THE SHRINKING PROPERTY OF Σ-PRODUCTS

By
Yukinobu Yajima

1. Introduction.

Concerning the study of the normality of Σ-products, the following results have been proved in order:
(A) A Σ-product of metric spaces is normal (by Gul'ko [6] and Rudin [15] in 1977).
(B) A Σ-product of paracompact p-spaces is normal iff it has countable tightness (by Kombarov [8] in 1978).
(C) A Σ-product of paracompact Σ-spaces is normal if it has countable tightness (by the author [17] in 1984).

On the other hand, the shrinking property is between paracompactness and normality. Rudin [16] in 1983 began to study the shrinking property of Σ products and LeDonne [10] in 1985 extended her results. That is, they respectively proved the following:
(A') A Σ-product of metric spaces is shrinking.
(B^{\prime}) A Σ-product of paracompact p-spaces is shrinking iff it is normal.
The main purpose of the present paper is to prove the further extension, according to (C), as follows:
(C^{\prime}) A Σ-product of strong Σ-spaces is shrinking iff it is normal. Moreover, we prove that the "strong Σ-spaces" in (C^{\prime}) can be replaced by "semimetric spaces". This gives another generalization of (A^{\prime}).

The weak \mathscr{B}-property is weaker than the shrinking one. Chiba [2] proved that a Σ-product of compact spaces has the weak \mathcal{B}-property. So she asked in [3] whether a Σ-product of paracompact M-spaces ($=p$-spaces) has the weak \mathcal{B}-property. Here, we give an affirmative answer to this question.

All results proved here were early announced in [19] as a report.
All spaces are assumed to be regular T_{1}. The letters n, m, k, i, j and l denote non-negative integers.

[^0]
2. The shrinking and subshrinking properties.

Let S be a space. Let $G=\left\{G_{\gamma}: \gamma \in \Gamma\right\}$ be an open cover of S. We say that $\left\{H_{\gamma}: \gamma \in \Gamma\right\}$ is a (regular) shrinking of G if it is a (an open) cover of S such that $\bar{H}_{\gamma} \subset G_{\gamma}$ for each $\gamma \in \Gamma$. Moreover, we say that $\left\{H_{\gamma, n}: \gamma \in \Gamma\right.$ and $\left.n \geqq 1\right\}$ is a (regular) σ-shrinking of G if it is a (an open) cover of S and $\bar{H}_{r, n} \subset G_{\gamma}$ for each $\gamma \in \Gamma$ and $n \geqq 1$. A space S is said to be shrinking if every open cover of S has a (regular) shrinking. A space S is said to be subshrinking if every open cover of S has a σ-shrinking. The following diagram is true:

We say that a space S has the weak \mathcal{B}-property [21] if every monotone increasing open cover $\left\{U_{\gamma}: \gamma<\kappa\right\}$ (that is, $U_{\gamma} \subset U_{\gamma^{\prime}}$, if $\gamma<\gamma^{\prime}<\kappa$) has a regular skrinking. This property is between shrinking one and countable paracompactness.

Proposition 1. ([1, Corollary 3.2]). The following are equivalent for a space S :
(a) S is shrinking.
(b) S is normal and subshrinking.
(c) Every open cover of S has a regular σ-shrinking.

Observe that subparacompact spaces and perfect spaces (each closed set is G_{δ}) are subshrinking. It follows from Proposition 1 that normal subparacompact spaces and perfectly normal spaces are shrinking (cf. [22, Theorems 3 and 4]).

Let S be a set. A collection \mathcal{A} of subsets of S is said to be directed if for any $A_{1}, A_{2} \in \mathcal{A}$ there is some $A_{3} \in \mathcal{A}$ such that $A_{1} \cup A_{2} \subset A_{3}$.

Since a countable increasing cover of a space is directed, the proof of [1, Corollary 3.2] also shows

Proposition 2. If every directed open cover of a space S has a regular σ shrinking, then every directed open cover of S has a regular shrinking.

Fixing an open cover of a normal space, we have

[^1]Proposition 3. Let S be a normal space and \mathfrak{G} an open cover of S. If \mathfrak{G} has a σ-shrinking, then it has a shrinking.

This was kindly pointed out by Yasui. Indeed, it follows from

Proposition 4 (The proof of [22, Theorem 4]). Let S be a space and $G=$ $\left\{G_{\gamma}: \gamma \in \Gamma\right\}$ an open cover of S. If there is a regular σ-shrinking $\left\{U_{\gamma, n}: \gamma \in \Gamma\right.$ and $n \geqq 1\}$ of \mathcal{G} such that $\bar{U}_{r, n} \subset U_{r, n+1}$ for each $\gamma \in \Gamma$ and $n \geqq 1$, then \mathcal{G} has a shrinking.

3. Theorems and corollaries.

As Σ-products are well-known, they are dealt with not here but in the next section.

A space X is called a strong Σ-space (Σ-space) [13] if there are a σ-locally finite closed cover \mathscr{F} of X and a cover \mathcal{K} of X by (countably) compact sets such that, whenever $K \in \mathcal{K}$ and U is open in X with $K \subset U, K \subset F \subset U$ for some $F \in \mathscr{F}$.

Strong Σ-spaces and subparacompact Σ-spaces are coincident. The class of (strong) Σ-spaces is broad in the sense that it contains the classes of σ spaces and (paracompact) M-spaces below.

Our main theorem is as follows:
Theorem 1. A Σ-product of strong Σ-spaces is shrinking iff it is normal.
By Theorem 1 and [18, Theorem 1], we have
Corollary 1. Let Σ be a Σ-product of paracompact Σ-spaces. Then the following are equivalent:
(a) Σ is collectionwise normal.
(b) Σ is normal.
(c) Σ is shrinking.

Recall that a paracompact M-space ($=p$-space) [11] means the inverse image of a metric space by a perfect map.

Theorem 2. Let Σ be a Σ-product of paracompact M-spaces. Then every directed open cover of Σ has a regular shrinking.

This result immediately gives an affirmative answer to the question in [3]. That is,

Corollary 2. A Σ-product of paracompact M-spaces has the weak \mathcal{B} property.

In particular, we have
Corollary 3. A Σ-product of paracompact M-spaces is countably paracompact.

Recall that a σ-space [14] is a space with a σ-locally finite (closed) net.
Theorem 3. A Σ-product of σ-spaces is subshrinking.
A space X is said to be semi-metric (cf. [7]) if it has a function g of $X \times$ $\{n: n \geqq 1\}$ into the topology of X, satisfying
(i) $\{g(x, n): n \geqq 1\}$ is a neighborhood ($=\mathrm{nbd}$) base of x for each $x \in X$,
(ii) $y \in \bigcap_{n=1}^{\infty} g\left(x_{n}, n\right)$ implies that $\left\{x_{n}\right\}$ converges to y.

We call the function g a semi-metric function of X. Note that a space X is semi-metric iff it is first countable and semi-stratifiable.

TheOrem 4. A Σ-product of semi-metric spaces is subshrinking.
By Proposition 1 and Theorem 4, we have
Corollary 4. A Σ-product of semi-metric spaces is shrinking iff it is normal.

4. Notations for Σ-products.

Let $\left\{X_{\lambda}: \lambda \in \Lambda\right\}$ be a collection of spaces. Let $X=\Pi_{\lambda \in \Lambda} X_{\lambda}$ be the product of $X_{\lambda}, \lambda \in \Lambda$. Take a point $0=\left(0_{\lambda}\right) \in X$. For each $x=\left(x_{\lambda}\right) \in X$, let $\operatorname{Supp}(x)=$ $\left\{\lambda \in \Lambda: x_{\lambda} \neq 0_{\lambda}\right\}$. Then the subspace $\Sigma=\{x \in X: \operatorname{Supp}(x)$ is at most countable $\}$ of X is called a Σ-product [4] of spaces $X_{\lambda}, \lambda \in \Lambda$. Such a point $0=\left(0_{\lambda}\right) \in \Sigma$ is called the base point of Σ. Such a space Σ is called a Σ-product of \cdots spaces if each X_{λ} is a \cdots space.

