AN ISOMETRIC EMBEDDING OF THE COMPLEX HYPERBOLIC SPACE IN A PSEUDO-EUCLIDEAN SPACE AND ITS APPLICATION TO THE STUDY OF REAL HYPERSURFACES

By
Oscar J. Garay and Alfonso Romero

0 . Introduction.

In the last years, the use of an idea of A. Ros, [11], has meant an interesting progress in the study of several families of submanifolds of the complex projective space $\boldsymbol{C} P^{n}$. This idea essentially consists in considering the first standard embedding of $\boldsymbol{C} P^{n}$ in a certain Euclidean space \boldsymbol{R}^{N}, and contemplating the submanifolds of $\boldsymbol{C} P^{n}$ in the light of that new embedding. The first standard embedding has parallel second fundamental form and makes $\boldsymbol{C} P^{n}$ to be a symmetric R-space in \boldsymbol{R}^{N}.

In particular real hypersurfaces of $\boldsymbol{C} P^{n}$ have been analysed under this point of view, [6], [13], and new characterizations of this important class of hypersurfaces have been obtained.

In 1986, the second author and S. Montiel, [8], made a systematic study of a certain family of real hypersurfaces of the complex hyperbolic space $\boldsymbol{C} H^{n}$. In the process of classification of that family they introduced new examples without parallel in $\boldsymbol{C} P^{n}$. Therefore if we could get an isometric embedding of $\boldsymbol{C} H^{n}$ in some Euclidean space \boldsymbol{R}^{N} provided of as good geometric properties as those of the first standard embedding of $\boldsymbol{C} P^{n}$, we could try to profound in the study of real hypersurfaces in $\boldsymbol{C} H^{n}$.

On the other hand fully immersed complete submanifolds of a Euclidean space with parallel second fundamental form have been totally classified by D. Ferus, [3], [4]. As a consequence his result implies that a complete irreducible (as a Riemannian manifold) submanifold which is fully immersed in an Euclidean space with parallel second fundamental form is congruent to either an hyperplane or to an irreducible symmetric R-space immersed by means of its standard embedding. Consequentely we see that there exist no an isometric immersion
of $\boldsymbol{C H} H^{n}$ in an Euclidean space with parallel second fundamental form. Therefore one should rather look for such a good isometric embedding of $\boldsymbol{C H} H^{n}$ in a pseudo-Euclidean space. In this article we propose both to prove that the above mentioned embedding exists and to use that embedding to analize real hypersurfaces of $\boldsymbol{C} H^{n}$. In $\S 1$, we firstly construct an isometric embedding φ of $\boldsymbol{C} H^{n}$ in the pseudo-Euclidean space $\boldsymbol{R}_{S}^{N}, N=n^{2}+2 n+1, S=n^{2}+1$, with parallel second fundamental form, which makes $\boldsymbol{C} H^{n}$ to be a space-like submanifold with definite negative normal bundle in the ambient space \boldsymbol{R}_{S}^{N}. In this way $\boldsymbol{C H} H^{n}$ whitin \boldsymbol{R}_{S}^{N} is a pseudo-Riemannian symmetric R-space in the sense of Naitoh, [9], (see also Remark 1.2). Secondly if we take an isometric immersion Φ of a ($2 n-1$)-dimensional Riemannian manifold M in $\boldsymbol{C} H^{n}$, and consider the induced isometric immersion $\chi=\varphi \circ \Phi$ of M in \boldsymbol{R}_{S}^{N} then we ask which real hypersurfaces M of $\boldsymbol{C H} H^{n}$ are minimally immersed by means of χ in some non-flat totally umbilical hypersurface of \boldsymbol{R}_{S}^{N}. We obtain:

Theorem 4.2. There exist no real hypersurtaces M of $\boldsymbol{C H}^{n}, n \geqq 2$, which are minimal in either a $\left(n^{2}+2 n\right)$-dimensional indefinite sphere or in $a\left(n^{2}+2 n\right)$ dimensional indefinite real hyperbolic space of $\boldsymbol{R}_{n+1}^{n+2 n+1}$; that is to say no real hypersurface M of $\boldsymbol{C} H^{n}$ is mono-order in $\boldsymbol{R}_{n^{2}+1}^{n_{1}^{2}+1}$ via the isometric embedding φ.

This result contrasts with Theorem 3.1 of [6], where certain geodesic hyperspheres were characterized as those whose immersion via the first standard embedding was minimal in some hypersphere of an Euclidean space.

At the same time, we discovered that Theorem 4.2 was accompanied by a seemingly strange fact. Indeed, in computing the Laplacian of the mean curvature vector field \hat{H} of the horosphere M_{n}^{*} of $\boldsymbol{C} H^{n}$ in the pseudo-Euclidean space $\boldsymbol{R}_{n}^{n+2+1}{ }^{2}+2 n+1$ (see $\S 3$) we achieved $\Delta \hat{H}=Q$, where Q was a non-zero constant vector of the ambient space. Fortunately we succed in proving its converse and thus to characterize the horosphere M_{n}^{*} as follows:

Theorem 5.7. Let M be a real hypersurface of constant mean curvature in $\boldsymbol{C} H^{n}, n \geqq 2$. Suppose M satisfies the differential equation

$$
\Delta \hat{H}=Q
$$

with \hat{H} the mean curvature vector fiel of M in $\boldsymbol{R}_{n^{2}+1}^{n_{1}^{2}+2 n+1}$ and Q is a non-zero constant vector of the ambient space. Then M is locally congruent in $\boldsymbol{C H} H^{n}$ to the horosphere

$$
M_{n}^{*}=\pi\left(\left\{z \in H_{1}^{2 n+1}| | z_{0}-\left.z_{1}\right|^{2}=1\right\}\right)
$$

described in $\S 3$.

Finally one should notice that no real hypersurface of $\boldsymbol{C} P^{n}$ with constant mean curvature satisfy the above differential equation $\Delta \hat{H}=Q$.

1. An isometric embedding of the complex hyperbolic space in a pseudoEuclidean space. We consider the following Hermitian form in the ($n+1$)dimensional complex vector space \boldsymbol{C}^{n+1}

$$
\begin{equation*}
F(z, w)=-\bar{z}_{0} w_{0}+\sum_{j=1}^{n} \bar{z}_{j} w_{j} \tag{1.1}
\end{equation*}
$$

where as usual $\left(z_{0}, \cdots z_{n}\right)=z^{t}$ and $\left(w_{0}, \cdots, w_{n}\right)=w^{t}$ represent vectors of \boldsymbol{C}^{n+1}, () denoting transpose, and \bar{z}_{j} means the conjugate complex of z_{j}. The real part of F is an indefinite Riemannian metric on C^{n+1} with index 2 , which we call g. The classical definition of the n-dimensional complex hyperbolic space $\boldsymbol{C H} H^{n}$ goes as follows: $\boldsymbol{C H} H^{n}$ is formed by the set consisting of the 1-dimensional complex subspaces $L=$ span $\{z\}$ of C^{n+1} satisfying $F(z, z)<0$, i. e. L is negative definite with respect to g. The real hypersurface $H_{1}^{2 n+1}=\left\{z \in \boldsymbol{C}^{n+1} \mid F(z, z)=-1\right\}$ of C^{n+1} is, with the induced metric g, a complete Lorentzian manifold of constant sectional curvature -1 , which is called the ($2 n+1$)-dimensional anti-De Sitter space. In terms of the usual action of the 1-dimensional sphere S^{1} on $H_{1}^{2 n+1}$, we have that $H_{1}^{2 n+1}$ is a S^{1}-bundle on $\boldsymbol{C} H^{n}$ with canonical projection $\pi: H_{1}^{2 n+1} \rightarrow \boldsymbol{C} H^{n}, z \mapsto[z]=\operatorname{span}\{z\}$. If we additionally take on $\boldsymbol{C} H^{n}$ the Bergman metric of holomorphic sectional curvature $-4, \pi$ is a riemannian submersion, [10], with time-like totally geodesic fibers.

Now take $\operatorname{End}\left(\boldsymbol{C}^{n+1}\right)$ as the space of all the \boldsymbol{C}-linear endomorphisms of \boldsymbol{C}^{n+1}. Then by mapping $L=[z], z \in H_{1}^{2 n+1}$, in the orthogonal projection with respect to L of the metric vector space $\left(\boldsymbol{C}^{n+1}, F\right)$, we construct an embedding of $\boldsymbol{C} H^{n}$ in $\operatorname{End}\left(\boldsymbol{C}^{n+1}\right)$, whose image is

$$
\begin{equation*}
\left\{p \in \operatorname{End}\left(\boldsymbol{C}^{n+1}\right) / p \circ p=p, F(p(z), w)=F(z, p(w)), z, w \in \boldsymbol{C}^{n+1}, \operatorname{trace}(p)=1\right\} \tag{1.2}
\end{equation*}
$$

By identifying $\operatorname{End}\left(\boldsymbol{C}^{n+1}\right)$ with the space formed by the complex square matrices of order $n+1, M_{n+1}$, we obtain a differentiable embedding φ of $\boldsymbol{C} H^{n}$ in M_{n+1}, whose image is

$$
\begin{equation*}
\left\{A \in M_{n+1} \mid A^{2}=A, G \bar{A}^{t}=A G, \operatorname{trace}(A)=1\right\} \tag{1.3}
\end{equation*}
$$

where G is the matrix $\operatorname{diag}\left(-1, I_{n}\right), I_{n}$ is the matrix identity of order n, and \bar{A} (resp. A^{t}) is the conjugate (resp. transpose) matrix of A.

