TSUKUBA J. MATH. Vol. 13 No. 1 (1989) 83-98

THE SHRINKING PROPERTY OF Σ -PRODUCTS

By

Yukinobu YAJIMA

1. Introduction.

Concerning the study of the normality of Σ -products, the following results have been proved in order:

(A) A Σ -product of metric spaces is normal (by Gul'ko [6] and Rudin [15] in 1977).

(B) A Σ -product of paracompact *p*-spaces is normal iff it has countable tightness (by Kombarov [8] in 1978).

(C) A Σ -product of paracompact Σ -spaces is normal if it has countable tightness (by the author [17] in 1984).

On the other hand, the shrinking property is between paracompactness and normality. Rudin [16] in 1983 began to study the shrinking property of Σ -products and LeDonne [10] in 1985 extended her results. That is, they respectively proved the following:

(A') A Σ -product of metric spaces is shrinking.

(B') A Σ -product of paracompact *p*-spaces is shrinking iff it is normal.

The main purpose of the present paper is to prove the further extension, according to (C), as follows:

(C') A Σ -product of strong Σ -spaces is shrinking iff it is normal. Moreover, we prove that the "strong Σ -spaces" in (C') can be replaced by "semimetric spaces". This gives another generalization of (A').

The weak \mathscr{B} -property is weaker than the shrinking one. Chiba [2] proved that a Σ -product of compact spaces has the weak \mathscr{B} -property. So she asked in [3] whether a Σ -product of paracompact *M*-spaces (=*p*-spaces) has the weak \mathscr{B} -property. Here, we give an affirmative answer to this question.

All results proved here were early announced in [19] as a report.

All spaces are assumed to be regular T_1 . The letters n, m, k, i, j and l denote non-negative integers.

Received February 17, 1988.

2. The shrinking and subshrinking properties.

Let S be a space. Let $\mathcal{Q} = \{G_r : \gamma \in \Gamma\}$ be an open cover of S. We say that $\{H_r : \gamma \in \Gamma\}$ is a (regular) shrinking of \mathcal{Q} if it is a (an open) cover of S such that $\overline{H_r} \subset G_r$ for each $\gamma \in \Gamma$. Moreover, we say that $\{H_{r,n} : \gamma \in \Gamma \text{ and } n \geq 1\}$ is a (regular) σ -shrinking of \mathcal{Q} if it is a (an open) cover of S and $\overline{H_{r,n}} \subset G_r$ for each $\gamma \in \Gamma$ and $n \geq 1$. A space S is said to be shrinking if every open cover of S has a (regular) shrinking. A space S is said to be subshrinking if every open cover of S has a σ -shrinking. The following diagram is true:

We say that a space S has the weak \mathcal{B} -property [21] if every monotone increasing open cover $\{U_{\gamma}: \gamma < \kappa\}$ (that is, $U_{\gamma} \subset U_{\gamma'}$, if $\gamma < \gamma' < \kappa$) has a regular skrinking. This property is between shrinking one and countable paracompactness.

PROPOSITION 1. ([1, Corollary 3.2]). The following are equivalent for a space S:

- (a) S is shrinking.
- (b) S is normal and subshrinking.
- (c) Every open cover of S has a regular σ -shrinking.

Observe that subparacompact spaces and perfect spaces (each closed set is G_{δ}) are subshrinking. It follows from Proposition 1 that normal subparacompact spaces and perfectly normal spaces are shrinking (cf. [22, Theorems 3 and 4]).

Let S be a set. A collection \mathcal{A} of subsets of S is said to be *directed* if for any $A_1, A_2 \in \mathcal{A}$ there is some $A_3 \in \mathcal{A}$ such that $A_1 \cup A_2 \subset A_3$.

Since a countable increasing cover of a space is directed, the proof of [1, Corollary 3.2] also shows

PROPOSITION 2. If every directed open cover of a space S has a regular σ -shrinking, then every directed open cover of S has a regular shrinking.

Fixing an open cover of a normal space, we have

^{*)} A space S is said to be subnormal if for any disjoint closed sets A and B there are disjoint G_{δ} -sets G and H such that $A \subseteq G$ and $B \subseteq H$.

PROPOSITION 3. Let S be a normal space and \mathcal{G} an open cover of S. If \mathcal{G} has a σ -shrinking, then it has a shrinking.

This was kindly pointed out by Yasui. Indeed, it follows from

PROPOSITION 4 (The proof of [22, Theorem 4]). Let S be a space and $\mathcal{G} = \{G_r : \gamma \in \Gamma\}$ an open cover of S. If there is a regular σ -shrinking $\{U_{\gamma,n} : \gamma \in \Gamma\}$ and $n \ge 1$ of \mathcal{G} such that $\overline{U}_{\gamma,n} \subset U_{\gamma,n+1}$ for each $\gamma \in \Gamma$ and $n \ge 1$, then \mathcal{G} has a shrinking.

3. Theorems and corollaries.

As Σ -products are well-known, they are dealt with not here but in the next section.

A space X is called a strong Σ -space (Σ -space) [13] if there are a σ -locally finite closed cover \mathcal{F} of X and a cover \mathcal{K} of X by (countably) compact sets such that, whenever $K \in \mathcal{K}$ and U is open in X with $K \subset U$, $K \subset F \subset U$ for some $F \in \mathcal{F}$.

Strong Σ -spaces and subparacompact Σ -spaces are coincident. The class of (strong) Σ -spaces is broad in the sense that it contains the classes of σ -spaces and (paracompact) M-spaces below.

Our main theorem is as follows:

THEOREM 1. A Σ -product of strong Σ -spaces is shrinking iff it is normal.

By Theorem 1 and [18, Theorem 1], we have

COROLLARY 1. Let Σ be a Σ -product of paracompact Σ -spaces. Then the following are equivalent:

(a) Σ is collectionwise normal.

- (b) Σ is normal.
- (c) Σ is shrinking.

Recall that a *paracompact M-space* (=p-space) [11] means the inverse image of a metric space by a perfect map.

THEOREM 2. Let Σ be a Σ -product of paracompact M-spaces. Then every directed open cover of Σ has a regular shrinking.

This result immediately gives an affirmative answer to the question in [3]. That is,

COROLLARY 2. A Σ -product of paracompact M-spaces has the weak \mathcal{B} -property.

In particular, we have

COROLLARY 3. A Σ -product of paracompact M-spaces is countably paracompact.

Recall that a σ -space [14] is a space with a σ -locally finite (closed) net.