Here we must prepare some notations of Σ-products for the proofs of our theorems.

For the index set Λ, we denote by Λ_{ω} the set of all non-empty countable subsets of Λ. For each $R \in \Lambda_{\omega}, X_{R}$ and $\Sigma_{\Lambda \backslash R}$ denote the countable product $\Pi_{\lambda \in R} X_{\lambda}$ and the Σ-product of $X_{\lambda}, \lambda \in \Lambda \backslash R$, with the base point $\left(0_{\lambda}\right)_{\lambda \in \Lambda \backslash R}$, respectively. Moreover, p_{R} and $p_{\Lambda \backslash R}$ denote the projections of Σ onto X_{R} and
$\Sigma_{\Lambda \backslash R}$, respectively.
Let Ξ be an index set such that one can assign $R_{\xi} \in \Lambda_{\omega}$ for each $\xi \in \Xi$. Then $X_{R_{\xi}}, \Sigma_{\Lambda \backslash R_{\xi}}, p_{R_{\xi}}$ and $p_{A \backslash R_{\xi}}$ are abbreviated by $X_{\xi}, \Sigma_{\Lambda \backslash \xi}, p_{\xi}$ and $p_{\Lambda \backslash \xi}$, respectively.

Note that strong Σ-spaces, σ-spaces and semi-metric spaces are subparacompact and that the three classes of these spaces and the class of paracompact M-spaces are all countably productive. So, in case of Σ being a countable product, all our theorems are trivial.

Henceforth, all Σ-products are assumed to be proper. That is, we assume without special mention that the index set Λ is uncountable and each space X_{λ}, $\lambda \in \Lambda$, contains the point 1_{λ} different from 0_{λ}.

For each $R \in \Lambda_{\omega}$ and finite $r \subset \Lambda$ with $R \cap r=\varnothing$, consider an open nbd W_{r} of $0_{\Lambda \backslash R}\left(=\left(0_{\lambda}\right)_{\lambda \in \Lambda \backslash R}\right)$ in $\Sigma_{\Lambda \backslash R}$. The open nbd W_{r} is said to be r-basic if

$$
W_{r}=\left(\Pi\left\{X_{\lambda}: \lambda \in \Lambda \backslash(R \cup r)\right\} \times \Pi\left\{W_{\lambda}: \lambda \in r\right\}\right) \cap \Sigma_{\Lambda \backslash R},
$$

where W_{λ} is an open nbd of 0_{λ} in X_{λ} with $1_{\lambda} \notin W_{\lambda}$ for each $\lambda \in r$.
For each $R \in \Lambda_{\omega}$, a subset E of Σ is said to be R-cylindrically closed in Σ (cf. [20]) if $p_{R}^{-1} p_{R}(E)=E$ and $p_{R}(E)$ is closed in X_{R}.

For two index sets Δ and $\Xi, \Delta \oplus \Xi$ denotes the disjoint sum of Δ and Ξ.

5. Basic lemmas.

Let Σ be the Σ-product of spaces $X_{\lambda}, \lambda \in \Lambda$, with the base point $0=\left(0_{\lambda}\right) \in \Sigma$. Let $\mathcal{G}=\left\{G_{\gamma}: \gamma \in \Gamma\right\}$ be an open cover of Σ.

For each subset of F of X_{R}, where $R \in \Lambda_{\omega}$, we put
$M^{*}(F)=\{r \subset \Lambda \backslash R: r$ is a non-empty finite set and there is an r-basic open nbd W_{r} of $0_{A \backslash R}$ such that $\bar{F} \times \bar{W}_{r} \subset G_{r_{1}} \cup \cdots \cup G_{\gamma_{m}}$ for some finite $\left.\gamma_{1}, \cdots, \gamma_{m} \in \Gamma\right\}$.

Lemma 1. Let $R \in \Lambda_{\omega}$. Let F be a non-empty subset of X_{R}. If

$$
p_{R}^{-1}(F) \subset \cup\left\{\left(p_{\Lambda \backslash R}\right)^{-1}\left(W_{r}\right): r \in M^{*}(F)\right\},
$$

then there is a pairwise disjoint subcollection $\left\{r(\boldsymbol{\delta}): \delta<\omega_{1}\right\}$ of $M^{*}(F)$.
Proof. The proof is essentially due to Rudin [16]. Take any $r(0) \in M^{*}(F)$. For each $\delta<\omega_{1}$, assume that there is a pairwise disjoint subcollection $\{r(\zeta): \zeta<\delta\}$ of $M^{*}(F)$. Let $Q=\cup\{r(\zeta): \zeta<\delta\}$. Then $Q \in \Lambda_{\omega}$ with $Q \cap R=\varnothing$. Let $N=$ $\left\{r \in M^{*}(F): r \cap Q \neq \varnothing\right\}$. It suffices to show that $\left\{\left(p_{A \backslash R}\right)^{-1}\left(W_{r}\right): r \in N\right\}$ does not cover $p_{R}^{-1}(F)$. Pick $x \in F$. We take the point $y=\left(y_{\lambda}\right) \in \Sigma$ defined by $p_{R}(y)=x$, $y_{\lambda}=1_{\lambda}$ for each $\lambda \in Q$ and $y_{\lambda}=0_{\lambda}$ for each $\lambda \in \Lambda \backslash(R \cup Q)$. Then we have $y \in$ $p_{R}^{-1}(F) \backslash \cup\left\{\left(p_{\Lambda \backslash R}\right)^{-1}\left(W_{r}\right): r \in N\right\}$.

Basic Lemma I. Let Σ, \underline{q} and $M^{*}(\cdot)$ be the same ones as above. Assume that the Σ-product Σ is normal. If there is a σ-locally finite closed cover $\left\{E(\xi): \xi \in \Delta^{+}\right\}$of Σ and for each $\xi \in \Delta^{+}$one can assign $R_{\xi} \in \Lambda_{\xi}$ such that

$$
p_{\xi}^{-1} p_{\xi}(E(\xi)) \subset \cup\left\{\left(p_{\Lambda \}\right)^{-1}\left(W_{r}\right): r \in M^{*}\left(p_{\xi}(E(\xi))\right)\right\}
$$

then \mathcal{G} has a σ-shrinking.
Proof. Pick $\xi \in \Delta^{+}$. Let $F_{\xi}=p_{\xi}(E(\xi)$). It follows from Lemma 1 that there is a pairwise disjoint subcollection $\left\{r(\beta): \beta<\omega_{1}\right\}$ of $M^{*}\left(F_{\xi}\right)$. For each $\beta<\omega_{1}$, we can choose a finite subset $\phi(\xi, \beta)$ of Γ such that $\bar{F}_{\xi} \times \bar{W}_{r(\beta)} \subset \cup\left\{G_{\gamma}: \gamma \in \phi(\xi, \beta)\right\}$. It follows from the Δ-system lemma (for example, see [9, p. 49]) that there is a Δ-system $\left\{\phi\left(\xi, \beta_{\delta}\right): \delta<\omega_{1}\right\}$ with the root $\theta(\xi)$. We may rewrite $\left\{\beta_{\delta}: \delta<\omega_{1}\right\}$ by $\left\{\delta: \delta<\omega_{1}\right\}$ for brevity. Then it satisfies
(i) $\left\{r(\delta): \delta<\omega_{1}\right\}$ is pairwise disjoint collection of finite subsets of $\Lambda \backslash R_{\xi}$,
(ii) $\bar{F}_{\xi} \times \bar{W}_{r(\delta)} \subset \cup\left\{G_{\gamma}: \gamma \in \phi(\xi, \delta)\right\}$ and $\phi(\xi, \delta)$ is a finite subset of Γ,
(iii) $\phi(\xi, \delta) \cap \phi\left(\xi, \delta^{\prime}\right)=\theta(\xi)$ for each $\delta, \delta^{\prime}<\omega_{1}$ with $\delta \neq \delta^{\prime}$.

