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Introduction.

A complex n-dimensional Kaehler manifold of constant holomorphic sectional
curvature $c$ is called a complex space form, which is denoted by $M_{n}(c)$ . A com-
plete and simply connected complex space form is a complex projective space
$P_{n}C$ , a complex Euclidean space $C^{n}$ or a complex hyperbolic space $H_{n}C$ accord-

ing as $c>0,$ $c=0$ or $c<0$ .
In his study [12] of real hypersurfaces of $P_{n}C$ , Takagi showed that all

homogeneous hypersurfaces could be divided into six types. Namely, he proved

the following

THEOREM A. Let $M$ be a homogeneous real hypersurface of $P_{n}C$ . Then $M$

is locally congruent to one of the following hypersurfaces:
(A) a geodesic hypersurface,
(A) a tube over a totally geodesic $P_{k}C(1\leqq k\leqq n-2)$ ,

(B) a tube over a complex quadric $Q_{n- 1}$ ,

(C) a tube over $P_{1}C\times P_{(n- 1)/2}C$ and $n(\geqq 5)$ is odd,

(D) a tube over a complex Grassmann $G_{2.5}$ and $n=9$ ,

(E) a tube over a Hermitian symmetric space $SO(10)/U(5)$ and $n=15$ .

Moreover, Takagi [13] proved that if a real hypersurface of $P_{n}C$ has two

or three distinct constant principal curvatures, then $M$ is locally congruent to

the case of the homogeneous ones of type $A_{1},$ $A_{2}$ or B. In what follows the in-
duced almost contact metric structure of the real hypersurface of $M_{n}(c)$ is de-

noted by $(\phi, g, \xi, \eta)$ . The structure vector $\xi$ is said to be principal if $ A\xi=\alpha\xi$,

where $A$ is the shape operator in the direction of the unit normal $C$ and $\alpha=$

$\eta(A\xi)$ . Real hypersurfaces of $P_{n}C$ have been studied by many differential geo-
meters ([2], [4], [5], [6] and [7] etc.) and as one of them, Kimura [5] asserts
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that $M$ has constant principal curvatures and $\xi$ is principal if and only if $M$ is
locally congruent to a homogeneous real hypersurface.

On the other hand, real hypersurfaces of $H_{n}C$ have also been investigated

by many authors ([1], [3], [4], [8], [9] and [11] etc.) In particular, Berndt
[1] proved recently the following interesting result.

THEOREM B. Let $M$ be a real hypersurface of $H_{n}C$ , $n\geqq 2$ . Then $M$ has
constant principal curvatures and $\xi$ is principal if and only if $M$ is locally con-
gruent to one of the following:

(A) a horosphere in $H_{n}C$ ,
(A) a geodesic hypersurface or a tube over a complex hyperbolic hyperplane

$H_{n- 1}C$ ,

(A) a tube over a totally geodesic submanifold $H_{k}C(1\leqq k\leqq n-2)$ ,

(B) a tube over a totally real hypersurface $H_{n}R$ .

According to Takagi’s classification theorem and Berndt’s one, the principal

curvatures and their multiplicitites of homogeneous real hypersurfaces of $M_{n}(c)$

are given.
Now, in [10] Maeda estimated the norm of the second fundamental form

and proved the following

THEOREM C. Let $M$ be a real hypersurface of $P_{n}C$ . Then

$|\nabla A|^{2}\geqq(n-1)c^{2}/4$ ,

where the equality holds if and only if $M$ is locally congruent to one of the real
hypersurfaces of type $A_{1}$ and $A_{2}$ .

For the above minimum of the norm of the covariant derivative of the
second fundamental form, it seems to be interested to investigate whether or
not there is the next estimation of the norm which gives a characterization of
real hypersurfaces of $P_{n}C$ different from type $A_{1}$ and $A_{2}$ . The purpose of this
paper is to obtain an estimation under certain condition and to give the follow-
ing characterization of real hypersurfaces of type B.

THEOREM. Let $M$ be a real hypersurface of $P_{n}C,$ $n\geqq 3$, on which the struc-
ture vector $\xi$ is principal with principal curvature $\alpha$ . If $\alpha$ Tr $A\leqq\alpha^{2}-(n-1)c$ ,

then
$|\nabla A|^{2}\geqq(n-1)c(7c+6\alpha^{2})/4$ ,

where the equality holds if and only if $M$ is locally congruent to a real hyper-
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surface of type B.

1. Preliminaries.

We begin with recalling basic properties of real hypersurfaces of a com-
plex space form. Let $M$ be a real hypersurface of an $n(\geqq 2)$-dimensional com-
plex space form $M_{n}(c)$ of constant holomorphic sectional curvature $c(\neq 0)$ and
let $C$ be a unit normal field on a neighborhood of a point $x$ in $M$. We de-
note by $J$ the almost complex structure of $M_{n}(c)$ . For a local vector field $X$

on a neighborhood of $x$ in $M$, the images of $X$ and $C$ under the transformation
$J$ can be represented as

$ JX=\phi X+\eta(X)\xi$ , $ JC=-\xi$ ,

where $\phi$ defines a skew-symmetric transformation on the tangent bundle $TM$ of
$M$, while $\eta$ and $\xi$ denote a l-form and a vector field on the neighborhood of $x$

in $M$, respectively. Moreover, it is seen that $g(\xi, X)=\eta(X)$ , where $g$ denotes
the induced Riemannian metric on $M$. By properties of the almost complex
structure $J$, the set $(\phi, \xi, \eta, g)$ of tensors satisfies then

(1.1) $\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $\eta(\phi X)=0$ , $\eta(\xi)=1$ ,

where $I$ denotes the identity transformation. Accordingly, the set defines the
almost contact metric structure on $M$ . Furthermore, the covariant derivatives
of the structure tensors are given by

(1.2) $\nabla.\phi(Y)=\eta(Y)AX-g(AX, Y)\xi$ , $\nabla.\xi=\phi AX$ ,

where $\nabla$ is the Riemannian connection of $g$ and $A$ denotes the shape operator
with respect to $C$ on $M$.

Since the ambient space is of constant holomorphic sectional curcature $c$ ,
the equations of Gauss and Codazzi are respectively given as follows:

(1.3) $R(X, Y)Z=c\{g(Y, Z)X-g(X, Z)Y+$

$+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y-2g(\phi X, Y)\phi Z\}/4$

$+g(AY, Z)AX-g(AX, Z)AY$ ,

(1.4) $\nabla_{X}A(Y)-\nabla_{X}A(X)=c\{\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi\}/4$ ,

where $R$ denotes the Riemannian curvature tensor of $M$ and $\nabla_{X}A$ denotes the
covariant derivative of the shape operator $A$ with respect to $X$ .

