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A CASE OF EXTENSIONS OF GROUP SCHEMES
OVER A DISCRETE VALUATION RING

By

Tsutomu SEKIGUCHI* and Noriyuki Suwa

Introduction.

Let X—Y be a cyclic covering of degree m of normal varieties over a field
k. If m is prime to the characteristic of Z and % contains all the m-th roots
of unity, the Kummer theory asserts that the covering X—Y is given by a
cartesian square:

X -eeeees >Gm 2
0
br

where 6 is the m-th power map and f is a rational map of Y to the multipli-
cative group G, .. On the other hand, if m=p" and p=char.%2>0, the Witt-
Artin-Schreier theory asserts that the covering X—Y is given by a cartesian
square :

X e >Wa
P
S,

where @(x)=x?—x and g is a rational map of Y to the Witt group W, ..
Therefore, if one wishes to deform a cyclic covering X—Y of degree p™ over
a field k2 of characteristic p>0 to a cyclic covering of degree p" over a field
- of characteristic 0, it seems natural to consider the deformations of the Witt-

Artin-Schereier exact sequence

P
0-—>(Z/P")k "—>W'n,k _“>Wn,k —>0

over a field £ of characteristic »>0 to an exact sequence of Kummer type
1—> prpn. gk —> (Gn x)" —> (Gm,g)" —>1

over a field K of characteristic 0. From this point of view, it seems most
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appropriate to consider the deformations of Witt groups to tori as the first step.
In the one-dimensional case, the deformations of G, to G,, are completely de-
termined by [9], and later independently by [3]. In fact, every such deforma-
tion is given by a group scheme &®¥=Spec A[x, 1/(Ax+1)] over a discrete
valuation ring A with a group law (x, y)—Axy-+x+7y, where 4 is a non-zero
element of the maximal ideal of A. If we take A=Z,[{] with a primitive p-th
root { of unity, and 4={—1, then the exact sequence

0 —>(Z/p)a —> 4P —> g4 —> 0

where ¢ is the A-homomorphism defined by x— {(Ax+1)?—1}/4?, gives the
unique deformation of the Artin-Schreier sequence to the Kummer sequence.
This exact sequence is first noticed by and [4], and later independently by
[8]. In [3], the above sequence is used to lift an automorphism of order p of
a smooth projective curve over an algebraically closed field of characteristic p
to one over a field of characteristic 0.

In the higher dimensional cases, some examples of deformations of Witt
groups to tori have been illustrated by [4]. Later has generalized the
argument of and has developed a method for computing Exti(g®, ¢®),
the group of extensions of ¢¥ by ¢®. Furthermore, has explicitly com-
puted Ext}(¢®, ¢) under the condition that g¢|p (cf. Ex. 4.1).

In this paper, we shall compute the group Exti(g‘®, ¢®) for arbitrary &,
£#+0 of the maximal ideal m of A, developing the argument of and analyz-
ing such an extension by means of successive Néron blow-ups from a torus.
Our main result is as follows:

THEOREM (cf. 2.3, Cor. 3.5 and Th. 3.10). Let A be a discrete valuation
ring dominating Z . Let A, pp be non-zero elements of the maximal ideal m of
A with the order of p=m. Then every extension & of G* by @ is given by
a group S-scheme

&=Spec A[ X,, X\, 1/(AX,+1), 1/(pX:+ F(X,))]
with the law of multiplication
Xo —> 2 X @ X+ XoQ1+1K Xo,
Xy — p X,QXi+ XiQF (Xo)+ F(X0)Q X,

+%[F<X0>®F<Xo>—F<1X0®X0+Xo®1+1®XO>J,

where F(X)=1+i§ c: X' is a polynomial with c;=wm satisfying the equalities
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for each r=0.

It will be noted that our method is applicable also to the case 4=0,1 or
#=0, 1. In particular, we recover the work of Weisfeiler when A=0 and
¢ is a non-zero element of m.

We now explain briefly the plan of this paper. In §1, some general facts
are discussed, concerning the Néron blow-ups. In §2, we analyze an extension
of ¢» by ¢® by means of successive Néron blow-ups starting from a torus.
Our main theorem is proven in §3; after establishing an analogue of Lazard’s
comparison lemma [2], we determine step by step the polynomials F(X), satisfy-
ing the condition F(X)F(Y)=F(AXY +X+4Y ) mod.x. Some examples concerning
the extensions are given in §4. We conclude this article by noting that a
smooth affine 2-dimensional S-group scheme is not necessarily obtained by an
extension of smooth l-dimensional S-group schemes, even though its generic
fibre and its special fibre are extensions of smooth 1-dimensional group schemes

each.

Notation.

Throughout the article, A denotes a discrete valuation ring and m (resp. K,
k) denotes the maximal ideal (resp. the fraction field, resp. the residue field) of
A, if there are no restrictions. We denote by v the valuation on A and by 7 a
uniformizing parameter of A. We put S=Spec A.

An S-group (resp. an S-homomorphism) means a group S-scheme of finite type
(resp. an S-morphism between group S-schemes, compatible with the group
structures).

For an S-group G, we denote by Gx(resp. G) the generic (resp. closed)
fibre of G over S. Moreover, when G is affine, we denote by A[G](resp.
K[G], resp. k[G]) the coordinate ring of G (resp. Gk, resp. G;) and by A[G]*
(resp. K[G]*, resp. k[G]*) the augmentation ideal of A[G](resp. K[G], resp.
RLG]).

For non-negative integers =,/ with n=/, we denote by (7;) the number

nl

=D In particular (8>___1.
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1. Néron blow-ups

Néron blow-ups and &¢*-#: P
Exti(g®, gm)

Examples
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1. Nérons blow-ups

We recall first Néron blow-ups. For details, see [1], [9].

1.1. Let G be a flat affine S-group and H a closed k-subgroup of G,. Let
J(H) be the inverse image in A[G] of the defining ideal of H in 2[G]. Then
the structure of Hopf algebra on K[G] induces a structure of Hopf A-algebra
on the A-subalgebra A[z-'J(H)] of K[G]. Then G¥=Spec A[z-'J(H)] is a
flat affine S-group. The injection A[GIJCA[G#]=A[x"*J(H)] induces an S-
homomorphism G¥—G. By the definition, the generic fiber (G#)x—Gg is an
isomorphism. We call the S-group G#¥ or the canonical S-homomorphism G#—
G the Néron blow-up of H in G.

REMARK 1.2. It is readily seen that ALG#]*=K[G]*NA[G*].

PROPOSITION 1.3. Let ¢: G’—G be an S-homomorphism of flat affine S-
groups and let H'(resp. H) be a closed k-subgroup of Gy (resp. G,) such that
o:(H')TH. Then there exists canonically an S-homomorphism ¢=¢H ¥ G'H
—GH such that $x=¢x: Gx—GCGk.

PROOF. Let a: G’#'->G’ denote the canonical S-homomorphism. By the
assumption, the image of (¢ea),: (G’'#'),—G, is contained in H. Therefore, by
the universal property of Néron blow-ups ([9], Prop. 1.2), we get a unique

homomorphism ¢ which makes the diagram

Glil' ¢ » GH

l 1

c 2% .¢
commutative.

