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CORINGS AND INVERTIBLE BIMODULES

By

Akira MASUOKA

Introduction.

Let SCR be a faithfully flat extension of commutative rings (with 1).
Grothendieck’s faithfully flat descent theory tells that the relative Picard group
Pic (R/S) is isomorphic to HY(R/S, U), the Amitsur 1-cohomology group for the
units-functor U. We consider the non-commutative version of this fact in this
paper.

Let SCR be (non-commutative) rings and denote by Invs(R) the group of
invertible S-subbimodules of R. Sweedler defined the natural R-coring struc-
ture on RQsR. We define the natural group map I': Invg(R)— Autg-cor(RQsR),
where Autz-co.(RQsR) denotes the group of R-coring automorphisms of RQsR.
When is I’ an isomorphism ? The answer presented here is as follows (2.10):
If either '

(@) R is faithfully flat as a right or left S-module
or (b) S is a direct summand of R as a right (rvesp. left) S-module and the

functor —QsR (resp. RQs—) reflects isomorphisms,
then I' is an isomorphism. Indeed we consider some monoid map Ix(R)—
Endz-cor(RQsR), which is an extension of I'. We have two applications 3.2)
and (3.4), both of which are concerned with the Galois theory.

§0. Conventions.
Let T, Q be érbitrary rings with 1. We write
U(T)=the group of units in T.

All modules are assumed to be unital. A (T, Q)-bimodule means a left T-
module and right Q-module M satisfying (tm)q=t(mq) for t&T, me M and ¢=Q.
A T-bimodule means a (T, T)-bimodule. We denote by ' ’

Tﬂ, ﬂ‘tT and T:J:MQ

the category of left T-modules, of right 7T-modules and of (T, Q)-bimodules,
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respectively. For Mer My,

MT={meM|tm=mt for all t<T}.

Throughout this paper, we fix a ring R with 1 and a subring S of R with
the same unit 1. For arbitrary S-subbimodules I, JC R, we define the product by

IJ={Z:x:y:(finite sum) |x;€1, y;.€J}(CTR)
and denote by m the multiplication map:
m: IQs]—> 1], mxRy)=xy.

With respect to this product, S-subbimodules of R form a monoid with unit S.
IL(R) (resp. I5(R)) denotes the submonoid consisting of S-subbimodules /CR

such that
RRsI=R (resp. IQsR=R) through m.

Invs(R) denotes the group of invertible S-subbimodules of R.

§ 1. Preliminaries.

1.1. PROPOSITION. We have the following exact sequence, the first five terms
of which can be found in [4, PROPOSITION 1.6, p. 25]:

1 —> U(SS) — U(R?®) Invg(R) — Pic (S) —> [z HMs]
u— Su=uS (-] R s—
where Pic(S) denotes the Picard group of S and [rMs] denotes the isomorphic
classes [M] of Mg Ms with a distinguished class [R].

Exactness at Pic (S) means that, for any invertible S-bimodule J, RQs/=R
in pMg iff J is isomorphic to some IInvg(R), which can be verified easily.
Needless to say, we can get another exact sequence from the above one by
replacing the last map with Pic (S) :;;; [sMr], defining [sMg] similarly. In
particular, we have

(1.2) I5(R)NIS(R)DInvs(R) .

An R-coring is a triple (C, 4, &), where C€z Mg, and 4: C—CQrC and e:
C—R are maps in zMe satisfying the usual co-associativity and co-unitarity.
Let C be an R-coring. Denote the monoid of R-coring endomorphisms (resp.
the group of R-coring automorphisms) of C by

Endg-cor(C) (resp. Autg-cor(C)).

If an automorphism f of C in zMp commutes with 4, it commutes with e auto-
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matically, since e f =(eRe)-((dRf)g=g°f1(1dRe)(fQf)d=e- [ (1dQe)°4°
f=e. Denote the set of group-likes [6, 1.7, Definition] in C by Gr (C):

Gr (C)={g=Cl4(8)=8Rrg, (g)=1}.
RQ®sR has the following R-coring structure [6, 1.2, p. 393]:
4: RQsR —> (RQsR)Qr(RQsR)=RQsRIsR,
A(xQ))=xR1Qy ,
e: RYsR— R, e(xQy)=xy.

