j}^{*} \cap$ int $\Gamma^{*}=\varnothing$.

Reasoning as in the proof of Proposition 1.8 we get

$$
P_{\Sigma_{i}} F_{j} \in \mathcal{O}_{X}\left(U_{j} \cap\left\{z:|y|<b_{j}^{\prime} \rho(x)\right\} \cap\left\{S^{\prime \prime}+\sqrt{-1} R^{n}\right)\right)
$$

and thus

$$
\left.b\left(P_{\Sigma_{\hat{\eta}}} F-P_{\Sigma_{\grave{\eta}}} F^{\prime}\right)\right|_{S^{\prime \prime}+\sqrt{-1}\left(R^{n} \backslash\left(\cup_{j} r_{j}^{\prime} * a\right)\right)}=0 ;
$$

for $S^{\prime \prime}+\sqrt{-1}\left(\boldsymbol{R}^{n} \backslash\left(\cup_{j} \Gamma_{j}^{\prime * a}\right)\right) \nearrow W$ we have thus given an action of P over f.
Remark 1.11. By similar arguments as before one gets:

$$
S S_{\Omega} b\left(P_{\Sigma_{\eta}} F\right) \subset S S_{\Omega} b(F)
$$

And now we have to define an action over generic sections.
Given an open subset $V^{\prime} \subset V \cap \pi^{-1}(\bar{\Omega})$ and $f \in \alpha\left(\pi^{-1} \Gamma_{\Omega}\left(\mathscr{B}_{M}\right)\right)\left(V^{\prime}\right)$, we can find an open covering $\left\{V_{t *}\right\}_{t * \in V^{\prime}}, V_{t *}=S_{t *}+\sqrt{-1} \operatorname{int}\left(\Gamma_{t *}\right)^{* a}$ so that $\left.f\right|_{V_{t^{*}}}=b\left(F_{t *}\right)$ with $F_{t *} \in \mathcal{O}_{X}\left(U_{t *}^{\prime}\right)\left(U_{t *}^{\prime}\right.$ as in (1.1) with S, Γ replaced by $S_{t *}^{\prime}, \Gamma_{t *}^{\prime}$ respectively). Let $t^{* i}=\left(x^{i}, \sqrt{-1} \eta^{i}\right) i=1,2$; then

Proposition 1.12. $\alpha\left(b\left(P_{\Sigma_{\eta_{1}}} F_{t * 1}\right)-b\left(P_{\Sigma_{\eta^{2}}} F_{t * 2}\right)\right)=0$ in $V_{t * 1} \cap V_{t * 2}$.
Proof. Let $t^{* 3} \in V_{t * 1} \cap V_{t * 2}$ then it is enough to show that

$$
\begin{equation*}
\alpha\left(b\left(P_{\Sigma_{\eta 1}} F_{t * 1}\right)\right)_{t * 3}=\alpha\left(b\left(P_{\Sigma_{\eta 3}} F_{t * 3}\right)\right)_{t * 3} . \tag{1.13}
\end{equation*}
$$

First notice that it is possible to take $F_{t * 1}=F_{t * 3}$ due to Remark 1.7.
If $\eta^{1}=\eta^{3}$ (1.13) is then obvious.
If $x^{1}=x^{3}$ (1.13) follows from Remark 1.2, [B-S, Remarque 2.5.3] and from an analogous of Lemma 1.3.

We have then shown that the sections $\left\{b\left(P_{\Sigma_{\eta}} F_{t * *}\right)\right\}_{t *}$ define a section of $\left(\mathcal{C}_{\Omega_{X X}}\right)_{T_{M}^{*} X}\left(V^{\prime}\right)$ which, of course, will be denoted by Pf.

Let V be an open set of $\dot{T}_{M}^{*} X$ with proper convex hull, and let $f \in$ $\Gamma\left(V^{\prime}, \alpha\left(\pi_{*}^{-1}\left(\Gamma_{\Omega} \mathscr{B}_{M}\right)\right)\right), V^{\prime} \subset V$.