PROPOSITION 1.4, Let G be a flat affine S-group, G’ a closed flat S-subgroup
of G, H a closed k-subgroup of G, and H'=HNG,. Then the canonical homo-
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morphism g=@H=@H" M G'H' -G¥ induced by the inclusion G'—G is a closed
immersion.

PRrROOF. Since H'=HNG., J(H') is generated by J(H) in A[G’]. Let =,
f1, -+, fr be generators of J(H) and g;(1=</<r) be the image of f; in A[G’].
Then
A[G'*' ]=A[G' (=g, =+, =g +],

ALGHT1=ALG][x"'fy, -+, =7 f -],

Hence the canonical surjection K[G]— K[G’] induces a surjection A[G¥]—
A[G'H'],

REMARK 1.5. (1) The defining ideal of G’#' in G# is given by J(G')xN
A[GH].
(2) In general, the square

¢

GIII' —_— GH

l l

¢

—_—

is not cartesian.

PROPOSITION 1.6. Let G be a flat affine S-group, H a closed k-subgroup of
G: and G=G¥ the Néron blow-up. Then, by taking the flat closure, we get
bijections among the closed K-subgroups of G x=Gx, the closed flat S-subgroups
of G and the closed flat S-subgroups of G.

ProoOF. This is a direct consequence of EGA IV, Prop. 2.8.5.
Combining Proposition 1.5 and Proposition 1.6, we obtain the following
assertion.

COROLLARY 1.7. Let G be a flat affine S-group and H a closed k-subgroup
of Gr. Let G’ be a closed flat S-subgroup of G and G’ the flat closure of Gk
in G=GH. Then G' is the Néron blow-up of HNG; in G'.

PROPOSITION 1.8. Let G be a flat affine S-group, HiDH closed k-subgroups
of Gi and H the inverse image of H in (G¥1),. Then there exists a canonical
isomorphism (GH1)YA~GH.

Proor. Take generators =, f1, *** fr, 81, =+, & Of J(H) such that J(H,)
is generated by =, f,, -+, f». Since the square
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H (GH1),

|,

H—— G,
is cartesian, J(H) is generated by J(H) in A[G¥1]. Since fi, -, f» are di-
visible by = in A[G¥1], J(H) is generated by =, gi, -+, gs in A[G¥1]. Hence
we have

AWGEYT)=A[G" ][z gy, -, 77'gs]
ZAEG:”:”—IJ(I’ Ty n'_lfrzl[n'_lgly Tty E—lgs]zA[GH] .
THEOREM 1.9. Let

(#) 0—> G 2> G ¢ G” 0

be an exact sequence of flat affine S-groups, and let H a closed k-subgroup of G,
H’ the inverse image of H in Gi and H” the image of H in G{. Then the
sequence of S-groups

5 H T HH
(#) R AT S A S

induced from (#) is exact if one of the following conditions is satisfied :
(1) HD¢(Gh); that is to say, H=(¢,) (H”).
(2) G’ is smooth over S.

PROOF. Since (§@)x=(¢>@)x=0 and G’ is flat over S, J-=0. Hence we
obtain a canonical S-homomorphism G#/G'#'—>G”#*. Obviously the generic fiber
(GH/G"H"Yg—(G"®")g is an isomorphism.

We prove that ¢, : (G¥),—(G"¥"), is faithfully flat under the condition (1)
or (2), which implies that G¥/G'#'—G”#" is an isomorphism ([9], Lemma 1.3).

Case (1). We identify A[G"]JCA[LG] by ¢: G—»G”. We prove that the
sqaure

~

GH ————» GrH"
l
£ __L

is cartesian, which implies that G¥F—G”¥#" is faithfully flat.
By the assumption (1), the square
H———H"

l l

c_—2% .cr
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is cartesian. Hence the defining ideal of H” in k[ G”] generates in k[G] the
defining ideal of H. Therefore J(H) is generated by J(H”) in A[G]. Let =,
fi, -+, fr be generators of J(H”). Then

ALGH]1=ALGI=n " fy, -, =7 f -],
A[G”H’]:A[G”][ﬂ.’_lfl, e, n.-lfrj .
Since A[G] is fiat over A[G"],

ALGILz™ fy, -, w7 f R ]=ALG I m ™ fy, oo, 7 2 JQaren ALG] .

Case (2). Let B be a complete discrete valuation ring, unramified over A with
residue field 2. Then obviously we have

GHR4B=(GR4B)®F,

Since B is faithfully flat over A, the sequence (E) is exact if and only if so
is the sequence induced from (f#;) by the base change B/A. Hence for our
purpose we may assume that A is a complete discrete valuation ring with
algebraically closed residue field k.

Moreover, we may assume H”=G/. In fact, let H, be the inverse image
of H” in G,. By (1), we get an exact sequence of S-groups

0 G’ GH1 G"#" 0.

Let H be the inverse image of H in (G#1),. By Proposition 1.8, (G¥1)# is
isomorphic to G¥. Moreover, HN\G;=H’ and H is mapped onto (G”H"),.
Under these assumption, we prove first that the canonical map $(k): G#(k)
—G”(k) is surjective.
Let a=G”(k). Since G” is faithfully flat over S=Spec A, there exist a
complete discrete valuation ring B, dominating A and finite over A, and a&
G”(B) such that the diagram

a
Spec B — G”

T T

Spec & L GY

is commutative (EGA. IV, Prop. 14.5.8). Since B is strictly Henselian and G’
is smooth over S=Spec A4, the canonical map ¢(B): G(B)—G”(B) is surjective
(cf. [I1], Th. 11.7). Take b=G(B) such that ¢(B)D)=a.

Furthermore, since H-—G/{ is faithfully flat, there exist a complete discrete
valuation ring B’, dominating A and finite over A, and b= H(BX,k) such that
the diagram
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b
Spec B'Qak — H

| | ¢+

Spec Bk ——» Spec k ——— G

is commutative (EGA. IV, Cor. 17.16.2). Replacing B’ by B, we may assume
that B=5B".

Then b,—b is contained in G'(BR4k)=Ker(G(BRk)— G"(BR4k)). Since
A is strictly Henselian, B is finite flat over A and G’ is smooth over A, the
canonical map G'(B)—G/'(BQ4k) is surjective (¢f. EGA. IV, Th. 18.5.17). Take
¢=G'(B) such that ¢,=b,—b in G’'(BQ4k). Then (h—&),=b,—¢,=b= H(BR.k);
that is to say, 6—¢& is contained in G#(B). Let x be the image of 5—¢& by the
canonical map G#(B)—G#(k). Then we have ¢(k)x)=a. Therefore we see
that G#(k)—G”(k) is surjective.

We prove now that for any t=Lie(GY), there exist an integer n>0 and
yeKer(GH(k[e'"])—GH(k)) such that the diagram

Spec k[e""] __y__> (Gn)k

l .

Spec k[e] —————> G/

is commutative, where ¢ is a dual number.