The Ricci tensor $S^{\prime}$ of $M$ is the tensor of type $(0,2)$ given by $S^{\prime}(X, Y)=$

tr $\{Z\rightarrow R(Z, X)Y\}$ . But it may be also regarded as the tensor of type $(1,1)$ and
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denoted by $S:TM\rightarrow TM$ ; it satisfies $S^{\prime}(X, Y)=g(SX, Y)$ . By the Gauss equa-

tion, (1.1) and (1.2) the Ricci tensor $S$ is given by

(1.5) $S=c\{(2n+1)I-3\eta\otimes\xi\}/4+hA-A^{2}$ ,

where $h$ is the trace of the shape operator $A$ . Recently, in order to give

another characterization of homogeneous hypersurfaces of type $A_{1},$ $A_{2}$ and $B$ in
$P_{n}C$ , Kimura and Maeda [6] introduced the notion of a $\eta$ -parallel second funda-
mental form, which was defined by $g(\nabla_{X}A(Y), Z)=0$ for any vector fields $X,$ $Y$

and $Z$ orthogonal to $\xi$ . Now, we prepare the followings:

THEOREM $D$ ([6]). Let $M$ be a real hypersurface of $P_{n}$ C. Then the second

fundamental form is $\eta$ -parallel and $\xi$ is principal if and only if $M$ is locally con-
gruent to one of the homogeneous real hypersurfaces of type $A_{1},$ $A_{2}$ and B.

THEOREM $E$ ([11]). Let $M$ be a real hypersurface of $H_{n}C$ . Then the second

fundamental form is $\eta$ -parallel and $\xi$ is principal if and only if $M$ is locally con-
gruent to one of real hypersurfaces of type $A_{0}\sim B$ .

PROPOSITION $F$ ([4]). Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0$ . If the
structure vector $\xi$ is principal, then the corresponding principal curvature $\alpha$ is
locally constant.

In the sequel, assume that the structure vector $\xi$ is principal and denote by
$\alpha$ the corresponding principal curvature. Namely, $ A\xi=\alpha\xi$ is assumed. It fol-
lows from (1.4) that we have

(1.7) $2A\phi A=c\phi/2+\alpha(A\phi+\phi A)$

and therefore, if $AX=\lambda X$ for any vector field $X$ orthogonal to $\xi$, then we get

(1.8) $(2\lambda-\alpha)A\phi X=(\alpha\lambda+c/2)\phi X$ .

Accordingly, it turns out that in the case where $\alpha^{2}+c\neq 0,$ $\phi X$ is also a principal

vector with principal curvature $\mu=(\alpha\lambda+c/2)/(2\lambda-\alpha)$ , namely, we have

$A\phi X=\mu\phi X$ ,
(1.9)

$2\lambda-\alpha\neq 0$ , $\mu=(\alpha\lambda+c/2)/(2\lambda-\alpha)$ .

2. Real hypersurfaces of type B.

This section is devoted to the investigation of a characterization of real
hypersurfaces of type $B$ in a complex space form. First of all, we shall con-
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sider a property of hypersurfaces of a real space form. An m-dimensional
Riemannian manifold of constant curvature $c$ is called a real space form, which
is denoted by $N^{m}(c)$ . Let $N$ be a hypersurface of $N^{m+1}(c)$ and let $A^{\prime}$ be the
shape operator and $g^{\prime}$ (resp. $\nabla^{\prime}$ ) be the induced Riemannian metric tensor (resp.

the Riemannian connection) of $N$.

LEMMA 2.1. Let $N$ be a hypersurface of an (m+l)-dimensional real space
form $N^{m+1}(c)$ of constant curvature $c$ and let $D^{\prime}$ be a distribution defined by the
kernel of the operator $A^{\prime 2}+aA^{\prime}+bI$ for some constants $a$ and $b$ . If $a^{2}\neq 4b$ , then
we have

(2.1) $g^{\prime}(\nabla_{\acute{X}}A^{\prime}(Y), Z)=0$

for any vector fields $X,$ $Y$ and $Z$ in $D^{\prime}$ .

PROOF. Differentiating the equation $(A^{\prime 2}+aA^{\prime}+bI)Y=0$ covariantly, we get

$(2,2)$ $\nabla_{X}^{\prime}A^{\prime}(A^{\prime}Y)+A^{\prime}\nabla_{X}^{\prime}A^{\prime}(Y)+a\nabla_{X}^{\prime}A^{\prime}(Y)+(A^{\prime 2}+aA^{\prime}+bI)\nabla_{X}^{\prime}Y=0$

for any vector field $X$ . Taking account of the fact that $A^{\prime}$ and $A^{J2}$ are self-
adjoint, we have

(2.3) $g^{\prime}(\nabla_{X}^{\prime}A^{\prime}(A^{\prime}Y)+A^{\prime}\nabla_{X}^{\prime}A^{\prime}(Y)+a\nabla_{X}^{\prime}A^{\prime}(Y), Z)=0$

for any vector fields $Y$ and $Z$ in $D^{\prime}$ . Substituting $A^{\prime}X$ into $X$ in (2.3), we
have

$g^{\prime}(\nabla_{A^{\prime}X}^{\prime}A^{\prime}(A^{\prime}Y)+A^{\prime}\nabla_{A^{\prime}X}^{\prime}A^{\prime}(Y)+a\nabla_{A^{\prime}X}^{\prime}A^{\prime}(Y), Z)=0$

because $Z$ belongs to $D^{\prime}$ . Since $g^{\prime}(\nabla_{X}^{\prime}A^{\prime}(Y), Z)$ is symmetric with respect to
$X,$ $Y$ and $Z$ by means of the Codazzi equation for hypersurfaces of a real space
form and since the distribution $D^{\prime}$ is A’-invaiant, the first term of the above
equation can be deformed for any vector fields $X,$ $Y$ and $Z$ in $D^{\prime}$ as follows:

$g^{\prime}(\nabla_{Z}^{\prime}A^{\prime}(A^{\prime}X), A^{\prime}Y)=-g^{\prime}(A^{\prime}\nabla_{Z}^{\prime}A^{\prime}(X)+a\nabla_{Z}^{\prime}A^{\prime}(X), A^{\prime}Y)$

$=g^{\prime}(\nabla_{Z}^{\prime}A^{\prime}(X), aA^{\prime}Y+bY)-ag^{\prime}(\nabla_{Z}^{\prime}A^{\prime}(X), A^{\prime}Y)$

$=bg^{\prime}(\nabla_{Z}^{\prime}A^{\prime}(X), Y)$ ,

where the definition of the distribution and (2.3) are used. It turns out that we
have $2bg^{\prime}(\nabla_{Z}^{\prime}A^{\prime}(X), Y)+ag^{\prime}(\nabla_{Y}^{\prime}A^{\prime}(Z), A^{\prime}X)=0$ for any $X,$ $Y$ and $Z$ in $D^{\prime}$ . If
$a=0$ , then it is trivial, so unless it is seen that $g^{\prime}(\nabla_{Y}^{\prime}A^{\prime}(Z), A^{\prime}X)$ is symmetric
with respect to $X,$ $Y$ and $Z$ , from which together with (2.3) it follows that
$2g^{\prime}(\nabla_{X}^{\prime}A^{\prime}(Y), A^{\prime}Z)+ag^{\prime}(\nabla_{X}^{\prime}A^{\prime}(Y), Z)=0$ . By the last two equations we have
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$(a^{2}-4b)g^{\prime}(\nabla_{x}^{\prime}A^{\prime}(Y), Z)=0$ for any vector fields $X,$ $Y$ and $Z$ in $D^{\prime}$ . $q$ . $e$ . $d$ .