Therefore, given any $[z] \in \boldsymbol{C} H^{n}$ we have

$$
\varphi([z])=\left(\begin{array}{c|ccc}
\left|z_{0}\right|^{2} & -z_{0} \bar{z}_{1} \cdots & -z_{0} \bar{z}_{n} \tag{1.4}\\
\hline z_{1} \bar{z}_{0} & -\left|z_{1}\right|^{2} \cdots & -z_{1} \bar{z}_{n} \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
z_{n} \bar{z}_{0} & -z_{n} \bar{z}_{1} \cdots & -\left|z_{n}\right|^{2}
\end{array}\right)
$$

and so $\varphi([z])$ is the matrix of the orthogonal projection p_{L} with respect to the line $L=[z]$ expressed in the usual basis of \boldsymbol{C}^{n+1}.

Consider now the $(n+1)^{2}$-dimensional real subspace of M_{n+1} defined by

$$
H^{1}(n+1)=\left\{A \in M_{n+1} / G \bar{A}^{t}=A G\right\} .
$$

If we define on $H^{1}(n+1)$ the symmetric bilinear form

$$
\begin{equation*}
\tilde{g}(A, B)=-(1 / 2) \operatorname{trace}(A B) \tag{1.5}
\end{equation*}
$$

A, B in $H^{1}(n+1)$, then \tilde{g} is a non-degenerate metric of index $n^{2}+1$. Consequently $\left(H^{1}(n+1), \tilde{g}\right)$ is isometric to the pseudo-Euclidean space $\boldsymbol{R}_{n+1}^{n+2+2 n+1}$.

If we agree in denoting by $U^{1}(n+1)$ the Lie group formed by the F isometric automorphisms of $\boldsymbol{C}^{n+1}, U^{1}(n+1)=\left\{A \in G l(n+1, \boldsymbol{C}) \mid \bar{A}^{t} G A=G\right\}$, then we see that this group acts transitively on the anti-De Sitter space $H_{1}^{2 n+1}$ by means of the usual matrix product. $\boldsymbol{C} H^{n}$ inherits this action in a natural way $(A,[z]) \mapsto[A z]$. On the other hand, there is another action of $U^{1}(n+1)$ on $H^{1}(n+1)$ represented by $(A, X) \mapsto A X A^{-1}$. This action leaves invariant the metric $\tilde{g},(1.5)$, and φ is a $U^{1}(n+1)$-equivariant embedding. One can check directely from (1.4) that the differential of φ at $\left[e_{0}\right], e_{0}^{t}=(1,0, \cdots, 0)$, preserves vectors length. Thus φ is an isometric embedding. Moreover, the image of φ given in (1.3) is contained in the hyperplane $H_{*}^{1}(n+1)=\left\{A \in H^{1}(n+1) \mid \operatorname{trace}(A)=1\right\}$.

We end observing that I_{n+1} is normal to $H_{*}^{1}(n+1)$ with respect to \tilde{g}. Hence $H_{*}^{1}(n+1)$ is a non-degenerate hyperplane of index n^{2} and there exists no hyperplane of $H_{*}^{1}(n+1)$ containing $\varphi\left(\boldsymbol{C} H^{n}\right)$. Finally we summarize these facts in the following :

Proposition 1.1. The map φ written in (1.4) defines an $U^{1}(n+1)$-equivariant isometric embedding of the hyperbolic complex space $\boldsymbol{C} H^{n}$, with Bergman metric of holomorphic sectional curvature -4 , into the pseudo-Euclidean space $\boldsymbol{R}_{n+1}^{n+2+2 n+1}$ (represented as the matrix space ($\left.H^{1}(n+1), \tilde{g}\right)$). In addition φ is an $U^{1}(n+1)$ equivariant embedding fully immersed in a non-degenerate hyperplane of index n^{2} of $\boldsymbol{R}_{n+1}^{n+2+2 n+1}$.

At this point we wish to emphasize some useful facts about the embedding
we have just defined.
We begin by computing the tangent and normal spaces to $\boldsymbol{C} H^{n}$ at any point. Identifying $\boldsymbol{C} H^{n}$ with its image under φ and making as in [6], p. 306, we get

$$
\begin{align*}
& T_{A}\left(\boldsymbol{C} H^{n}\right)=\left\{X \in H^{1}(n+1) \mid X A+A X=X\right\} \\
& T_{A}^{\perp}\left(\boldsymbol{C} H^{n}\right)=\left\{X \in H^{1}(n+1) \mid X A=A X\right\} \tag{1.6}
\end{align*}
$$

Choosing now any Q of $H^{1}(n+1)$, its tangential component to $\boldsymbol{C H} H^{n}$ at the point A is

$$
\begin{equation*}
Q A+A Q+4 \tilde{g}(A, Q) A \tag{1.7}
\end{equation*}
$$

The complex structure of $\boldsymbol{C H} H^{n}$ is given by

$$
\begin{equation*}
J X=\sqrt{-1}(I-2 A) X \tag{1.8}
\end{equation*}
$$

for any X in $T_{A}\left(\boldsymbol{C H} H^{n}\right)$, where I is the identity matrix of order $n+1$.
We denote by $\tilde{\sigma}, \tilde{S}$ and \tilde{H} the second fundamental form, the shape operator and the mean curvature vector field associated to φ, respectively. Then if Z is a normal vector to $\boldsymbol{C} H^{n}$ and A is a point of $\boldsymbol{C} H^{n}$, it is not hard to check that

$$
\begin{gather*}
\tilde{\boldsymbol{\sigma}}(X, Y)=(X Y+Y X)(I-2 A) \tag{1.9}\\
\tilde{S}_{Z} X=(X Z-Z X)(I-2 A) \\
\tilde{\sigma}(J X, J Y)=\tilde{\boldsymbol{\sigma}}(X, Y) \tag{1.10}\\
\tilde{H}_{A}=-(2 / n)(I-(n+1) A) \tag{1.11}
\end{gather*}
$$

for any X, Y tangent to $\boldsymbol{C H} H^{n}$ at the point A.
Hence from (1.10) and Codazzi equation we obtain

$$
\begin{equation*}
\nabla \tilde{\sigma}=0 \tag{1.12}
\end{equation*}
$$

i. e., $\tilde{\sigma}$ is parallel. Now from (1.5) and (1.9) we get

$$
\begin{equation*}
\tilde{g}(\tilde{\sigma}(X, Y), I)=0, \quad \tilde{g}(\tilde{\sigma}(X, Y), A)=-\tilde{g}(X, Y) \tag{1.13}
\end{equation*}
$$

for any A in $\boldsymbol{C} H^{n}$ and X, Y in $T_{A}\left(\boldsymbol{C} H^{n}\right)$. Finally by using that $\boldsymbol{C} H^{n}$ has holomorphic sectional curvature -4 , and Gauss formula, we conclude from (1.8) that

$$
\begin{align*}
\tilde{g}(\tilde{\sigma}(X, Y), \tilde{\sigma}(V, W))= & -2 \tilde{g}(X, Y) \tilde{g}(V, W)-\tilde{g}(X, W) \tilde{g}(Y, V) \tag{1.14}\\
& -\tilde{g}(X, V) \tilde{g}(Y, W)-\tilde{g}(X, J W) \tilde{g}(Y, J V) \\
& -\tilde{g}(X, J V) \tilde{g}(Y, J W)
\end{align*}
$$

for any X, Y, V, W of $T_{A}\left(\boldsymbol{C} H^{n}\right)$.
Perhaps to complete this paragraph we should make you notice some observations which fit in nicely with our discussion. Firstly we consider the Laplacian Δ associated to the Bergman metric of $\boldsymbol{C H} H^{n}$. We take the sign of Δ so as in the standard Euclidean case $\Delta=-\sum_{i=1}^{n} \partial^{2} / \partial x_{j}^{2}$. Calling χ to the position vector in $H^{1}(n+1)$ from the point $(1 /(n+1)) I$, i. e., $\chi([z])=\varphi([z])-(1 /(n+1)) I,[z] \in \boldsymbol{C} H^{n}$, and using (1.11) we obtain $\Delta \chi=-4(n+1) \chi$ and therefore φ embeds $\boldsymbol{C H}^{n}$ as a minimal submanifold of the umbilical hypersurface

$$
U=\left\{X \subseteq H^{1}(n+1) \mid \tilde{g}(X-(1 /(n+1)) I, X-(1 /(n+1)) I)=-n / 2(n+1)\right\} .
$$