The natural identification
(RRYsR)$=End 5 ,(RQsR)

makes the left-hand side into a ring with the following product:

1.3) <2ixi®yi)'(Ejzj®wj):2'i.jzjxi®yiwj
for xRy, 32:Qw,;S(RQsR)S. Then we have the identification
(1.4) (RQsR)SNGr (RYsR)=Endg-cor(RQsR) ,

U(R®sR)S)NGr (RQsR)=Autg-cor( RQsR)
as monoids and as groups, respectively.

REMARK. The product (1.3)is related closely to Sweedler’s X s-product [7].
Indeed, the ring (RQsR)S equals RBxsR in [7, Section 3].

§2. Main results.
We define the monoid map
(2.1) I: I5(R) —> Endg_cor(RQsR) .

Let /eI4(R). Define I'(I) to be the composition

RRQsR

RRsIQsR —> RQsR
RsIQs idom s

.

m-®z
Explicitly, if Six:Qy:€ RRQsl goes to 1R through m,
r{)a@b==2iax:Qy:b
for aQb=RQQsR. Clearly, e-I'(I)=e. We have
;xi®l®yz=§xi®ym®y; in RsRQsI,

since these go to 3;x:Qy:€ RQsR through RQsRQ sl %;R(X)SR- Hence I'(J)
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commutes with 4. Thus I'l)eEndg-co.(RQsR). It is easy to see that I' is a
monoid map.

2.2. THEOREM. If either

(@) R is faithfully flat as a right S-module
or (b) S is a direct summand of R as an S-bimodule,
then I' : I4(R)—Endg_cor(RQsR) is an isomorphism.

Let
2.3) J(@)={xeR|g(xQ1)=1Qx}

for g€Endg-co(RQsR). In case (a) or (b) holds, we show the map g—J(g)

gives the inverse of I'.
Define the maps d,, d;: R3RQsR by

di{(x)=1RQx, d,(x)=xR1 for xeR.
2.4. LEMMA. Fix g€Endg_co.(RQsR) and write
¢=inclusion: J(g) —> R, 0=d,—g°d,: R —> RQsR.

(1) The following is an exact sequence:

¢ 0
0 —>J(g) —> R —> RQsR.
(2) The following is an exact sequence:

ged,

0 — R —> RQsR

RQsRQsR .

Moreover, we have
meo(ged;)=idg, (g°d:)-m+(m&Qidr)-(1drQ0)=idregsr .-
(3) If R is flat as a right S-module, then J(g)=I5(R).

PROOF. (1) is a restatement of

(2) is verified directly.

(3). This follows from the following commutative diagram with exact rows:
id®e id®o

RQsR R®sRQsR

I . il
id®o
+ RRsR —2°, RDsR@sR,

0 —— RQRsI(Q)

(2.4.1) m |
°d
> R 22

where the upper row is exact, since R is flat. Q.E.D.
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2.5. LEMMA. Let g,¢,0 be as in (2.4). Assume S is a direct summand of

R as an S-bimodule. Then we have:
(1) There exist #: R—J(g) and ¢: RQsR—R in s Ms satisfying

(2.5.1) roc=idyc,  com+ged=idg.
2) J()eIs(R). |

PrOOF. (1). Let p: R—S be a projection in s Mg and take x, ¢y as follows:

ds 8 pyid pRid
t: R —> RYsR —> RRQsR R, ¢: RQsR

We show n(R)CJ(g). Assume X;x,Qy:;=Gr (RQsR) corresponds to g in
Then, for a=R,

R.

n(a)=2p(ax:)y:
and
g(m(a)¥1)= %p(axi)ij.i@yj
=2p(ax)Qy: (since Tx:Qy:x,Qy,=2x:Q1Qy:)
=1Qx(a).

Thus n(a)=J(g). The remainder is verified easily.
(2). This follows, since by (1) the sequence [2.4.1) is exact in case
SSSQSRS; too. ‘ Q.E.D.

2.6. DEFINITION. The functor R®g— (resp. —Qs R) reflects isomorphisms,
if a map f in g # (resp. in Ms) is an isomorphism whenever dzRsf (resp.

f&Rsidp) is such. _
If this is the case, ICJ for I, JeI§(R) (resp. €I5(R)) implies I=].

