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1. Introduction

Throughout this note, $A$ stands for a basic left and right artinian ring, $J$

its Jacobson radical and $\{e_{1}, \cdots , e_{n}\}$ the complete set of orthogonal primitive
idempotents in $A$ . Let $c_{ij}$ denote the composition length of $e_{i}Ae_{i}e_{i}Ae_{j}$ for
$1\leqq i,$ $j\leqq n$ . The matrix $C(A)=(c_{ij})$ is called the left Cartan matrix of $A$ .

Does gl $\dim A<\infty$ imply $\det C(A)=1$ ? This problem has been partially

settled by several authors ( $e$ . $g.$ , Zacharia [7], Wilson [6], Burgess et al. [2],

Fuller and Zimmermann-Huisgen [5] and so on), but is still open. There is a
way to reduce the size of the matrix $C(A)$ . Namely, if $proj\dim_{A}Ae_{1}/Je_{1}<\infty$

and $Ext_{A}^{k}(Ae_{1}/Je_{1}, Ae_{1}/Je_{1})=0$ for $k>0$ , then gl $\dim(1-e_{1})A(1-e_{1})\leqq g1\dim A+$

$proj\dim_{A}Je_{1}$ and $\det C((1-e_{1})A(1-e_{1}))=\det C(A)$ . This reduction was effectively

used by Zacharia [7] to show that gl $\dim A\leqq 2$ implies $\det C(A)=1$ (see also
Burgess et al. [2]). Unfortunately, as will be seen, Zacharia’s reduction is not
necessarily applicable if gl $\dim A\geqq 3$ .

The aim of this note is to provide another type of reduction. To do this,

we will generalize the notion of a heredity ideal which was first introduced by

Cline, Parshall and Scott [3]. We are interested in a two-sided ideal $I$ of $A$

such that $\det C(A/I)=\det C(A)$ (of course, we claim gl $\dim A/I<\infty$ whenever
gl dim $ A<\infty$ ). We will show that the trace ideal of a certain left A-module enjoys

this property. We will prove the following

THEOREM. Let $Q$ be a torsionless left A-module and I its trace ideal. Sup-
pose the following conditions:

(a) $D=End_{A}(Q)$ is a division ring,
(b) the evaluation map $Q\otimes {}_{D}Hom_{A}(Q, A)\rightarrow A$ is monic.
(c) $Tor_{k}^{A}(TrQ, Q)=0$ for $k\geqq 2$ , where Tr is the transpose, and
(d) proj $\dim_{A}Q<\infty$ .
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Then we have
(1) gl $\dim A/I\leqq g1\dim A+proj\dim_{A}Q$ ,

(2) gl $\dim A\leqq g1\dim A/I+\max\{2, proj\dim_{A}Q+1\}$ and
(3) $\det C(A/I)=\det C(A)$ .

It should be noted that the size of $C(A/I)$ equals that of $C(A)$ unless $AQ$

is projective. Note also that, if $proj\dim_{A}Q\leqq 1$ , the condition (c) is automatically
satisfied. In case $AQ$ is projective, the ideal $I$ is just a heredity ideal and the
statements (1) and (2) have been known $($see Dlab and Ringel $[4])^{*}$ .

At present, we do not know whether gl dim $ A<\infty$ ensures the existence
of a torsionless left A-module which satisfies all the conditions in the above
theorem. Note however that, if this is always affirmative, so is the Cartan
determinant problem.

In case gl dim $A\leqq 2$ , by Dlab and Ringel [4, Theorem 2], there always
exists a projective left A-module which satisfies the conditions (a) and (b) in
Theorem. Thus, our reduction yields a new proof of Zacharia’s result [7].

Another example is the case of $A$ being left serial. In that case, gl dim $ A<\infty$

ensures the existence of a simple torsionless left A-module $Q$ with $proj\dim_{A}Q$

$\leqq 1$ (cf. Burgess et al. [2, Lemma 3]).