Identifying $H^{1}(n+1)$ with the pseudo-Euclidean space $\boldsymbol{R}_{n}^{n^{2}+2 n+1}, U$ is an indefinite hyperbolic space $H_{n}^{n 2}{ }^{2}+2 n$ of sectional curvature $-2(n+1) / n$. Notice that since $\boldsymbol{C H} H^{n}$ is a space-like submanifold of $\boldsymbol{R}_{n+1}^{n+2 n+1}$ (and with negative definite normal bundle) it can not be a minimal submanifold of an indefinite sphere (see [2], Theorem 1). The intersection of U and $H_{*}^{1}(n+1)$ (seen as $\boldsymbol{R}_{n}^{n}{ }^{2}+2 n$) is the indefinite hyperbolic space $H_{n}^{n_{2}^{2+2 n-1}}$ and $\boldsymbol{C} H^{n}$ is fully embedded as a minimal submanifold in $H_{n}^{n 2+2 n-1}$. In particular for $n=1 \varphi$ is the usual isometric embedding of the real hyperbolic plane $H_{0}^{2}=\boldsymbol{C} H^{1}$, with Gauss curvature -4 , into the Lorentz Minkowski space \boldsymbol{R}_{1}^{3}.

Remark 1.2. The isometric embedding φ of $\boldsymbol{C} H^{n}$ in $H_{*}^{1}(n+1)$ is full, and has parallel second fundamental form. In addition the normal vector field $\boldsymbol{\xi}$ defined by $\xi_{A}=A, A \in \boldsymbol{C} H^{n}$, satisfies $\tilde{S}_{\xi} X=-X$ for any $X \in T_{A}\left(\boldsymbol{C} H^{n}\right)$ and any $A \in \boldsymbol{C} H^{n}$. This means that φ satisfies for any A in $\boldsymbol{C} H^{n}$ conditions $C_{1}(A)$ and $C_{2}(A)$ of [9], p. 739. Then identifying $H_{*}^{1}(n+1)$ with the pseudo-Euclidean space $\boldsymbol{R}_{n^{2}}{ }^{2}+2 n, \boldsymbol{C} H^{n}$ turns out to be a pseudo-Riemannian symmetric R-space in $\boldsymbol{R}_{n^{2}}{ }^{2}+2 n$. In fact setting $\{x, y, z\}=-2\left(\bar{y}^{t} \cdot z\right) x-2\left(\bar{y}^{t} \cdot x\right) \cdot z$ and $\langle x, y\rangle=\operatorname{Real}\left(\bar{x}^{t} \cdot y\right)$ for any $x, y, z \in \boldsymbol{C}^{n}$ we have that $\left(\boldsymbol{C}^{n},\{ \},\langle \rangle\right)$ is a orthogonal Jordan triple system in the sense of [9], p. 736, which satisfies condition (S) of [9], p. 739, and the pseudo-Riemannian symmetric R-space associated to this orthogonal Jordan triple system is precesily $\boldsymbol{C} H^{n}$ in $\boldsymbol{R}_{n}^{n+2 n}$.
2. Real hypersurfaces of $\boldsymbol{C H} H^{n}$. We would like to study real hypersurfaces of $\boldsymbol{C H} H^{n}$ by making use of the embedding φ. To do that it is worth taking the time to compute several formulae in some detail. They will be needed in the next paragraphs. Whenever we mention $\boldsymbol{C H} H^{n}$ from now on, we shall assume $n \geqq 2$ and it is endowed with the Bergman metric of holomorphic sectional curvature -4 . Suppose M is a real hypersurface of $\boldsymbol{C H} H^{n}$ and represent by $\bar{\nabla}$ and ∇ the Levi-Civita connections of $C H^{n}$ and M respectively. The Gauss and

Weingarten formulae are written as:

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+g(S X, Y) N ; \quad \bar{\nabla}_{X} N=-S X \tag{2.1}
\end{equation*}
$$

where $\sigma(X, Y)=g(S X, Y) N$ is the second fundamental form of M in $\boldsymbol{C H} H^{n}, X, Y$ are tangent vector fields to M, N is a local unit normal vector field to M, and S is the shape operator associated to N.

If J is the complex structure of $\boldsymbol{C} H^{n}$, then for any tangent vector X to M we put

$$
\begin{equation*}
J X=\phi X+f(X) N \tag{2.2}
\end{equation*}
$$

where ϕX and $f(X) N$ are respectively the tangent and normal components of $J X$. As it is well known ϕ is a $(1,1)$ tensor field and f is a 1 -form over M. It is not hard to check the following relations:

$$
\begin{gather*}
f(X)=-g(X, J N) ; f(\phi X)=0 ; \phi^{2} X=-X-f(X) J N \\
g(\phi X, Y)+g(X, \phi Y)=0 \tag{2.3}\\
g(\phi X, \phi Y)=g(X, Y)-f(X) f(Y)
\end{gather*}
$$

for any X, Y tangent to M.
Now we return to the immersion Φ of M in $\boldsymbol{C H} H^{n}$. If we compose this immersion with the embedding φ given in (1.4) we obtain again an isometric immersion χ of M in $H^{1}(n+1)$. Calling H and \hat{H} to the mean curvature vector fields of Φ and χ respectively, one gets:

$$
\begin{align*}
& H=(1 /(2 n-1)) \sum_{i} \sigma\left(E_{i}, E_{i}\right)=(1 /(2 n-1)) \sum_{i} h_{i i} N \tag{2.4}\\
& \hat{H}_{A}=H_{A}-(1 /(2 n-1))\{4(I-(n+1) A)+\tilde{\sigma}(N, N)\} \tag{2.5}
\end{align*}
$$

at any point A of M, σ being as before the second fundamental form of M in $\boldsymbol{C} H^{n} ; h_{i j}=g\left(S E_{i}, E_{j}\right) ;\left\{E_{1}, \cdots, E_{n}\right\}$ is a local orthonormal basis of tangent vector fields to M and $\tilde{\sigma}$ is the second fundamental form of φ.

Moreover using (1.13) we obtain

$$
\begin{equation*}
\tilde{g}(\hat{H}, A)=-1 \tag{2.6}
\end{equation*}
$$

for any point A in M, and also

$$
\begin{equation*}
\|\hat{H}\|^{2}=\|H\|^{2}-4\left(2 n^{2}-1\right) /(2 n-1)^{2} \tag{2.7}
\end{equation*}
$$

One should notice that $\|\hat{H}\|^{2}=\tilde{g}(\hat{H}, \hat{H})$ need not be non-negative because the restriction of \tilde{g} to the normal bundle of M in $H^{1}(n+1)$ is not definite (compare (2.7) with formula (2.21) of [13]).

By a symilar computation to that of [13], pp. 187-188, we are able to obtain :

Proposition 2.1. Let M be a real hypersurface of $\boldsymbol{C H} H^{n}$. If D denotes the Levi-Civita connection of the pseudo-Euclidean space $H^{1}(n+1), S_{H}$ the shape operator of M associated to H, ∇^{\perp} the normal connection of M in $\boldsymbol{C H} H^{n}, \alpha=g(H, N)$, and Δ the Laplacian of M, then the following relations hold:

$$
\begin{align*}
D_{E_{i}} \hat{H}= & -S_{H} E_{i}+\nabla_{\bar{E}_{i}} H+\tilde{\boldsymbol{\sigma}}\left(E_{i}, H\right)+[2(2 n+1) /(2 n-1)] E_{i} \tag{2.8}\\
& +[2 /(2 n-1)] \tilde{\sigma}\left(S E_{i}, N\right)-[2 /(2 n-1)] g\left(J N, E_{i}\right) J N
\end{align*}
$$

for any $i=1, \cdots, 2 n-1$.

$$
\begin{align*}
&(\Delta \hat{H})_{A}=-[4 /(2 n-1)] J S J N-\left\{2(3 n+1)-\|\sigma\|^{2}\right\} H \tag{2.9}\\
&+[8(2 n+1) /(2 n-1)](I-(n+1) A) \\
&-\left\{-4(n+1) /(2 n-1)+(2 n-1)\|H\|^{2}+(2 /(2 n-1))\|\sigma\|^{2}\right\} \tilde{\sigma}(N, N) \\
&+ 2 \alpha \sum_{i} \tilde{\sigma}\left(E_{i}, S E_{i}\right)+(2 /(2 n-1)) \sum_{i} \tilde{\sigma}\left(S E_{i}, S E_{i}\right) \\
&+ 2 S(\operatorname{grad} \alpha)+\alpha \sum_{i, k} h_{i i k} E_{k}-2 \tilde{\sigma}(\operatorname{grad} \sigma, N) \\
&-(2 /(2 n-1)) \sum_{i, j} h_{i i j} \tilde{\sigma}\left(E_{j}, N\right)+(\Delta \alpha) N
\end{align*}
$$

at each point A of M. Where $\|\sigma\|^{2}$ is the square of the length of $\sigma, \operatorname{grad} \alpha$ represents the gradient of α on M and $h_{i j k}=g\left(\left(\hat{\nabla}_{E_{k}} \sigma\right)\left(E_{i}, E_{j}\right), N\right)$ and $\hat{\nabla} \sigma$ is the usual Van der Waerden-Bortolotti covariant derivative of the second fundamental form σ of M in $\boldsymbol{C H} H^{n}$.