By the normality of Σ and (ii), for each $\delta<\omega_{1}$ there is a finite collection $\{U(\xi, \delta, \gamma): \gamma \in \phi(\xi, \delta)\}$ of open sets in Σ such that

$$
\begin{aligned}
& \bar{F}_{\xi} \times \bar{W}_{r(\delta)} \subset \cup\{U(\xi, \delta, \gamma): \gamma \in \phi(\xi, \delta)\}, \\
& \overline{U(\xi, \delta, \gamma)} \subset G_{\gamma} \text { whenever } \gamma \in \phi(\xi, \delta) .
\end{aligned}
$$

It should be noted by (i) that the Σ-product $\Sigma_{\Lambda \backslash \xi}$ (see Section 4) is covered by $\left\{W_{r(\delta)}: \delta<\omega_{1}\right\}$. By (iii), we have

$$
\begin{aligned}
& E(\xi) \subset p_{\xi}^{-1}\left(F_{\xi}\right)=F_{\xi} \times \Sigma_{\Lambda \backslash \xi}=\cup\left\{F_{\xi} \times W_{r(\delta)}: \delta<\omega_{1}\right\} \\
& \subset \cup\left\{U(\xi, \delta, \gamma): \gamma \in \phi(\xi, \delta) \text { and } \delta<\omega_{1}\right\} \\
& \subset\left(\cup\left\{U(\xi, \delta, \gamma): \gamma \in \phi(\xi, \delta) \backslash \theta(\xi) \text { and } \delta<\omega_{1}\right\}\right) \cup\left(\cup\left\{G_{\gamma}: \gamma \in \theta(\xi)\right\}\right) .
\end{aligned}
$$

Again by the normality of Σ, there is a finite collection $\{E(\xi, \gamma): \gamma \in \theta(\xi)\}$ of closed sets in Σ such that $E(\xi)$ is covered by

$$
\left\{U(\xi, \delta, \gamma): \gamma \in \phi(\xi, \delta) \backslash \theta(\xi) \text { and } \delta<\omega_{1}\right\} \cup\{E(\xi, \gamma): \gamma \in \theta(\xi)\}
$$

and $E(\xi, \gamma) \subset G_{\gamma} \cap E(\xi)$ for each $\gamma \in \theta(\xi)$. Put $E(\xi, \delta, \gamma)=\overline{U(\xi, \delta, \gamma)} \cap E(\xi)$ for each $\gamma \in \phi(\xi, \delta) \backslash \theta(\xi)$ and $\delta<\omega_{1}$. Then

$$
\left\{E(\xi, \delta, \gamma): \gamma \in \phi(\xi, \delta) \backslash \theta(\xi) \text { and } \delta<\omega_{1}\right\} \cup\{E(\xi, \gamma): \gamma \in \theta(\xi)\}
$$

is a collection of closed sets in Σ such that it covers $E(\xi), E(\xi, \gamma) \subset G_{\gamma}$ for each $\gamma \in \theta(\xi)$ and $E(\xi, \delta, \gamma) \subset G_{\gamma}$ for each $\gamma \in \phi(\xi, \delta) \backslash \theta(\xi)$ and $\delta<\omega_{1}$.

We represent $\Delta^{+}=\cup_{n=1}^{\infty} \Delta_{n}{ }^{+}$such that $\left\{E(\xi): \xi \in \Delta_{n}{ }^{+}\right\}$is locally finite in Σ
for each $n \geqq 1$. Now, we put

$$
\begin{aligned}
H_{\gamma, n}= & \left(\cup\left\{E(\xi, \delta, \gamma): \xi \in \Delta_{n}{ }^{+}, \delta<\omega_{1} \text { and } \gamma \in \phi(\xi, \delta) \backslash \theta(\xi)\right\}\right) \\
& \cup\left(\cup\left\{E(\xi, \gamma): \xi \in \Delta_{n}^{+} \text {and } \gamma \in \theta(\xi)\right\}\right)
\end{aligned}
$$

for each $\gamma \in \Gamma$ and $n \geqq 1$. It is easy to see that $\left\{H_{\gamma, n}: \gamma \in \Gamma\right.$ and $\left.n \geqq 1\right\}$ is a cover of Σ such that $H_{\gamma, n} \subset G_{\gamma}$ for each $\gamma \in \Gamma$ and $n \geqq 1$. We show that each $H_{\gamma, n}$ is closed in Σ. Pcik any $\gamma_{0} \in \Gamma$ and $n_{0} \geqq 1$. By $E\left(\xi, \gamma_{0}\right) \subset E(\xi),\left\{E\left(\xi, \gamma_{0}\right)\right.$: $\xi \in \Delta_{n_{0}^{+}}$with $\left.\gamma_{0} \in \theta(\xi)\right\}$ is a locally finite collection of closed sets in Σ. It follows from (iii) that

$$
\left\{E\left(\xi, \delta, \gamma_{0}\right): \delta<\omega_{1} \text { with } \gamma_{0} \in \phi(\xi, \delta) \backslash \theta(\xi)\right\}
$$

consists of at most one member for each $\xi \in \Delta_{n_{0}^{+}}$. So, by $E\left(\xi, \delta, \gamma_{0}\right) \subset E(\xi)$,

$$
\left\{E\left(\xi, \delta, \gamma_{0}\right): \xi \in \Delta_{n_{0}^{+}}^{+} \text {and } \delta<\omega_{1} \text { with } \gamma_{0} \in \phi(\xi, \delta) \backslash \theta(\xi)\right\}
$$

is a locally finite collection of closed sets in Σ. By the choice of $H_{\gamma_{0}, n_{0}}$, it is closed in Σ. Therefore $\left\{H_{\gamma, n}: \gamma \in \Gamma\right.$ and $\left.n \geqq 1\right\}$ is a σ-shrinking of g.

Next, for each subset F of X_{R}, where $R \in \Lambda_{\omega}$, we put
$M(F)=\{r \subset \Lambda \backslash R: r$ is a non-empty finite set and there is an r-basic open nbd W_{r} of $0_{\Lambda \backslash R}$ in $\Sigma_{\Lambda \backslash R}$ such that $\bar{F} \times \bar{W}_{r} \subset G_{\gamma}$ for some $\left.\gamma \in \Gamma\right\}$.

Note that Lemma 1 is also true for the $M(F)$ instead of $M^{*}(F)$.
Basic Lemma II. Let Σ, \underline{q} and $M(\cdot)$ be the same ones as above. If there is a σ-locally finite closed (open) cover $\left\{E(\xi): \xi \in \Delta^{+}\right\}$of Σ and for each $\xi \in \Delta^{+}$ one can assign $R_{\xi} \in \Lambda_{\omega}$ such that

$$
p_{\xi}^{-1} p_{\xi}(E(\xi)) \subset \cup\left\{\left(p_{\Lambda \backslash \xi}\right)^{-1}\left(W_{r}\right): r \in M\left(p_{\xi}(E(\xi))\right)\right\}
$$

then G has a (regular) σ-shrinking.
Proof. The proof is simpler than the previous one. Let $F_{\xi}=p_{\xi}(E(\xi))$ for each $\boldsymbol{\xi} \in \Delta^{+}$. It follows from Lemma 1 for $M(\cdot)$ that there is a pairwise disjoint subcollection $\left\{r(\delta): \delta<\omega_{1}\right\}$ of $M\left(F_{\xi}\right)$. We can choose some $\gamma(\xi, \delta) \in \Gamma$ such that $\bar{F}_{\xi} \times \bar{W}_{r(\delta)} \subset G_{\gamma(\xi, \delta)}$ for each $\xi \in \Delta^{+}$and $\delta<\omega_{1}$. Without loss of generality, we may assume that all $\gamma(\xi, \delta), \delta<\omega_{1}$, are the same or different. So we put

$$
\begin{aligned}
& \Delta^{1}=\left\{\xi \in \Delta^{+}: \text {All } \gamma(\xi, \delta), \delta<\omega_{1}, \text { are the same }\right\} \\
& \Delta^{2}=\left\{\xi \in \Delta^{+}: \text {All } \gamma(\xi, \delta), \delta<\omega_{1}, \text { are different }\right\}
\end{aligned}
$$

Then $\Delta^{+}=\Delta^{1} \oplus \Delta^{2}$. Moreover, we may put $\gamma_{\xi}=\gamma(\xi, \delta)$ for each $\xi \in \Delta^{1}$ and $\delta<\omega_{1}$.