Let t=Lie G{=Ker(G”(k[¢])—G”(k)). Let © denote the completion of A[G”]
along the zero section, and let t*: O—£k[e] be the local homomorphism defined
by t: Speck[e]—G”. Moreover, let s¥: 6— A be the local homomorphism
defined by the zero section s: Spec A—G”. Assume that t+#0. Then t*: O—
k[e] is surjective, and therefore, there exists a surjective homomorphism #*:

O—A[e] such that t*: O—k[e] and s*: O— A are factorized by @:»A[e]—ek[s]
and @—t—;A[e]—»A, respectively. Let {: Spec A[e]—G” be the S-morphism defined
by i*: &—A[¢]. Since A is strictly Henselian and G’ is smooth over S=
Spec A, the canonical map ¢(A[e]): G(A[e])—>G"(A[e]) is surjective (cf. [11],

Th. 11.7). Take #<G(A[e]) such that ¢(ALe])(@t)=E.
Furthermore, since H—GY{ is faithfully flat, there exist an integer »>0 and

ucsKer(H(k[e'/*])—H(k)) such that the diagram



Extensions of Group Schemes 467

u
Spec k[eV/*] —— H

l .

Spec k[e] ——————> G}

is commutative. In fact, let uzKer(k[G”]—ik[e]), and let B, be a maximal
element in the set Y of ideals B in k[ H] such that (¢¥)-(B)=BNEL[G"]=U.
Note that X is not empty because of the faithful flatness of ¢,: H—GY. Then
we can see that R[H]/®B, is an Artinian local ring. Because look at the in-
clusions :

R[H]/B,Dk[el=k[G"]/NDEk.

By the normalization theorem, there exist parameters x,, -, x; k[ H]/8B, such
that [ H]/B, is integral over the polynomial ring k[x,, -=-, x;]. Let N be a
maximal ideal in %[x,, ---, x;] containing (0: e)N\k[x,, -+, x,JCk[%x,. ==+, x1].
Then there exists an ideal € in 2[H]/B, lying over ® and €Nk[e]=(0). The
inverse image € of © by the canonical map k[ H]—k[H]/B, is obviously an
element of 2, and we get that B,=6. Therefore [ H]/B, should be the type
of k[e'/"] for some positive integer n. Let u’=H(k[e'™]) be the point defined
by the canonical map A[H]—k[H]/Be=k[e'/"]. Then u:=u'—u,=H(k[c'™])
is a required point. Here we note that wu;<Ker(H(k)—G”(k)), and H(k)C
H(k[¥™]) in the canonical way.

We denote again by # the image of # by the canonical map G(A[e]—
G(A[e'"]). Then #,—u is contained in G’'(A[e'"]) = Ker(G(A[e'/"])—
G”(A[e'™])). Since A is strictly Henselian and G’ is smooth over A, the
canonical map G'(A[e'"])—G’(k['/*]) is surjective (cf. EGA. IV, Th. 18.5.17).
Take = G'(A[¥/™]) such that ¥,=d,—u in G'(k[e¥"]). Then (f—0),=10,—7s
=us H(k[e'™]); that is to say, ##i—7 is contained in G¥(A[e'/™]). Let y be
the image of #—¥ by the canonical map GH(A[e'/"])—GH#(k['/*]). Then we
get the required commutative diagram

Spec k[e!/"] ————— (G¥),

T £

Spec k[¢] ——> G/ .

From the above two facts, we can conclude that ¢,: (G#),—(G"#") =G/
is faithfully flat (cf. [7], pp. 109-111), and we accomplish the proof of Theorem 1.9.
Now we give two examples supporting the necessity of the conditions of



468 T. SEKIGUCHI and N. SUWA

Theorem 1.9.

ExAMPLE 1.10. Assume that A has equal-characteristic p>0. We consider
the exact sequences:

0——>ap,s~—>Ga,s‘—>Ga,S”‘—>0

|\ U ()
F
O——>ap,k ——>Ga.,k —>Ga.k_—>0
) \ )

O—>ap,k —> &p,p {0} '_'_>0:
where F denotes the Frobenius homomorphism. Let G (resp. G”) be the Néron
blow-up of @, , in G, s(resp. of {0} in G, s). Then G” is isomorphic to G, s.
By Theorem 1.9. (1), we get an exact sequence

F
0 /7 G > G”-_—Ga_s——>0,

where F is the canonical S-homomorphism induced by F. More precisely, A[G]
=A[X,Y]/(xY —X?) and F is defined by

X— X?: A[G"]=A[X] — A[G]=A[X, Y]/(zY — XP).
Now let H be the closed k-subgroup of G, defined by the ideal (X) in A[G]l=

BLX,Y]/(XP)=A[X, Y]/(xY —XP)R4k. Then H is isomorphic to G.,.. Mo-
reover, we have exact sequences

~

F
0—>ays—>G—>Gq5s—>0
U v U
0 Qp, & Gk Ga.,k 0
U U V)

0—> {0} — H—> G4, —> 0.

Let 5(resp. 5’) be the Néron blow-up of H in G (resp. of {0} in @,,5). Then
G’ is isomorphic to &, s. In this case, the sequence
H

0 ap.s G G”:Ga,s —— 0

is not exact. In fact, we can can easily see that Fx . 6—>Ga, s is defined by
X+—> X?: A[X]—> A[G1=A[X.Y, Z)/(xZ—X, =P~'Z?—-Y).
Therefore (F¥),: Gy—G.,, is defined by
X+—>0: B[ X] —> F[G]1=k[Z]=A[X,Y, Z)/(xZ—X. 2P Z?—Y)Qak ;

that is to say, (F¥),=0.
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REMARK 1.10.1. G is isomorphic to G, 5. In fact,
X+——>nZ, Y —> P27 Z—>Z:
AlX, Y, Z)/(eZ—X, n?'ZP—-Y) —> ALZ]
defines an isomorphism of G to G. s. Then the S-homomorphism FH . 5—>Ga,s

is simply written #?'F: G4 s—Goq, s-

EXAMPLE 1.11. Assume that % is of characteristic p>0. We consider the
exact sequences :

0 — ptp s —>Gn.s —> Gn s —>0

U U o
p
0 —> gy, G, Gun,» —>0
U (o )

O—A”p.k ﬂp,k {1} 0)

where p denotes the p-th power map. Let G (resp. G”) be the Néron blow-up
of #,: in Gn s(resp. of {1} in Gn.s). Then G” is isomorphic to ¢ =
Spec ALY, 1/(zY +1)] (cf. 2.1 or [3], Ch. I). By Theorem 1.9. (1), we get an
exact sequence

~

P
0——)”17,;3 G Q(N) 0)

where p is the canonical S-homomorphism induced by p. More precisely,
A[G]=A[X,1/X,Y]/(nY —XP+1) and p is defined by

Y ——Y: A[Y, 1/(zY+1)] — A[G]=A[X, 1/X, Y]/(zY —X?+1).

Now let H be the closed k-subgroup of G, defined by the ideal (X—1) in
RLG1=k[ X, Y]/(XP—1)=A[X,1/X,Y]/(zY — X?+1)Q4k. Then H is isomor-
phic to G, .. Moreover, we have exact sequences

~

O— ptps— G — G —>0

) V) v
O’—’ﬂp,k——*Gk—ﬁGa,k“—)O
U U Y

0— {1} —> H — G, ,—>0.