In particular, taking $\|H\|$ constant, formula (2.9) can be rewrite as

$$
\begin{align*}
(\Delta \hat{H})_{A}= & (-4 /(2 n-1)) J S J N-\left\{2(3 n+1)-\|\sigma\|^{2}\right\} H \tag{2.10}\\
& +(8(2 n+1) /(2 n-1))(I-(n+1) A)+2 \alpha \sum_{i} \tilde{\sigma}\left(E_{i}, S E_{i}\right) \\
& +(2 /(2 n-1)) \sum_{i} \tilde{\sigma}\left(S E_{i}, S E_{i}\right) \\
& -\left\{-4(n+1) /(2 n-1)+(2 n-1)\|H\|^{2}+(2 /(2 n-1))\|\sigma\|^{2}\right\} \tilde{\sigma}(N, N)
\end{align*}
$$

at each point A of M.
Now we wish to obtain a specially useful formula in our context. By direct computation we obtain from (2.9), (1.13) and (1.14) the following :

Proposition 2.2. For any real hypersurface M of $\boldsymbol{C H} H^{n}$ the following formula holds

$$
\begin{equation*}
\tilde{g}(\Delta \hat{H}, A)=-(2 n-1)\|H\|^{2}+\left(4\left(2 n^{2}-1\right) /(2 n-1)\right) \tag{2.11}
\end{equation*}
$$

We should point out that it is possible to obtain formula (2.11) in a different way. Indeed, using (2.6) one sees that the function h defined by $h(A)=$ $g(\hat{H}, A)$ for any A of M is constant. Since $(\Delta h)_{A}=g(\Delta \hat{H}, A)+(2 n-1) g(\hat{H}, \hat{H})$
one gets

$$
\begin{equation*}
g(\Delta \hat{H}, A)+(2 n-1) g(\hat{H}, \hat{H})=0 \tag{2.12}
\end{equation*}
$$

for A in M. Combining (2.7) and (2.12) one derives (2.11). Observe also that (2.12) remains valid for any submanifold of a pseudo-Euclidean space provided h is constant.

We close this section by analyzing the behavoir of the Laplacian Δ of a real hypersurface M of $\boldsymbol{C} H^{n}$. We are going to obtain some formulae which will be used in $\S 3$.

Let M^{\prime} be the Lorentzian hypersurface of the anti-De Sitter space $H_{1}^{2 n+1}$ which is a S^{1}-bundle on M compatible with the fibration π of $H_{1}^{2 n+1}$ on $\boldsymbol{C} H^{n}$. Since $\pi: M^{\prime} \rightarrow M$ is a Riemannian submersion with totally geodesic fibers, we have

$$
\begin{equation*}
(\Delta f) \circ \pi=\Delta^{\prime}(f \circ \pi) \tag{2.13}
\end{equation*}
$$

for any differentiable function f on M, where Δ^{\prime} represents the Laplacian of the Lorentz metric on M^{\prime}.

If we agree to represent by D° and D the Levi-Civita connections of the pseudo-Euclidean space $\boldsymbol{R}_{2}^{2 n+2}$ and $H_{1}^{2 n+1}$ respectively, then one has

$$
\begin{equation*}
D_{X}^{\circ} Y=D_{X} Y+g(X, Y) \chi \tag{2.14}
\end{equation*}
$$

which is nothing but the Gauss formula for $H_{1}^{2 n+1}$ in $\boldsymbol{R}_{2}^{2 n+2}$, for any X, Y tangent to $H_{1}^{2 n+1}$, where g is the Lorentz metric on $H_{1}^{2 n+1}$ (see $\S 1$), and χ being the position vector at each point.

On the other hand, from the Gauss formula of M^{\prime} in $H_{1}^{2 n+1}$ one has

$$
\begin{equation*}
D_{X} Y=\nabla_{X}^{\prime} Y+\sigma^{\prime}(X, Y) \tag{2.15}
\end{equation*}
$$

for any X, Y tangent to M^{\prime}, where ∇^{\prime} and σ^{\prime} are the Levi-Civita connection and the second fundamental form of M^{\prime} in $H_{1}^{2 n+1}$ respectively. Now we use formulae (2.14) and (2.15) to compute the Hessian of a differentiable function f on M^{\prime}, represented by Hess (f),

$$
\begin{align*}
\operatorname{Hess}(f)(X, Y)= & X(Y(f))-\left(D_{X}^{\circ} Y\right)(f) \tag{2.16}\\
& +g(X, Y) \chi(f)+\sigma^{\prime}(X, Y)(f)
\end{align*}
$$

for any tangent vector fields X, Y to M^{\prime}.
Remenbering the known formula $\Delta^{\prime} f=-\operatorname{trace}_{g} \operatorname{Hess}(f)$ and using (2.16), it turns out that for any function f on M^{\prime} which is restriction of a linear function of $\boldsymbol{R}_{2}^{2 n+2}$ in \boldsymbol{R} we get

$$
\begin{equation*}
\Delta^{\prime} f=-2 n f-2 n H^{\prime}(f) \tag{2.17}
\end{equation*}
$$

H^{\prime} being the mean curvature vector field of M^{\prime} in $H_{1}^{2 n+1}$.
Finally, f being as above the restriction to M^{\prime} of a linear function \tilde{f} on $\boldsymbol{R}_{2}^{2 n+2}$ we get

$$
\begin{equation*}
\left\|\nabla^{\prime} f\right\|^{2}=\left\|D^{\circ} \tilde{f}\right\|^{2}+f^{2}-\left(\xi^{\prime}(f)\right)^{2} \tag{2.18}
\end{equation*}
$$

$\nabla^{\prime} f$ and $D^{\circ} \tilde{f}$ being respectively the gradient of f in M^{\prime} and the gradient of \tilde{f} in $\boldsymbol{R}_{2}^{2 n+2}$, and where ξ^{\prime} is a unit normal vector field to M^{\prime} in $H_{1}^{2 n+1}$.
3. Examples. In this paragraph we present two families of examples, constructed in [8], which will play a fundamental and quite different role in the final sections. Example 3.2 give us a family $M_{2 p+1,2 q+1}(r), 0<r<1, p+q=$ $n-1$, of real hypersurfaces of $\boldsymbol{C} H^{n}$ whose immersion in $H^{1}(n+1)$ via φ (stated in $\S 1$) is never mono-order. We recall that an isometric immersion χ into a pseudo-Euclidean space is said to be mono-order if $\chi=\chi_{0}+y$ where χ_{0} is a constant vector and y satisfies $\Delta y=\lambda y, \lambda \in \boldsymbol{R}$, with Δ the Laplacian of the submanifold. This property of $M_{2 p+1,2 q+1}(r)$ is essential in our proof of Theorem 4.2 , and it contrasts with the complex projective case, where the analogue family of real hypersurfaces of $\boldsymbol{C} P^{n}$ has some members which are mono-order via the first standard embedding of $\boldsymbol{C} P^{n}$. On the other hand, the horosphere M_{n}^{*} of the Example 3.1 shows what at first sight is a rather strange behaviour : the second Laplacian of its immersion in $H^{1}(n+1)$, via φ, is a non-zero constant matrix (that will be proved below in this §3). Moreover M_{n}^{*} has constant mean curvature in $\boldsymbol{C} H^{n}$. Therefore it seems interesting to study the family of real hypersurfaces of $\boldsymbol{C H} H^{n}$ verifying these conditions. This problem will be treated in last paragraph. Meanwhile we analize these examples in some detail.