REMARK 2.1. In [9], Montiel and Romero proved that in a Lorentz hyper-

surface $N_{1}^{m}$ of an anti-de Sitter space $H_{1}^{m+1}$ , if the shape operator $A^{\prime}$ satisfies
a polynomial $p(x)=x^{2}-ax+1$ for some constant $a$ such that $a^{2}\neq 4$ , then $A^{\prime}$ is
parallel. The proof of Lemma 2.1 is essentially similar to that of their result.

When the shape operator $A^{\prime}$ satisfies (2.1), it is said to be D’-parallel.
Combing back to the subject of real hypersurfaces of a complex space form,

let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ , on which the structrue vec-
tor $\xi$ is principal. That is,

(2.4) $ A\xi=\alpha\xi$ ,

where $\alpha$ is constant by Proposition F. The covariant derivative of (2.4) gives
$\nabla_{X}A(\xi)=\alpha\phi AX-A\phi AX$ for any vector field $X$, where we have used the second
equation of (1.2), from which together with (1.7) and the above equation it fol-
lows that

(2.5) $\nabla_{X}A(\xi)=-c\phi X/4-\alpha(A\phi-\phi A)X/2$ .
On the other hand, the Codazzi equation (1.4) coupled with (2.5) implies

(2.6) $\nabla_{\xi}A(X)=-\alpha(A\phi-\phi A)X/2$ .
By $X^{\perp}$ we denote an $\xi^{\perp}$ -component of a vector field $X$. Namely, let $X=$

$ X^{\perp}+\eta(X)\xi$ . Then the vector field $\nabla_{X}A(Y)$ can be decomposed into three terms
as follows;

(2.7) $\nabla_{X}A(Y)=\nabla_{x\perp}A(Y^{\perp})+\eta(X)\nabla_{\xi}A(Y^{\perp})+\eta(Y)\nabla_{X\perp}A(\xi)$

because of $\nabla_{\xi}A(\xi)=0$ by means of (2.4) and (2.6). Taking account of (2.5) and
(2.6), we seen that (2.7) is reformed as

(2.8) $\nabla_{x}A(Y)=(\nabla_{X}\perp A(Y^{\perp}))^{\perp}-c\{\eta(Y)\phi X+g(\phi X, Y)\xi\}/4$

$-\alpha\{\eta(X)(A\phi-\phi A)Y+\eta(Y)(A\phi-\phi A)X$

$+g((A\phi-\phi A)X, Y)\xi\}/2$ .

In particular, assume that $M$ is of type B. Then the shape operator $A$ satisfies

(2.9) $ A\phi+\phi A=k\phi$ , $ k=-c/\alpha$ .
In this case, by using (2.9), the equation (2.5) is equivalent to

(2.10) $\nabla_{X}A(\xi)=-\alpha(A\phi-3\phi A)X/4$ ,
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which together with (2.6) and (2.7) yields

(2.11) $\nabla_{X}A(Y)=-\alpha\{2\eta(X)(A\phi-\phi A)Y+\eta(Y)(A\phi-3\phi A)X$

$+g((A\phi-3\phi A)X, Y)\xi\}/4$

because the shape operator $A$ of $M$ is $\eta$ -parallel by Theorems $D$ and E.
Now, let $S^{2n+1}$ be a $(2n+1)$-dimensional unit sphere in a $(2n+2)$-dimensional

Euclidean space $R^{2n+2}=C^{n+1}$ and let $(\Phi, E, \omega, G)$ be the Sasakian structure in-
duced from the natural almost complex structure on $C^{n+1}$ . Then the Hopf

fibration $\pi;S^{2n+1}\rightarrow P_{n}C$ is a principal circle bundle over $P_{n}C$ , in which $\omega$ is a
connection and the orbits of $E$ are fibers. Let $*be$ a horizontal lift with respect

to this connection $\omega$ . The usual Riemannian structure on $P_{n}C$ is characterized
by the fact that $\pi$ is a Riemannian submersion. Let $M$ be a real hypersurface
of a complex projective space $P_{n}C$ . Then the principal circle bundle $N$ over
$M$ is a hypersurface of $S^{2n+1}$ and the natural immersion $i^{\prime}$ of $N$ into $S^{2n+1}$ re-
spects the submersion $\pi$ . That is, $N$ is the hypersurface of $S^{2n+1}$ tangent to $E$

and for the Hopf fibration $\pi:S^{n+1}\rightarrow P_{n}C$ there is a fibration $\pi$ : $N\rightarrow M$, where
$M$ is a real hypersurface of $P_{n}C$ such that the diagram

$N\sim^{i^{\prime}}S^{2n+1}$

$\pi\downarrow$ $\downarrow\pi$

$M\rightarrow P_{n}C$
$i$

is commutative and the immersion $i^{\prime}$ of $N$ into $S^{2n+1}$ is a diffeomorphism of the
fibers. By $g^{\prime}$ and $g$ the induced Riemannian metric tensors of $N$ and $M$ are
denoted, respectively. Let $\nabla^{\prime}$ and $\nabla$ be also the Riemannian connections of $N$

and $M$, and the shape operators are denoted by $A^{\prime}$ and $A$ . Then it is seen
that

(2.12) $g^{\prime}(\nabla_{X*}^{\prime}A^{\prime}(Y^{*}), Z^{*})=\{g(\nabla_{X}A(Y), Z)+\eta(Y)g(\phi X, Z)+\eta(Z)g(\phi X, Y)\}^{*}$

for any vector fields $X,$ $Y$ and $Z$ on $M$.
Next, for positive numbers $r$ and $s$ and an integer $m(2\leqq m\leqq n-1)$ we de-

note by $N_{0}(2n, r)$ and $N(2n, m, s)$ real hypersurfaces of $S^{2n+1}$ defined by $\{z=$