Let G (resp. G’) be the Néron blow-up of H in G (resp. of {1} in g, s). In

this case, the sequence
~NH

~ D
0 G’ G g 0

is not exact. In fact, we can easily see that H#: G—G™ is defined by
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Y —(#Z+1)?—1)/n:
ALY, 1/(xY +1)] — A[G]
=A[X, 1/X,Y, Z)/(xZ— X+1, (Z+1)P—1)/n—Y).
Therefore (§7),: Gy—G,., is defined by
Y+—0:
RIY] —> [G]
=k[Z]=A[X, 1/X, Y, Z)/(xZ—X+1, (zZ+1)?—1)/2—Y)Ruk,

that is to say, (p#),=0.

REMARK 1.11.1. G is isomorphic to ¢, In fact,
X—nZ+1, Y —> ((nZ+1)P-1)/7, Z—> Z:
AlX, /X, Y, Z/(nZ— X+1, (#Z+1)?—1)/n—Y) —> A[Z, 1/(zZ+1)]

defines an isomorphism of G to ¢¢. Then the S-homomorphism $#: G—g@®
is defined by

Z—> (nZ+1)P—1)/z: A[Z, 1/(zZ+1)] — A[Z, 1/(zZ+1)].

2. Néron blow-ups and &¢*.#:
We recall first some notations and results of [3], [5].

2.1. Let A=em—{0}. We define a smooth affine S-group ¢¢*> as follows:
@ =Spec A[ X,, 1/(AX,+1)]
1) law of multiplication

.Xo > 2X0®X0+X0®1+1®X0 5
2) unit
Xo—>0;

3) inverse
Xo—> — Xo/(AXo+1).

Moreover, we define an S-homomorphism a‘®: ¢ -G, s by
Tr— AX,+1: A[T, T7'] — A[X,, 1/(AX,+1)].

Then the generic fiber a : ¢ —>Gn x is an isomorphism. On the other hand,
the closed fiber ¢{* is isomorphic to G .

DEFINITION 2.2. Let F(X) be a polynomial in A[X]. We shall say that
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F(X) satisfies the condition (#) if
F(X)=1 mod.m and F(X)FY)=FAXY+X+Y) mod. m™.
23. Let 4, ygem—{0} and m=v(y), and let F(X) be a polynomial in A[ X],

satisfying the condition (#,). We define a smooth affine S-group &% #:F> ag
follows :

et i =8pec A[ X,, Xy, 1/(AX,+1), 1/(p X+ F(Xy))]
1) law of multiplication
Xo > A X QR X+ X R1+1X X,,
X, —> XX+ X @F (X + F(X)®X,
+ % [FX)®F(Xo)— FAX®Xo+ Xo@1+1®X0)]
2) unit
Xo+t—> 0, X; —> 711-[1—F(0)] ;
3) inverse
Xo—> —Xo/(AX,+1),
X, —> ;1;[1/<yX1+F<Xo»—F<-—Xo/<zXo+1)>J .
2.4. We define an S-homomorphism ¢ —g4.#: P by
Xo—0, X; —> X+%[1—F(O)] :

A[Xo, X1, 1/(AXo+1), 1/(pXi+F(Xo)] —> ALX, 1/(pX+1)]
and an S-homomorphism £ #:F)5g by
X— X,:
ALX, 1/(AX+1)] —> A[ X, X1, 1/(AXo+1), 1/(p X+ F(X0)].
Then the sequence of S-groups
0—> ¥ —s gl 5 g 5 (

is exact, i.e. &4 # P jig an extension of ¢4 by ¢, Conversely, any extension
of g9 by ¢® takes the form of

0 —> GW s AP 5 gy 5 0,

where F(X) is a polynomial in A[X], satisfying the condition (#») ([5], Cor.
3.6). '
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2.5. Let F(X), ﬁ‘(X) be polynomials in A[ X], satisfying the condition (#n,).
If F(X)=F(X) modm™, then we can define an isomorphism of extensions:
0 — g — s iP5 gty __5

|

0 —> G — 5 @At F 5 gy __5 ()

by
Yor— Xo, Y, —> X1+%[F(Xo)—ﬁ(Xo)] :
ALY, Yo, 1/QY o+1), 1/(eY 1+ F (Y )] —
AL X, Xy, 1/(AXo+1), 1/(p X+ F(Xo))].

2.6. We define an S-homomorphism a*# % : a0 (G, <) by
Tor— AXo+1, Ty — pX,+F(X,):
A[T,, T3, Ty, T7'] — A[X,, Xi, 1/(AXo+1), 1/(p X+ F(X0))].
Then we obtain a morphism of extensions of S-gronps:
0 —> g —» gltmh 5 g 5
la“" la”'/‘?”’ la‘“
0—Gns —> (Gn s —>Gn, s —>0.

Hence the generic fiber a$# P : €¢# M —(Gn, k) is an isomorphism. On the
other hand, the closed fiber &{*# % is a unipotent k-group; more precisely,
et P g an extension of G, r by G, . defined by the 2-cocycle (X, V)=

%[F(X)F(Y)—F(ZXY+X+Y)] mod. m.

Now we describe the S-homomorphism a#P: gl e (@, §)? using
Néron blow-ups.

2.7. Let F(X)=2a;X* be a polynomial in A[X], satisfying the condition

(#m). Put
F(X)= X aX'

v(agsj
and
Gi(X)= X a;X**
v(agd=J
Then we see readily that

FAX)= 3 GdX)

LEmMmAa 2.7.1. (1) F;oy(X)F;o,(Y)=F;-;AXY +X+Y) mod. m’ for each 7,
1< 75m.
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2) Fio(X)F;o\(V)=F;oiAXY + X+Y) =G X+Y)— G(X)— G«Y) mod. m’*!
for each j,1<7<m—1.

PROOF. The first assertion follows from the second. Assume that (1) holds
for j=i+1(G=1), i.e.
F(X)F,(Y)—F,(AXY +X+Y)=0 mod. m*+*,
Then

{Fi1(X)+ G X)HFi-.(Y)+Gu(Y)}
—{Fi.y(AXY +X+Y)+G;AXY +X+Y)} =0 mod. m***,
Hence
{Fios(X)F;,(V)—F,o QXY +X4+Y)}
—{GiAXY +X+Y)—F; ,(Y)G(X)— F;-1(X)G(Y)} =0 mod. m***.
Since Gi(X)=0 mod. m? and F;_,(X)=1 mod. m (resp. =0 mod. m),
Fio(MG(X)=G«(X), F,-«(X)G:(Y)=G«(Y) mod. m***
(resp. G;(AXY +X+Y)=G(X-+Y) mod. m**?).
Hence we obtain
Fioi(X)Fy(Y)— F; QXY + X+Y)=G(X+Y)—Gi(X)—G(Y) mod. m***.

Therefore we get our assertion by induction on j counting down from j=m.

2.8. Hereafter, we assume that A=z" and pg==n™, where x is a uniformiz-
ing parameter of A, for simplicity.

We start off with the first step.

Let g; denote the S-group X sGm.s.