In what follows, we will denote by $mod$ $A$ the category of all finitely gen-
erated left A-modules, by $($ $)^{*}$ the A-dual functor, by Tr the transpose and, for
any $X\in mod A$ , by [X] its image in the Grothendieck group of $mod A$ . Also,
for any module $X$, we will denote by $|X|$ its composition length. Then, for
any $X\in mod A$ , we may identify [X] with the integral column vector

${}^{t}(|_{e_{1}Ae_{1}}e_{1}X|, \cdots, |_{e_{n}Ae_{n}}e_{n}X|)$ .

2. Proof of Theorem

Let $Q,$ $I$ and $D$ be as in Theorem. For any $X\in mod A$ , denote by $\epsilon_{X}$ :
$Q\otimes {}_{D}Hom_{A}(Q, X)\rightarrow X$ the usual evaluation map and define $\alpha_{X}$ : $ Q^{*}\otimes_{A}X\rightarrow$

$Hom_{A}(Q, X)$ by $\alpha_{X}(f\otimes x)(q)=f(q)x$ for $f\in Q^{*}$ , $x\in X$ and $q\in Q$ . Note that
${\rm Im}\epsilon_{P}=IP$ for all projective $P\in mod A$ .

We divide the proof into several steps. For the benefit of the reader, we
do not exclude the case of $AQ$ being projective in the proofs of statements (1)
and (2).

We start with recalling a few well-known facts.
*After completing this note, the authors found that, in case $AQ$ is projective, the

statement (3) has also been proved by Burgess, W. D. and Fuller, K. R., On quasihereditary
rings, Proc. Amer. Math. Soc. 106 (1989), 321-328.



A generalization of heredity ideals 425

CLAIM 1. $Ker\epsilon_{X}\in mod A/I$ for all $X\in mod A$ .

PROOF. Let $\sum_{i\Leftarrow 1}^{r}q_{i}\otimes f_{i}\in Ker\epsilon_{X}$ and $q\otimes f\in Q\otimes_{D}Q^{*}$ . Then

$f(q)(\sum_{i=1}^{r}q_{i}\otimes f_{i})=\sum_{=i1}^{r}f(q)q_{i}\otimes f_{i}$

$=\sum_{=i1}^{r}q\alpha_{Q}(f\otimes q_{i})\otimes f_{i}$

$=q\otimes(\sum_{i=1}^{r}\alpha_{Q}(f\otimes q_{i})f_{i})$

$=q\otimes\alpha_{X}(f\otimes(\sum_{=}^{r}f_{i}(q_{i})))$

$=0$ .
Thus $I$ annihilates $Ker\epsilon_{X}$ .

CLAIM 2. $proj\dim_{A/I}X\leqq proj\dim_{A}X$ for all $X\in mod A/I$ with $Tor_{k}^{A}(A/I, X)$

$=0$ for $k>0$ .

PROOF. Let $X\in mod A/I$ with $Tor_{k}^{A}(A/I, X)=0$ for $k>0$ . When the functor
$A/I\otimes_{A}-is$ applied, the minimal projective resolution of $AX$ yields a projective
resolution of $A/IX$.

CLAIM 3. $proj\dim_{A}X\leqq gl\dim A/I+proj\dim_{A}Q+1$ for all $X\in mod A/I$.

PROOF. Note first that proj $\dim_{A}A/I\leqq proj\dim_{A}Q+1$ . Since proj $\dim_{A}X\leqq$

$proj\dim_{A/I}X+proj\dim_{A}A/I$ for all $X\in mod A/I$, the assertion follows.

CLAIM 4. Suppose $AQ$ is projective. Then $I^{2}=I$ and $Tor_{k}^{A}(A/I, X)=0$ for
all $X\in mod A/I$ and $k>0$ .

PROOF. Since $AI$ is projective, $I={\rm Im}\epsilon_{I}=I^{2}$ . Also, since $I_{A}$ is projective,

PrOi $\dim(A/I)_{A}\leqq 1$ . It only remains to show $Tor_{1}^{A}(A/I, X)=0$ for all $X\in mod A/I$.
Let $0\rightarrow Y\rightarrow P\rightarrow X\rightarrow 0$ be an exact sequence in $mod$ $A$ with $P$ projective. Suppose
$IX=0$ . Then $IP\subset Y$ , thus $IP=I^{2}P\subset lY$ . Hence $Tor_{1}^{A}(A/I, X)=0$ , as required.