Similarly, we can check that $\overline{E(\xi)} \subset G_{\gamma}$ for each $\xi \in \Delta^{1}$.
Let $\Delta^{+}=\cup_{n=1}^{\infty} \Delta_{n}{ }^{+}$such that $\left\{E(\xi): \xi \in \Delta_{n}{ }^{+}\right\}$is locally finite in Σ for each $n \geqq 1$. Here, we put

$$
H_{r}{ }_{n}=\left(\cup\left\{E(\xi): \xi \in \Delta_{n}{ }^{+} \cap \Delta^{1} \text { with } \gamma_{\xi}=\gamma\right\}\right) \cup
$$

$$
\left(\cup\left\{\left(F_{\xi} \times W_{r(\delta)}\right) \cap E(\xi): \xi \in \Delta_{n}{ }^{+} \cap \Delta^{2} \text { and } \delta<\omega_{1} \text { with } \gamma(\xi, \delta)=\gamma\right\}\right)
$$

for each $\gamma \in \Gamma$ and $n \geqq 1$. Then $\left\{H_{r, n}: \gamma \in \Gamma\right.$ and $\left.n \geqq 1\right\}$ is a (an open) cover of Σ. Moreover, we can show that $\bar{H}_{r, n} \subset G_{r}$ for $\gamma \in \Gamma$ and $n \geqq 1$. This verification is similar to the previous one. Therefore $\left\{H_{r, n}: \gamma \in \Gamma\right.$ and $\left.n \geqq 1\right\}$ is a (regular) σ-shrinking of g.

Basic Lemmas I and II are necessary for the proofs of Theorem 1 and others, respectively.

6. Proof of Theorem 1.

Lemma 2 ([13, Lemma 1]). Let X be a strong Σ-space. Then there is a sequence $\left\{\mathscr{I}_{n}\right\}$ of locally finite closed covers of X, satesfying
(a) $\mathscr{I}_{n}=\left\{F\left(\alpha_{1} \cdots \alpha_{n}\right): \alpha_{1}, \cdots, \alpha_{n} \in \Omega\{\right.$ for each $n \geqq 1$,
(b) $F\left(\alpha_{1} \cdots \alpha_{n}\right)=\cup\left\{F\left(\alpha_{1} \cdots \alpha_{n} \alpha_{n+1}\right): \alpha_{n+1} \in \Omega\right\}$ for each $\alpha_{1}, \cdots, \alpha_{n} \in \Omega$,
(c) for each $x \in X$, there is a sequence $\alpha_{1}, \alpha_{2}, \cdots \in \Omega$ such that
(i) $\cap_{n=1}^{\infty} F\left(\alpha_{1} \cdots \alpha_{n}\right)$ is a compact set containing x,
(ii) if $\left\{D_{n}\right\}$ is a decreasing sequence of non-empty closed sets in X such that $D_{n} \subset F\left(\alpha_{1} \cdots \alpha_{n}\right)$ for each $n \geqq 1$, then $\bigcap_{n=1}^{\infty} D_{n} \neq \varnothing$.

The above sequence $\left\{\mathscr{F}_{n}\right\}$ is a called a spectral strong Σ-net [13] of X. Moreover, the sequence $\left\{F\left(\alpha_{1} \cdots \alpha_{n}\right): n \geqq 1\right\}$ in (c) is called a local Σ-net at x.

Lemma 2 was used in [17, 18].
For an $n \times n$ matrix $\xi=\left(\alpha_{i j}\right)_{i, j \leq n}$ and $1 \leqq k \leqq n$, the $k \times k$ matrix $\left(\alpha_{i j}\right)_{i, j \leq k}$ is denoted by $\xi \mid k$. In particular, $\xi \mid n-1$ is often abbreviated by ξ - and $\xi \mid 0 \mathrm{im}$ plies the 0×0 matrix (\varnothing).

Proof of Theorem 1. Let Σ be the Σ-product of strong Σ-spaces X_{λ}, $\lambda \in \Lambda$, with the base point $0=\left(0_{\lambda}\right) \in \Sigma$, and assume that Σ is normal. Let $\mathcal{G}=$ $\left\{G_{\gamma}: \gamma \in \Gamma\right\}$ be any open cover of Σ. We use the notation $M^{*}(\cdot)$ defined in the previous section.

For each $n \geqq 0$, we construct an index set $\Delta_{n}=\Delta_{n}{ }^{+} \oplus \Xi_{n}$ of $n \times n$ matrices such that for each $\xi \in \Delta_{n}$ one can assign $E(\xi) \subset \Sigma$ and for each $\xi \in \Xi_{n}$ one can assign $x_{\xi} \in \Sigma$ and $R_{\xi} \in \Lambda_{\omega}$, satisfying the following conditions (1)-(6) for each
$n \geqq 1:$
(1) For each $\mu \in \Xi_{n-1},\left\{F\left(\alpha_{n 1} \cdots \alpha_{n k}\right): \alpha_{n 1}, \cdots, \alpha_{n k} \in \Omega(\mu)\right\}, k \geqq 1$, is a spectral strong Σ-net of X_{μ}.
(2) $\Delta_{n}=\left\{\xi=\left(\alpha_{i j}\right)_{i, j \leq n}: \xi_{-} \in \Xi_{n-1}\right.$ and $\alpha_{i j} \in \Omega(\xi \mid i-1)$ for $\left.1 \leqq i, j \leqq n\right\}$ and $\Delta_{0}=$ $\{(\varnothing)\}$.
(3) For each $\xi=\left(\alpha_{i j}\right)_{i, j \leq n} \in \Delta_{n}$,

$$
E(\xi)=\bigcap_{i=1}^{n}\left(p_{\xi \mid i-1}\right)^{-1}\left(F\left(\alpha_{i 1} \cdots \alpha_{i n}\right)\right)
$$

and $E(\varnothing)=\Sigma$.
(4) $\Delta_{n}{ }^{+}=\left\{\xi \in \Delta_{n}: E(\xi) \subset \cup\left\{\left(p_{\Lambda \backslash \xi_{-}}\right)^{-1}\left(W_{r}\right): r \in M^{*}\left(p_{\xi_{-}}(E(\xi))\right)\right\}\right\}$.
(5) For each $\xi \in \Xi_{n}, x_{\xi} \in E(\xi) \backslash \cup\left\{\left(p_{\Lambda \backslash \xi_{-}}\right)^{-1}\left(W_{r}\right): r \in M^{*}\left(p_{\xi_{-}}(E(\xi))\right)\right\}$.
(6) For each $\xi \in \Xi_{n}, R_{\xi}=R_{\xi-} \cup \operatorname{Supp}\left(x_{\xi}\right)$.