$(z_{1}, \cdots, z_{n+1})\in S^{2n+1}\subset C^{n+1}$ : $\Sigma_{j=1}^{n}|z_{j}|^{2}=r|z_{n+1}|^{2}$ } and $\{z=(z_{1}, \cdots , z_{n+1})\in S^{2n+1}\subset$

$C^{n+1}$ : $\sum_{j=1}^{m}|z_{j}|^{2}=s\sum_{k=m+1}^{n+1}|z_{k}|^{2}$ }, respectively. Then $N_{0}(2n, r)$ and $N(2n, m, s)$

have two distinct constant principal curvatures $\cot\theta$ and $-\tan\theta$ with multi-
plicities $2n-1,1$ and $m-1,2n-m+1$ , respectively, and the angle $\theta$ is given by
$\cos^{2}\theta=1/(r+1),$ $\sin^{2}\theta=(m-1)/(n-1)$ and $s=(m-1)/(n-m)$ . Accordingly the
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shape operator $A^{\prime}$ is parallel by Lemma 2.1. On the other hand, for a number
$t(0<t<1)$ we denote by $N(2n, t)$ a hypersurface of $S^{2n+1}$ defined by $\{z=$

$(z_{1}, \cdots , z_{n+1})\in S^{zn+1}\subset C^{n+1}$ : $|\Sigma_{j=}^{n+_{1}1}z_{j^{2}}|^{2}=t$ }. Then $N(2n, t)$ has four distinct con-
stant principal curvatures $\cot(\theta-\pi/4),$ $\cot\theta$ , $\cot(\theta+\pi/4)=-\tan(\theta-\pi/4)$,

$\cot(\theta+\pi/2)=-\tan\theta$ with multiplicities $n-1,1,$ $n-1$ and 1, respectively and
the angle $\theta$ is given by $t=\sin^{2}2\theta(0<\theta<\pi/4)$ . By $D^{\prime}$ a distribution over $N(2n, t)$

of the direct sum of eigenspaces corresponding to principal curvatures $\cot(\theta-\pi/4)$

and $-\tan(\theta-\pi/4)$ is denoted. Then Lemma 2.1 yields that $A^{\prime}$ is D’-parallel,
but it is not parallel by the property of isoparametric hypersurfaces in a sphere.

Thus, in real hypersurfaces $M_{0}(2n-1, r)=\pi(N_{0}(2n, r))$ of type $A_{1},$ $M(2n-1, m, s)$

$=\pi(N(2n, m, s))$ of type $A_{2}$ and $M(2n-1, t)=\pi(N(2n, t))$ of type $B$ , it is seen
that the shape operator $A$ is $\eta$ -parallel because of (2.12). Moreover, $\nabla_{\xi}A(Y)$

vanishes identically in the former two hypersurfaces, but it is not so in the last
case. This means that the equation (2.11) gives a characterization by which real
hypersurfaces of type $B$ of $P_{n}C$ are distinguished from ones of type $A_{1}$ and $A_{2}$ .

For real hypersurfaces of a complex hyperbolic space $H_{n}C$ the same situa-
tion as above is considered.

In the sequel, let $M$ be a real hypersurface of a complex space form $M_{n}(c)$ ,
$c\neq 0,$ $n\geqq 3$ . The shape operator $A$ in the direction of $C$ is said to be pseudo-
parallel if $A$ satisfies

(2.13) $\nabla_{X}A(Y)=a\{2\eta(X)(A\phi-\phi A)Y+\eta(Y)(A\phi-3\phi A)X$

$+g((A\phi-3\phi A)X, Y)\xi\}$

for any tangent vector fields $X,$ $Y$ and $a\in R$ and to be $ pseudo-\eta$-parallel if
(2.13) holds for any vector fields $X$ and $Y$ orthogonal to $\xi$ and $a\in R$ . The
hypersurface $M$ is said to be of $pseudo-(\eta-)parallel$ if $A$ is $pseudo-(\eta-)parallel$ ,

respectively. For these hypersurfaces, the following property is first asserted.

LEMMA 2.2. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ . If $M$ is
of pseudo-parallel, then $\xi$ is principal.

PROOF. Suppose that $M$ is of pseudo-parallel and $a=0$ . Then the shape

operator $A$ is parallel. However, it is well known that there exist no real
hypersurfaces with parallel shape operator of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ . Thus we may
assume that $a$ is nonzero. From (2.13) it is seen that

$\nabla_{X}A(Y)-\nabla_{Y}A(X)=a\{\eta(X)(A\phi+\phi A)Y-\eta(Y)(A\phi+\phi A)X$

$-2g((A\phi+\phi A)X, Y)\xi\}$ .
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On the other hand, it follows from the Codazzi equation (1.4) that

$\nabla_{X}A(Y)-\nabla_{Y}A(X)=c\{\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi\}/4$ ,

which combined with the last equation turns out to be

(2.14) $\eta(X)BY-\eta(Y)BX-2g(BX, Y)\xi=0$

for any tangent vector fields $X$ and $Y$ , where we have put $B=a(A\phi\neq\phi A)-c\phi/4$

which is the skew-symmetric transformation. It is clear from (2.14) that
$g(BX, Y)=0$ for any tangent vector fields $X$ and $Y$ orthogonal to $\xi$ . Putting
$ Y=\xi$ in (2.14), we obtain $-BX-2g(BX, \xi)\xi=0$ for any vector field $X$ orthogonal
to $\xi$ and hence the above two equations means that $BX=0$ for any vector field
$X$ orthogonal to $\xi$ .

Moreover, making use of (1.1), we find easily that $ B\xi=a\phi A\xi$ . Replacing
$Y$ by $ B\xi$ and putting $ X=\xi$ in (2.14), we obtain $B^{2}\xi-2g(B\xi, B\xi)\xi=0$ , where we
have used the fact that $ B\xi=a\phi A\xi$ . Thus $B\xi=0$ , which means, coupled with
the fact $BX=0$ for any vector field $X$ orthogonal to $\xi$, that the operator $B$ vanishes
identically on $M$. That is, $a(A\phi+\phi A)=c\phi/4$ . Because of $a\neq 0$ , we get
$ A\phi+\phi A=k\phi$ , where $k=c/4a\in R-\{0\}$ . Hence $\xi$ is principal. $q$ . $e$ . $d$ .

From the above lemma, we reach a theorem which gives a characterization
of real hypersurfaces of type $B$ of $M_{n}(c)$ .

THEOREM 2.3. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ . Then
$M$ is of pseudo-parallel if and only if $M$ is locally congruent to one of real
hypersurfaces of type $A_{0},$ $A_{1}$ and B.