CLAIM 5. Suppose $AQ$ is not projective. Then $Q^{*}\otimes_{A}Q=0$ . Consequently,
$I^{2}=0$ and $Q\in mod A/I$ .

PROOF. Since $End_{A}(Q)$ is a division ring, the non-projectivity of $AQ$ implies
that no non-zero $f\in End_{A}(Q)$ factors through projective modules. Thus, by

Auslander [1, Proposition 7.1], we conclude $Q^{*}\otimes_{A}Q\cong Tor_{2}^{A}(TrQ, Q)=0$ .
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CLAIM 6. Suppose $AQ$ is not projective. Then $Tor_{k}^{A}(A/I, X)\cong Q\otimes_{D}Tor_{k+1}^{A}$

(Tr $Q,$ $X$ ) for all $X\in mod A/I$ and $k>0$ .

PROOF. Let $X\in mod A/I$. Note that $\alpha_{X}=0$ . Thus, by Auslander [1, Pro-
position 7.1], $Q^{*}\otimes_{A}X\cong Tor_{2}^{A}(TrQ, X)$ . Hence

$Tor_{1}^{A}(A/I, X)\cong Q\otimes_{D}Q^{*}\otimes_{A}X$

$\cong Q\otimes_{D}Tor_{2}^{A}(TrQ, X)$ .
For $k\geqq 2$ , since $Q^{*}$ is a second syzygy of Tr $Q$ , we have

$Tor_{k}^{A}(A/I, X)\cong Tor_{k-1}^{A}(Q\otimes_{D}Q^{*}, X)$

$\cong Q\otimes_{D}Tor_{k-1}^{A}(Q^{*}, X)$

$\cong Q\otimes_{D}Tor_{k+1}^{A}(TrQ, X)$ .
CLAIM 7. proj $\dim_{A/I}X\leqq proj\dim_{A}X+proj\dim_{A}Q$ for all $X\in mod A/I$. Con-

sequently, gl $\dim A/I\leqq g1\dim A+proj\dim_{A}Q$ .

PROOF. In case $AQ$ is projective, by Claims 2 and 4, the assertion follows.
Suppose $AQ$ is not projective. Then, by Claims 2, 5 and 6, proj $\dim_{A/I}Q\leqq$

$proj\dim_{A}Q$ . Thus, it suffices to show

proj $\dim_{A/I}X\leqq proj\dim_{A}X+proj\dim_{A/l}Q$

for all $X\in mod A/I$. Let $X\in mod A/I$ with $proj\dim_{A}X=m<\infty$ . Note that, if
$AX$ is projective, so is $A/IX$. So we may assume $m>0$ . Let

$f_{m}$ $f_{1}$

$0-P_{m}-\cdots-P_{1}-P_{0}-X-0$

be the minimal projective resolution of $AX$. Put

$B_{k}={\rm Im}(A/I\otimes f_{k})$ and $Z_{k-1}=Cok(A/I\otimes f_{k})$

for $1\leqq k\leqq m$ . Then $Z_{0}\cong X$ and, by Claim 6, $B_{m}\cong A/I\otimes_{A}P_{m}$ . We have exact
sequences

$0-B_{k}-A/I\otimes_{A}P_{k-1}-Z_{k-1}-0$

for $1\leqq k\leqq m$ and, by Claim 6,

$0\rightarrow Q\otimes_{D}Tor_{k+1}^{A}(TrQ, X)-Z_{k}\rightarrow B_{k}\rightarrow 0$

for $1\leqq k\leqq m-1$ . Now, one can make an induction on $k$ to prove $proj\dim_{A/I}B_{m-k}$

$\leqq k+proj\dim_{A/I}Q$ for $1\leqq k\leqq m-1$ . Thus

proj $\dim_{A/I}X\leqq 1+proj\dim_{A/I}B_{1}$

$\leqq m+proj\dim_{A/I}Q$ ,
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as required.

CLAIM 8. gl $\dim A\leqq g1\dim A/I+\max$ { $2$ , proj $\dim_{A}Q+1$ }.

