A NOTE ON MULTIVALENT FUNCTIONS

By
Mamoru Nunokawa

The author would like to dedicate this paper to the memory of the late Professor Shigeo Ozaki.

It is well known that if $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is analytic in $E=\{z:|z|<1\}$ and $\operatorname{Ref}^{\prime}(z)>0$ in E, then $f(z)$ is univalent in E.

Ozaki [3, Theorem 2] extended the above result to the following: if $f(z)$ is analytic in a convex domain D and

$$
\operatorname{Re}\left(e^{i \alpha} f^{(p)}(z)\right)>0 \quad \text { in } \quad D
$$

where α is a real constant, then $f(z)$ is at most p-valent in D.
This shows that if $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ is analytic in E and

$$
\operatorname{Re} f^{(p)}(z)>0 \text { in } E,
$$

then $f(z)$ is p-valent in E.
Definition. Let $F(z)$ be analytic and univalent in E and suppose that $F(E)=D$. If $f(z)$ is analytic in $E, f(0)=F(0)$, and $f(E) \subset D$, then we say that $f(z)$ is subordinate to $F(z)$ in E, and we write

$$
f(z)<F(z)
$$

In this paper, we need the following lemmata.
Lemma 1. If $p(z)$ is analytic in E, with $p(0)=1$, and

$$
p(z)+z p^{\prime}(z)<\left(\frac{1+z}{1-z}\right)^{3 / 2} \quad \text { in } E,
$$

then we have

$$
p(z)<\frac{1+z}{1-z} \quad \text { in } \quad E .
$$

We owe this lemma to [1, Theorem 5 and its remark].
Remark. From Lemma 1, it is trivial that if $p(0)=1$ and

[^0]$$
\left|\arg \left(p(z)+z p^{\prime}(z)\right)\right|<\frac{3}{4} \pi \quad \text { in } \quad E
$$
then we have
$$
|\arg p(z)|<\frac{\pi}{2} \quad \text { in } \quad E .
$$

Lemma 2. Let $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ be analytic in E. If there exists a $(p-k+1)$-valent starlike function $g(z)=z^{p-k+1}+\sum_{n=p-k+2}^{\infty} b_{n} z^{n}$ that satisfies

$$
R e \frac{z f^{(k)}(z)}{g(z)}>0 \quad \text { in } \quad E,
$$

then $f(z)$ is p-valent in E.
We owe this lemma to [2, Theorem 8].
Main Theorem. Let $p \geqq 2$. If $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ is analytic in E and

$$
\begin{equation*}
\left|\arg f^{(p)}(z)\right|<\frac{3}{4} \pi \quad \text { in } \quad E, \tag{1}
\end{equation*}
$$

then $f(z)$ is p-valent in E.
Proof. Let us put

$$
p(z)=f^{(p-1)}(z) /(p!z) .
$$

Then from the assumption (1) and by an easy calculation, we have

$$
p(z)+z p^{\prime}(z)=\frac{f^{(p)}(z)}{p!}<\left(\frac{1+z}{1-z}\right)^{3 / 2} \quad \text { in } \quad E
$$

and $p(0)=1$. Then, from Lemma 1 , we have

$$
\frac{f^{(p-1)}(z)}{p!z}<\frac{1+z}{1-z} \quad \text { in } \quad E .
$$

This shows that

$$
\begin{equation*}
R e \frac{f^{(p-1)}(z)}{z}=R e \frac{z f^{(p-1)}(z)}{z^{2}}>0 \quad \text { in } E . \tag{2}
\end{equation*}
$$

Moreover, it is trivial that $g(z)=z^{2}$ is 2-valently starlike in E. Therefore, from Lemma 2 and (2), we have that $f(z)$ is p-valent in E.

The author sincerely appreciate the suggestions which were made by the referee.

References

[1] Miller, S.S. and Mocanu, P.T., Marx-Strohhäcker differential subordination systems, Proc. Amer. Math. Soc. 99 (1987), 527-534.
[2] Nunokawa, M., On the theory of mutivalent functions, Tsukuba J. Math. 11 (1987), 273-286.
[3] Ozaki, S., On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A, 2 (1935), 167-188.

Department of Mathematics Gunma University
Aramaki, Maebashi,371
Japan

[^0]: Received August 24, 1988.