(1) @, is the Néron blow-up of {1} XGn.r in Gp sX sGn, s- The canonical
homomorphism @,—G., sX sGn, s is defined by

Xo > 7TYO+1, X1 > Yl:
AlXo, Xy, 1/ X0, 1/ X, ] —> A[Y o, Y3, 1/(zY o+1), 1/Y4].

(2) For each 7, 1</<n—1, G;4, is the Néron blow-up of {0} XGn,, in 4;.
The canonical homomorphism &;.,—@; is defined by

Xo > 77.'Y0, Xl — Yl .
Al X,, X, 1/(x*X,+1), 1/X,] —> A[Y,, Y4, 1/(n*+'Y +1), 1/Y,].

(B) P x @™ is the Néron blow-up of Gq X {1} in G,=8PXsGn,s.
The canonical homomorphism &,—&, is defined by
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Xo > Yo, X1 — 7[Y1+1 :
ALX,, Xy, 1/(AXo+1), 1/ X, ] —> A[Y,, Yy, 1/(AY o +1), 1/(zY 4 1)].

Now we pass to the second step.
Let &, denote the S-group &% *iFi-», Note that &=8g% X3, By
Lemma 2.7.1, for 7 with 1<7<m—1,

oA X, V) :=[F;s(X)F;-o(Y)~F;-;AXY + X+Y))/z’ mod. m
=GAX+Y)/n'--G{X)/n'—G«Y)/x’ mod.m,

and therefore, the closed fiber (&;), is isomorphic to (G, :)’.. Let I'; be the
closed k-subgroup of (&,), defined by the ideal (X,— G;(X,)/=?) in

kLXo, X\ J=ALXo, Xy, 1/(AXo+1), /(77 Xy + F;- (X)) IQ 4k .

Then I'; is isomorphic to G. ., and &;;, is the Néron blow-up of I'; in &,.
The canonical homomorphism &;.,—¢&; is defined by

Xo—>Y,, X\ —> 7FY1+GJ(Y0)/71J .
ALX,, X1, 1/(AXo+1), 1/(m? X1+ F;-((Xo)] —
ALY, Y1, 1/QAY o+1), 1/(x/*'Y 4+ Fx(Y 0)].

Summing up the above argument, we conclude that the S-homomorphism
at P e (G ) §s obtained by the sequence of Néron blow-ups

g(l.p;F)zgm Em-1 > &, e

=0 X G, s Qg —> -+ a4, (Gn,s).

RFMARK 2.9. We can see that

8(2'”;F’Eé’m——'>6’m—1 > &, > Q(Z)XsGm.s

and

EPXsGm, s=8n—> Q01X 5Gm, s —>  —> G1 X sGm. s —> (G, 5)°
are standard blow-up sequences in the sense of [9], p. 552, Remark 1. However,

8(2.#;F)=8m > Em-1 > eee > &, Gn

=g(beGm.S Gpoy > 4, (Gm,S)z

is not so.

REMARK 2.10. One may note that
0 —> @i*th 5 e ndtLFp 5 g 5 )

is the Néron blow-up of the exact sequence of k-groups
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0— {0} I; G, 0
in
0—> GUH 5 pQ.udiFjpd 5 g __5 )

(cf. Theorem 1.9).

3. Exty(g™®, gw)

In this section, we suppose that the residue field % is of characteristic p>0.
We fix 2, pu=sm—{0}. Put m=v(y).

LEMMA 3.1. (Comparison lemma) Let F(X)=14c¢, X+4c. X?4-+c2 X" be a
polynomial in AL X] with c;Em. The following conditions are equivalent.
(a) F(X) satisfies the condition (#n).

pr-l( J—pT )( J—2pT " +2i
i=0 J.~2PT—1+22'

(b) cpr-1€jopr-1= )c,-_pr-1+i2p"l‘i mod. m™

]
if j=p">1, and

rf j—p"+i J—2p"+2:
Cper-pTE p21‘ ( )( )Cj—pr-(..izpr—i mod. mm
=0\ j—2p7+2i i

if ordpj=r and j#p".

ProOOF. (a)=(b): It is enough to remark that
FX)F(Y)—FQRXY+X+Y)

v [ R+ [ 1+20 _
=2 {CrCrr1— 2 o errnid T (XY)HX YY)
tH SO\ I+2 :

e [ BHi\[ 2
-+ E {Clza'—' > ) Ck.H;Zk_i (XY)k .
k=0 i 2% i

Here we understand that ¢,=0 if f>n and ¢,=1.
(b)y=(a): Assume that F(X)F(Y)ZFAXY+X+Y) mod.m™., Take the
greatest s such that F(X)F(Y)=F(QAXY +X+Y) mod. m*. Choose %, [ such that

e [ RHI+IN\[1+2 )
Crlrei— 2 Cr+1+iA%7'%E0 mod. m*+t,
=0\ [4+27 7

]
o

Put
j=2k+I
and
g X, Y):=[F(X)FY)—FQAXY+X+Y)]/n* mod. m.
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Let g,(X, Y) denote the homogeneous component of degree j of g(X, V). Then
1) giX, Y)=g4Y, X);
2) 8{X+Y,Z2)+g X, Y)=g(X, Y +2)+2Y, Z) (cf. 2.6).

By Lazard’s comparison lemma ([2], lemma 3),

c{(X+Y)Y-—-X’—Y7} if J is not a power of p.
gj(X’ Y): I , . X . ..
;{(X+Y)’—X’—Y’} if s is a power of p.
where ¢ is a constant #0. Hence the coefficient of X?" 'Y /-p7 "4 Xi-p7-1y»7"1
(resp. XP"Y7/-PT4 X7-P"Y?") does not vanish when j=p">1 (resp. ord,j=r

and j#p"); that is to say,

p‘r—l( J—p" i )( J=2p7 1 +2¢
i=0 j_2pr-1+zl'

CpT-ICj—pT—l_

)Cj-pr—1+i/zpr_l_i3_:0

mod. m**!

]
when j=p">1, and

pr( J—pT+i )(]’—21)’+2z'
1=0 ]_2p1'_*_2Z

CprCj—pr—

) )cj-pr+ilpr“"$0 mod. m®+!
Z

when ord,j=# and j#p". Note that s+1<m.

DEFINITION 3.2. Let a,, a,, -, a;=m. We define the polynomial F(4, a,,
a,, -, a;; X)=1-+ %“Xi in ALX] by

6'1:(10, CPZal, ey, Cpt:'—(lz

1 { prjl( J—=pT+i )( ]'—21)’-5—22') o }
Cj= " ACprCj-pr— Cj-pr+ih? 7"
J (jfr) T S\ ot i e

if ordyj=r and j#p".

and

ExaMmpPLE 3.3. (1) p=2.
F(Z, a,, a,; X)=14+a.X+a,X*+a,(a,—20)X3/3.
(2) p=3.
F(4, ao, a,; X)=14a X+ aa,—A)X%/24a, X?
+a,(a,—3)X*/4+a,(a—32)a,—42)X°/20

-I—al{(al—l'"‘)——g—(ao——Zl)(ao—&i)Z}X‘/ZO
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+a1{(a1—23)—g—(a0—22)(a0~32)2}(a0—62)X7/l4O
+a1{<a1—zs)—-;’—<a0—2z><ao—3z)z}<ao—62)(a0—7z)X8/1120.