PROOF. Let $X\in mod A$ . Since

proj $\dim_{A}X\leqq\max$ {proj $\dim_{A}IX$, proj $\dim_{A}X/IX$ },

by Claim 3, we have only to show

proj $\dim_{A}IX\leqq g1\dim A/I+\max$ { $2$ , proj $\dim_{A}Q+1$ }.

In case $AQ$ is not projective, by Claims 3 and 5, the assertion follows. Suppose
$AQ$ is projective. Then $Ker\epsilon_{IX}$ is a first syzygy of IX. Thus, by Claims 1 and
3, we get

proj $\dim_{A}IX\leqq proj\dim_{A}Ker\epsilon_{IX}+1$

$\leqq g1\dim A/I+2$ ,
as required.

CLAIM 9. $\det C(A/I)=\det C(A)$ .

PROOF. Put $c_{i}=|{}_{D}Hom_{A}(Q, Ae_{i})|$ for $1\leqq i\leqq n$ . Since

$Q\otimes {}_{D}Hom_{A}(Q, Ae_{i})\rightarrow^{\sim}Ie_{i}$ ,
we have

$c_{i}[Q]=[Ie_{i}]$

for $1\leqq i\leqq n$ .
Consider first the case of $AQ$ being projective. We may assume $Q=Ae_{1}$ .

Then we have
$e_{1}Ae_{i}\rightarrow^{\sim}e_{1}Ie_{i}$

for $1\leqq i\leqq n$ . Thus, since $c_{11}=1$ , we have

$\det C(A)=\det([Ae_{1}], [Ae_{2}], \cdots , [Ae_{n}])$

$=\det([Ae_{1}], [Ae_{2}]-c_{2}[Ae_{1}], \cdots, [Ae_{n}]-c_{n}[Ae_{1}])$

$=\det([Ae_{1}], [Ae_{2}]-[Ie_{2}], \cdots, [Ae_{n}]-[Ie_{n}])$

$=\det[-- 1^{\mathfrak{i}},*---^{\mathfrak{l}^{1}}’’\frac{0}{C(A/I)}]$

$=\det C(A/I)$ .
Suppose next that $AQ$ is not projective. Let

$0-P_{m}-\cdots-P_{1}\rightarrow P_{0}\rightarrow Q\rightarrow 0$
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be the minimal projective resolution of $AQ$ . Put

$d_{i}=\sum_{k\geq 0}(-1)^{k}|Ext_{A}^{k}(Q, Ae_{i}/Je_{i})_{e_{i}Ae_{i}}|$

for $1\leqq i\leqq n$ . Since

$[P_{k}]=\sum_{1i=}^{n}|Ext_{A}^{k}(Q, Ae_{i}/Je_{i})_{e_{i}Ae_{i}}|[Ae_{i}]$

for all $k\geqq 0$ , we have
$[Q]=\sum_{k\geq 0}(-1)^{k}[P_{k}]$

$=\sum_{i=1}^{n}d_{i}[Ae_{i}]$ .

Also, since by Claims 5 and 6 the functor $A/I\otimes_{A}-$ acts exactly on the above
projective resolution, we have

$[Q].=\sum_{k\geq 0}(-1)^{k}[P_{k}/IP_{k}]$

$=\sum_{i=1}^{n}d_{i}([Ae_{i}]-[Ie_{i}])$ .

After permutation, we may assume $d_{1}\neq 0$ . Then

$d_{1}\det C(A)=\det(d_{I}[Ae_{1}], [Ae_{2}], \cdots, [Ae_{n}])$

$=\det(_{i}\lambda_{1}d_{i}[Ae_{i}]=n_{\urcorner}$ $[Ae_{2}],$ $\cdots,$ $[Ae_{n}])$

$=\det([Q], [Ae_{2}], \cdots, [Ae_{n}])$

$=\det([Q], [Ae_{2}]-c_{2}[Q], \cdots, [Ae_{n}]-c_{n}[Q])$

$=\det(\sum_{t=1}^{n}d_{i}([Ae_{i}]-[Ie_{i}]),$ $[Ae_{2}]-[Ie_{2}],$ $\cdots,$ $[Ae_{n}]-[Ie_{n}])$

$=\det(d_{1}([Ae_{1}]-[Ie_{1}]), [Ae_{2}]-[Ie_{2}], \cdots, [Ae_{n}]-[Ie_{n}])$

$=d_{1}\det C(A/I)$ .