Example 3.1. Let M_{n}^{\prime} the Lorentz hypersurface of the anti-De Sitter space $H_{1}^{2 n+1}$ defined by

$$
M_{n}^{\prime}=\left\{z \cong H_{1}^{2 n+1}| | z_{0}-\left.z_{1}\right|^{2}=1\right\}
$$

where $z=\left(z_{0}, z_{1}, \cdots, z_{n}\right) \in C^{n+1}$ as in $\S 1$. If $z \in M_{n}$ then

$$
\xi_{2}=\left(-z_{1}, z_{0}-2 z_{1},-z_{2}, \cdots,-z_{n}\right)
$$

is a unit vector normal to M_{n}^{\prime} at the point z. The corresponding shape operator S^{\prime} is given by

$$
\begin{equation*}
S^{\prime}\left(a_{0}, a_{1}, \cdots, a_{n}\right)=\left(a_{1}, 2 a_{1}-a_{0}, a_{2}, \cdots, a_{n}\right) \tag{3.1}
\end{equation*}
$$

for any ($a_{0}, a_{1}, \cdots, a_{n}$) $\in \boldsymbol{C}^{n+1}$ representing a tangent vector to M_{n}^{\prime} at the point z.
From (3.1) it is easy to see that $\operatorname{trace}\left(S^{\prime}\right)=2 n$, and so formula (2.17) gives in this case

$$
\begin{equation*}
\Delta^{\prime} f=-2 n f-2 n(\xi(f))^{2} \tag{3.2}
\end{equation*}
$$

for any function $f: M_{n}^{\prime} \rightarrow \boldsymbol{R}$ which is the restriction of a linear one from $\boldsymbol{R}_{2}^{2 n+2}$ to \boldsymbol{R}.
M_{n}^{\prime} is S^{1}-invariant and $M_{n}^{*}=\pi\left(M_{n}^{\prime}\right)$ is a real hypersurface of $\boldsymbol{C} H^{n}$, and π : $M_{n}^{\prime} \rightarrow M_{n}^{*}$ is a Riemannian submersion with totally geodesic fibers. Using (3.2) we obtain

$$
\begin{equation*}
\Delta^{\prime} z=-2 n\left(z_{0}-z_{1}, z_{0}-z_{1}, 0, \cdots, 0\right) \tag{3.3}
\end{equation*}
$$

where we have written $z=\left(z_{0}, z_{1}, \cdots, z_{n}\right)$ for the position vector of M_{n}^{\prime}. From this last equation we can compute the mean curvature vector field H of M_{n}^{\prime} in $\boldsymbol{R}_{2}^{2 n+2}$

$$
\begin{equation*}
H=\left(z_{0}-z_{1}, z_{0}-z_{1}, 0, \cdots, 0\right)=\xi_{z}+z \tag{3.4}
\end{equation*}
$$

and then H is an isotropic vector at any point. From (3.2) again together with (3.4) one sees that

$$
\begin{equation*}
\Delta^{\prime} H=0 . \tag{3.5}
\end{equation*}
$$

Now let us write Δ and \hat{H} for the Laplacian of M_{n}^{*} and the mean curvature vector field of M_{n}^{*} in $H^{1}(n+1)$ via the embedding φ stated in $\S 1$. Thus making use of (1.4), (2.13), (2.18) and (3.2), and the usual properties of Δ acting on the product of functions, we have

$$
\begin{equation*}
\Delta \hat{H}=Q \tag{3.6}
\end{equation*}
$$

where we have put

$$
Q:=-8\left(n^{2}-1\right) /(2 n-1)\left(\begin{array}{cc|c}
1 & -1 & 0 \\
1 & -1 & 0 \\
\hline 0 & 0
\end{array}\right)
$$

Example 3.2. Given integers p, q with $p+q=n-1$ and $r \in \boldsymbol{R}$ with $0<r<1$, we denote by $M_{2 n+1,2 q+1}^{\prime}(r)$ the Lorentz hypersurface of the anti-De Sitter space $H_{1}^{2 n+1}$ defined by

$$
M_{2 p+1,2 q+1}^{\prime}(r)=\left\{\left.z \in H_{1}^{2 n+1}\left|r\left(-\left|z_{0}\right|^{2}+\sum_{j=1}^{p}\left|z_{j}\right|^{2}\right)=-\sum_{k=p+1}^{n}\right| z_{k}\right|^{2}\right\}
$$

where $z=\left(z_{0}, z_{1}, \cdots, z_{n}\right)$. It is easy to see that $M_{2 p+1,2 q+1}^{\prime}(r)$ is isometric to the riemannian product

$$
\begin{equation*}
H_{1}^{2 p+1}(-1 /(1-r)) x S^{2 q+1}(r /(1-r)) \tag{3.7}
\end{equation*}
$$

where $-1 /(1-r)$ and $r /(1-r)$ are the respective equares of the radii and each factor is embedded in $H_{1}^{2 n+1}$ in a totally umbilical way.

If $z \in M_{2 p+1.2 q+1}(r)$ we can see that

$$
\xi_{z}=(-1 / \sqrt{r})\left(r z_{0}, r z_{1}, \cdots, r z_{p}, z_{p+1}, \cdots, z_{n}\right)
$$

is a unit vector normal to $M_{2 p+1,2 q+1}^{\prime}(r)$ at the point z.
$M_{2 p+1,2 q+1}^{\prime}(r)$ is S^{1}-invariant, $M_{2 p+1,2 q+1}(r)=\pi\left(M_{2 p+1,2 q+1}^{\prime}(r)\right)$ is a real hypersurface of $\boldsymbol{C} H^{n}$, and π from $M_{2 p+1,2 q+1}^{\prime}(r)$ onto $M_{2 p+1,2 q+1}(r)$ is a Riemannian submersion with totally geodesic fibers.

Representing by (z, w) a generic point of $M_{2 p+1,2 q+1}^{\prime}(r)$ and from (3.7) we can rewrite formula (1.4) as

$$
\chi=\varphi([z, w])=\left(\begin{array}{c|c|c}
\left|z_{0}\right|^{2} & \cdot & \cdot \\
\cdot & -z_{i} \bar{z}_{j} & -z_{i} \bar{w}_{k} \\
\cdot & \cdot & \cdot \\
z_{p} \bar{z}_{0} & \cdot & \cdot \\
\hline w_{0} \bar{z}_{0} & \cdot & \cdot \\
\cdot & -w_{n} \bar{z}_{j} & -w_{h} \bar{w}_{k} \\
\cdot & \cdot & \cdot \\
w_{q} \bar{z}_{0} & \cdot & \cdot
\end{array}\right)
$$

where $0 \leqq i \leqq p, 0 \leqq h, k \leqq q, 0 \leqq j \leqq p$. In order to simplify computations we put this formula in the following way

$$
\chi=\varphi([z, w])=\left(\begin{array}{l|l}
a_{\alpha \beta} & b_{\alpha \gamma} \tag{3.8}\\
c_{\delta \beta} & d_{\delta_{\gamma}}
\end{array}\right)
$$

with $0 \leqq \alpha, \beta \leqq p$ and $0 \leqq \gamma, \delta \leqq q$.
We use now the properties of the Laplacian of a Riemannian product, along with formulas (2.17), (2.18) and (3.7) to calculate the Laplacian of $\chi(\chi$ being the position vector of $M_{2 p+1,2 q+1}(r)$ in $H^{1}(n+1)$ via φ). If $p, q>0$ one has

$$
\Delta \chi=\left(\begin{array}{c|c}
2(p+1)(r-1) a_{\alpha \beta}+4 I_{p+1} & (r-1)(p-(q / r)) b_{\alpha \gamma} \tag{3.9}\\
\hline(r-1)(p-(q / r)) c_{\delta \beta} & 2(q+1)(1-r)(1 / r) d_{\delta r}+4 I_{q+1}
\end{array}\right)
$$

If $p=0$ and $q>0$ we have

$$
\Delta \chi=\left(\begin{array}{c|c}
0 & (r-1)(1-(2 n-1) / r) b_{0 r} \tag{3.10}\\
\hline(r-1)(1-(2 n-1) / r) c_{\delta 0} & \frac{4 n((1-r) / r) d_{\delta r}+4 I_{n}}{}
\end{array}\right)
$$

Finally, if $p>0$ and $q=0$ we have

$$
\Delta \chi=\left(\begin{array}{c|c}
4 n(r-1) a_{\alpha \beta}+4 I_{n} & (r-1)(1-(2 n-1) / r) b_{\alpha 0} \tag{3.11}\\
\hline(r-1)(1-(2 n-1) / r) c_{0 \beta} & 0
\end{array}\right)
$$

Compare (3.9), (3.10) and (3.12) with [13] formulae (3.4) and (3.5).

Since $0<r<1$ it is easy to see from (3.9), (3.10) and (3.11) that no hypersurface of the family $M_{2 p+1,2 q+1}(r)$ is mono-order in $H^{1}(n+1)$. Note that for $p=0, M_{1,2 n-1}(r)$ is a geodesic hypersphere of $\boldsymbol{C H} H^{n}$, [8], p. 255. On the other hand certain geodesic hyperspheres of the complex projective space $\boldsymbol{C} P^{n}$ are mono-order via the first standard embedding. Furthermore this property characterize them completely, [6], Theorem 3.1.