REMARK 3.4. The coefficient ¢; of X* in F(4, a., a,, -, a;; X) can been
seen as a polynomial in 4, a,, a,, -+, a, (*=[log,7]) with coefficients in Z,,.

By the definition, we obtain immediately the following assertion.

COROLLARY 3.5. Let F(X)=F(Q, ao, a,, -, a;; X)=1+ ;ciXi. The fol-
lowing conditions are equivalent.
(@) F(X) satisfies the condition (#n).

( pr+1_:br+z' )( pr+1_2pr+2z-

"
(b) CprCprti—pr= 2 )
= pT+1___2p‘r+2Z

)Cp7‘+1—pr+i/zpr_i mod.m™
i1=0

;
for each r=0.

EXAMPLE 3.6. (1) p=2. F(A, a., a,; X) satisfies the condition (#.,) if
and only if a.(a,—A)=2a, and a,(a;—A*)—2a,(a,—22)2=0 mod. m™.

(2) p=3. F(4, a,, a,; X) satisfies the condition (#,) if and only if
ala,—A)Na,—20)=6a, and a,{(a;—2*)—(3/2)(a,—22)a,—32)A}(a,—204%)—3a,
{(a,—2*)—(3/2)a,—22)a,—32)A}(a,—62)(a,—24)A=0 mod. m™.

REMARK 3.7. In [5], ¢(a, 4; X) denotes the polynomial

ala—A)
2

a(a—A)---(a—(p—2)4)
(p—1)!

(Here we employ a slightly different notation.) We see readily that F(4, a; X)
=¢(a, 2; X) and that F(4, a; X)=¢(a, 2; X) satisfies the condition (#,) if
and only if a(a—A)---(a—(p—1)A)=0 mod. m™. (cf. [5], 3.7 and 3.9)

Xr-1,

1+aX+ X2 o+

The following assertions also can be seen without difficulty.

COROLLARY 3.8. Suppose that F(X)=F(4, ao, a4, -+, ar; X) satisfies the
condition ().
(1) The closed fiber of &% # % s the extension of Go 1 by Ga &, defined by
X4 Y P —(X+Y)P
P

the 2-cocycle _215,- , Where
jz
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1
§=— Z{Cpi-lcpf-pj—l

ﬂ( P i )( p—2p7 42
i=0 j)j—ZPj‘l-l—Zz'

(2) If the closed fiber of &£ %> {s isomorphic to (Gq, )%, F(X) satisfies the
condition (#ms1).

)cp;-pj—1+il”""‘} mod. .

‘

LEMMA 3.9. If a., a,, -+, a;<=wm and by, by, -+, by=m?, then

F(za a0+b0’ al+b1; R al+bl; X)EF(Z) Qo, A1, ***, Q1 X)+ 2 biXpi

osisi

mod. ms+!,
Proof. Let
F(zy Go+bo, a1+b1’ Tty al+bl; X):1+ EIEiXt

and
F(Z} Aoy A1, **° Q1 X)=1+ §lCiXiv

We first note that, by the definition,

6j=ar+br=0j+br
if j=p"=1.
Now let ;7 be an integer >0, which is not a power of p. We show that
¢;j=c; mod. m**!, assuming that ¢;=c¢; mod. m**! if /<j and 7 is not a power
of p. Put r=ord,s. Then, by the defintion,

S U A Y A A LAY R A A VN
Pt - c i DT i DT -
? (7) T &\ japr g )

1 { pﬁl( j—pT+i )( J-__2p7‘+2i) e }
Ci=———"+CprCj_pr— Cj-pr+i —h.
j (pjr) prCi-pr— 2 oy i0i ; J-pT+

Obviously, j—p"+7(1<:i<p"—1) are not powers of p.
Case 1: j—p" is a power of p. Put j—p"=p*. Then

. 1 {6 . pﬁl( pr+i )( pv-—pr+2i)~ e i}
Ci=—F—=T Cpyv— Cpvi -
J (pvj_i_rpr pTtp = p”—pr—l—Zi z_ Y4

v

and

pr-l( pr+i )( p"——p’—i—Zz') }
— 2 CpvssAPT
i=1 pu_pr+22 Z

{(Cpf+br)(cp”‘+‘bu)-( - )(cp”'l'bv)zpr

=1
(P42
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1
= bt A(cp—
(p";rrpf{ +es ( —pr

p” pr-1 P”-l—z' p”—-p’—i—Zz' .
— Ny LAy ) CpveidP 720,
p*—p7 U\ pr—pT+2i 7

By the hypothesis of induction, &pvi+i=cpv+;mod. m**! for each 7(1=/<p"—1).
Moreover, b,, b,.,=m*® and cpv, Cpr+pr, A&m. Hence we obtain

v

)Zpr)by+(:pv+p‘rbr -{_CpTCpU+pT

p’l
—yl—'r_ brbu+(cp1'— zpr)by+cpy+p‘rbr +CpTch+pT
(P"5PT) p—p
p
P’ pT=1 pr+i pr—pT+2
e cpuZ”T— 2 . . Epv+ilpr_i
pv__p‘r 1=1 pv_pr+2z 7

1 Y
= N wAP"
pv+p1‘ {CPTCP +pT ( v pr )CP
( e ) p—b

pv__p‘r_l__
i

EIP
-2
1=1 pv___p’r+2z‘

and therefore ¢;=c; mod. m®*%.
Case 2: j—p™ is not a power of p.

27
Cpv+:APT "1} mod. m+!,

1 preaf J—DTHE \[ 7207420\ )
Ejz“—}':— 51,7-2"_1-;,7'— i-ZO . 2pr+2 . z. Cj-»p'r.H:;ip -1
- 2
() g
1 { . Lb.E p%x( j—pr‘l‘i )( J-_ZpT—FZZ')N e }
= ——"5CprCj-pr 7Cjmpr— Cimprai -t
pJ,.) prtj-p i=p &\ joprao ; J=pT+i

By the hypothesis of induction, &;-pr+i=c¢;-pr+: mod. m*** for each (0</<p™—1).
Moreover, b,=m® and cpr, ¢;-pr, A&m. Hence we obtain

1 prox( J—DTHE \[J—207 2\ )
——"J.— cPTEj—pT+b15j—pT— P . Cj-preiA? -t
(#)

J—pT+i )( J—2p7 42

O\ j—2p7 28 Z
1 { pr-1
= CprCji-pr— > (
7] 1=0 - r1.9;
(pr) J—2p"+2

. )cj_pml”"i} mod. m®+!,
2z
and therefore ¢;=c; mod. m**!,

THEOREM 3.10. Let F(X) be a polynomial in A[X], satisfying the condition
(#m). Then there exist a,, a,, -+, a;=m such that F(X)=F(X, a,, a,, -, a;; X)
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mod. m™,

PrROOF. We prove the theorem by induction on m.