Thus $\det C(A/I)=\det C(A)$ .

This finishes the proof of Theorem.

3. Concerning the existence

In this section, we will show that gl dim $ A<\infty$ ensures the existence of a
torsionless left A-module which satisfies the conditions (a) and (b) in Theorem.
Such a module can be characterized by a certain type of torsion theory on $mod A$ .
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LEMMA 1. Let $(f, \mathcal{F})$ be a torsion theory on $mod$ $A$ and $Q\in \mathcal{F}$ a non-zero
module. Suppose that no proper factor module of $Q$ belongs to $\mathcal{F}$ and that

Cok $f\in \mathcal{F}$ for all $f\in Hom_{A}(Q, X)$ with $X\in \mathcal{F}$ . Then $D=End_{A}(Q)$ is a division

ring and, for every $X\in \mathcal{F}$ , the evaluation map $Q\otimes {}_{D}Hom_{A}(Q, X)\rightarrow X$ is monic.

PROOF. Let $0\neq f\in Hom_{A}(Q, X)$ with $X\in \mathcal{F}$ . We claim $f$ is monic. Since
$0\neq{\rm Im} f\in \mathcal{F},$ $f$ induces $Q_{\rightarrow}\sim{\rm Im} f$ . Thus $f$ is monic. In particular, $D=End_{A}(Q)$

is a division ring. Now the last assertion is a consequence of the following

CLAIM. Let $X\in \mathcal{F}$ and $f_{1},$
$\cdots,$ $f_{r}\in Hom_{A}(Q, X)$ be linearly independent over

D. Then $f=(f_{1}, \cdots, f_{r}):\oplus^{r}Q\rightarrow X$ is monic.

PROOF. Replacing $X$ by ${\rm Im} f$ , we may assume $f$ is epic. Note that, if $r=1$ ,

the assertion has been proved. Suppose $r\geqq 2$ . Since $f_{r}$ is monic, we have the
following commutative diagram with exact rows:

$r-1$
$0\rightarrow Kerf-\oplus Q\underline{(g_{1},\cdots,g_{t-1})}$ Cok $f_{r}-0$

$(f_{1}, \cdots, f_{r-1})$ $||$

$0-Q\rightarrow^{f_{\gamma}}X$ Cok $f_{r}\rightarrow 0$ .

It is easy to see that $g_{1},$ $\cdots,$
$g_{r-1}\in Hom_{A}$( $Q$ , Cok $f,$ ) are linearly independent

over $D$ . Since Cok $f_{r}\in \mathcal{F}$ , by induction hypothesis, $g=(g_{1}, \cdots, g_{r-1})$ is monic,

so is $f$ .

PROPOSITION 1. Let $M$ be a left A-module with $ 2\leqq inj\dim_{A}M=m<\infty$ . Let
$Q$ be minimal with respect to inclusions in the class of all non-zero torsionless
$X\in mod$ $A$ with $Ext_{A}^{k}(X, M)=0$ for $k\geqq m-1$ . Then $D=End_{A}(Q)$ is a division
ring and the evaluation map $Q\otimes {}_{D}Hom_{A}(Q, A)-+A$ is monic.

PROOF. Since the functor $Ext_{A}^{m}(-, M)$ is left exact, there is a torsion
theory $(f, \mathcal{F})$ on $mod$ $A$ such that the torsionfree class $\mathcal{F}$ consists of all $ X\in$

$mod$ $A$ with $Ext_{A}^{m}(X, M)=0$ . Since $AA\in \mathcal{F}$ , it suffices to check that $Q$ enjoys

the properties in the above lemma.

CLAIM 1. No proper factor module of $Q$ belongs to $\mathcal{F}$ .