REMARK 3.3. Given an isometric immersion χ of an indefinite Riemannian manifold M in a pseudo-Euclidean space, χ is said of finite type, [2], if the position vection vector χ admits a decomposition $\chi=\chi_{0}+\chi_{p_{1}}+\cdots+\chi_{p_{k}}$ where χ_{0} is a constant vector and $\Delta \chi_{p_{i}}=\lambda_{i} \chi_{p_{i}}, \lambda_{i} \in \boldsymbol{R}$ and Δ being the Laplacian of M. In this situation if we additionally have $\Delta H=0$, with H the mean curvature vector field of χ, then we conclude from the linear independence of the eigenfunctions $\chi_{p_{i}}$ that $H=0$. Hence, from this and (3.5) we deduce that M_{n}^{\prime} of Example 3.1 is not of finite type in $\boldsymbol{R}_{2}^{2 n+2}$. Similarly from (3.6) we see that the horosphere M_{n}^{*} is not of finite type in $H^{1}(n+1)$. Finally, using (3.8), (3.9) and (3.10), and because p, q are integers and $0<r<1$, we obtain that certain hypersurfaces of the family $M_{2 p+1,2 q+1}(r)$ are of 2 -type and some of 3-type.
4. Mono-order real hypersurfaces. As we have already said, we will show in this section the non-existence of real hypersurfaces of $\boldsymbol{C} H^{n}$ whose immersion in the pseudo-Euclidean space $H^{1}(n+1)$ via the embedding φ stated in $\S 1$, is mono-order.

In trying to find a satisfying proof of this fact we followed two different ways. Firstly we took in consideration the proof of Martinez and Ros for real hypersurfaces of the complex projective space $\boldsymbol{C} P^{n},[6]$, Theorem 3.1. Keeping this in mind we found a proof similar to that of [6]. To do that, we needed a classification result for the matrices of $H^{1}(n+1)$ up to the action of the group $U^{1}(n+1)$. This is shown in Lemma 5.1. The first case of that Lemma is treated in the same form as that of the proof in [6], leading to the fact that our hypersurface should be locally one of the family $M_{2 p+1,2 q+1}(r)$. But this is impossible as Example 3.2 shows. As for the rest of posibilities of Lemma 5.1, we can get rid of them on the base of algebraic considerations.

What we shall discuss now in detail is our second proof. As we shall notice soon, we are able of adapting this new proof to the case of real hypersurfaces in $\boldsymbol{C} P^{n}$, giving an alternative proof of Theorem 3.1 in [6]. We begin by rewritting a particular case of Theorem 7.4 of [7] in a more suitable way. Let M be a real hypersurface of $\boldsymbol{C} H^{n}, n \geqq 2$, we say it is η-umbilical if there
exist real numbers a, b such that $S X=a X+b g(J N, X) J N$, where S is the shape operator of M in $\boldsymbol{C H} H^{n}$ associated to N and X is any tangent vector field to M. Then we have:

Proposition 4.1 (see [7], Theorem 7.4). Let M be a connected real hypersurface of $\boldsymbol{C} H^{n}, n \geqq 2$. Suppose M is η-umbilical. Then M is locally congruent to one of the following spaces:
(a) A geodesic hypersphere $M_{0,2 n-1}(r)$.
(b) A real hypersurface $M_{2 n-1,0}(r)$.
(c) A horosphere M_{n}^{*}.

Proof. Notice firstly that a η-umbilical hypersurface has at most two principal curvatures at each point. Go now to Theorem 7.4 of [7]. Case " d " of that Theorem is not possible now because it is not η-umbilical. On the other hand, hypothesis $n \geqq 3$ of that Theorem is used only to assure that $J N$ is a principal vector with constant principal curvature. We can deduce both facts from the η-umbilical condition. Finally note that although Theorem 7.4 of [7] is formulated for complete hypersurfaces, it is local in nature because it is proved on the base of Theorem 4.1 of [7].

The above Proposition leads in turn to
Theorem 4.2. There exist no real hypersurfaces M of $\boldsymbol{C H}^{n}, n \geqq 2$, which are minimal in either $a\left(n^{2}+2 n\right)$-dimensional indefinite sphere or in $a\left(n^{2}+2 n\right)$ dimensional indefinite real hyperbolic space of $H^{1}(n+1)$, that is to say, no real hypersurface M of $\boldsymbol{C} H^{n}$ is mono-order in $H^{1}(n+1)$ via the isometric embedding φ stated in $\S 1$.

Proof. Suppose M is mono-order in $H^{1}(n+1)$, then from [2], Theorem 1, the mean curvature vector field \hat{H} of M in $H^{1}(n+1)$ satisfies

$$
\begin{equation*}
\hat{H}=(-1 /(2 n-1)) \Delta \chi=(-1 /(2 n-1)) \lambda\left(\chi-A_{0}\right) \tag{4.1}
\end{equation*}
$$

with $\lambda \neq 0$, where $\chi=\varphi \circ f, f$ being the isometric immersion of M in $\boldsymbol{C} H^{n}$ and φ the embedding of $C H^{n}$ in $H^{1}(n+1)$ given in $\S 1$.

Using (2.8) we have from (4.1)

$$
\begin{align*}
D_{x} \hat{H}= & -\alpha S X+\nabla^{\perp}{ }_{X} H+\tilde{\sigma}(X, H)+(2(2 n+1) /(2 n-1)) X \tag{4.2}\\
& +(2 /(2 n-1)) \tilde{\sigma}(S X, N)-(2 /(2 n-1)) g(J N, X) J N
\end{align*}
$$

with the same notations as those of Proposition 2.1.
From (4.1) we have $\Delta \hat{H}=\lambda \hat{H}$ and putting this in (2.11) we get

$$
\begin{equation*}
\lambda=(2 n-1)\|H\|^{2}-4\left(2 n^{2}-1\right) /(2 n-1) \tag{4.3}
\end{equation*}
$$

having used (2.6) also. But (4.3) tell us that $\|H\|^{2}=\alpha^{2}$ is constant and therefore

$$
\begin{equation*}
\nabla^{{ }^{1}}{ }_{X} H=0 \tag{4.4}
\end{equation*}
$$

for any X tangent to M. Combining (4.1) and (4.4) we can rewrite (4.2) in the following way

$$
\begin{align*}
-(\lambda /(2 n-1)) X= & -\alpha S X+\tilde{\sigma}(X, H)+(2(2 n+1) /(2 n+1)) X \tag{4.5}\\
& +(2 / 2 n-1)) \tilde{\sigma}(S X, N)-(2 /(2 n-1)) g(J N, X) J N
\end{align*}
$$

so that equaling tangential components

$$
\begin{align*}
-(\lambda /(2 n-1)) X= & -\alpha S X+(2(2 n+1) /(2 n-1)) X \tag{4.6}\\
& -(2 /(2 n-1)) g(J N, X) J N
\end{align*}
$$

for any X tangent to M.
We can assume $\alpha \neq 0$. Otherwise from (4.6), one gets

$$
\begin{equation*}
(2 /(2 n-1) g(J N, X) J N=((2(2 n+1)+\lambda) /(2 n-1)) X \tag{4.7}
\end{equation*}
$$

for any X tangent to M. Choosing $X \in(\operatorname{Span}\{J N\})^{\perp}$ we have

$$
\begin{equation*}
2(2 n+1)+\lambda=0 \tag{4.8}
\end{equation*}
$$

Choosing $X=J N$ we obtain from (4.7) again

$$
\begin{equation*}
2=2(2 n+1)+\lambda \tag{4.9}
\end{equation*}
$$

which are clearly incompatible. Hence $\alpha \neq 0$ and from (4.6) we can write

$$
\begin{equation*}
S X=a X+b g(J N, X) J N \tag{4.10}
\end{equation*}
$$

where a, b are real numbers given by

$$
a=((2(2 n+1)+\lambda) /(2 n-1) \alpha \quad \text { and } \quad b=-2 /(2 n-1) \alpha .
$$

Showing that M is η-umbilical. Using Proposition 4.1 we should have that M is an open subset either a geodesic hypersphere $M_{0,2 n-1}(r)$ or the horosphere M_{n}^{*}. But Examples 3.1 and 3.2 shows that this is not possible, and this concludes the proof of Theorem 4.2.

By using the same method as that of the our Theorem 4.2, and taking into account formula (2.14) of [13], one can prove that a real hypersurface of the complex projective space $\boldsymbol{C} P^{n}$ which is minimal in a hypersphere of $\boldsymbol{R}^{n^{2}+2 n+1}$ via the first standard embedding, is necessarily η-umbilical. On the other hand, as a consequence of Theorem 3 of [1], a η-umbilical real hypersurface of $\boldsymbol{C} P^{n}$, $n \geqq 2$, is an open subset of a geodesic hypersphere of $\boldsymbol{C} P^{n}$. But the only such
hypersurfaces which is mono-order via the first standard embedding is the projection by the Hopf fibration of $S^{1}(\sqrt{(1 /(2 n+2)}) x S^{2 n-1}(\sqrt{(2 n+1) /(2 n+2))}$, where $\sqrt{(1 /(2 n+2)}$ and $\sqrt{(2 n+1) /(2 n+2)}$ are the respective radii, [6], p. 309. This gives another proof of Theorem 3.1 of [6].