Note first that F(X)=1 mod.m. Assume that there exist a,, a,, - ¢;=m
such that F(X)= F(Q4, a,, a,, -, a;; X) mod.m®. (We take [ so that
deg F(4, a., a,, -+, a;; X)=deg F(X).) Put

F(X)=FQ, a,, ay, -+, a1; X)

and
Fs—l(X): 2 CJ'Xj’ GS(X): Z CJ'Xj,
v(c:j)ss—l U(L‘j):s
FoX)= = &x7,6(X)= 3 &X/,
v(?"j)ss—l v(’Zj)=s
where

F(X)=X¢,X7, F(X)=3¢,X7.

jzo jzo
Then Fs_l(X)Eﬁs_l(X) mod. m® and F,.~1(X), ﬁ‘s_l(X) satisfy (#;).
Let =g #%Fs-1) and &=g*X % Fs-, We define an S-isomorphism S:
&€ by
1
Yor—> Xo, Yi—> X+ [F(Xo)— F(Xo)]:
A[Yo, Y1, 1/QY o+1), /(@'Y 1+ Fe (Vo)) ] —>
A[ Xy, X, 1/(AXo+1), 1/(m* X1+ Fs_(Xo))].

Since the closed fibers &,=¢&, are isomorphic to (Ge :)?, F(X) satisfies (#3541)
(cf. Corollary 3.8), and therefore

B (O (V)= B QXY + X+Y)=G(X+Y)—G(X)—G(Y) mod. m*+!
(cf. Lemma 2.7.1.). We define now k-isomorphisms a: &, (G, :)* and a: &,
(G, )’ by
To—> Xo, Ty —> (Xi—G(Xo)/7):
kLT, T1]—> k[ X, X,1=A[X,, X3, 1/(AXo+1), 1/(m* X, + Fe_,(X0))1Rak
and by
Tor—> Yo, Ty —> (Y1 —Go(Yo)/7%):
E[To, Ty] —> kY, Y\ 1=A[Y,, Y3, 1/QAY o+1), 1/ (@Y 1+ F (Y ) IQ 4k,
respectively. Then a-B.°a~' is defined by
To—> To, Ty —> T1+[Go(To)— G (T )+ Fs- (T o) — Fo_(T0)1/7*
=T, +[F(T)—FT)1/=*.
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Hence T —[F(T)—F(Ty)]/x* mod. m defines a k-endomorphism of Ga.  and
therefore, there exist by, by, -+, b=m® such that

F(X)—ﬁ(X)r—_o zlbiXpi mod. m¥+? .
sis
By Lemma 3.9, we obtain

F(X)zﬁ‘(X)—i—mZSlbiX“EF(l, ao+bo, ay+by, -+, a;+by; X) mod. m*+,

and we are done.

3.11. Let M. ,.» be the subset of (m/m™)™ formed by the elements
(a,, a,, -++) such that
ArCprit-pr(Qo, Ay, +y Aro1)=
PTH—pT g PTHI—2pT 424
( pTHI—=2p" 421 )(

M=

I

=0

. )CP‘H'I"Z’T’H:(GO; g, ", ar_1>lp"'-i mOd.mm
2

for each »=0. Here c;(a,, ai, -+, ar-1) is the polynomial defined by the coeffi-

cient of X7 in the expansion of F(X, a,, a;, -, a;: X) (cf. Def. 3.2).
We define a law of multiplication on M, . by

(o, , @r, - Ybo, -+, by, )=
T-1
(a0+b0; Tty a‘r+br+i§1 Ci(ao, Qy, -, ar—l)cpT—i(bO; bl) Tty bT-l)) )'
Then M, is isomorphic to the subgroup of the multiplicative group
(A/M™[X])*, formed by the polynomials F(X) such that F(X)F(Y )=
FAXY+X4Y).

Moreover, let Mz, ,» denote the quotient of M;, . by the subgroup gener-
ated by (2,0, 0, ---). By [5], Cor. 3.6, Sﬁlu,#) is isomorphic to Exti(@A, gw),

4. Examples

In this section, we suppose that the residue field % is of characteristic p>0.

ExAMPLE 4.1. Suppose that p|p and v(g)=m. Let ;j be an integer >>I,
which is not a power of p. Put r=ord,s. The relation

1 { pix( J—pT i )( J—2pT+2¢ ) o7 }
C;i=— g CprCj-pr— Cj-pr+i -t
7 = OpT 1 .

(p”) J—2pT+2: 7

implies
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Ci=—C {c,,rc, pr— (;DT )c, prA?7 }mod.m"‘.

(#)

(Note that (kppr ) k mod. p and (kp +i

) =0 mod. p for i, l<i=p"—1.) Hence

we obtain
'r(a'r'_lpr)' "(ar_(nr—l)'zpr)

n.!

mod. m™,

a=11°

4
where k= 3] n,p7 is the p-adic expansion of k2, and therefore
=0

FQ, ao, ay, -, ar; X)=¢(ao, 2; X)P(a1, 22 ; XP)---¢(a:, 2**; X?') mod. m™.
Moreover, the congruence relation

( pr+l_pr+z' )( pr+1_2pr+2i
PTH—2pT 42

"
CprCpr+iapr= 2

. )Cpr+1-pr+ilpr‘i mod. m™
?
reads

CpGCT-l-l-p‘rE(p—"1)Cp'r+1—prlpr mOd. mm .

Hence we have
a.(a,—A*"Ya,—24"")---(a,—(p—1)A*")/(p—1)! =0 mod. m™

and therefore
—APT@®-Dg =0 mod.m™.

It follows that F(&, a,, a,, -+, a;; X) satisfies the condition (#,) if and only

if a2—AP"?-Yq =0 mod. m™ for each »=0.
The closed fiber of £¢4:-#:F jg the extension of G, ; by G.. ., defined by the
X?4+Y? —(X+Y)¥

P
Thus we recover [5], Cor. 3.8 and Th. 4.4, under the assumption that p| p.

2-cocycle jzf_‘,léj , where $j=%{a’}-l—l”j“’“"”aj_l} mod. m.

EXAMPLE 4.2. Suppose that g#|2 and v(g)=m. Let j be an integer >1,
which is not a power of p. Put r=ord,j. The relation

1 { pi-)l( j—pT+i )( ]-_zpr+2i) o i}
C;i= CprCij-pr— Cj-pr -
J (’57 ) prlj-p < ],_21)1_—‘_22. z_ J=pT+i

implies

1
Cj=——CprCj-pr mod. m™,

(#)
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Hence we obtain
l 1.q. )"
=11 -(2——'5?1—)—:— mod. m™.

7=0

l
where k= Zonr 7 is the p-adic expansion of k.