THEOREM 3. A Σ -product of σ -spaces is subshrinking.

A space X is said to be *semi-metric* (cf. [7]) if it has a function g of $X \times \{n: n \ge 1\}$ into the topology of X, satisfying

(i) $\{g(x, n): n \ge 1\}$ is a neighborhood (=nbd) base of x for each $x \in X$,

(ii) $y \in \bigcap_{n=1}^{\infty} g(x_n, n)$ implies that $\{x_n\}$ converges to y.

We call the function g a semi-metric function of X. Note that a space X is semi-metric iff it is first countable and semi-stratifiable.

THEOREM 4. A Σ -product of semi-metric spaces is subshrinking.

By Proposition 1 and Theorem 4, we have

COROLLARY 4. A Σ -product of semi-metric spaces is shrinking iff it is normal.

4. Notations for Σ -products.

Let $\{X_{\lambda}: \lambda \in \Lambda\}$ be a collection of spaces. Let $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ be the product of $X_{\lambda}, \lambda \in \Lambda$. Take a point $0 = (0_{\lambda}) \in X$. For each $x = (x_{\lambda}) \in X$, let $\text{Supp}(x) = \{\lambda \in \Lambda: x_{\lambda} \neq 0_{\lambda}\}$. Then the subspace $\Sigma = \{x \in X: \text{Supp}(x) \text{ is at most countable}\}$ of X is called a Σ -product [4] of spaces $X_{\lambda}, \lambda \in \Lambda$. Such a point $0 = (0_{\lambda}) \in \Sigma$ is called the *base point* of Σ . Such a space Σ is called a Σ -product of \cdots spaces if each X_{λ} is a \cdots space.

Here we must prepare some notations of Σ -products for the proofs of our theorems.

For the index set Λ , we denote by Λ_{ω} the set of all non-empty countable subsets of Λ . For each $R \in \Lambda_{\omega}$, X_R and $\Sigma_{\Lambda \setminus R}$ denote the countable product $\prod_{\lambda \in R} X_{\lambda}$ and the Σ -product of X_{λ} , $\lambda \in \Lambda \setminus R$, with the base point $(0_{\lambda})_{\lambda \in \Lambda \setminus R}$, respectively. Moreover, p_R and $p_{\Lambda \setminus R}$ denote the projections of Σ onto X_R and

 $\Sigma_{A \setminus R}$, respectively.

Let Ξ be an index set such that one can assign $R_{\xi} \in \Lambda_{\omega}$ for each $\xi \in \Xi$. Then $X_{R_{\xi}}$, $\Sigma_{A \setminus R_{\xi}}$, $p_{R_{\xi}}$ and $p_{A \setminus R_{\xi}}$ are abbreviated by X_{ξ} , $\Sigma_{A \setminus \xi}$, p_{ξ} and $p_{A \setminus \xi}$, respectively.

Note that strong Σ -spaces, σ -spaces and semi-metric spaces are subparacompact and that the three classes of these spaces and the class of paracompact M-spaces are all countably productive. So, in case of Σ being a countable product, all our theorems are trivial.

Henceforth, all Σ -products are assumed to be proper. That is, we assume without special mention that the index set Λ is uncountable and each space X_{λ} , $\lambda \in \Lambda$, contains the point 1_{λ} different from 0_{λ} .

For each $R \in \Lambda_{\omega}$ and finite $r \subset \Lambda$ with $R \cap r = \emptyset$, consider an open nbd W_r of $0_{\Lambda \setminus R}$ $(=(0_{\lambda})_{\lambda \in \Lambda \setminus R})$ in $\Sigma_{\Lambda \setminus R}$. The open nbd W_r is said to be *r*-basic if

$$W_r = (\prod \{X_{\lambda} : \lambda \in \Lambda \setminus (R \cup r)\} \times \prod \{W_{\lambda} : \lambda \in r\}) \cap \Sigma_{A \setminus R},$$

where W_{λ} is an open nbd of 0_{λ} in X_{λ} with $1_{\lambda} \notin W_{\lambda}$ for each $\lambda \in r$.

For each $R \in \Lambda_{\omega}$, a subset E of Σ is said to be *R*-cylindrically closed in Σ (cf. [20]) if $p_R^{-1}p_R(E)=E$ and $p_R(E)$ is closed in X_R .

For two index sets Δ and E, $\Delta \oplus E$ denotes the disjoint sum of Δ and E.

5. Basic lemmas.

Let Σ be the Σ -product of spaces X_{λ} , $\lambda \in \Lambda$, with the base point $0 = (0_{\lambda}) \in \Sigma$. Let $\mathcal{Q} = \{G_{r} : r \in \Gamma\}$ be an open cover of Σ .

For each subset of F of X_R , where $R \in \Lambda_{\omega}$, we put

 $M^*(F) = \{ r \subset \Lambda \setminus R : r \text{ is a non-empty finite set and there is an } r \text{-basic open}$ nbd W_r of $0_{A \setminus R}$ such that $\overline{F} \times \overline{W}_r \subset G_{r_1} \cup \cdots \cup G_{r_m}$ for some finite $\gamma_1, \cdots, \gamma_m \in \Gamma \}$.

LEMMA 1. Let $R \in \Lambda_{\omega}$. Let F be a non-empty subset of X_R . If

$$p_R^{-1}(F) \subset \bigcup \{ (p_A \setminus R)^{-1}(W_r) : r \in M^*(F) \},$$

then there is a pairwise disjoint subcollection $\{r(\delta): \delta < \omega_1\}$ of $M^*(F)$.

PROOF. The proof is essentially due to Rudin [16]. Take any $r(0) \in M^*(F)$. For each $\delta < \omega_1$, assume that there is a pairwise disjoint subcollection $\{r(\zeta): \zeta < \delta\}$ of $M^*(F)$. Let $Q = \bigcup \{r(\zeta): \zeta < \delta\}$. Then $Q \in \Lambda_\omega$ with $Q \cap R = \emptyset$. Let $N = \{r \in M^*(F): r \cap Q \neq \emptyset\}$. It suffices to show that $\{(p_{A \setminus R})^{-1}(W_r): r \in N\}$ does not cover $p_R^{-1}(F)$. Pick $x \in F$. We take the point $y = (y_\lambda) \in \Sigma$ defined by $p_R(y) = x$, $y_\lambda = 1_\lambda$ for each $\lambda \in Q$ and $y_\lambda = 0_\lambda$ for each $\lambda \in \Lambda \setminus (R \cup Q)$. Then we have $y \in p_R^{-1}(F) \setminus \bigcup \{(p_{A \setminus R})^{-1}(W_r): r \in N\}$.