5. Real hypersurfaces of $\boldsymbol{C} H^{n}$ satisfying a certain differential equation.

 This section is mainly concerned with a characterization of the horosphere M_{n}^{*} of the complex hyperbolic space $\boldsymbol{C} H^{n}$ by means of a certain differential equation. The touchstone for its characterization is the behaviour of the Laplacian of its mean curvature vector in $H^{1}(n+1)$. As we proved in $\S 3$ the Laplacian of the mean curvature vector field \hat{H} of M_{n}^{*} in $H^{1}(n+1)$ via the embedding φ (stated in § 1) satisfies$$
\begin{equation*}
\Delta \hat{H}=Q \tag{5.1}
\end{equation*}
$$

where Δ is the Laplacian of M_{n}^{*} and $Q \in H^{1}(n+1)$ is a non-zero constant matrix normal to M_{n}^{*} at every point. As we mentioned earlier $\S 3$ this situation is not possible for real hypersurfaces of the complex projective space $\boldsymbol{C} P^{n}$ (\hat{H} denoting the mean curvature vector field via the first standard embedding). Even although one considers a submanifold M of an Euclidean space \boldsymbol{R}^{m} satisfying $\Delta H=Q$, with Q a constant vector of \boldsymbol{R}^{m} which is normal to M at any point, we shall prove soon Lemma 5.2 that Q has to be zero. Note that in this case M can not be compact, because if M in addition was compact then H would be zero necessarily and this is not possible. The case $\Delta \hat{H}=0$ is equaly impossible for real hypersurfaces of $\boldsymbol{C} P^{n}$ (for this consider formula (2.22) of [13]).

In contrast there may be submanifolds in a pseudo-Euclidean space \boldsymbol{R}_{s}^{m} satisfying $\Delta H=0$ and $H \neq 0$. It is enough to consider the submanifold M_{n}^{\prime} of $\boldsymbol{R}_{2}^{2 n+2}$ described in Example 3.1. We shall treat here the case when $Q \neq 0$. This leaves open the possibility of studying the real hypersurfaces of $\boldsymbol{C H} H^{n}$ verifying $\Delta \hat{H}=0$. (Compare our (2.11) with the above mentioned (2.22) of [13]). We start with a technical Lemma which is an adaptation of Theorem 2, p. 229, of [5], for our purposes, and hence it will not be proved.

Lemma 5.1. Let V be an n-dimensional complex vector space, and F a nondegenerate Hermitian form of index two on V. Let f be an F-selfadjoint (complex) endomorphism of V. Then there exists a basis B of V in such way that the matrix of f relative to $B, M(f, B)$, and the matrix of F with respect to $B, M_{B}(F)$, fall in one of the following cases:
(i) $\quad M(f, B)$ real diagonal; $\quad M_{B}(F)=\left(\begin{array}{c|c}-1 & 0 \\ \hline 0 & I_{n-1}\end{array}\right)$
(ii) $\quad M(f, B)=\left(\begin{array}{cc|c}a & 1 & 0 \\ 0 & a & \\ \hline 0 & D\end{array}\right) ; \quad M_{B}(F)=\left(\begin{array}{cc|c}0 & 1 & 0 \\ 1 & 0 & \\ \hline 0 & I_{n-2}\end{array}\right)$
where $a \in \boldsymbol{R}$ and D a square real diagonal matrix of order $n-2$.

(iii) $\quad M(f, B)=\left(\right.$| a | 0 | 1 | |
| :---: | :---: | :---: | :---: |
| 0 | a | 0 | 0 |
| 0 | 1 | a | |
| 0 | D^{\prime} | | |\() ; \quad M_{B}(F)=\left(\begin{array}{ccc|c}0 \& 1 \& 0 \&

1 \& 0 \& 0 \& 0

0 \& 0 \& 1 \&

\hline 0 \& 0 \& I_{n-3}\end{array}\right)\)
with $a \in \boldsymbol{R}$ and D^{\prime} a square real diagonal matrix of order $n-3$.
(iv) $M(f, B)=\left(\begin{array}{cc|c}a & b & 0 \\ -b & a & \\ \hline 0 & D^{\prime \prime}\end{array}\right) ; \quad M_{B}(F)=\left(\begin{array}{cc|c}-1 & 0 & 0 \\ 0 & 1 & \\ \hline 0 & I_{n-2}\end{array}\right)$
with $a, b \in \boldsymbol{R}, b \neq 0$ and $D^{\prime \prime}$ a square real diagonal matrix of order $n-2$.
Note that if f satisfies a polynomial of degree 2 , the case (iii) is impossible. On the other hand if $f^{2}=0$, the case (iv) is not possible too, and either $f=0$ or case (ii) occurs with $a=0$. In this latter case $M(f, B)=\operatorname{diag}\left(\left(\begin{array}{ll}-1 & 1 \\ -1 & 1\end{array}\right) ; 0\right)$ and $M_{\widetilde{B}}(F)=\operatorname{diag}\left(-1 ; I_{n-1}\right)$ for a suitable basis \tilde{B} obtained from B of (ii).

Now we prove:
Proposition 5.2. Let M be a submanifold of a pseudo-Euclidean space \boldsymbol{R}_{s}^{m}. Denote by H and Δ the mean curvature vector field of M in \boldsymbol{R}_{s}^{m} and the Laplacian of M respectively. Suppose that $\Delta H=C$ for some constant vector C of \boldsymbol{R}_{s}^{m}, which is normal to M at every point. Then either $C=0$ or C is an isotropic vector.

Proof. Let g be the usual flat metric of \boldsymbol{R}_{s}^{m}, and suppose $g(C, C) \neq 0$. Note that $g(H, C)$ can not be a constant function on M, otherwise $0=\Delta g(H, C)$ $=g(\Delta H, C)=g(C, C)$, which contradicts our assumption. Then choose a unitary vector η of \boldsymbol{R}_{s}^{m} so that $C=a g(C, \eta) \eta, a=+1$ or -1 . We can write H as

$$
H=(1 / n) \sum_{1=1}^{m-n} g\left(\xi_{i}, \xi_{i}\right)\left(\operatorname{trace}\left(S_{i}\right)\right) \xi_{i}
$$

where $\left\{\xi_{1}=\eta, \xi_{2}, \cdots, \xi_{m-n}\right\}$ is a local orthonornal basis formed by normal vector fields to M, and S_{i} is the shape operator associated to ξ_{i}. Since η is constant,
we have $S_{1}=0$ and therefore $g(H, C)=0$ which gives a contradiction and proves the Proposition.

In particular if $s=0$ in Proposition 5.2, i. e. if the ambient space is the Euclidean space \boldsymbol{R}^{m}, then we obtain $C=0$.

Now take a real hypersurface M of $\boldsymbol{C} H^{n}$ satisfying (5.1). Then formula (2.11) turns to be

$$
\tilde{g}(Q, A)=-(2 n-1)\|H\|^{2}+(4 /(2 n-1))\left(2 n^{2}-1\right)
$$

at any point A of M. So that Q is normal to M at every point if and only if $\|H\|$ is constant. This shows that Q in Example 3.1 is normal to the horosphere M_{n}^{*} of $\boldsymbol{C} H^{n}$.

REmARK 5.3. Let M be a real hypersurface of $\boldsymbol{C} P^{n}$ with constant mean curvature. Suppose that the immersion of M in $\boldsymbol{R}^{n^{2}+2 n+1}$ via the first standard embedding of the complex projective space $\boldsymbol{C} P^{n}$ in $\boldsymbol{R}^{n+2 n+1}$ satisfies the differential equation $\Delta \hat{H}=Q$, where \hat{H} is the mean curvature vector field of M in $\boldsymbol{R}^{n^{2}+2 n+1}$ and Δ its Laplacian. As before, constant mean curvature is equivalent to say that Q is normal to M (see formula (2.22) of [13]). But then using Proposition 5.2 we see that $Q=0$, which is not possible from formula (2.22) of [13]. Therefore there exist no real hypersurface of $\boldsymbol{C} P^{n}$ with constant mean curvature whose mean curvature vector field in $\boldsymbol{R}^{n^{2}+2 n+1}$ satisfies differential equation (5.1).

Now we reach our goal by using some intermediate steps.