PROOF. It is enough to show that the “only if” part is true. Let $M$ be of
pseudo-parallel. Then $\xi$ is principal and $M$ is of $\eta$ -parallel. So, by using
Theorems $D$ and $E,$ $M$ is locally congruent to one of real hypersurfaces of type
A and $B$ (type A means $A_{1}$ or $A_{2}$ when $c>0$ and $A_{0},$ $A_{1}$ or $A_{2}$ when $c<0$).

Therefore, the proof is complete, since the equation (2.13) is not realized for a
a real hypersurface of type $A_{2}$ . $q$ . $e$ . $d$ .

Moreover, taking account of the proof above, we have

COROLLARY 2.4. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ . If $\xi$

is principal, then $M$ is of $ pseudo-\eta$-parallel if and only if $M$ is locally congruent
to a real hypersurface of type $A_{0},$ $A_{1}$ and $B$ .

Now, in order to prove the main theorem mentioned in the introduction we
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consider a tensor $H$ of type $(1,2)$ defined by

$H(X, Y)=\nabla_{X}A(Y)+\alpha\{2\eta(X)(A\phi-\phi A)Y+\eta(Y)(A\phi-3\phi A)X$

$+g((A\phi-3\phi A)X, Y)\xi\}/4$ .

If $H$ vanishes identically on $M$, then $M$ is of pseudo-parallel and hence $M$ is of
type $A_{0},$ $A_{1}$ or $B$ by means of Theorem 2.3. Galculating the norm of $H$ and
using (1.1), (1.7), (2.5) and (2.6), we have

(2.15) $|\nabla A|^{2}\geqq\{10\alpha^{2}h_{t}-2(7\alpha^{2}+2c)\alpha h+4\alpha-(7n-11)\alpha^{2}c\}/8$ ,

where $h_{2}$ denotes the trace of the transformation $A^{2}$ and $|\nabla A|$ is the norm of
$\nabla A$ . The equality holds if and only if the tensor $H$ vanishes identically and
therefore $M$ is of type $A_{0},$ $A_{1}$ and B. Now, let $\Lambda I$ be a real hypersurface of type
$B$ in $M_{n}(c)$ , $c\neq 0$ , $n\geqq 3$ . Then the restriction of the shape operator $A$ to the
orthogonal complement $\xi^{\perp}$ satisfies $A^{2}-kA-cI/4=0$ , where $ k=-c/\alpha$ , from which
the equation $h_{2}-\alpha^{2}-k(h-\alpha)-(n-1)c/2=0$ is derived. Since the shape operator
$A$ of $M$ has also three distinct principal curvatures $\alpha=\sqrt{c}\cot 2\theta,$ $(\sqrt{c}/2)\cot(\theta-\pi/4)$

and $-(\sqrt{c}/2)\tan(\theta-\pi/4)$ if $c>0$ or $\alpha=\sqrt{-c}\tanh 2\theta,$ $(\sqrt{-c}/2)\coth(\theta-\pi/4)$ and
$-(\sqrt{-c}/2)\tanh(\theta-\pi/4)$ if $c<0$ , with multiplicities 1, $n-1,$ $n-1$ , respectively,

which gives us $h=\alpha+(n-1)k$ . Combining (2.15) and making use of above prop-
erties, we find
(2.16) $|\nabla A|^{2}=(n-1)(7c^{2}+6\alpha^{2}c)/4$ .

REMARK 2.2. Let $M$ be a real hypersurface of type A of $P_{n}C$ . Then it
is seen in [7] that the norm of $\nabla A$ satisfies $|\nabla A|^{2}=(n-1)c^{2}/4$ . In particular,

note here that in a real hypersurface of type $A_{0}$ in $H_{n}C,$ $(2.16)$ holds because
of $\alpha^{2}+c=0$ .

Next, we calculate the norm of the tensor $ A\phi+\phi A-k\phi$ , where $ k=-c/\alpha$ .
Under the assumption that $\xi$ is principal, we get

(2.17) $2\alpha^{2}h_{2}-4\alpha^{2}(\alpha^{2}+c)+(\alpha^{2}+2c)\{(n-1)c+2\alpha h\}\geqq 0$ ,

where the equality holds if and only if $M$ is of type $A_{0},$ $A_{1}$ and $B$ , from which
together with (2.15) it follows that

(2.18) $|\nabla A|^{2}\geqq-\{12(\alpha^{2}+c)\alpha h+5(n-1)c^{2}+6(n-3)c\alpha^{2}-12\alpha^{4}\}/4$ .

Suppose that $(\alpha^{2}+c)\{\alpha h-\alpha^{2}+(n-1)c\}\leqq 0$ . Then the inequality $|\nabla A|^{2}\geqq$

$(n-1)(7c^{2}+6\alpha^{2}c)/4$ is derived from (2.18). Thus, by Theorem 2.3 we oetain the
following theorem. The main theorem is its direct consequence.

THEOREM 2.5. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ , on which



A characterization of a real hypersurface of type $B$ 19

$\xi$ is principal. If $(\alpha^{2}+c)\{\alpha h-\alpha^{2}+(n-1)c\}\leqq 0$ , then we have

$|\nabla A|^{2}\geqq(n-1)(7c^{2}+6\alpha^{2}c)/4$ ,

where the equality holds if and only if $M$ is locally congruent to one of real
hypersurfaces of type $A_{0}$ and $B$ , the former case arising only when $c<0$ .

REMARK 2.3. Let $M$ be a real hypersurface of type $A_{2}$ in a complex hyper-
bolic space $H_{n}C$ . Then the principal curvatures are given by $\alpha=\sqrt{-c}$

$\coth 2\theta$ , $\sqrt{-c}/2\coth\theta$ and $\sqrt{-c}/2\tanh\theta$ with multiplicities 1, $p$ and $q$ , re-
spectively, and hence we have

$\alpha h-\alpha^{2}+(n-1)c=-c(p\coth^{2}\theta+q\tanh^{2}\theta)/4+(n-1)c/2$ .
For any integers $p$ and $q$ such that $p\geqq q$ , the right hand side is monotonously
decreasing and bounded from below by $0$ and hence there is some $\theta$ such that
$ 0<\alpha h-\alpha^{2}+(n-1)c<\epsilon$ for any sufficiently small positive $\epsilon$ . While $\alpha^{2}+c=$

$c(1-\coth^{2}2\theta)$ is positive, we have $(a^{2}+c)\{ah-\alpha^{2}+(n-1)c\}>0$ . This means that
the assumption of $(\alpha^{2}+c)\{\alpha h-\alpha^{2}+(n-1)c\}\leqq 0$ in the above theorem can not be
omitted in $H_{n}C$ .