BASIC LEMMA I. Let Σ , \mathcal{G} and $M^*(\cdot)$ be the same ones as above. Assume that the Σ -product Σ is normal. If there is a σ -locally finite closed cover $\{E(\xi): \xi \in \Delta^+\}$ of Σ and for each $\xi \in \Delta^+$ one can assign $R_{\xi} \in \Lambda_{\xi}$ such that

$$p_{\xi}^{-1}p_{\xi}(E(\xi)) \subset \bigcup \{(p_{A\setminus\xi})^{-1}(W_r) : r \in M^*(p_{\xi}(E(\xi)))\},$$

then \mathcal{G} has a σ -shrinking.

PROOF. Pick $\xi \in \Delta^+$. Let $F_{\xi} = p_{\xi}(E(\xi))$. It follows from Lemma 1 that there is a pairwise disjoint subcollection $\{r(\beta): \beta < \omega_1\}$ of $M^*(F_{\xi})$. For each $\beta < \omega_1$, we can choose a finite subset $\phi(\xi, \beta)$ of Γ such that $\overline{F}_{\xi} \times \overline{W}_{r(\beta)} \subset \bigcup \{G_r: \gamma \in \phi(\xi, \beta)\}$. It follows from the Δ -system lemma (for example, see [9, p. 49]) that there is a Δ -system $\{\phi(\xi, \beta_{\delta}): \delta < \omega_1\}$ with the root $\theta(\xi)$. We may rewrite $\{\beta_{\delta}: \delta < \omega_1\}$ by $\{\delta: \delta < \omega_1\}$ for brevity. Then it satisfies

- (i) $\{r(\delta): \delta < \omega_1\}$ is pairwise disjoint collection of finite subsets of $\Lambda \setminus R_{\xi}$,
- (ii) $\overline{F}_{\xi} \times \overline{W}_{r(\delta)} \subset \bigcup \{G_{\gamma} : \gamma \in \phi(\xi, \delta)\}$ and $\phi(\xi, \delta)$ is a finite subset of Γ ,
- (iii) $\phi(\xi, \delta) \cap \phi(\xi, \delta') = \theta(\xi)$ for each $\delta, \delta' < \omega_1$ with $\delta \neq \delta'$.

By the normality of Σ and (ii), for each $\delta < \omega_1$ there is a finite collection $\{U(\xi, \delta, \gamma): \gamma \in \phi(\xi, \delta)\}$ of open sets in Σ such that

$$\overline{F}_{\xi} \times \overline{W}_{r(\delta)} \subset \bigcup \{ U(\xi, \, \delta, \, \gamma) : \gamma \in \phi(\xi, \, \delta) \},\$$
$$\overline{U(\xi, \, \delta, \, \gamma)} \subset G_{\gamma} \text{ whenever } \gamma \in \phi(\xi, \, \delta) .$$

It should be noted by (i) that the Σ -product $\Sigma_{A\setminus\xi}$ (see Section 4) is covered by $\{W_{\tau(\delta)}: \delta < \omega_1\}$. By (iii), we have

$$E(\xi) \subset p_{\xi}^{-1}(F_{\xi}) = F_{\xi} \times \Sigma_{A \setminus \xi} = \bigcup \{F_{\xi} \times W_{r(\delta)} : \delta < \omega_{1}\}$$
$$\subset \bigcup \{U(\xi, \delta, \gamma) : \gamma \in \phi(\xi, \delta) \text{ and } \delta < \omega_{1}\}$$
$$\subset (\bigcup \{U(\xi, \delta, \gamma) : \gamma \in \phi(\xi, \delta) \setminus \theta(\xi) \text{ and } \delta < \omega_{1}\}) \cup (\bigcup \{G_{\gamma} : \gamma \in \theta(\xi)\}).$$

Again by the normality of Σ , there is a finite collection $\{E(\xi, \gamma): \gamma \in \theta(\xi)\}$ of closed sets in Σ such that $E(\xi)$ is covered by

 $\{U(\xi, \delta, \gamma): \gamma \in \phi(\xi, \delta) \setminus \theta(\xi) \text{ and } \delta < \omega_1\} \cup \{E(\xi, \gamma): \gamma \in \theta(\xi)\}$

and $E(\xi, \gamma) \subset G_{\gamma} \cap E(\xi)$ for each $\gamma \in \theta(\xi)$. Put $E(\xi, \delta, \gamma) = \overline{U(\xi, \delta, \gamma)} \cap E(\xi)$ for each $\gamma \in \phi(\xi, \delta) \setminus \theta(\xi)$ and $\delta < \omega_1$. Then

$$\{E(\xi, \delta, \gamma): \gamma \in \phi(\xi, \delta) \setminus \theta(\xi) \text{ and } \delta < \omega_1\} \cup \{E(\xi, \gamma): \gamma \in \theta(\xi)\}$$

is a collection of closed sets in Σ such that it covers $E(\xi)$, $E(\xi, \gamma) \subset G_{\gamma}$ for each $\gamma \in \theta(\xi)$ and $E(\xi, \delta, \gamma) \subset G_{\gamma}$ for each $\gamma \in \phi(\xi, \delta) \setminus \theta(\xi)$ and $\delta < \omega_1$.

We represent $\Delta^+ = \bigcup_{n=1}^{\infty} \Delta_n^+$ such that $\{E(\xi): \xi \in \Delta_n^+\}$ is locally finite in Σ

for each $n \ge 1$. Now, we put

$$H_{\gamma,n} = (\bigcup \{ E(\xi, \,\delta, \,\gamma) : \xi \in \mathcal{A}_n^+, \,\delta < \omega_1 \text{ and } \gamma \in \phi(\xi, \,\delta) \setminus \theta(\xi) \})$$
$$\cup (\bigcup \{ E(\xi, \,\gamma) : \xi \in \mathcal{A}_n^+ \text{ and } \gamma \in \theta(\xi) \})$$

for each $\gamma \in \Gamma$ and $n \ge 1$. It is easy to see that $\{H_{\gamma,n}: \gamma \in \Gamma \text{ and } n \ge 1\}$ is a cover of Σ such that $H_{\gamma,n} \subset G_{\gamma}$ for each $\gamma \in \Gamma$ and $n \ge 1$. We show that each $H_{\gamma,n}$ is closed in Σ . Pcik any $\gamma_0 \in \Gamma$ and $n_0 \ge 1$. By $E(\xi, \gamma_0) \subset E(\xi)$, $\{E(\xi, \gamma_0): \xi \in \mathcal{A}_{n_0^+} \text{ with } \gamma_0 \in \theta(\xi)\}$ is a locally finite collection of closed sets in Σ . It follows from (iii) that

$$\{E(\xi, \delta, \gamma_0): \delta < \omega_1 \text{ with } \gamma_0 \in \phi(\xi, \delta) \setminus \theta(\xi)\}$$

consists of at most one member for each $\xi \in \mathcal{A}_{n_0}^+$. So, by $E(\xi, \delta, \gamma_0) \subset E(\xi)$,