Then we can represent $f=\left.\alpha(b(F))\right|_{V^{\prime}}, F \in \mathcal{O}_{X}\left(U^{\prime}\right)$ where U^{\prime} is a Ω-tuboid with profile $\operatorname{int}\left(V^{\prime * a}\right)$ (in fact one can find $\tilde{f} \in \mathscr{B}_{M}$ such that $S S \tilde{f} \subset \bar{V}^{\prime}$ and $\left.\alpha\left(\left.\tilde{f}\right|_{\Omega}\right)\right|_{V^{\prime}}-f=0$.)

Summarizing up the above results one gets:
Theorem 1.14. Let $P \in \mathcal{E}_{X}(V)$ then P is a sheaf endomorphism of $\left.\alpha\left(\pi^{-1} \Gamma_{\Omega} \mathscr{B}_{M}\right)\right|_{V}$.
Corollary 1.15. Let $\partial \Omega$ be analytic; then P is a sheaf endomorphism of
$\left.\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{M}^{*} X}\right|_{V}$.
Proof. Since $\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{M}^{*} X}$ is conically flabby (cf. [S-Z]), then $\alpha: \pi^{-1} \Gamma_{\Omega} \mathcal{B}_{M} \rightarrow$ $\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{M}^{*}}^{*}$ is surjective.

Remark 1.16. In describing the action of P over $\mathcal{C}_{M \mid X}$ one can replace the language of P_{Σ} by the language of the γ-topology (cf. [K-S]).

Thus let X_{γ} be the space X endowed with the γ-topology and $\phi_{\gamma}: X \rightarrow X_{\gamma}$ the canonical map. Let $\Omega_{1} \supset \Omega_{0}$ be two γ-open sets and set $V=\operatorname{int}\left(\Omega_{1} \backslash \Omega_{0}\right) \times$ int $\gamma^{* a}$. We have:
(1) $\mathcal{O}_{X} \cong \phi_{r}^{-1} \boldsymbol{R} \Gamma_{\Omega_{1}, \Omega_{0}} \boldsymbol{R} \phi_{T *} \mathcal{O}_{X}$ in $D^{b}(X ; V)$;
(2) $\phi_{\gamma}^{-1} \boldsymbol{R} \Gamma_{\Omega_{1}, \Omega_{0}} \boldsymbol{R} \phi_{\gamma_{*}} O_{X}$ is a $\Gamma\left(D \times\right.$ int $\left.\gamma^{* a}, \mathcal{E}_{X}\right)$-module ($D \subset X$ a γ-round set). By applying μ hom $\left(\mathcal{Z}_{M}, \cdot\right) \otimes \omega_{M \mid X}[n]$ to both sides of (1) one gets the conclusion.

According to a private communication by P. Schapira the same procedure could be applied for Z_{M} replaced by Z_{Ω}.

2. Elliptic regularity at the boundary.

Let P, Q be pseudodifferential operators in an open set $V \subset \dot{T}_{M}^{*} X$ and let $P \cdot Q$ denote their formal composition (cf. [B-S]).

If Q has negative order we have by [B-S, Proposition 2.1.2] that

$$
P_{\sum_{\bar{x}, \eta}^{\eta}, \nu} \circ Q_{\Sigma_{x, v-1 \eta, \nu}}=(P \cdot Q)_{\sum_{\bar{x}, \eta, \nu}} \quad \text { in } \mathcal{O}_{X}
$$

and hence

$$
\begin{equation*}
P \cdot Q=P \circ Q, \quad \text { in }\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{M}^{*} X} . \tag{2.1}
\end{equation*}
$$

In particular if P is a pseudodifferential operator of positive order whose principal symbol p never vanishes on V, we get:

$$
\begin{equation*}
P \text { is an isomorphism of } \alpha\left(\pi^{-1} \Gamma_{\Omega}\left(\mathscr{S}_{M}\right)\right)_{V} . \tag{2.2}
\end{equation*}
$$

To this end one only needs to write $1=P \cdot P^{-1}$ at any $t^{*} \in V$ and use (2.1) which is valid since P^{-1} is of negative order.