REMARK 2.4. Let $M$ be a real hypersurface of type $A_{1}$ or $A_{2}$ in $P_{n}C$ .
Then we have $|\nabla A|^{2}=(n-1)c^{2}/4$ . On the other hand, the principal curvatures
are given by $\alpha=\sqrt{c}\cot 2\theta,$ $\sqrt{c}/2\cot\theta$ and $-\sqrt{c}/2\tan\theta$ with multiplicities 1,
$p$ and $q$ , respectively, and hence we have

$\alpha h-\alpha^{g}+(n-1)c=c(p\cot^{2}\theta+q\tan^{l}\theta)/4+(n-1)c/2$

$\geqq(n-1)c/2$ .
Last, we give another characterization of a real hypersurface of type $B$ in

$P_{n}C$ . The inequality (2.17) holds under the assumption that the structure vector
$\xi$ is principal. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$, on which $\xi$

is not assumed to be principal. For a vector field $ U=\nabla_{\xi}\xi$ there is a l-form $\omega$

associated with it, which is given by $\omega(X)=g(U, X)$ . The codifferential $\delta\theta$ of
the l-form $\omega$ is given by $\delta\omega=-\sum_{j\propto 1}^{2n-1}g(E_{j}, \nabla_{Ej}U)$ , where $\{E_{j}\}$ is an orthonormal
frame such that $ E_{2n-1}=\xi$ . Then, taking account of two equations of (1.2) and
the Codazzi equation (1.4), we have

$ 2h_{2}-2(\alpha_{2}+\alpha^{2}+2c)+(1+2c/\alpha^{t})\{(n-1)c+2\alpha h\}\geqq 2\delta\omega$ ,

where $\alpha=g(A\xi, \xi)$ and $\alpha_{2}=g(A\xi, A\xi)$ , in place of (2.17). Accordingly, by the
well known theorem due to Green and by Yano and Kon’s theorem [14], one
finds
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THEOREM 2.6. Let $M$ be a compact orientable real hypersurface of $P_{n}C$ . If
the shape operator $A$ satisfies

2 Tr $A^{2}\leqq 2(\alpha_{2}+\alpha^{2}+2c)-(1+2c/\alpha^{2})$ { $(n-1)c+2\alpha$ Tr $A$ }, $\alpha\neq 0$ ,

then $M$ is congruent to one of the real hypersurfaces of type $A_{1}$ and B.

REMARK 2.5. In [10], Okumura proved that in a compact orientable real
hypersurface $M$ of $P_{n}C$ if the shape operator $A$ of $M$ satisfies

Tr $ A^{2}\leqq\alpha$ Tr $A+(n-1)c/2$ ,

then $M$ is of type $A_{1}$ or $A_{2}$ .

3. Real hypersurfaces of type A and B.

Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ . The shape operator $A$ is
said to be cyclic-pseudo-parallel if $\mathfrak{S}g(\nabla_{X}A(Y), Z)=3aT(X, Y, Z)$ for any vector fields
$X,$ $Y$ and $Z$ , where $\mathfrak{S}$ denotes the cyclic sum with respect to $X,$ $Y$ and $Z$ and
we have put $T(X, Y, Z)=\eta(X)g((A\phi-\phi A)Y, Z)$ and $a\in R$ . We say that $M$

is of cyclic-pseudo-parallel if $A$ is cyclic-pseudo-parallel. We note here that
a real hypersurface of $M_{n}(c)$ is said to be of cyclic-parallel if $a$ is zero (cf. [3]).

REMARK 3.1. It was proved in [3] and [9] that a real hypersurface of
$M_{n}(c),$ $c\neq 0$, is of cyclic-parallel if and only if $A\phi=\phi A$ . Therefore it is of
type A.

REMARK 3.2. By Theorems $D$ and $B$ and (2.8) or also by (2.9) real hyper-

surfaces of type $B$ in $M_{n}(c),$ $c\neq 0$ , are cyclic-pseudo-parallel.

From now on, we suppose that $M$ is of cyclic-pseudo-parallel. Then it
follows from the Codazzi equation (1.4) that

(3.1) $\nabla_{X}A(Y)=-c\{\eta(Y)\phi X+g(\phi X, Y)\xi\}/4+a\{\eta(X)(A\phi-\phi A)Y$

$+\eta(Y)(A\phi-\phi A)X+g((A\phi-\phi A)X, Y)\xi\}$ .

It is easily seen that the fact $M$ is cyclic-pseudo-parallel is equivalent to (3.1), and
in the case where the shape operator $A$ is $\eta$ -parallel. Accordingly, by Theorems
$D$ and $E$ the structure of $M$ is determined if the structure vector $\xi$ is principal.
So, the property that $\xi$ is principal is investigated. Putting $ Y=\xi$ in (3.1) and
using (1.1), we get

(3.2) $\nabla_{X}A(\xi)=-c\phi X/4+a\{-\eta(X)\phi A\xi+(A\phi-\phi A)X-g(X, \phi A\xi)\xi\}$ ,
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which joined with the second formula of (1.2) implies

(3.3) $\nabla_{\xi}A(\xi)=-2aU$ ,

where $ U=\nabla_{\xi}\xi$ . For any point $x$ on $M$ we can choose an othonormal basis
$\{E_{1}, \cdots, E_{2n- 1}\}$ for the tangent space $T_{x}M$ such that $\nabla_{Ei}E_{j}=0$ $(i, j=1, \cdots , 2n-1)$ .
Then, differentiating (3.1) covariantly along $M$ and making use of (1.2), we
have

(3.4) $\nabla_{W}\nabla_{X}A(Y)=-c\{g(\phi AW, Y)\phi X+g(\phi X, Y)\phi AW+\cdot\eta(X)\eta(Y)AW$

$+\eta(X)g(AW, Y)\xi-2\eta(Y)g(AW, X)\xi\}/4$

$+a[g(\phi AW, X)(A\phi-\phi A)Y+g(\phi AW, Y)(A\phi-\phi A)X$

$+g((A\phi-\phi A)X, Y)\phi AW-\eta(X)\{\eta(AY)AW+g(AW, Y)A\xi$

$-2g(A^{2}W, Y)\xi+\phi\nabla_{W}A(Y)-\nabla_{W}A(\phi Y)\}-\eta(Y)\{\eta(AX)AW$

$+g(AW, X)A\xi-2\eta(X)A^{2}W+\phi\nabla_{W}A(X)-\nabla_{W}A(\phi X)\}$

$-\{\eta(AX)g(AW, Y)+\eta(AY)g(AW, X)-2\eta(Y)g(A^{2}W, X)$

$-g(\nabla_{W}A(X), \phi Y)-g(\nabla_{W}A(\phi X), Y)\}\xi]$ ,

which combined with the Ricci formula for the shape operator $A$ gives forth

(3.5) $R(W, X)AY-A(R(W, X)Y)$

$=-c\{g(\phi AW, Y)\phi X-g(\phi AX, Y)\phi W+g(\phi X, Y)\phi AW-g(\phi W, Y)\phi AX$