Lemma 5.4. Consider a real hypersurface M of $\boldsymbol{C H}^{n}$ with constant mean curvature. Then

$$
\begin{equation*}
\tilde{g}(\Delta \hat{H}, \tilde{\boldsymbol{\sigma}}(X, N))=-4 \alpha \tilde{g}(S J N, \phi X)-(4 /(2 n-1)) \tilde{g}\left(S^{2} J N, \phi X\right) \tag{5.2}
\end{equation*}
$$

(see $\S 2$ for notations). If, in addition, there exists a function μ on M such that $S J N=\mu J N$, we have

$$
\begin{equation*}
\tilde{g}(\Delta \hat{H}, \tilde{\boldsymbol{\sigma}}(X, N))=0 \tag{5.3}
\end{equation*}
$$

where X is any tangent vector field to M.
Proof. Use (2.10), (1.13) and (1.14) along with (2.2), (2.3) to get (5.2), (5.3) follows early from (5.2) by using condition $S J N=\mu J N$.

Lemma 5.5. Let M be a real hypersurface of $\boldsymbol{C H}^{n}$ with constant mean curvature and satisfying the differential equation $\Delta \hat{H}=Q$. Then there exists a function μ on M so that $S J N=\mu J N$.

Proof. From (2.11) we have that $\tilde{g}(Q, A)=r=c t e$ for any A of M. But this means that Q is normal to M everywhere and therefore the tangential component of $\Delta \hat{H}$ is zero. Using now (2.10) we see that $\phi S J N=0$. Hence (2.2) says that $J S J N=\gamma N$ where γ is obtained from (2.3) as $\gamma=-g(S J N, J N)$. Therefore $S J N=\mu J N$ with $\mu=-\gamma$.

Lemma 5.6. Given a real hypersurface M of $\boldsymbol{C H}^{n}$ with constant mean curvature and verifying the differential equation $\Delta \hat{H}=Q$, then the function $\lambda: M \rightarrow \boldsymbol{R}$ defined by $\lambda(A)=\tilde{g}\left(Q, N_{A}\right)$ is constant.

Proof. From (2.11) Q is normal to M everywhere. Therefore $X(\lambda)=$ $\tilde{g}(Q, \tilde{\sigma}(X, N))$ for X tangent to M. Hence from Lemma 5.5 and the second part of Lemma 5.4, we obtain $X(\lambda)=0$. Therefore λ is constant on M.

We finally give:
Theorem 5.7. Let M a real hypersurface of constant mean curvature in $\boldsymbol{C} H^{n}$. Suppose M satisfies the differential equation $\Delta \hat{H}=Q$, with \hat{H} the mean curvature vector field of M in $H^{1}(n+1)$ and Q a non-zero constant matrix of $H^{1}(n+1)$. Then M is locally congruent in $\boldsymbol{C H}^{n}$ to the horosphere $M_{n}^{*}=$ $\pi\left(\left\{z \in H_{1}^{2 n+1}| | z_{0}-\left.z_{1}\right|^{2}=1\right\}\right)$ described in $\S 3$.

Proof. From (1.7) and Lemma 5.6, one sees that Q^{2} satisfies

$$
\tilde{g}\left(A, Q^{2}\right)=\left(\lambda^{2}-4 \beta^{2}\right) / 2
$$

for any point A of M, where $\lambda=g(Q, N)$ and $\beta=g(A, Q)$ are real numbers. On the other hand $g(A, I)=-1 / 2$ for any point A of M. Hence because M is a real hypersurface of $\boldsymbol{C} H^{n}$ and φ an isometric embedding which is full in $H_{*}^{1}(n+1)$ (see $\S 1$), then there exist real numbers r_{1}, r_{2} and r_{3} so that

$$
\begin{equation*}
r_{1} Q^{2}+r_{2} Q+r_{3} I=0 . \tag{5.4}
\end{equation*}
$$

Moreover by Proposition 5.2 we have

$$
\begin{equation*}
\operatorname{trace} Q^{2}=-2 \tilde{g}(Q, Q)=0 \tag{5.5}
\end{equation*}
$$

and from (2.10) we obtain

$$
\begin{equation*}
\operatorname{trace} Q=-2 \tilde{g}(\Delta \hat{H}, I)=0 \tag{5.6}
\end{equation*}
$$

Now (5.5) and (5.6) means that $r_{3}=0$ in (5.4). Let us see that r_{2} is also zero. Indeed, if r_{2} were non-zero then since $Q \neq 0, r_{1}$ would be non-zero. But in this case Q would be a diagonalizable matrix which only admits as eigenvalues to 0 and $-r_{2} / r_{1}$. This contradicts (5.5). Therefore $r_{2}=0$. Then (5.4) means that
Q is a non-diagonalizable matrix satisfying

$$
\begin{equation*}
Q^{2}=0 . \tag{5.7}
\end{equation*}
$$

Call β to $\tilde{g}(Q, A)=-(1 / 2) \operatorname{trace}(Q A)$ and assume β is positive (otherwise we could find $P_{1} \in U^{1}(n+1)$ so that $P_{1} Q P_{1}^{-1}=-Q_{1}=-\operatorname{diag}\left(\left(\begin{array}{ll}-1 & 1 \\ -1 & 1\end{array}\right) ; 0\right)$). Because $Q \in H^{1}(n+1)$ and verifies (5.7) we know from Lemma 5.1 that there exists $P \in$ $U^{1}(n+1)$ such that

$$
P Q P^{-1}=\left(\begin{array}{cc|c}
-1 & 1 & \tag{5.8}\\
-1 & 1 & 0 \\
\hline 0 & 0
\end{array}\right)=Q_{1}
$$

(see comentaries following Lemma 5.1). As the metric \tilde{g} is $U^{1}(n+1)$-invariant, we have from (5.8)

$$
\operatorname{trace}\left(Q_{1} A\right)=-\left|z_{0}-z_{1}\right|^{2}=-2 \beta
$$

for every A in M. Thus, M is locally congruent to the real hypersurface $\pi\left(\left\{z \in H_{1}^{2 n+1}| | z_{0}-\left.z_{1}\right|^{2}=2 \beta\right\}\right)$ of $\boldsymbol{C} H^{n}$, and this one is in turn congruent to $M_{n}^{*}=$ $\pi\left(\left\{z \in H_{1}^{2 n+1}| | z_{0}-\left.z_{1}\right|^{2}=1\right\}\right)$. (See [8], Theorem 5.1). This concludes the proof of Theorem 5.7.

COROLLARY 5.8. $\quad M_{n}^{*}=\pi\left(\left\{z \in H_{1}^{2 n+1}| | z_{0}-\left.z_{1}\right|^{2}=1\right\}\right)$ is, up to rigid motions of $\boldsymbol{C} H^{n}$, the unique complete real hypersurface of $\boldsymbol{C} H^{n}$ with constant mean curvture which satisfies the differential eqhation $\Delta \hat{H}=Q$, for a non-zero constant matrix Q.

References

[1] Cecil, T.E. and Ryan, P.J., "Focal sets and real hypersurfaces in a complex projective space", Trans. Amer. Math. Soc. 269 (1982), 481-499.
[2] Chen, B. Y., "Finite-type Pseudo-Riemannian submanifolds", Tamkang J. of Math. 17 (1986), 137-151.
[3] Ferus, D., "Produkt-Zerlegung von Immersionen mit paralleler zweiter Fundamentalform", Math. Ann. 211 (1974), 1-5.
[4] Ferus, D., "Immersions with parallel second fundamental form", Math. Z. 140 (1974), 87-93.
[5] Malsev, A.I., Foundations of Linear Algebra, W.H. Freeman and Co. San Francisco, 1963.
[6] Martinez, A. and Ros, A., "On real hypersurfaces of finite type of $\boldsymbol{C} P^{m}$ ", Kodai Math. J. 7 (1984), 433-448.
[7] Montiel, S., "Real hypersurfaces of a complex hyperbolic space", J. Math. Soc. Japan 37 (1985), 515-535.
[8] Montiel, S. and Romero, A., "On some real hypersurfaces of a complex hyperbolic space", Geometriae Dedicata 20 (1986), 245-261.
[9] Naitoh, H., "Pseudo-riemannian Symmetric R-spaces", Osaka J. Math. 21 (1984), 733-764.
[10] O'Neill, B., "The fundamental Equations of a Submersion", Mich. Math. J. 13 (1966), 459-469.
[11] Ros, A., "Spectral Geometry of $C R$-minimal submanifolds in the complex projective space", Kodai Math. J. 6 (1983), 88-99.
[12] Tai, S.S., "Minimum imbedding of compact symmetric spaces of rank one", J. Differential Geometry 2 (1968), 55-66.
[13] Udagawa, S., "Bi-order real hypersurfaces in a complex projective space", Kodai Math. J. 10 (1987), 182-196.

Departamento de Geometria y Topologia
Facultad de Ciencias
Universidad de Granada
18071-Granada. Spain.