We remark that it would have been possible to get (2.2) without using (2.1).
Assume $p \neq 0$ in $\{z:|z-\bar{x}|<r\} \times\left\{\zeta:\left|\zeta_{i}\right| \leqq k_{1}\left|\zeta_{n}\right|\right\}$. Take $k<$ int $\left\{k_{0} / 3, k_{1}\right\}$ and let $S, \Gamma, U_{\bar{x}}, U_{\bar{x}, \nu}$ be defined as in section 1. Recall in particular that $U_{\bar{x}, \nu}$ and $U_{\bar{x}, \nu} \cap U$ are $k-\Sigma_{\bar{x}, \eta, \nu}-$ plat, and recall that $N\left(\cup_{\nu} U_{\bar{x}, \nu}\right) \cap \sigma\left(\left(S^{\prime} \cap \bar{\Omega}\right) \times{ }_{M} \dot{T} M\right)$ $\neq \varnothing$.
(i) For every $F \in \mathcal{O}_{X}(U)$ there exists $G_{\bar{x}, \nu} \in \mathcal{O}_{X}\left(U_{\bar{x}} \cap U_{\bar{x}, \nu}\right)$ so that $P_{\sum_{\bar{x}, \hat{\eta}, \nu}} G_{\bar{x}, \nu}$ $=F$. In fact this solution exists in a neighborhood of $\sum_{\bar{x}, \eta, \nu} \cap U_{\bar{x}}$ by Cauchy-Kovalevsky's theorem and then it extends to $U_{\bar{x}} \cap U_{\bar{x}, \nu}$ by [B-S,

Théorème 2.5.4].
(ii) By a similar argument

$$
P_{\bar{x}_{\bar{x}, y, \nu}, \nu} G_{\bar{x}, \nu}-P_{\sum_{\bar{x}, \bar{\eta}, \nu}} G_{\bar{x}, \nu^{\prime}}=0 \text { implies } G_{\bar{x}, \nu}-G_{\bar{x}, \nu^{\prime}} \in \mathcal{O}_{X}\left(U_{\bar{x}, \nu} \cap U_{\bar{x}, \nu} \cap B^{\prime}\right)
$$

Reasoning as in the first section we can find a function $G \in \mathcal{O}_{x}\left(U \cap B^{\prime} \cap\{z:|y|\right.$ $\left.\left.<b^{\prime} \rho(x)\right\}\right)$ such that $G-G_{\bar{x}, \nu} \in \mathcal{O}_{X}\left(\tilde{U}_{\bar{x}, \nu} \cap B^{\prime}\right)$. In particular

$$
\left.P_{\Sigma_{\bar{x}, \eta}} G-F \in \mathcal{O}_{X}\left(\left(\cup_{,}, \tilde{U}_{\bar{x}, v}\right)\right)_{1} B^{\prime}\right),
$$

with $\tilde{U}_{\bar{x}, \nu}$ defined as in Remark 1.4.
(iii) If $G \in \mathcal{O}_{X}(U), \quad P_{\Sigma_{\bar{x}, \eta}} G \in \mathcal{O}_{X}\left(U^{\prime}\right), U^{\prime} \supset\left(\left(S^{\prime} \cap \Omega\right)+\sqrt{\left.-1 \Gamma^{\prime}\right) \cap\{z:|y|<}\right.$ $\left.b^{\prime} \rho(x)\right\}$ with $\Gamma^{\prime} \supset \Gamma$, then $G \in \mathcal{O}_{X}\left(U^{\prime}\right)$. (Once more U^{\prime} is chosen, without loss of generality, so that $U^{\prime} \cap U_{\bar{x}, \nu}$ is $k-\Sigma_{\bar{x}, \hat{\eta}, \nu}-$ plat.)
Collecting these results (for different S, Γ), one gets (2.2).
In fact let $g \in \Gamma_{\bar{S}+\sqrt{-1} \bar{I}}\left(S \times_{M} T_{M}^{*} X,\left(\mathcal{C}_{\Omega_{X} X}\right)_{T_{M}^{*}}^{*} X\right), I=$ int $\Gamma^{* a}$ (with S, Γ as above) and let $P g=0$.