PROOF. Let $0\rightarrow Q^{\prime}\rightarrow Q\rightarrow Q^{\prime\prime}\rightarrow 0$ be an exact sequence in $mod$ $A$ with $Q^{\prime},$ $Q^{\prime\prime}$

non-zero. Applying the functor $Hom_{A}(-, M)$ , we get $Ext_{A}^{m- 1}(Q^{\prime}, M)\cong$
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$Ext_{A}^{m}(Q^{\prime\prime}, M)$ . Thus, by the minimality of $Q$ , we conclude $Ext_{A}^{m}(Q^{\prime/}, M)\neq 0$ .

CLAIM 2. Cok $f\in \mathcal{F}$ for all $f\in Hom_{A}(Q, X)$ with $X\in \mathcal{F}$ .

PROOF. Let $f\in Hom_{A}(Q, X)$ with $X\in \mathcal{F}$ . We may assume $f\neq 0$ . As in
the proof of Lemma 1, by Claim 1 we conclude $f$ is monic. Now, the exact
sequence $0\rightarrow Q\rightarrow X\rightarrow Cokf\rightarrow 0$ yields $Ext_{A}^{m}(Cokf, M)=0$ .

This finishes the proof of Proposition 1.

REMARK. Suppose $ 2\leqq gl\dim A=m<\infty$ and take $AA$ as an $M$ in the above
proposition. Then we have $proj\dim_{A}Q\leqq m-2$ . Thus, if $m\leqq 3,$ $Q$ satisfies all
the conditions in Theorem.

4. In case of algebras

Throughout this section, $A$ is assumed to be a finite dimensional algebra
over an algebraically closed field $F$. Assume further that gl dim $ A<\infty$ .

We intend to replace $Q^{*}$ by its submodules. As shown in the second sec-
tion, in case $AQ$ is not projective, the condition (c) in Theorem can be replaced
by the condition that $Tor_{k}^{A}(Q^{*}, Q)=0$ for all $k\geqq 0$ . So we are interested in a
pair of a left A-module $Q$ and a right A-module $R$ such that there is a bilinear
monomorphism $Q\otimes_{F}R\rightarrow A$ and $Tor_{k}^{A}(R, Q)=0$ for all $k\geqq 0$ . It should be noted
that the existence of a bilinear monomorphism $Q\otimes_{F}R\rightarrow A$ implies $R$ is imbedded
into $Q^{*}$ .

LEMMA 2. Let $Q\in mod$ $A$ and $R$ a submodule of $Q^{*}$ . Let $\epsilon;Q\otimes_{F}R-\rightarrow A$ be
the induced bilinear map and put $ I={\rm Im}\epsilon$ . Suppose that $\epsilon$ is monic and that
$Tor_{k}^{A}(R, Q)=0$ for all $k\geqq 0$ . Then gl $\dim A/I\leqq 1+g1\dim A+\min$ {proj $\dim_{A}Q$ ,
proj $\dim R_{A}$ }.

PROOF. We may assume proj $\dim_{A}Q\leqq proj\dim R_{A}$ . One can employ the
argument in the second section to conclude that

proj $\dim_{A/I}X\leqq 1+proj\dim_{A}X+proj\dim_{A}Q$

for all $X\in mod A/I$. The only difference is that $Tor_{m}^{A}(A/I, X)$ may not vanish,
where $m=proj\dim_{A}X$.

PROPOSITION 2. Let $Q\in mod$ $A$ be indecomposable and non-projective and $R$

a submodule of $Q^{*}$ . Let $\epsilon;Q\otimes_{F}R\rightarrow A$ be the induced bilinear map and put $I=$
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${\rm Im}\epsilon$ . Suppose that $\epsilon$ is monic and that $Tor_{k}^{A}(R, Q)=0$ for all $k\geqq 0$ . Then
gl dim $ A/I<\infty$ and $\det C(A/I)=\det C(A)$ .

PROOF. The first assertion follows from the above lemma. For the last
assertion, the argument in the second section remains valid in this setting.

Finally, as an example, we prove the following

PROPOSITION 3. Let $I=AaA$ with $a\in e_{i}Ae_{j}$ . Suppose that the left multi-
plication map $\lambda_{a}$ : $e_{j}A\rightarrow e_{i}A$ is monic and that $Ja=0$ . Then gl dim $ A/I<\infty$ and
$\det C(A/I)=\det C(A)$ .