 $\{E(\xi, \delta, \gamma_0): \xi \in \mathcal{A}_{n_0^+} \text{ and } \delta < \omega_1 \text{ with } \gamma_0 \in \phi(\xi, \delta) \setminus \theta(\xi)\}$

is a locally finite collection of closed sets in Σ . By the choice of H_{γ_0, n_0} , it is closed in Σ . Therefore $\{H_{\gamma, n}: \gamma \in \Gamma \text{ and } n \geq 1\}$ is a σ -shrinking of \mathcal{G} . \Box

Next, for each subset F of X_R , where $R \in \Lambda_{\omega}$, we put

 $M(F) = \{r \subset \Lambda \setminus R : r \text{ is a non-empty finite set and there is an } r\text{-basic}$

open nbd W_r of $0_{A\setminus R}$ in $\Sigma_{A\setminus R}$ such that $\overline{F} \times \overline{W}_r \subset G_r$ for some $\gamma \in \Gamma$ }.

Note that Lemma 1 is also true for the M(F) instead of $M^*(F)$.

BASIC LEMMA II. Let Σ , \mathcal{G} and $M(\cdot)$ be the same ones as above. If there is a σ -locally finite closed (open) cover $\{E(\xi): \xi \in \Delta^+\}$ of Σ and for each $\xi \in \Delta^+$ one can assign $R_{\xi} \in \Lambda_{\omega}$ such that

$$p_{\xi}^{-1}p_{\xi}(E(\xi)) \subset \bigcup \{(p_{A\setminus\xi})^{-1}(W_r) : r \in M(p_{\xi}(E(\xi)))\},\$$

then \mathcal{G} has a (regular) σ -shrinking.

PROOF. The proof is simpler than the previous one. Let $F_{\xi} = p_{\xi}(E(\xi))$ for each $\xi \in \Delta^+$. It follows from Lemma 1 for $M(\cdot)$ that there is a pairwise disjoint subcollection $\{r(\delta): \delta < \omega_1\}$ of $M(F_{\xi})$. We can choose some $\gamma(\xi, \delta) \in \Gamma$ such that $\overline{F}_{\xi} \times \overline{W}_{r(\delta)} \subset G_{\gamma(\xi, \delta)}$ for each $\xi \in \Delta^+$ and $\delta < \omega_1$. Without loss of generality, we may assume that all $\gamma(\xi, \delta)$, $\delta < \omega_1$, are the same or different. So we put

Then $\Delta^+ = \Delta^1 \oplus \Delta^2$. Moreover, we may put $\gamma_{\xi} = \gamma(\xi, \delta)$ for each $\xi \in \Delta^1$ and $\delta < \omega_1$.

Similarly, we can check that $\overline{E(\xi)} \subset G_{\gamma}$ for each $\xi \in \Delta^{1}$.

Let $\Delta^+ = \bigcup_{n=1}^{\infty} \Delta_n^+$ such that $\{E(\xi) : \xi \in \Delta_n^+\}$ is locally finite in Σ for each $n \ge 1$. Here, we put

$$H_{\gamma'n} = (\bigcup \{ E(\xi) : \xi \in \mathcal{A}_n^+ \cap \mathcal{A}^1 \text{ with } \gamma_{\xi} = \gamma \}) \cup$$

 $(\cup\{(F_{\xi}\times W_{r(\delta)})\cap E(\xi):\xi\in \mathcal{A}_{n}^{+}\cap \mathcal{A}^{2} \text{ and } \delta<\omega_{1} \text{ with } \gamma(\xi,\delta)=\gamma\})$

for each $\gamma \in \Gamma$ and $n \ge 1$. Then $\{H_{\gamma,n} : \gamma \in \Gamma \text{ and } n \ge 1\}$ is a (an open) cover of Σ . Moreover, we can show that $\overline{H}_{\gamma,n} \subset G_{\gamma}$ for $\gamma \in \Gamma$ and $n \ge 1$. This verification is similar to the previous one. Therefore $\{H_{\gamma,n} : \gamma \in \Gamma \text{ and } n \ge 1\}$ is a (regular) σ -shrinking of \mathcal{G} . \Box

Basic Lemmas I and II are necessary for the proofs of Theorem 1 and others, respectively.

6. Proof of Theorem 1.

LEMMA 2 ([13, Lemma 1]). Let X be a strong Σ -space. Then there is a sequence $\{\mathfrak{F}_n\}$ of locally finite closed covers of X, satesfying

(a) $\mathfrak{F}_n = \{F(\alpha_1 \cdots \alpha_n) : \alpha_1, \cdots, \alpha_n \in \Omega\}$ for each $n \ge 1$,

- (b) $F(\alpha_1 \cdots \alpha_n) = \bigcup \{F(\alpha_1 \cdots \alpha_n \alpha_{n+1}) : \alpha_{n+1} \in \Omega\}$ for each $\alpha_1, \cdots, \alpha_n \in \Omega$,
- (c) for each $x \in X$, there is a sequence $\alpha_1, \alpha_2, \dots \in \Omega$ such that
 - (i) $\bigcap_{n=1}^{\infty} F(\alpha_1 \cdots \alpha_n)$ is a compact set containing x,

(ii) if $\{D_n\}$ is a decreasing sequence of non-empty closed sets in X such that $D_n \subset F(\alpha_1 \cdots \alpha_n)$ for each $n \ge 1$, then $\bigcap_{n=1}^{\infty} D_n \neq \emptyset$.

The above sequence $\{\mathcal{F}_n\}$ is a called a *spectral strong* Σ -net [13] of X. Moreover, the sequence $\{F(\alpha_1 \cdots \alpha_n): n \ge 1\}$ in (c) is called a *local* Σ -net at x.

Lemma 2 was used in [17, 18].