Moreover, the congruence relation
pr+1_p‘r+z‘ pr+1_2pr+2i )
Cp‘r+1-p‘r+i2pr_z mOd. mm

p'l'
Cprcpr+1—pr=i§°( PTHI—2pT 42 ;

reads

p'r+1

cprc,,m-prz( Cpr+1 mod. m™,
p‘r

and therefore
p-2 pr+1_z‘pr p‘r‘-i-l
a?/ 3 = a,q mod.m™,

1=1 pr p’r

Hence F(Z4, a., a,, ---, a;; X) satisfies the condition (#,) if and only if

nes (DT | pr+1 n
ar+ mod.m™, i.e. a?zwarﬂ mod. m

2
=0 p'r

i

a%

for each »=0.
The closed fiber of £¢:# % is the extension of G, . by G... defined by

»J pJ__ nJ
X?4Y (X+Y) . where

the Z2-cocycle jZ}Zléj )
1 p-2 p‘r+1___z'p‘r pT+1
$j=———— az_;'—l/'z —_ a; mod. m.

y 2 i=1 pr p"

The canonical map Exti(@?, ¢¥)—ExXti(Gq v, Ga. ) is

COROLLARY 4.2.1.
surjective if pv(p)<(p—1)m.
It is sufficient to remark that Exti(G. ., G. ) is generated by the

pJ pd_ pJ
2-cocycles jzzme +Y p(X+Y) , ;€ k(see [6], Ch. VI, 2.7). (Compare

PROOF.

with [5], example 3.4)
EXAMPLE 4.3. Suppose that p¢|p and g¢|4. Then
olar, A*7; X)= E‘g(aTXP’)‘/i! mod. m™,

and therefore
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l —
FQ, ao, ay, -, a1; X)= Efg(armfwu mod. m™.

Moreover, F(A, a,, a,, -, a,; X) satisfies the condition (#,) if and only if
a2=0 mod. m™ for each r=0. Hence cpr-i(@o, ***, ar-1)ci(bo, =+, br-;)=0 mod.
m™ for each =1 and each 7 with 1=</<p""' if (a,, ai, ---), (be, b1, = )EMa, .
Therefore 9)?(1‘,,):952(1,,0 is isomorphic to the additive group (m*/m™)N>| where

{[m/P]—I-l if (p, m)=1
s=
m/p if plm.

The closed fiber of £€¢*-#: % is the extension of G, , by G, ., defined by the
pJ pi__ pJ
2-cocycle X &; ATAY b (X+7)
jz1

, Where Sj:;l;az}_l mod. m.

COROLLARY 4.3.1. (1) Assume that p does not divide m. Then the canonical
map Exti(@P, ¢ N EXtH(G, ¢, Ga,p) is zero.

(2) Assume that p divides m. Then the canonical map Exti(g?, g¥0)—
Exti(Gqs 1, Ga.r) is surjective if the residue field k is perfect.

PrROOF. We have only to note that the equation X?=gpa mod. m™ has a
solution in A for any a< A if k is perfect. (cf. [5], 4.5.)

We have computed the group of extensions Ext} (2%, ¢*) of smooth affine
1-dimensional S-groups ¢¢*> and ¢%>. We conclude this article by noting that a
smooth affine 2-dimensional S-group is not necessarily obtained by an extension
of smooth 1-dimensional S-groups, even though its generic fiber and its special
fibre are extensions of smooth 1-dimensional groups each.

4.4. Suppose that k+F,. Let = be a uniformizing parameter of A, and
let m be an integer >2. Put A==z™"! and pu=xn™. We choose an element a4
such that the image of ¢ in £ is not contained in F,(Ck). Then the polynomial
F(X)=1+4aAX satisfies the condition (#,) (cf. Remark 3.7). Let G denote the
smooth affine S-group &¢*-#:

G=Spec AL X,, X, 1/(AX,+1), 1/(p X, +F(Xo))].

By our assumption on m, the closed fiber G, is isomorphic to (G,,:)?. More
precisely, the comultiplication of k[G]=k[X,, Xi]= A[X,, X,, 1/(AX,+1),
1/(p X1+ F(X,)1Qak is defined by

Xo | — X0®1+1®X0, X1 > X1®1+1®X1 .

Let H be the closed k-subgroup of G.=(G,,:)* defined by the ideal (Xf—X,) in
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RLG]=Fk[X,, X,], and let §: G—G be the Néron blow-up of H in G. Since G
is smooth over S and H=G,, ; is smooth over k, G is smooth over S ([9], Th. 1.7).
Under these notations, we get the following assertion.

4.4.1. Any flat 1-dimensional closed S-subgroup of G is not smooth.

PrROOF. For integers », s, we define an injective S-homomorphism

Or,s- Gn,s —> (Gm,S)2
by
Ur——>T7", V+—T%: A[U,U,V,V-Y]— A[T, T '].

By the general theory of algebraic tori, we know that any closed K-subgroup
of dimension 1 of (Gn x)* is the form of ¢, (Gn x), Where r, s are integers
with (r, s)=1 or (», s)=(0, 1), (1, 0). We identify the generic fiber CN;K(resp. Gk)
to (Gn, x)* via the isomorphism Bgoa# 5K’:,(Gm,x)2 (resp. a$ P Gg3
(G x)?). Let CN;T_S (resp. G,,s) denote the flat closure of ¢, (Gn, &) in G (resp.
G). We show that the closed fiber (5,,s)k is isomorphic to @,XG, ., Wwhich
implies our assertion together with Prop. 1.6.

Note first that the subgroup ¢, (Gn &) of Gxk=(Gn x)* is defined by the
ideal (U*—V7")=(AX,+1)—(u2X,+F(X)™) in K[U,UV,V-'1=K[X,, X,
1/(AX,+1), 1/(uX,+F(X,))]. By our assumption that v(g)=m and v(A)=m—1,

(AXo+1)—(puXi+ F( X)) =(sAXo+1)—(raiX,+1)=(s—ra)AX, mod. m™.

By the choice of a, s—ra is invertible in A. Hence G, ; is defined by the ideal
({Q@AXo+1)*—(pXi+F(Xo))"}/4) in ALG]=A[X,, X, 1/(AX,+1), 1/(uX,+F (X,))].
Now we define an S-homomorphism ¢, ;: §*—>G=&*# " by

Xo—> {(uX+1)"—1}/2, X, —> {(pX+1)—a(AX+1)"+a—1}/p:

Al Xo, X, 1/AXo+1), 1/(pX,+F(Xo)] — ALX, 1/(pX+1)].
Then ¢, s: ¢®—G factors through ¢*—G, ,—G, and we can see that ¢*>—
G s is an isomorphism. Hence we obtain a commutative diagram of S-groups:

Dr.s

Gr.s _— G

la(.u) l a(i.[l;i’)
Pr.s

Gm.s R—— (Gm.».'a')2 .

Since G is the Néron blow-up of H in G, 61,3 is the Néron blow-up of
(Gr.s)eNH in G, ;(cf. Cor. 1.9). As is shown above,
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{(AXo+1)— (X, +F(X,)" }/2=(s—ra)X,=0 mod. m.

Hence (G, ). is defined by the ideal ((s—ra)X,) in E[Gl=k[X, X,], and
therefore, (G, ,)»N\H is defined by the ideal ((s—ra)X,, XP—X,) in k[G]l=
k[ X,, X;]. Hence (G, .)+:NH is defined by the ideal (X?) in k[G, ]=Fk[X].
Then A[G, ,]J=A[X, 1/(pX+1), Y1/(xY—X?), and therefore k[G, ,]=
kLX, Y1/(XP).

REMARK 4.4.2. The exact sequence of S-groups

O ;50’1 Xé g(l)__>0

is the Néron blow-up of the exact sequence of k-groups

F
0 ap ’Ga,k ’Ga,k__>0
in

0 Go.x G g 0
(cf. Theorem 1.9).
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