2.7. LEMMA. Let g, heEndg-co.(RQQsR), ISI5(R).

1) J(@Ih)I(gh).

@) If J(g)sIs(R), then I'-J(g)=g. .

3) IcJ-r{). Hence, if J-I'(I)eI§R) and RRs— reflects isomorphisms,
then I=J-I(I).

PROOF. (1). This holds, since, if x<J(g), yeJ(h),
di(xy)=d(x)y=g-ds(x)y=g(dx(x)y)=
g(xd\(9))=8(xhodo(¥))=g°h(xde(y))=8°h-ds(xY).

(2). This follows from the following commutative -diagram :
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RQsR

m"®id1 \

r-J(g) R®sJ(&)QsR ———— RRsR
id@m | mid g
RQ®sR —————— RR:sR.

(3). Assume X;x;Qy:€ RRsI goes to 1R through m. Then, for a<],
Saxi®Ry:=1RQa in RRsl, since both sides go to a through m. This implies
IcJ-rI). Q.E.D.

PROOF OF (2.2). Under (a) or (b), RQs— reflects isomorphisms. Hence, by
(2.7) we have only to show J(g)eIk(R) for any g€Endz-cor(RQsR). This is
shown in (2.4)-(2.5). Q.E.D.

Symmetrically we have the anti-monoid map
(2.8) I': I'(R) —> Endg-cor(RQsR),

defining I''(I), II5(R), to be the composition

RQsK - RQsIQsR :

1d®@m-?! myid

R®sR.

Let S°cCR° denote the opposite rings of SCR. By the natural idetification
S(R)=I5(R°), RQsR=R°QsoR° (xQy < y°Qx°),

we can identify the I'’-map with the I'-map for S°C R°. Hence (2.2)
yields the following:

2.9. THEOREM. If either

(a) R is faithfully flat as a left S-module
or (b) S is a direct summand of R as an S-bimodule,
then I'' : I5(R)—Endg-cor(RQsR) is an anti-isomorphism.

The inverse J’ is given by

J'(g)={x=R|xQ1=g(1Qx)} (§SEndp-cor(RQsR)).

The I'-map is restricted to the group map Invg(R)—Autz_cor(RQsR),
which is called I, too.

2.10. THEOREM. If either
(@) R is faithfully flat as a right or left S-modnle
or (b) S is a direct summand of R as a right (resp. left) S-module and the
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Sfunctor —QQsR (resp. RQs—) reflects isomorphisms,
then I': Invg(R)—Autg-cor(RQsR) is an isomorphism and

Is(R)NIS(R)=Invs(R).

Proor. If I€I¥(R)NI(R), I'I)e Autp_.o.(RQsR). Hence, by (2.7) we
have only to show J(g)eInvg(R) for any g€ Autg-cor(RQQsR). In case (a) this
holds by (2.2) or (2.9). Concerning case (b), considering S°C R°, we have only
to show the following:

2.11. LEMMA. Assume S is a direct summand of R as a right S-module.
Lot geAutp_or(RQRsR). Then we have:

(1) J(@Edregr)=S.

2) J(@)EIL(R).

3) If —QsR reflects isomorphisms, J(g)<Invg(R).

ProoOF. (1). Easy.
(2). This follows from the following commutative diagram with exact rows,
the notation being the same as in (2.4).

0 —— J(@QsR —=—=> RQOsR ——=—> RQsRQsR

«(®id oxRid
lm lg Slid@g
0 > R d, > RQsR 7‘1_——&? RQsRYsR

Commutativity is verified easily. The lower row is exact by (1). Modifying
the proof of (2.5) (1), we have that there exist z, ¢ in Hs satisfying
s0 the upper row is exact.
). If —RsR reflects isomorphisms, by (2) and (2.7)(1) we have J(g)J(h)
=J(gh) for any g, h€Autp_or(RQsR). This, together with (1), implies (3).
Q.E.D.

§3. Applications.