For an $n \times n$ matrix $\boldsymbol{\xi} = (\alpha_{ij})_{i,j \leq n}$ and $1 \leq k \leq n$, the $k \times k$ matrix $(\alpha_{ij})_{i,j \leq k}$ is denoted by $\boldsymbol{\xi} \mid k$. In particular, $\boldsymbol{\xi} \mid n-1$ is often abbreviated by $\boldsymbol{\xi}_{-}$ and $\boldsymbol{\xi} \mid 0$ implies the 0×0 matrix (\emptyset) .

PROOF OF THEOREM 1. Let Σ be the Σ -product of strong Σ -spaces X_{λ} , $\lambda \in \Lambda$, with the base point $0 = (0_{\lambda}) \in \Sigma$, and assume that Σ is normal. Let $\mathcal{G} = \{G_{\gamma} : \gamma \in \Gamma\}$ be any open cover of Σ . We use the notation $M^{*}(\cdot)$ defined in the previous section.

For each $n \ge 0$, we construct an index set $\Delta_n = \Delta_n^+ \oplus \Xi_n$ of $n \times n$ matrices such that for each $\xi \in \Delta_n$ one can assign $E(\xi) \subset \Sigma$ and for each $\xi \in \Xi_n$ one can assign $x_{\xi} \in \Sigma$ and $R_{\xi} \in \Lambda_{\omega}$, satisfying the following conditions (1)-(6) for each

 $n \ge 1$:

(1) For each $\mu \in \mathbb{Z}_{n-1}$, $\{F(\alpha_{n1} \cdots \alpha_{nk}) : \alpha_{n1}, \cdots, \alpha_{nk} \in \Omega(\mu)\}, k \ge 1$, is a spectral strong Σ -net of X_{μ} .

(2) $\Delta_n = \{ \xi = (\alpha_{ij})_{i,j \leq n} : \xi \in \Xi_{n-1} \text{ and } \alpha_{ij} \in \Omega(\xi | i-1) \text{ for } 1 \leq i, j \leq n \} \text{ and } \Delta_0 = \{(\emptyset)\}.$

(3) For each $\xi = (\alpha_{ij})_{i,j \leq n} \in \mathcal{A}_n$,

$$E(\boldsymbol{\xi}) = \bigcap_{i=1}^{n} (p_{\boldsymbol{\xi}|i-1})^{-1} (F(\boldsymbol{\alpha}_{i1} \cdots \boldsymbol{\alpha}_{in}))$$

and $E(\emptyset) = \Sigma$.

- (4) $\Delta_n^+ = \{ \xi \in \Delta_n : E(\xi) \subset \bigcup \{ (p_{A \setminus \xi_-})^{-1}(W_r) : r \in M^*(p_{\xi_-}(E(\xi))) \} \}.$
- (5) For each $\boldsymbol{\xi} \in \boldsymbol{\Xi}_n$, $x_{\boldsymbol{\xi}} \in \boldsymbol{E}(\boldsymbol{\xi}) \setminus \bigcup \{ (p_{A \setminus \boldsymbol{\xi}_-})^{-1}(W_r) : r \in M^*(p_{\boldsymbol{\xi}_-}(\boldsymbol{E}(\boldsymbol{\xi}))) \}$.
- (6) For each $\xi \in \Xi_n$, $R_{\xi} = R_{\xi_-} \cup \text{Supp}(x_{\xi})$.

Using Lemma 2, this construction is easily performed. Note that $E(\xi)$ is an R_{ξ} -cylindrically closed set in Σ (see Section 4) such that $E(\xi) \subset E(\xi_{-})$ for each $\xi \in \mathcal{A}_n$ and $n \ge 1$. It is verified that $\{E(\xi) : \xi \in \mathcal{A}_n\}$ is locally finite in Σ for each $n \ge 1$. Let $\mathcal{A}^+ = \bigcup_{n=1}^{\infty} \mathcal{A}_n^+$. Considering R_{ξ_-} instead of R_{ξ} , the σ -locally finite collection $\{E(\xi) : \xi \in \mathcal{A}^+\}$ of closed sets in Σ satisfies the conditions of Basic Lemma I except the following:

LEMMA 3. $\{E(\boldsymbol{\xi}): \boldsymbol{\xi} \in \boldsymbol{\Delta}^+\}$ covers $\boldsymbol{\Sigma}$.

PROOF. Assuming the contrary, pick some $y \in \mathbb{Z} \setminus \bigcup \{ E(\xi) : \xi \in \mathbb{A}^+ \}$. By (1) and the choice of y, we can inductively choose a sequence $\{\alpha_{ij}: i, j \ge 1\}$ such that for each $n \ge 1 \xi(n) = (\alpha_{ij})_{i,j \le n} \in \mathbb{Z}_n$ and $\{F(\alpha_{n1} \cdots \alpha_{nk}): k \ge 1\}$ is a local Σ net at $p_{\xi(n-1)}(y)$ in $X_{\xi(n-1)}$, where $\alpha_{nk} \in \Omega(\xi(n-1))$ and $\xi(0) = (\emptyset)$. Let R = $\bigcup_{n=1}^{\infty} R_{\xi(n)}$. Then $R \in \Lambda_{\omega}$. In this proof, $p_{\xi(n-1)}$ is abbreviated by p_{n-1} . Put $K_n = \bigcap_{k \ge n} \overline{p_{n-1}(E(\xi(k)))}$ for each $n \ge 1$. Since $p_{n-1}(E(\xi(k)))$ is contained in $F(\alpha_{n1} \cdots \alpha_{nk})$ for each $k \ge n$, it follows from (i) of (c) in Lemma 2 that K_n is compact. Since $y \in E(\xi(k))$ for each $k \ge 1$, we have $p_{n-1}(y) \in K_n$. Note that $p_{n-1}^n(K_{n+1}) \subset K_n$, where p_{n-1}^n is the projection of $X_{\xi(n)}$ onto $X_{\xi(n-1)}$. Hence $\{K_n, p_{n-1}^n | K_n\}$ is an inverse sequence of non-empty compact spaces. Then the limit $K = \lim_{n \to \infty} \{K_n, p_{n-1}^n | K_n\}$ is non-empty and compact. Since each p_{n-1}^n is the projection, we can consider that K is a subspace of X_R . So there are some finite $\gamma_1, \dots, \gamma_m \in \Gamma$ such that $K \times \{0_{A \setminus R}\} \subset G_{\gamma_1} \cup \dots \cup G_{\gamma_m}$. Take some open sets U and V in X_R and $\Sigma_{A \setminus R}$, respectively, such that $K \subset U$, $0_{A \setminus R} \in V$ and $U \times V \subset$ $G_{r_1} \cup \cdots \cup G_{r_m}$.