Using Lemma 2, this construction is easily performed. Note that $E(\xi)$ is an $R_{\xi_{-}-\text {cylindrically }}$ closed set in Σ (see Section 4) such that $E(\xi) \subset E\left(\xi_{-}\right)$for each $\xi \in \Delta_{n}$ and $n \geqq 1$. It is verified that $\left\{E(\xi): \xi \in \Delta_{n}\right\}$ is locally finite in Σ for each $n \geqq 1$. Let $\Delta^{+}=\cup_{n=1}^{\infty} \Delta_{n}{ }^{+}$. Considering $R_{\xi-}$ instead of R_{ξ}, the σ-locally finite collection $\left\{E(\xi): \xi \in \Delta^{+}\right\}$of closed sets in Σ satisfies the conditions of Basic Lemma I except the following:

Lemma 3. $\left\{E(\xi): \boldsymbol{\xi} \in \Delta^{+}\right\}$covers Σ.
Proof. Assuming the contrary, pick some $y \in \Sigma \backslash \cup\left\{E(\xi): \xi \in \Delta^{+}\right\}$. By (1) and the choice of y, we can inductively choose a sequence $\left\{\alpha_{i j}: i, j \geqq 1\right\}$ such that for each $n \geqq 1 \xi(n)=\left(\alpha_{i j}\right)_{i, j \leq n} \in \Xi_{n}$ and $\left\{F\left(\alpha_{n 1} \cdots \alpha_{n k}\right): k \geqq 1\right\}$ is a local Σ net at $p_{\xi(n-1)}(y)$ in $X_{\xi(n-1)}$, where $\alpha_{n k} \in \Omega(\xi(n-1))$ and $\xi(0)=(\varnothing)$. Let $R=$ $\cup_{n=1}^{\infty} R_{\xi(n)}$. Then $R \in \Lambda_{\omega}$. In this proof, $p_{\xi(n-1)}$ is abbreviated by p_{n-1}. Put $K_{n}=\bigcap_{k \geq n} \overline{p_{n-1}(E(\xi(k)))}$ for each $n \geqq 1$. Since $p_{n-1}(E(\xi(k))$ is contained in $F\left(\alpha_{n 1} \cdots \alpha_{n k}\right)$ for each $k \geqq n$, it follows from (i) of (c) in Lemma 2 that K_{n} is compact. Since $y \in E(\xi(k))$ for each $k \geqq 1$, we have $p_{n-1}(y) \in K_{n}$. Note that $p_{n-1}^{n}\left(K_{n+1}\right) \subset K_{n}$, where p_{n-1}^{n} is the projection of $X_{\xi(n)}$ onto $X_{\xi(n-1)}$. Hence $\left\{K_{n}, p_{n-1}^{n} \mid K_{n}\right\}$ is an inverse sequence of non-empty compact spaces. Then the limit $K=\varliminf_{\varliminf}\left\{K_{n}, p_{n-1}^{n} \mid K_{n}\right\}$ is non-empty and compact. Since each p_{n-1}^{n} is the projection, we can consider that K is a subspace of X_{R}. So there are some finite $\gamma_{1}, \cdots, \gamma_{m} \in \Gamma$ such that $K \times\left\{0_{\Lambda \backslash R}\right\} \subset G_{\gamma_{1}} \cup \cdots \cup G_{\gamma_{m}}$. Take some open sets U and V in X_{R} and $\Sigma_{\Lambda \backslash R}$, respectively, such that $K \subset U, 0_{\Lambda \backslash R} \in V$ and $U \times V \subset$ $G_{\gamma_{1}} \cup \cdots \cup G_{\gamma_{m}}$.

Claim. $\quad p_{n-1}\left(E(\xi(n)) \times X_{Q(n)} \subset U\right.$ for some $n \geqq 1$, where $Q(k)=R \backslash R_{\xi(k-1)}, \quad k \geqq 1$.

Proof. Assume the contrary. We can take some

$$
u_{n} \in\left(p_{n-1}\left(E(\xi(n)) \times X_{Q(n)}\right) \backslash U\right.
$$

for each $n \geqq 1$. Pick $n \geqq 1$. Put $L_{n k}=\left\{p_{n-1}^{\infty}\left(u_{k}\right), p_{n-1}^{\infty}\left(u_{k+1}\right), \cdots\right\}$ for each $k \geqq n$, where p_{n-1}^{∞} is the projection of X_{R} onto $X_{\xi(n-1)}$. Since $L_{n k} \subset p_{n-1}(E(\xi(k)))$, we have

$$
\bar{L}_{n k} \subset \overline{p_{n-1}(E(\xi(k)))} \subset F\left(\alpha_{n_{1}} \cdots \alpha_{n k}\right)
$$

for each $k \geqq n$. Since $\left\{F\left(\alpha_{n 1} \cdots \alpha_{n k}\right): k \geqq 1\right\}$ is a local $\Sigma_{\text {-net }}$ at $p_{n-1}(y)$ in $X_{\xi(n-1)}$, it follows from (ii) of (c) in Lemma 2 that $\cap_{k \geq n} \bar{L}_{n k}$ is non-empty. Let $L_{n}=$ $\cap_{k \geq n} \bar{L}_{n k}$. Then we have $L_{n} \subset K_{n}$. Moreover, by $p_{n-1}^{n}\left(L_{n+1 k}\right)=L_{n k}$, we have $p_{n-1}^{n}\left(L_{n+1}\right) \subset L_{n}$. Hence $\left\{L_{n}, p_{n-1}^{n} \mid L_{n}\right\}$ is an inverse sequence of non-empty compact spaces. Then the limit $L=\lim _{〔}\left\{L_{n}, p_{n-1}^{n} \mid L_{n}\right\}$ is a non-empty subspace of $K\left(\subset X_{R}\right)$. Pick some $z \in L$. Since $p_{n-1}^{\infty}(z) \in L_{n} \subset \bar{L}_{n n}$ for each $n \geqq 1$, the z is a cluster point of $\left\{u_{n}\right\}$ in X_{R}. Since each u_{n} is not in U, z is not in U. On the other hand, we have $z \in L \subset K \subset U$. This is a contradiction. Claim has been proved.

Now, let $p_{n-1}(E(\xi(n))) \times X_{Q(n)} \subset U$. Since $X_{Q(n)} \times V$ is an open nbd of $0_{\Lambda \backslash \xi(n-1)}$ in $\Sigma_{\Lambda \backslash \zeta(n-1)}$, there are some finite $q \subset \Lambda \backslash R$ and a q-basic open nbd W_{q} of $0_{\Lambda \backslash \xi(n-1)}$ in $\Sigma_{\Lambda \backslash \xi(n-1)}$ such that $\bar{W}_{q} \subset X_{Q(n)} \times V$. Then we have

$$
\overline{p_{n-1}(E(\xi(n)))} \times \bar{W}_{q}=p_{n-1}(E(\xi(n))) \times \bar{W}_{q} \subset U \times V \subset G_{\gamma_{1}} \cup \cdots \cup G_{\gamma_{m}} .
$$

Hence $q \in M^{*}\left(p_{n-1}(E(\xi(n)))\right)$. Remember $\xi(n) \in \Xi_{n}$. By (5), $x_{\xi(n)} \notin p_{n-1}(E(\xi(n)))$ $\times W_{q}$ is true. By (6), $\operatorname{Supp}\left(x_{\xi(n)}\right) \subset R_{\xi(n)} \subset R$. Since R and q are disjoint, we obtain

$$
x_{\xi(n)} \in p_{n-1}(E(\xi(n))) \times X_{Q(n)} \times\left\{0_{A \backslash R}\right\} \subset p_{n-1}(E(\xi(n))) \times W_{q} .
$$

This is a contradiction. Lemma 3 has been proved.
Thus, Basic Lemma 1 assures that g has a σ-shrinking. Since Σ is normal, it follows from Proposition 1 or 3 that G has a shrinking. The proof of Theorem 1 is completed.

7. Proofs of other theorems.

Lemma 4. Let X be a M-space. Then there is a sequence $\left\{\mathbb{V}_{n}\right\}$ of locally finite open covers of X, satisfying
(a) $\subset V_{n}=\left\{V\left(\alpha_{1} \cdots \alpha_{n}\right): \alpha_{1}, \cdots, \alpha_{n} \in \Omega\right\}$ for each $n \geqq 1$,
(b) $V\left(\alpha_{1} \cdots \alpha_{n}\right)=\cup\left\{V\left(\alpha_{1} \cdots \alpha_{n} \alpha_{n+1}\right): \alpha_{n+1} \in \Omega\right\}$ for each $\alpha_{1}, \cdots, \alpha_{n} \in \Omega$,
(b) if $\cap_{n=1}^{\infty} V\left(\alpha_{1} \cdots \alpha_{n}\right) \neq \varnothing$ and $\left\{D_{n}\right\}$ is a decreasing sequence of non-empty
closed sets in X such that $D_{n} \subset \overline{V\left(\alpha_{1} \cdots \alpha_{n}\right)}$ for each $n \geqq 1$, then $\cap_{n=1}^{\infty} D_{n} \neq \varnothing$.
This lemma easily follows from the definition of M-spaces in [11]. The proof is similar to that of [12, Theorem 1] or [13, Lemma 1.4]. Note that the intersection $\bigcap_{n=1}^{\infty} \overline{V\left(\alpha_{1} \cdots \alpha_{n}\right)}$ is compact if X is a paracompact M-space. The above sequence $\left\{\mathbb{V}_{n}\right\}$ is called a spectral M-base of X, for the sake of convenience.