Put Z=RE, the center of R. The Miyashita action (see [3, p. 100] or [9,
pp. 137-81)
Invg(R) —> Autz_ag(RS)
decomposes as follows:

3.1 Invs(R) —? Autp_cor(RQsR) —> AutZ—alg(Rs)
K

where & is the anti-group map induced from the “clipping”



360 Akira MASUOKA

(R®sR)S —> End s,(R®), Sx:i®y —> (@ Zx:ay;).
By using (2.10) we can prove directly Corollary (6.24) in Doi and Takeuchi [1].

3.2. COROLLARY [1, (6.24)]. Assume that R is an Azumaya algebra over a
commutative ring Z and that S is a subalgebra of R such that R is a progenerator
as a left or right S-module. Then, the Miyashita action Invs(R)—Autz_ag(RS)
is an anti-isomorphism of groups. ‘

PrROOF. By symmetry we may assume that gR is a progenerator. Condi-
tion (a) in (2.10) being satisfied, I" in is bijective, and so is x, as will be
shown soon. It is easy to see that RS®,R=End s(R). Applying SHz(—, R) to
this isomorphism, we have RQsR= Mz(RS, R), so

RRsRQsR=Mz(R%, RYQsR=Mz(R®, RQsR)
= Mz(RS, MRS, R)=MR°QzR*, R).
Taking ( )S, we have
(RQsR)$=End 5,(R%), (RQsRQsR) = MR°QzR®, R?)
and consequently Endz-co(RQsR)=Endz-ag(RS)

through the “clipping” maps. Therefore & is bijective. This completes the
proof. o Q.E.D.

From now on, we assume that SCthe center of R. Hence S is commuta-
tive, and R and RQsR are S-algebras. '

3.3. LEMMA. Any g=Gr (RQsR) is invertible in RQsR.

PROOF. Let g~ be the image of g under the twist map xQy—yQx, RQsR
—R®sR. Then g~ is the inverse of g in RQsR, since

gg =d,m(g)=1R¥1=d,-m(g)=g"g. Q.E.D.

Lemma does not assert Endz-cor(RQRsR)=Autp_co.(RQsR), since the usual
product in Gr (R®sR) comes from that in R°®sR (1.3} By (3.3) or (2.2), it

holds that
EndR_cor(R®sR) =AutR-cor(R®SR) ’

if one of the following holds:
(1) there exists an S-algebra anti-automorphism of R,

(2) R is finitely generated projective as an S-module,
(3) S=F is a field and (#) R*"=R™ in pM (or in Mz) for any n, meN
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implies n=m,
where R™ denotes the direct sum of n copies of R. In particular, if (3) holds,
then by Proposition (1.1)

Gr (R R)={u'Que RQQ:R|lucU(R)}.

If R is left (or, respectively, right) Artinian, it satisfies condition (#) (cf. [8,
p. 4607]).

Here we can prove the following theorem announced in [2] without proof.
A bialgebra H over a field % is called a Galois bialgebra of an algebra R, if
(R, p) is a right H-comodule algebra and if the B-map

B: RRQ:R — RRQ:H, PBxQ@y)=(xR@1)p(y)

is bijective.

3.4. THEOREM. Assume that a cocommutative bialgebra (H, 4, ¢) over a field
k is a Galois bialgebra of such an algebra R that satisfies condition (#). Then
H is necessarily a Hopf algebra, i.e., it has the antipode.

PROOF. The cocommutative bialgebra H has the antipode iff the monoid
Gr.(L@rH) of group-likes in L&, H is a group for any finite extension L/% of
fields. Since LQ:H is Galois bialgebra of L&,R which satisfies condition (&),
it is sufficient to see that Gr (H) is a group.

View RQ,HE gz Me via x-(a@h)- y=(xaQ@h)p(y) for x, yeR, aQhs RK H.
As is verified easily, RQ.H is an R-coring with the structure

1d®4 1dRe
R HR» H=(RQ: H)Qr(RQ:H), RQ+H
and the B-map is an isomorphism of R-corings.

Let g=Gr (H). Since 1g=RY:H is a group-like, there exists ues U(R)
such that B(x'®u)=1®g by assumption on R, so p(u)=u®g. Hence g should
be invertible and p(u"')=u"'®g"~!. This completes the proof. Q.E.D.

R®Q:.H R
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