CLAIM. $p_{n-1}(E(\xi(n)) \times X_{Q(n)} \subset U \text{ for some } n \ge 1, \text{ where } Q(k) = R \setminus R_{\xi(k-1)}, k \ge 1.$

PROOF. Assume the contrary. We can take some

 $u_n \in (p_{n-1}(E(\xi(n)) \times X_{Q(n)}) \setminus U$

for each $n \ge 1$. Pick $n \ge 1$. Put $L_{nk} = \{p_{n-1}^{\infty}(u_k), p_{n-1}^{\infty}(u_{k+1}), \cdots\}$ for each $k \ge n$, where p_{n-1}^{∞} is the projection of X_R onto $X_{\xi(n-1)}$. Since $L_{nk} \subset p_{n-1}(E(\xi(k)))$, we have

$$\overline{L}_{nk} \subset \overline{p_{n-1}(E(\boldsymbol{\xi}(k)))} \subset F(\alpha_{n1} \cdots \alpha_{nk})$$

for each $k \ge n$. Since $\{F(\alpha_{n1} \cdots \alpha_{nk}): k \ge 1\}$ is a local Σ -net at $p_{n-1}(y)$ in $X_{\xi(n-1)}$, it follows from (ii) of (c) in Lemma 2 that $\bigcap_{k\ge n} \bar{L}_{nk}$ is non-empty. Let $L_n = \bigcap_{k\ge n} \bar{L}_{nk}$. Then we have $L_n \subset K_n$. Moreover, by $p_{n-1}^n(L_{n+1k}) = L_{nk}$, we have $p_{n-1}^n(L_{n+1}) \subset L_n$. Hence $\{L_n, p_{n-1}^n | L_n\}$ is an inverse sequence of non-empty compact spaces. Then the limit $L = \lim_{k \ge n} \{L_n, p_{n-1}^n | L_n\}$ is a non-empty subspace of $K (\subset X_R)$. Pick some $z \in L$. Since $p_{n-1}^\infty(z) \in L_n \subset \bar{L}_{nn}$ for each $n \ge 1$, the z is a cluster point of $\{u_n\}$ in X_R . Since each u_n is not in U, z is not in U. On the other hand, we have $z \in L \subset K \subset U$. This is a contradiction. Claim has been proved.

Now, let $p_{n-1}(E(\boldsymbol{\xi}(n))) \times X_{Q(n)} \subset U$. Since $X_{Q(n)} \times V$ is an open nbd of $0_{\Lambda \setminus \boldsymbol{\xi}(n-1)}$ in $\Sigma_{\Lambda \setminus \boldsymbol{\xi}(n-1)}$, there are some finite $q \subset \Lambda \setminus R$ and a *q*-basic open nbd W_q of $0_{\Lambda \setminus \boldsymbol{\xi}(n-1)}$ in $\Sigma_{\Lambda \setminus \boldsymbol{\xi}(n-1)}$ such that $\overline{W}_q \subset X_{Q(n)} \times V$. Then we have

$$\overline{p_{n-1}(E(\boldsymbol{\xi}(n)))} \times \overline{W}_q = p_{n-1}(E(\boldsymbol{\xi}(n))) \times \overline{W}_q \subset U \times V \subset G_{\gamma_1} \cup \cdots \cup G_{\gamma_m}.$$

Hence $q \in M^*(p_{n-1}(E(\xi(n))))$. Remember $\xi(n) \in \mathbb{Z}_n$. By (5), $x_{\xi(n)} \notin p_{n-1}(E(\xi(n)))$ $\times W_q$ is true. By (6), $\operatorname{Supp}(x_{\xi(n)}) \subset R_{\xi(n)} \subset R$. Since R and q are disjoint, we obtain

$$x_{\xi(n)} \in p_{n-1}(E(\xi(n))) \times X_{Q(n)} \times \{0_{A \setminus R}\} \subset p_{n-1}(E(\xi(n))) \times W_q.$$

This is a contradiction. Lemma 3 has been proved. \Box

Thus, Basic Lemma 1 assures that \mathcal{G} has a σ -shrinking. Since Σ is normal, it follows from Proposition 1 or 3 that \mathcal{G} has a shrinking. The proof of Theorem 1 is completed. \Box

7. Proofs of other theorems.

LEMMA 4. Let X be a M-space. Then there is a sequence $\{\mathcal{CV}_n\}$ of locally finite open covers of X, satisfying

- (a) $CV_n = \{ V(\alpha_1 \cdots \alpha_n) : \alpha_1, \cdots, \alpha_n \in \Omega \}$ for each $n \ge 1$,
- (b) $V(\alpha_1 \cdots \alpha_n) = \bigcup \{ V(\alpha_1 \cdots \alpha_n \alpha_{n+1}) : \alpha_{n+1} \in \Omega \}$ for each $\alpha_1, \cdots, \alpha_n \in \Omega$,
- (b) if $\bigcap_{n=1}^{\infty} V(\alpha_1 \cdots \alpha_n) \neq \emptyset$ and $\{D_n\}$ is a decreasing sequence of non-empty

closed sets in X such that $D_n \subset \overline{V(\alpha_1 \cdots \alpha_n)}$ for each $n \ge 1$, then $\bigcap_{n=1}^{\infty} D_n \neq \emptyset$.

This lemma easily follows from the definition of *M*-spaces in [11]. The proof is similar to that of [12, Theorem 1] or [13, Lemma 1.4]. Note that the intersection $\bigcap_{n=1}^{\infty} \overline{V(\alpha_1 \cdots \alpha_n)}$ is compact if X is a paracompact *M*-space. The above sequence $\{\mathcal{CV}_n\}$ is called a *spectral M-base* of X, for the sake of convenience.

Since Theorems 2 and 3 are obtained below by modifying the proof of Theorem 1, we also use the same notations as in it except $M(\cdot)$ instead of $M^*(\cdot)$.

PROOF OF THEOREM 2. Let Σ be the Σ -product of paracompact *M*-spaces $X_{\lambda}, \lambda \in \Lambda$, with the base point $0 = (0_{\lambda}) \in \Sigma$. Let $\mathcal{G} = \{G_{\lambda} : \lambda \in \Lambda\}$ be any directed open cover of Σ .