Since Theorems 2 and 3 are obtained below by modifying the proof of Theorem 1, we also use the same notations as in it except $M(\cdot)$ instead of $M^{*}(\cdot)$.

Proof of Theorem 2. Let Σ be the Σ-product of paracompact M-spaces $X_{\lambda}, \lambda \in \Lambda$, with the base point $0=\left(0_{\lambda}\right) \in \Sigma$. Let $\mathcal{G}=\left\{G_{\lambda}: \lambda \in \Lambda\right\}$ be any directed open cover of Σ.

For each $n \geqq 0$, we construct an index set $\Delta_{n}=\Delta_{n}{ }^{+} \oplus \Xi_{n}$ of $n \times n$ matrices such that for each $\xi \in \Delta_{n}$ one can assign $U(\xi) \subset \Sigma$ and for each $\xi \in \Xi_{n}$ one can assign $x_{\xi} \in \Sigma$ and $R_{\xi} \in \Lambda_{\omega}$, satisfying the conditions (1)-(6) in the proof of Theorem 1, where $E, F, M^{*}(\cdot)$ and "spectral strong Σ-net" should be replaced by $U, V, M(\cdot)$ and "spectral M-base", respectively.

Using Lemma 4, this construction is also easy. Let $\Delta^{+}=\cup_{n=1}^{\infty} \Delta_{n}{ }^{+}$. In the similar way to the proof of Lemma 3, we can show that $\left\{U(\xi): \xi \in \Delta^{+}\right\}$covers Σ. It should be noted there that the $G_{\gamma_{1}} \cup \cdots \cup G_{r_{m}}$ can be replaced by some $G_{\gamma} \in \mathcal{G}$, because \mathcal{G} is directed. So we may use $M\left(p_{n-1}(U(\xi(n)))\right)$ instead of $M^{*}\left(p_{n-1}(E(\xi(n)))\right)$. After all, $\left\{U(\xi): \xi \in \Delta^{+}\right\}$satisfies the conditions in the parenthetic part of Basic Lemma II. Hence G has a regular σ-shrinking. It follows from Proposition 2 that G has a regular shrinking.

Lemma 5 ([12, Theorem 1]). Let X be a σ-space. Then there is a sequence $\left\{\mathscr{I}_{n}\right\}$ of locally finite closed covers of X, satisfying
(a) $\Im_{n}=\left\{F\left(\alpha_{1} \cdots \alpha_{n}\right): \alpha_{1}, \cdots, \alpha_{n} \in \Omega\right\}$ for each $n \geqq 1$,
(b) $F\left(\alpha_{1} \cdots \alpha_{n}\right)=\cup\left\{F\left(\alpha_{1} \cdots \alpha_{n} \alpha_{n+1}\right): \alpha_{n+1} \in \Omega\right\}$ for each $\alpha_{1}, \cdots, \alpha_{n} \in \Omega$,
(c) for each $x \in X$, there is a sequence $\alpha_{1}, \alpha_{2}, \cdots \in \Omega$ such that $x \in$ $\bigcap_{n=1}^{\infty} F\left(\alpha_{1} \cdots \alpha_{n}\right)$ and each open nbd of x contains some $F\left(\alpha_{1} \cdots \alpha_{n}\right)$.

The above sequence $\left\{\mathscr{F}_{n}\right\}$ is called a spectral σ-net of X and the sequence $\left\{F\left(\alpha_{1} \cdots \alpha_{n}\right): n \geqq 1\right\}$ in (c) is called a local σ-net at x.

Proof of Theorem 3. Let Σ be the Σ-product of σ-spaces $X_{\lambda}, \lambda \in \Lambda$, with the base point $0=\left(0_{\lambda}\right) \in \Sigma$. Let $G=\left\{G_{\gamma}: \gamma \in \Gamma\right\}$ be any open cover of Σ.

For each $n \geqq 0$, we construct the same $\Delta_{n}=\Delta_{n}+\oplus \Xi_{n}, E(\xi) \subset \Sigma, x_{\xi} \in \Sigma$ and $R_{\xi} \in \Lambda_{\omega}$ as in the proof of Theorem 1. They also satisfy the same conditions (1)-(6) except that only "spectral strong Σ-net" in (1) is replaced by "spectral σ-net". Similarly, it suffices from Basic Lemma II to show the following:

Lemma 6. $\left\{E(\xi): \xi \in \Delta^{+}\right\}$covers Σ, where $\Delta^{+}=\cup_{n=1}^{\infty} \Delta_{n}{ }^{+}$.
Proof. Assume the contrary. Pick some $y \in \Sigma \backslash \cup\left\{E(\xi): \xi \in \Delta^{+}\right\}$. We can inductively choose a sequence $\left\{\alpha_{i j}: i, j \geqq 1\right\}$ such that for each $n \geqq 1 \boldsymbol{\xi}(n)=$ $\left(\alpha_{i j}\right)_{i, j \leq n} \in \Xi_{n}$ and $\left\{F\left(\alpha_{n 1} \cdots \alpha_{n k}\right): k \geqq 1\right\}$ is a local σ-net at $p_{\xi(n-1)}(y)$ in $X_{\xi(n-1)}$, where $\alpha_{n k} \in \Omega(\xi(n-1))$ and $\xi(0)=(\varnothing)$. Let $R=\cup_{n=1}^{\infty} R_{\xi(n)}$. Abbreviate $p_{\xi(n-1)}$ with p_{n-1}. Pick the point $z \in \Sigma$ defined by $p_{R}(z)=p_{R}(y)$ and $p_{\Lambda \backslash R}(z)=0 \Lambda \backslash R$. Take some $\gamma_{0} \in \Gamma$ with $z \in G_{\gamma_{0}}$. Moreover, take an open $\operatorname{nbd} B$ of z in Σ such that $B \subset G_{\gamma_{0}}$ and

$$
B=p_{m-1}(B) \times X_{R \backslash \xi_{\xi(m-1)}} \times p_{\Lambda \backslash R}(B)
$$

for some $m \geqq 1$. By the choice of $\left\{F\left(\alpha_{i 1} \cdots \alpha_{i k}\right): k \geqq 1\right\}$, for each $i \leqq m$ we can choose some $n_{i} \geqq 1$ such that

$$
p_{i-1}(z)=p_{i-1}(y) \in F\left(\alpha_{i 1} \cdots \alpha_{i n_{i}}\right) \subset p_{i-1}(B)
$$

Let $l=\max \left\{n_{1}, \cdots, n_{m}, m\right\}$. Then we can easily verify $p_{l-1}(E(\xi(l))) \subset p_{l-1}(B)$. Let $Q=R \backslash R_{\xi(l-1)}$. Since $X_{Q} \times p_{\Lambda \backslash R}(B)$ is an open nbd of $0_{\Lambda \backslash \xi(l-1)}$ in $\Sigma_{\Lambda \backslash \xi(l-1)}$, there is some finite $q \subset \Lambda \backslash R$ and a q-basic open nbd W_{q} of $0_{\Lambda \ \xi(l-1)}$ in $\Sigma_{\Lambda \backslash(l-1)}$ such that $\bar{W}_{q} \subset X_{Q} \times p_{\Lambda \backslash R}(B)$. Then we have

$$
\begin{aligned}
& \overline{p_{l-1}(E(\xi(l)))} \times \bar{W}_{q}=p_{l-1}(E(\xi(l))) \times \bar{W}_{q} \subset p_{l-1}(B) \times X_{Q} \times p_{\Lambda \backslash R}(B) \\
& =B \subset G_{r_{0}} .
\end{aligned}
$$

Hence $q \in M\left(p_{l-1}(E(\xi(l)))\right)$. So we can obtain a contradiction in the same way as the last part of the proof of Lemma 3. Lemma 6 has been proved. Consequently, the proof of Theorem 3 is completed.