PROOF. Put $Q=Aa$ and $R=e_{j}A$ . Since $AQ$ is simple, $End_{A}(Q)\cong F$ and
$|Q_{F}|=1$ . Thus $AQ\otimes_{F}R_{A\rightarrow A}\sim I_{A}$ . In case $i=j,$ $Q\cong Ae_{i}$ and $R\cong Q^{*}$ . Hence, one
can apply Theorem to this case. Suppose $i\neq j$ . Then $Tor_{k}^{A}(R, Q)=0$ for all
$k\geqq 0$ . The first assertion follows from Lemma 2. For the last assertion, either
$AQ$ is projective or not, the argument in the second section is applicable.

5. Zacharia’s reduction

In this final section, we review Zacharia’s reduction [7]. His argument
remains valid in more general setting.

PROPOSITION 4. Suppose that $Ext_{A}^{k}(Ae_{1}/Je_{1}, Ae_{1}/Je_{1})=0$ for $k>0$ and that
proj $\dim_{A}Ae_{1}/Je_{1}<\infty$ . Then we have

(1) gl $\dim(1-e_{1})A(1-e_{1})\leqq g1\dim A+proj\dim_{A}Je_{1}$ and
(2) $\det C((1-e_{1})A(1-e_{1}))=\det C(A)$ .

PPOOF. Since $Ae_{1}$ does not appear as a direct summand of any term in the
minimal projective resolution of $AJe_{1}$ , we have

proj $\dim_{(1-e_{1})A(1-e_{1})}(1-e_{1})A=proj\dim_{(1- e_{1^{)}}A(1-e_{1})}(1-e_{1})Ae_{1}$

$=proj\dim_{(1-e_{1})A(1-e_{1})}(1-e_{1})Je_{1}$

$\leqq proj\dim_{A}Je_{1}$ .
Hence, the first assertion follows.

Consider now the last assertion. Put

$d_{i}=\sum_{k\geq 0}(-1)^{k}|Ext_{A}^{k}(Ae_{1}/Je_{1}, Ae_{i}/Je_{i})_{e_{i}Ae_{i}}|$
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for $1\leqq i\leqq n$ . Then, as in the second section, we have

$[Ae_{1}/Je_{1}]=\sum_{i=1}^{n}d_{i}[Ae_{i}]$ .
Thus, since $d_{1}=1$ , we get

$[Ae_{1}/Je_{1}]=[Ae_{1}]+\sum_{i=2}^{n}d_{i}[Ae_{i}]$ .

Note that $C((1-e_{1})A(1-e_{1}))$ coincides with the $(1, 1)th$ principal minor of $C(A)$ .
Hence

$\det C(A)=\det([Ae_{1}], [Ae_{2}], \cdots, [Ae_{n}])$

$=\det([Ae_{1}]+\sum_{i=2}^{n}d_{i}[Ae_{i}], [Ae_{2}], \cdots, [Ae_{n}])$

$=\det C((1-e_{1})A(1-e_{1}))$ .
We end with giving an example of an algebra of global dimension three

for which Zacharia’s reduction is of no use.

EXAMPLE. Let $A$ be a subalgebra of $(F)_{8}$ , the $8\times 8$ matrix algebra over a
field $F$, with the basis elements

$e_{1}=\sum_{i=1}^{5}e_{ii}$ , $e_{2}=\sum_{=i6}^{8}e_{ii}$ , $a=e_{26}$ ,

$e_{36}+e_{47}+e_{58}$ , $e_{41}+e_{52}$ , $e_{71}+e_{82}$ , $e_{66}$ and $e_{86}$ ,

where $e_{ij}$ are matrix units. Then gl $\dim A=3$ and, for both $i=1$ and 2,
$Ext_{A}^{2}(Ae_{i}/Je_{i}, Ae_{i}/Je_{i})\neq 0$ . On the other hand, one can take $Ae_{1}/Je_{1}$ or $Ae_{2}/Aa$

as a torsionless left A-module which satisfies all the conditions in Theorem.
We notice also that $A$ does not have any heredity ideal.
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