For each $n \ge 0$, we construct an index set $\Delta_n = \Delta_n^+ \oplus \Xi_n$ of $n \times n$ matrices such that for each $\xi \in \Delta_n$ one can assign $U(\xi) \subset \Sigma$ and for each $\xi \in \Xi_n$ one can assign $x_{\xi} \in \Sigma$ and $R_{\xi} \in \Lambda_{\omega}$, satisfying the conditions (1)-(6) in the proof of Theorem 1, where $E, F, M^*(\cdot)$ and "spectral strong Σ -net" should be replaced by $U, V, M(\cdot)$ and "spectral M-base", respectively.

Using Lemma 4, this construction is also easy. Let $\Delta^+ = \bigcup_{n=1}^{\infty} \Delta_n^+$. In the similar way to the proof of Lemma 3, we can show that $\{U(\xi): \xi \in \Delta^+\}$ covers Σ . It should be noted there that the $G_{\tau_1} \cup \cdots \cup G_{\tau_m}$ can be replaced by some $G_{\tau} \in \mathcal{G}$, because \mathcal{G} is directed. So we may use $M(p_{n-1}(U(\xi(n))))$ instead of $M^*(p_{n-1}(E(\xi(n))))$. After all, $\{U(\xi): \xi \in \Delta^+\}$ satisfies the conditions in the parenthetic part of Basic Lemma II. Hence \mathcal{G} has a regular σ -shrinking. It follows from Proposition 2 that \mathcal{G} has a regular shrinking. \Box

LEMMA 5 ([12, Theorem 1]). Let X be a σ -space. Then there is a sequence $\{\mathcal{F}_n\}$ of locally finite closed covers of X, satisfying

(a) $\mathfrak{F}_n = \{ F(\alpha_1 \cdots \alpha_n) : \alpha_1, \cdots, \alpha_n \in \Omega \}$ for each $n \ge 1$,

(b) $F(\alpha_1 \cdots \alpha_n) = \bigcup \{F(\alpha_1 \cdots \alpha_n \alpha_{n+1}) : \alpha_{n+1} \in \Omega\}$ for each $\alpha_1, \cdots, \alpha_n \in \Omega$,

(c) for each $x \in X$, there is a sequence $\alpha_1, \alpha_2, \dots \in \Omega$ such that $x \in \bigcap_{n=1}^{\infty} F(\alpha_1 \cdots \alpha_n)$ and each open nbd of x contains some $F(\alpha_1 \cdots \alpha_n)$.

The above sequence $\{\mathcal{F}_n\}$ is called a *spectral* σ -net of X and the sequence $\{F(\alpha_1 \cdots \alpha_n): n \ge 1\}$ in (c) is called a *local* σ -net at x.

PROOF OF THEOREM 3. Let Σ be the Σ -product of σ -spaces X_{λ} , $\lambda \in \Lambda$, with the base point $0=(0_{\lambda})\in \Sigma$. Let $\mathcal{G}=\{G_{\gamma}: \gamma \in \Gamma\}$ be any open cover of Σ .

Yukinobu Yajima

For each $n \ge 0$, we construct the same $\Delta_n = \Delta_n^+ \oplus \Xi_n$, $E(\xi) \subset \Sigma$, $x_{\xi} \in \Sigma$ and $R_{\xi} \in \Lambda_{\omega}$ as in the proof of Theorem 1. They also satisfy the same conditions (1)-(6) except that only "spectral strong Σ -net" in (1) is replaced by "spectral σ -net". Similarly, it suffices from Basic Lemma II to show the following:

LEMMA 6. $\{E(\boldsymbol{\xi}): \boldsymbol{\xi} \in \Delta^+\}$ covers Σ , where $\Delta^+ = \bigcup_{n=1}^{\infty} \Delta_n^+$.

PROOF. Assume the contrary. Pick some $y \in \Sigma \setminus \bigcup \{E(\xi) : \xi \in \Delta^+\}$. We can inductively choose a sequence $\{\alpha_{ij} : i, j \ge 1\}$ such that for each $n \ge 1$ $\xi(n) = (\alpha_{ij})_{i,j \le n} \in \mathbb{Z}_n$ and $\{F(\alpha_{n1} \cdots \alpha_{nk}) : k \ge 1\}$ is a local σ -net at $p_{\xi(n-1)}(y)$ in $X_{\xi(n-1)}$, where $\alpha_{nk} \in \Omega(\xi(n-1))$ and $\xi(0) = (\emptyset)$. Let $R = \bigcup_{n=1}^{\infty} R_{\xi(n)}$. Abbreviate $p_{\xi(n-1)}$ with p_{n-1} . Pick the point $z \in \Sigma$ defined by $p_R(z) = p_R(y)$ and $p_{A \setminus R}(z) = 0_{A \setminus R}$. Take some $\gamma_0 \in \Gamma$ with $z \in G_{\gamma_0}$. Moreover, take an open nbd B of z in Σ such that $B \subset G_{\gamma_0}$ and

$$B = p_{m-1}(B) \times X_{R \setminus R_{\mathcal{E}(m-1)}} \times p_{A \setminus R}(B)$$

for some $m \ge 1$. By the choice of $\{F(\alpha_{i_1} \cdots \alpha_{i_k}): k \ge 1\}$, for each $i \le m$ we can choose some $n_i \ge 1$ such that

$$p_{i-1}(z) = p_{i-1}(y) \in F(\alpha_{i1} \cdots \alpha_{in_i}) \subset p_{i-1}(B).$$

Let $l=\max\{n_1, \dots, n_m, m\}$. Then we can easily verify $p_{l-1}(E(\xi(l))) \subset p_{l-1}(B)$. Let $Q=R \setminus R_{\xi(l-1)}$. Since $X_Q \times p_{A \setminus R}(B)$ is an open nbd of $0_{A \setminus \xi(l-1)}$ in $\Sigma_{A \setminus \xi(l-1)}$, there is some finite $q \subset A \setminus R$ and a q-basic open nbd W_q of $0_{A \setminus \xi(l-1)}$ in $\Sigma_{A \setminus \xi(l-1)}$ such that $\overline{W}_q \subset X_Q \times p_{A \setminus R}(B)$. Then we have

$$\overline{p_{l-1}(E(\boldsymbol{\xi}(l)))} \times \overline{W}_q = p_{l-1}(E(\boldsymbol{\xi}(l))) \times \overline{W}_q \subset p_{l-1}(B) \times X_Q \times p_{A \setminus R}(B)$$
$$= B \subset G_{r_0}.$$

Hence $q \in M(p_{l-1}(E(\xi(l))))$. So we can obtain a contradiction in the same way as the last part of the proof of Lemma 3. Lemma 6 has been proved. Consequently, the proof of Theorem 3 is completed. \Box

Let Ξ be a set consisting of finite sequences and (\emptyset) . For each $\boldsymbol{\xi} = (\alpha_1 \cdots \alpha_{n-1} \alpha_n) \in \Xi$, $\boldsymbol{\xi}_-$ and $\boldsymbol{\xi} \oplus \alpha$ denote $(\alpha_1 \cdots \alpha_{n-1})$ and $(\alpha_1 \cdots \alpha_n \alpha)$, respectively. The 0-tuple sequence is only (\emptyset) .