Let Ξ be a set consisting of finite sequences and (\varnothing). For each $\xi=$ $\left(\alpha_{1} \cdots \alpha_{n-1} \alpha_{n}\right) \in \Xi, \xi-$ and $\xi \oplus \alpha$ denote ($\alpha_{1} \cdots \alpha_{n-1}$) and ($\alpha_{1} \cdots \alpha_{n} \alpha$), respectively. The 0 -tuple sequence is only (\varnothing).

Proof of Theorem 4. Let Σ be the Σ-product of semi-metric spaces X_{λ}, $\lambda \in \Lambda$, with the base point $0=\left(0_{\lambda}\right) \in \Sigma$. Let $G=\left\{G_{\gamma}: \gamma \in \Gamma\right\}$ be any open cover of Σ.

For each $n \geqq 0$, we shall construct a collection \mathcal{C}_{n} of closed sets in Σ and an index set Ξ_{n} of n-tuple sequences such that for each $\xi \in \Xi_{n}$ one can assign
$R_{\xi} \in \Lambda_{\omega}, E(\xi) \subset \Sigma, x_{\xi} \in X_{\xi-},\left\{y_{\xi, k}\right\} \subset \Sigma$ and a function g_{ξ}, satisfying the following conditions (1)-(7) for each $n \geqq 1$:
(1) $\mathcal{C}_{n}=\cup\left\{\mathcal{C}(\mu): \mu \in \Xi_{n-1}\right\}$ is σ-locally finite in Σ.
(2) Each $C \in \mathcal{C}(\mu), \mu \in \Xi_{n-1}$, is an R_{μ}-cylindrically closed set in Σ such that $C \subset \cup\left\{\left(p_{\Lambda \backslash \mu}\right)^{-1}\left(W_{r}\right): r \in M\left(p_{\mu}(C)\right)\right\}$.
(3) $\xi \in \Xi_{n}$ implies $\xi-\in \Xi_{n-1}$.
(4) $\left\{E(\xi): \xi \in \Xi_{n}\right\}$ is σ-locally finite in Σ, for each $\xi \in \Xi_{n} E(\xi)$ is an $R_{\xi_{-}-}$ cylindrically closed set in Σ and $E(\varnothing)=\Sigma$.
(5) For each $\mu \in \Xi_{n-1}$,

$$
p_{\mu}(E(\mu)) \subset p_{\mu}(\cup \mathcal{C}(\mu)) \cup\left(\cup\left\{p_{\mu}(E(\xi)): \xi \in \Xi_{n} \text { with } \xi_{-}=\mu\right\}\right)
$$

(6) For each $\xi \in \Xi_{n}, g_{\xi}$ is a semi-metric function of X_{ξ} such that

$$
p_{\xi-}^{\xi}\left(g_{\xi}(x, k)\right) \subset g_{\xi-}\left(p_{\xi-}^{\xi}(x), k\right)
$$

for each $x \in X_{\xi}$ and $k \geqq 1$, where $p_{\xi}{ }_{\xi}$ denotes the projection of X_{ξ} onto $X_{\xi-}$ and g_{\varnothing} is a semi-metric function of X_{\varnothing}.
(7) For each $\xi \in \Xi_{n}$,
a) $p_{\xi_{-}}(E(\xi)) \subset g_{\xi_{-}}\left(x_{\xi}, n\right)$,

c) $R_{\xi}=R_{\xi-} \cup\left(\cup\left\{\operatorname{Supp}\left(y_{\xi, k}\right): k \geqq 1\right\}\right)$.

The basic idea of this construction is found in [20]. The case of $n=0$ is trivial. Assume that it has been already performed for no greater than n. Pick $\xi \in \Xi_{n}$ and fix it. Put

$$
\begin{aligned}
\mathcal{V}=\{ & V: V \text { is a non-empty open set in } X_{\xi} \text { such that } \\
& p_{\xi}^{-1}(V) \subset \cup\left\{\left(p_{A \backslash \xi}\right)^{-1}\left(W_{r}\right): r \in M(V)\right\} .
\end{aligned}
$$

Let $D_{\xi}=p_{\xi}(E(\xi))$. Observe that $D_{\xi}=\left(p_{\xi}^{\xi}\right)^{-1}\left(p_{\xi_{-}}(E(\xi))\right)$ if $n \geqq 1$ and $D_{\varnothing}=X_{\varnothing}$. So D_{ξ} is closed in X_{ξ}. Since D_{ξ} is subparacompact, there is a σ-locally finite closed cover \mathscr{F} of D_{ξ}, which refines

$$
\left\{V \cap D_{\xi}: V \in \mathscr{V} \cup\left\{g_{\xi}(x, n+1) \cap D_{\xi}: x \in D_{\xi} \backslash \cup \subset\right)\right\} .
$$

Let $\mathscr{F}^{+}=\left\{F \in \mathscr{F}: F \subset V \cap D_{\xi}\right.$ for some $\left.V \in \mathscr{V}\right\}$ and $\mathscr{F}^{-}=\mathscr{F} \backslash \mathscr{I}^{+}$. Put $\mathcal{C}(\xi)=$ $\left\{C=p_{\xi}{ }^{-1}(F): F \in \mathscr{F}^{+}\right\}$. Then each $C \in \mathcal{C}(\xi)$ satisfies (2) and $C \subset E(\xi)$. Let $\boldsymbol{\Xi}(\boldsymbol{\xi})$ be an index set of ($n+1$)-tuple sequences such that $\mathcal{F}^{-}=\left\{F_{\xi \oplus \alpha}: \xi \oplus \alpha \in \Xi(\xi)\right\}$. Take any $\eta=\boldsymbol{\xi} \oplus \alpha \in \boldsymbol{\Xi}(\boldsymbol{\xi})$. Let $E(\eta)=p_{\xi}{ }^{-1}\left(F_{\eta}\right)$. We can choose some $x_{\eta} \in$ $D_{\xi} \backslash \cup ণ\left(\subset X_{\xi}\right)$ such that $p_{\xi}(E(\eta))=F_{\eta} \subset g_{\xi}\left(x_{\eta}, n+1\right) \cap D_{\xi}$. By $x_{\eta} \notin \cup ণ$, we have $g_{\xi}\left(x_{\eta}, k\right) \notin \mathcal{V}$ for each $k \geqq 1$. So, we can find a sequence $\left\{y_{\eta, k}\right\}$ of points in Σ, satisfying (7b). Define R_{η} as in (7c). We can take a semi-metric function g_{η} of X_{η} which satisfies (6). Here, ranging ξ over $\Xi(\xi)$, we set

$$
\mathcal{C}_{n+1}=\cup\left\{\mathcal{C}(\xi): \xi \in \Xi_{n}\right\} \quad \text { and } \quad \Xi_{n+1}=\oplus\left\{\Xi(\xi): \xi \in \Xi_{n}\right\}
$$

It is easy to check that the conditions (1)-(7) are satisfied for $n+1$.
By (1) and (2), $\cup_{n=1}^{\infty} \mathcal{C}_{n}$ satisfies the conditions of Basic Lemma II except that it covers Σ. So it suffices to show

Lemma 7. $\mathcal{c}=\cup_{n=1}^{\infty} \mathcal{C}_{n}$ covers Σ.