Hence $g=b(G), G \in \mathcal{O}_{X}\left(U^{\prime}\right)\left(U^{\prime}\right.$ as in (1.12) for $\left.S^{\prime} \Subset S, \Gamma^{\prime} \Subset \Gamma\right), P g=\sum_{j} b\left(F_{j}\right)$, $F_{j} \in \mathcal{O}_{X}\left(U_{j}^{\prime}\right)\left(U_{j}^{\prime}\right.$ as in (1.12) with $\left.S^{\prime} \Subset S, \Gamma_{j}^{\prime} \Subset \Gamma_{j}, \Gamma_{j}^{* a} \cap I=\varnothing\right)$.

One solves

$$
P_{\Sigma_{j}} G_{j}=F_{j}, \quad G_{j} \in \mathcal{O}_{X}\left(U_{j}^{\prime} \cap\left\{z:|y|<b_{j}^{\prime} \rho(x)\right\} \cap B^{\prime}\right)
$$

by (i)-(ii). This gives $b\left(P_{\Sigma_{\hat{\eta}}}\left(G-\Sigma_{j} G_{j}\right)\right)=0$; hence by (iii) (applied with Γ^{\prime} $=\boldsymbol{R}^{n}$) we get:

$$
b\left(G-\sum_{j} G_{j}\right)=0
$$

thus (2.2) is injective.
By (i)-(ii) the surjectivity follows at once.

References

[B-I] J. Bros and D. Iagolnitzer, Tuböides dans C^{n} et généralisation d'un théorème de Cartan et Grauert, Ann. Inst. Fourier, Grenoble 26 (1976), 49-72.
[B-S] J.-M. Bony and P. Schapia, Propagation des singularités analytiques pour les solutions des équations aur dérivés partielles, Ann. Inst. Fourier, Grenoble 26, 1 (1976), 81-140.
[D'A-Z] A. D'Agnolo and G. Zampieri, Continuation of holomorphic solutions of microhyperbolic differential equations, Rendicontidi Roma, To appear.
[K 1] K. Kataoka, Microlocal theory of boundary value problem I, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 355-399; II, 28 (1981), $31-56$.
[K 2] K, Kataoka, On the theory of Radon transformation of hyperfunctions, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 331-413,
[K-S] M. Kashiwara and P. Schapira, Microlocal study of sheaves, Asterisque 128 (1985).
[S] P. Schapira, Front d'onde analytique au bord I, C. R. Acad. Sci. Paris Sér. I Math. 302, 10 (1986), 383-386; Sém. E. D. P. École Polytechnique Exp. 13 (1986).
[S-K-K] M. Sato, M. Kashiwara and T. Kawai, Hyperfunctions and pseudo-differential equations, Lecture Notes in Math., Springer-Verlag 287 (1973), 265-529.
[S-Z] P. Schapira and G. Zampieri, Microfunctions at the boundary and mild microfunctions, Publ. RIMS, Kyoto Univ. 24 (1988), 495-503.
[Z] G. Zampieri, Tuboids of \boldsymbol{C}^{n} with cone property and domains of holomorphy, To appear. Proc. Japan Academy (1991)

Dipartimento di matematica pura ed applicata, via Belzoni 7,
35131 Padova, Italy