$+\eta(X)\eta(Y)AW-\eta(W)\eta(Y)AX+\eta(X)g(AW, Y)\xi-\eta(W)g(AX, Y)\xi\}/4$

$+a[g((\phi A+A\phi)W, X)(A\phi-\phi A)Y$

$+g(\phi AW, Y)(A\phi-\phi A)X-g(\phi AX, Y)(A\phi-\phi A)W$

$+g((A\phi-\phi A)X, Y)\phi AW-g((A\phi-\phi A)W, Y)\phi AX$

$-\eta(X)\{\eta(AY)AW+g(AW, Y)A\xi-2g(A^{2}W, Y)\xi+\phi\nabla_{W}A(Y)-\nabla_{W}A(\phi Y)\}$

$+\eta(W)\{\eta(AY)AX+g(AX, Y)A\xi-2g(A^{2}X, Y)\xi+\phi\nabla_{X}A(Y)-\nabla_{X}A(\phi Y)\}$

$-\eta(Y)\{\eta(AX)AW-\eta(AW)AX-2\eta(X)A^{2}W+2\eta(W)A^{2}X+\phi\nabla_{W}A(X)$

$-\phi\nabla_{X}A(W)-\nabla_{W}A(\phi X)+\nabla_{X}A(\phi W)\}$

$-\{\eta(AX)g(AW, Y)-\eta(AW)g(AX, Y)-g(\nabla_{W}A(X), \phi Y)+g(\nabla_{X}A(W), \phi Y)$

$-g(\nabla_{W}A(\phi X), Y+g(\nabla_{X}A(\phi W), Y)\}\xi]$ .
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We substitute (1.3) into (3.5) and then put $ X=Y=\xi$ in this result. Finally, if
we take the inner product of the last equation and $\xi$ , then we obtain

(3.6) $(\alpha+2a)A^{2}\xi=(\beta+a\alpha-2a^{2})A\xi-a(\alpha^{2}-2\beta-2a\alpha)\xi$ ,

where we have defined $\beta=\eta(A^{2}\xi)$ and used (1.1) and (3.1).

On the other hand, putting $W=E_{j}$ in (3.5), taking the inner product of this
result and $E_{f}$ and summing up with respect to $j$ $(j=1, \cdots , 2n-1)$ , we find

(3.7) $hA^{2}X+\{c(n+1)/2-h_{2}-2a\alpha\}AX-c(2a+h)X/4$

$=-c\phi A\phi X+(c/2+ah)\eta(X)A\xi+(c/2+ah+4a^{2})\eta(AX)\xi$

$-[ch/4-a\{(2n-1)c/2-4a\alpha-2h_{2}\}]\eta(X)\xi$

$-a\{A\phi A\phi X-\phi A\phi AX-2\phi A^{2}\phi X+2\eta(AX)A\xi$

$-\eta(X)A^{2}\xi+\eta(A^{2}X)\xi\}$ ,

where we have used (1.1), (1.4), (1.5) and (3.1). If we set $ X=\xi$ in (3.7) and if
we use (1.1), then we attain

(3.8) $hA^{2}\xi+(cn/2-h_{2})A\xi-c\alpha\xi/2$

$=a[\phi AU+A^{2}\xi-hA\xi-\{c(n-1)+\beta-2h_{2}+\alpha h\}\xi]$ .
By means of (3.1), (3.2) and the definition of $h$ it is easily seen that we have
$dh(Y)=-2ag(U, Y)=g(\nabla_{Y}A(\xi), \xi)$ and hence we get $\nabla_{W}\nabla_{Y}h=\nabla_{Y}\nabla_{W}h$ , which im-
plies that $\nabla_{W}g(\nabla_{Y}A(\xi), \xi)=\nabla_{Y}g(\nabla_{W}A(\xi), \xi)$ . From (3.2) we bring out

$\nabla_{W}g(\nabla_{Y}A(\xi), \xi)=2a\{-\alpha g(Y, AW)+\eta(Y)\eta(A^{2}W)$

$+g(\nabla_{W}A(\xi), \phi Y)+g(A\phi Y, \phi AW)\}$

and hence, taking the skew-symmetric part of this and the above two equations
we have

$2a\{\eta(Y)\eta(A^{8}W)-\eta(W)\eta(A^{2}Y)+g(\nabla_{W}A(\xi), \phi Y)-g(\nabla_{Y}A(\xi), \phi W)$

$+g(A\phi Y, \phi AW)-g(A\phi W, \phi AY)\}=0$ .
Thus, putting $ Y=\xi$ in the last equation and making use of (1.1) and (3.3), we
get

(3.9) $a\phi AU=-a\{A^{2}\xi+2aA\xi-(2a\alpha+\beta)\xi\}$ ,

which together with (3.8) leads to

(3.10) $hA^{2}\xi+(cn/2-h_{2})A\xi-c\alpha\xi/2$

$=-a[(h+2a)A\xi+\{c(n-1)-2h_{2}-2a\alpha+\alpha h\}\xi]$ .
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And this, combined with (3.6), gives rise to

$\{h(\beta+a\alpha-2a^{2})+(\alpha+2a)(cn/2-h_{2})\}A\xi$

$-\{ah(\alpha^{2}-2\beta-2a\alpha)+c\alpha^{2}/2+ca\alpha\}\xi$

$=-a(\alpha+2a)[(h+2a)A\xi+\{c(n-1)-2h_{2}-2a\alpha+\alpha h\}\xi]$ .
Moreover, the inner product of (3.10) and $\xi$ produces

(3.11) $h\beta=(\alpha+2a)\{h_{2}-c(n-1)/2\}-2a\alpha h$ .
Thus, combing with the last two equations, we have

$(a^{2}+c/4)(\alpha+2a)(A\xi-\alpha\xi)=0$ .
In the rest of this section, we will make efforts in order to reach our goal

–proving that $\xi$ is principal. Let $M_{0}$ be a set of points of $M$ at which the
function $\beta-\alpha^{2}$ does not vanish. Suppose that $M_{0}$ is not empty. Then
$(\alpha+2a)(a^{2}+c/4)=0$ because of the fact that $|A\xi-\alpha\xi|^{2}=\beta-\alpha^{2}$ . If $\alpha\cdot+2a=0$ at
some point of $M_{0}$ , then it follows from (3.6) that $\beta=4a^{2}=\alpha^{2}$ at that point, which
is a contradiction. Therefore we gain $a^{2}+c/4=0$ on $M_{0}$ . Now, taking the
covariant derivative of $\alpha=\eta(A\xi)$ and using (3.2), we have