Proof. Assume the contrary, pick some $y \in \Sigma \backslash \cup \mathcal{C}$. Then there is a sequence $\{\xi(n): n \geqq 0\}$ of finite sequences such that $\xi(n) \in \Xi_{n}, \xi(n+1)_{-}=\xi(n)$ and $y \in E(\xi(n))$ for each $n \geqq 0$ (see Claim 1 in the proof of [20, Theorem 1]). For each $m \geqq 1$, the sequence $\left\{p_{m-1}^{n-1}\left(x_{\xi(n)}\right): n \geqq m\right\}$ of points converges to $p_{m-1}(y)$ in $X_{\xi(m-1)}$, where p_{m-1}^{n-1} and p_{m-1} denote the projections of $X_{\xi(n-1)}$ and Σ, respectively, onto $X_{\xi(m-1)}$ (see Claim 2 in the proof of [20, Theorem 1]). Let $R=$ $\cup_{n=1}^{\infty} R_{\xi(n)}$. Pick the point $z \in \Sigma$ defined by $p_{R}(z)=p_{R}(y)$ and $p_{A \backslash R}(z)=0_{A \backslash R}$. Take some $\gamma_{0} \in \Gamma$ with $z \in G_{\gamma_{0}}$, and an open nbd B of z in Σ such that $B \subset G_{\gamma_{0}}$ and

$$
B=p_{m-1}(B) \times X_{R \backslash R_{\xi(m-1)}} \times p_{\Lambda \backslash R}(B)
$$

for some $m \geqq 1$. Since $p_{m-1}^{n-1}\left(x_{\xi(n)}\right) \rightarrow p_{m-1}(y)(n \rightarrow \infty)$, there is some $k \geqq m$ such that $p_{m-1}^{k-1}\left(x_{\xi(k)}\right) \in p_{m-1}(B)$. Let $g_{k-1}=g_{\xi(k-1)}$. Since $p_{k-1}(B)$ is an open nbd of $x_{\xi(k)}$ and $\left\{g_{k-1}\left(x_{\xi(k)}, i\right): i \geqq 1\right\}$ is a nbd base of $x_{\xi(k)}$ in $X_{\xi(k-1)}$, we can choose some $l \geqq 1$ such that $\overline{g_{k-1}\left(x_{\xi(k)}, l\right)} \subset p_{k-1}(B)$. There is some finite $q \subset \Lambda \backslash R$ and a q-basic open nbd W_{q} of $0_{\Lambda \backslash \xi(k-1)}$ in $\Sigma_{\Lambda \backslash \xi(k-1)}$ such that $\bar{W}_{q} \subset X_{Q} \times p_{\Lambda \backslash R}(B)$, where $Q=R \backslash R_{\xi(k-1)}$. Then we have

$$
\overline{g_{k-1}\left(x_{\xi(k)}, l\right)} \times \bar{W}_{q} \subset p_{k-1}(B) \times X_{Q} \times p_{\Lambda \backslash R}(B)=B \subset G_{r_{0}} .
$$

Hence $q \in M\left(g_{k-1}\left(x_{\xi(k)}, l\right)\right)$. By (7b), $y_{\xi(k), l} \notin g_{k-1}\left(x_{\xi(k)}, l\right) \times W_{q}$ is true. On the other hand, by (7c), $\operatorname{Supp}\left(y_{\xi(k), l}\right) \subset R_{\xi(k)} \subset R$. Since R and q are disjoint and $p_{k-1}\left(y_{\xi(k)}, l\right) \in g_{k-1}\left(x_{\xi(k)}, l\right)$, we have

$$
y_{\xi(k), l} \in g_{k-1}\left(x_{\xi(k)}, l\right) \times X_{Q} \times\left\{0_{\Lambda \backslash R}\right\} \subset g_{k-1}\left(x_{\xi(k)}, l\right) \times W_{q},
$$

which is a contradiction. Lemma 7 has been proved. Therefore, the proof of Theorem 4 is completed.

8. Questions.

The subshrinking property of Σ-products seems to be important for the study of the shrinking one of them. So we raise

QUESTION 1. If a Σ-product of strong Σ-spaces is subnormal, is it sub-
shrinking?
We can obtain an extension of Theorem 1 if this is solved in the affirmative.
The referee of [20] asked to the author whether the results (A^{\prime}) and (B^{\prime}) in the introduction can be generalized to the semi-stratifiable case. Here, we state it more concretely.

QUESTION 2. Is a Σ-product of semi-stratifiable spaces subshrinkinng (if it has countable tightness)?

QUestion 3. If a Σ-product of semi-stratifiable spaces is normal (and has countable tightness), is it shrinking?

Of course, if the answer to Question 2 is affirmative, then so is that of Question 3. Since σ-spaces and semi-metric spaces are semi-stratifiable, Theorems 3 and 4 are partial answers to Question 2. It is assured by [20, Theorem 3] that a Σ-product of semi-stratifiable spaces is at least subnormal.

Finally, we raise the following two questions concerning the normality of Σ-products of β-spaces. The definition of β-spaces is seen in [5, Definition 7.7].

QUESTION 4. Let Σ be a Σ-product such that each finite subproduct of it is a paracompact β-space and has countable tightness. Is then Σ normal?

QUESTION 5. Let Σ be a Σ-product such that each finite subproduct of it is a paracompact β-space. If Σ is normal, is it collectionwise normal?

Observe that both \sum-spaces and semi-stratifiable spaces are β-spaces (cf. [5, Theorem 7.8]). If Question 4 (Question 5) would be solved in the affirmative, we could obtain a nice extension of [17, Theorem 1] and [20, Theorem 1] ([18, Theorem 1] and [20, Theorem 2]).

References

[1] Besłagić, A., Normality in products. Topology Appl. 22 (1986), pp. 71-82.
[2] Chiba, K., On the weak B-property of Σ-products. Math. Japonica, 27 (1982), pp. 737-746.
[3] Chiba, K., Remarks on the weak B-property of Σ-products. Q \& A in Gen. Top. 3 (1985), pp. 1-9.
[4] Corson, H. H., Normality in subsets of product spaces. Amer. J. Math. 81 (1959), pp. 785-796.
[5] Gruenhage, G., Generalized metric spaces. Handbook of Set Theoretic Topology (eds. K. Kunen and J. E. Vaughan), North-Holland, (1984), 423-501.
[6] Gul'ko, S.P., On the properties of subsets of Σ-products. Soviet Math. Dokl. 18 (1977), 1438-1442.
[7] Heath, R.W., Arcwise connectedness in semi-metric spaces. Pacific J. Math. 12 (1962), 1301-1319.
[8] Kombarov, A.P., On tightness and normality of Σ-products. Soviet Math. Dokl. 19 (1978), 403-407.
[9] Kunen, K., Set Theory. North-Holland, Amsterdam, 1980.
[10] LeDonne, A., Shrinking property in Σ-products of paracompact p-spaces. Topology Appl. 19 (1985), 95-101.
[11] Morita, K., Products of normal spaces with metric spaces. Math. Ann. 154 (1964), 365-382.
[12] Nagami, K., σ-spaces and product spaces. Math. Ann. 181 (1969), 109-118.
[13] Nagami, K., Σ-spaces. Fund. Math. 65 (1969), 169-192.
[14] Okuyama, A., Some generalizations of metric spaces, their metrization theorems and product spaces. Sci. Rep. Tokyo Kyoiku Daigaku Sect A, 9 (1967), 236254.
[15] Rudin, M.E., Σ-products of metric spaces are normal. preprint.
[16] Rudin, M.E., The shrinking property. Canad. Math. Bull. 26 (1983), 385-388.
[17] Yajima, Y., On Σ-products of Σ-spaces. Fund. Math. 123 (1984), 29-37.
[18] Yajima, Y., The normality of Σ-products and the perfect κ-normality of Cartesian products. J. Math. Soc. Japan 36 (1984), 689-699.
[19] Yajima, Y., The shrinking property of Σ-products. Q \& A in Gen Top. 4 (1)(1986), 85-96.
[20] Yajima, Y., On Σ-products of semi-stratifiable spaces. Topology Appl. 25 (1987), 1-11.
[21] Yasui, Y., On the gaps between the refinements of the increasing open coverings. Proc. Japan Acad. 48 (1972), 86-90.
[22] Yasui, Y., Some remarks on the shrinking open covers. Math. Japonica, 30 (1984), 127-131.

Department of Mathematics
Kanagawa University
Yokohama, 221 Japan

[^0]: Received February 17, 1988.

[^1]: *) A space S is said to be subnormal if for any disjoint closed sets A and B there are disjoint G_{δ}-sets G and H such that $A \subset G$ and $B \subset H$.