(3.12) $AU=-aU-grad\alpha/2$ .
From (3.9) the inner product of (3.12) and $\phi X$ gives us

- $d\alpha(\phi X)/2=\eta(A^{2}X)+3a\eta(AX)-(\beta+3a\alpha)\eta(X)$ ,

on $M_{0}$ , which connected with (3.6) yields

$-(\alpha+2a)d\alpha(\phi X)/2=(\beta+4a^{2}+4a\alpha)\{\eta(AX)-\alpha\eta(X)\}$ .
Moreover, replacing $X$ by $\phi X$ into the last equation and making use of (1.1), it
is clear that

(3.13) $-(\alpha+2a)grad\alpha/2=(\beta+4a^{2}+4a\alpha)U$ ,

where we used the fact $d\alpha(\xi)=0$ which is derived from (3.12). Substituting
(3.13) into (3.12), we have

(3.14) $AU=FU$ ,

where $F=(\beta+2a^{2}+3a\alpha)/(a+2a)$ . Now, differentiating (3.14) covariantly along
$M$, we obtain $\nabla_{Y}A(U)+A\nabla_{Y}U=dF(Y)U+F\nabla_{Y}U$. If we take the inner product
of this and $U$ and if we use (3.14), then we see that $dF(Y)g(U, U)=0$ for any
vector field $Y$ because of $g(\nabla_{Y}A(U), U)=0$ which is obtained by (3.1). Thus
$dF=0$ On $M_{0}$ , that is, $F=(\beta+2a^{2}+3a\alpha)/(\alpha+2a)$ is constant on $M_{0}$ . Accordingly
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we have $(\alpha+2a)grad\beta=(\beta-4a^{2})grad\alpha$ , which linked with (3.13) gives rise to

(3.15) $(\alpha+2a)^{2}grad\beta=-2(\beta-4a^{2})(\beta+4a^{2}-4a\alpha)U$ .

On the other hand, since we have put $h=tr$ $A$ and $h_{2}=trA^{2}$ , we have $\nabla_{X}h_{2}=$

$2\Sigma_{j=1}^{2n-1}g(\nabla_{X}A(E_{j}), AE_{j})$ and $\nabla_{X}h=\Sigma_{j=1}^{2n-1}g(\nabla_{X}A(E_{j}), E_{j})$ . So, by the straight-

forward calculation it follows from (3.1), (3.6), (3.12) and (3.13) that we get
$\nabla_{X}h=-2ag(U, X)$ and $\nabla_{X}h_{2}=(c+8a^{2})U$. Consequently, by combining with the

fact that $c=-4a^{2}$ , it gives us that

(3.16) $\nabla_{X}h=-2ag(U, X)$ and $\nabla_{X}h_{2}=4a^{2}U$ on $M_{0}$ .

Finally, if we differentiate (3.11), then from (3.16) we get

$hgrad\beta=\{h_{2}-c(n-1)/2-2ah\}grad\alpha+2a\{\beta+4a^{2}+4a\alpha\}U$

on $M_{0}$ , which together with (3.11), (3.13) and (3.15) implies

$(\alpha+2a)\{\beta-\alpha^{2}+(2a+\alpha)^{2}\}U=0$

and hence $\{\beta-\alpha^{2}+(2a+\alpha)^{2}\}|U|^{2}=0$ on $M_{0}$ . Therefore, it follows that
$\{|U|^{2}+(2a+\alpha)^{2}\}|U|^{2}=0$ on $M_{0}$ . This contradicts the definition of $M_{0}$ and con-
sequently $M_{0}$ is empty.

Summing up, we have

LEMMA 3.1. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0$ . If $M$ is of cyclic-
pseudo-parallel, then $\xi$ is principal.

From (3.1) we find that the shape operator $A$ of cyclic-pseudo-parallel real
hypersurfaces is $\eta$ -parallel and hence it is seen by Theorems $D$ and $E$ that $M$

is locally congruent to one of real hypersurfaces of type A and B. Moreover,
we obtain

$\nabla_{X}A(\xi)=-c\phi X/4+a(A\phi-\phi A)X$ ,

which, combined together with (2.5), yields that $\alpha=-2a$ or $A\phi=\phi A$ because $\alpha$

and $a$ are both constant. Conversely, by Remarks 3.1 and 3.2, a real hyper-
surface of type A or $B$ in $M_{n}(c)$ , $c\neq 0_{r}$ is of cyclic-pseudo-parallel. Thus we
find the following

THEOREM 3.2. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0$ . Then $M$ is of
cyclic-pseudo-parallel if and only if $M$ is locally congruent to one of the homo-
geneous hypersurfaces of type $A_{1},$ $A_{2}$ and $B$ when $c>0$ and of type $A_{0},$ $A_{1},$ $A_{2}$ and
$B$ when $c<0$ .
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REMARK 3.3. We shall again estimate the norm of the covariant derivative
of the second fundamental form of a real hypersurface $M$ of a complex space
form. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ , on which the struc-
ture vector $\xi$ is principal. It is derived from (2.8) that

(3.17) $|\nabla A|^{2}\geqq(n-1)c^{2}/4+3\alpha^{2}|\eta\otimes(A\phi-\phi A)|^{2}/4$ .
The second term of the right hand side in the above equation is equal to
$3\alpha^{2}\{h_{2}-\alpha h-(n-1)c/2\}/2$ . Thus we have

$|\nabla A|^{2}\geqq(n-1)c^{2}/4+3\alpha^{2}\{h_{2}-\alpha h-(n-1)c/2\}/2$ ,

where the equality holds if and only if the shape operator $A$ satisfies

$\nabla_{X}A(Y)=-c\{\eta(Y)\phi X+g(\phi X, Y)\xi\}/4$

-a $\{\eta(X)(A\phi-\phi A)Y+\eta(Y)(A\phi-\phi A)X+g((A\phi-\phi A)X, Y)\xi\}/2$ .
Namely, $A$ is $\eta$ -parallel and hence $M$ is locally congruent to one of real hyper-

surfaces of type A and $B$ by Theorems $D$ and E.

REMARK 3.4. By means of (3.17) it is shown that $M$ is of type A if and
only if thc square of the norm of the convariant derivative of $A$ is equal to
$|\nabla A|^{2}=(n-1)c^{2}/4$ . However, this result holds without the assumption that $\xi$ is
principal (cf. Maeda [7]). In fact, the square of the norm of $\nabla_{X}A(Y)+$

$c\{\eta(Y)\phi X+g(\phi X, Y)\xi\}/4$ is equal to $|\nabla A|^{2}-(n-1)c^{2}/4$ .

REMARK 3.5. By taking account of the square of the norm $|A\phi-\phi A|$ ,

Okumura’s theorem stated in Remark 2.5 is proved. This is a simple and
direct proof different from his.
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