PROOF OF THEOREM 4. Let Σ be the Σ -product of semi-metric spaces X_{λ} , $\lambda \in \Lambda$, with the base point $0 = (0_{\lambda}) \in \Sigma$. Let $\mathcal{G} = \{G_{\gamma} : \gamma \in \Gamma\}$ be any open cover of Σ .

For each $n \ge 0$, we shall construct a collection C_n of closed sets in Σ and an index set Ξ_n of *n*-tuple sequences such that for each $\xi \in \Xi_n$ one can assign

 $R_{\xi} \in \Lambda_{\omega}$, $E(\xi) \subset \Sigma$, $x_{\xi} \in X_{\xi}$, $\{y_{\xi,k}\} \subset \Sigma$ and a function g_{ξ} , satisfying the following conditions (1)-(7) for each $n \ge 1$:

(1) $C_n = \bigcup \{ C(\mu) : \mu \in \Xi_{n-1} \}$ is σ -locally finite in Σ .

(2) Each $C \in \mathcal{C}(\mu)$, $\mu \in \mathbb{Z}_{n-1}$, is an R_{μ} -cylindrically closed set in Σ such that $C \subset \bigcup \{(p_{A \setminus \mu})^{-1}(W_r) : r \in M(p_{\mu}(C))\}.$

(3) $\xi \in \Xi_n$ implies $\xi_- \in \Xi_{n-1}$.

(4) $\{E(\xi): \xi \in \Xi_n\}$ is σ -locally finite in Σ , for each $\xi \in \Xi_n$ $E(\xi)$ is an R_{ξ} -cylindrically closed set in Σ and $E(\emptyset) = \Sigma$.

(5) For each $\mu \in \Xi_{n-1}$,

$$p_{\mu}(E(\mu)) \subset p_{\mu}(\cup \mathcal{C}(\mu)) \cup (\cup \{p_{\mu}(E(\xi)) : \xi \in \mathbb{Z}_n \text{ with } \xi_- = \mu\}).$$

(6) For each $\xi \in \mathbb{Z}_n$, g_{ξ} is a semi-metric function of X_{ξ} such that

 $p_{\xi^{\xi}}(g_{\xi}(x, k)) \Box g_{\xi^{-}}(p_{\xi^{\xi}}(x), k)$

for each $x \in X_{\xi}$ and $k \ge 1$, where p_{ξ}^{ξ} denotes the projection of X_{ξ} onto $X_{\xi-}$ and g_{\emptyset} is a semi-metric function of X_{\emptyset} .

- (7) For each $\boldsymbol{\xi} \in \boldsymbol{\Xi}_n$,
 - a) $p_{\xi}(E(\xi)) \subset g_{\xi}(x_{\xi}, n),$
 - b) $y_{\xi,k} \in p_{\xi^{-1}}(g_{\xi_{-1}}(x_{\xi}, k)) \setminus \bigcup \{(p_{A \setminus \xi_{-1}})^{-1}(W_r) : r \in M(g_{\xi_{-1}}(x_{\xi}, k))\}$ for each $k \ge 1$,
 - c) $R_{\xi} = R_{\xi} \cup (\cup \{ \text{Supp}(y_{\xi,k}) : k \ge 1 \}).$

The basic idea of this construction is found in [20]. The case of n=0 is trivial. Assume that it has been already performed for no greater than n. Pick $\xi \in \mathbb{Z}_n$ and fix it. Put

$$\mathcal{CV} = \{ V: V \text{ is a non-empty open set in } X_{\xi} \text{ such that}$$

$$p_{\xi}^{-1}(V) \subset \bigcup \{ (p_{A \setminus \xi})^{-1}(W_r) : r \in M(V) \}.$$

Let $D_{\xi} = p_{\xi}(E(\xi))$. Observe that $D_{\xi} = (p_{\xi}^{\xi})^{-1}(p_{\xi}(E(\xi)))$ if $n \ge 1$ and $D_{\emptyset} = X_{\emptyset}$. So D_{ξ} is closed in X_{ξ} . Since D_{ξ} is subparacompact, there is a σ -locally finite closed cover \mathcal{F} of D_{ξ} , which refines

$$\{V \cap D_{\xi} \colon V \in \mathcal{V}\} \cup \{g_{\xi}(x, n+1) \cap D_{\xi} \colon x \in D_{\xi} \setminus \cup \mathcal{V}\}.$$

Let $\mathfrak{F}^+ = \{F \in \mathfrak{F} : F \subset V \cap D_{\xi} \text{ for some } V \in \mathcal{V}\}$ and $\mathfrak{F}^- = \mathfrak{F} \setminus \mathfrak{F}^+$. Put $\mathcal{C}(\xi) = \{C = p_{\xi}^{-1}(F) : F \in \mathfrak{F}^+\}$. Then each $\mathcal{C} \in \mathcal{C}(\xi)$ satisfies (2) and $\mathcal{C} \subset \mathcal{E}(\xi)$. Let $\mathcal{E}(\xi)$ be an index set of (n+1)-tuple sequences such that $\mathfrak{F}^- = \{F_{\xi \oplus \alpha} : \xi \oplus \alpha \in \mathfrak{Z}(\xi)\}$. Take any $\eta = \xi \oplus \alpha \in \mathfrak{Z}(\xi)$. Let $\mathcal{E}(\eta) = p_{\xi}^{-1}(F_{\eta})$. We can choose some $x_{\eta} \in D_{\xi} \setminus \mathcal{O}(\mathbb{C}X_{\xi})$ such that $p_{\xi}(\mathcal{E}(\eta)) = F_{\eta} \subset g_{\xi}(x_{\eta}, n+1) \cap D_{\xi}$. By $x_{\eta} \notin \mathcal{O}(\mathcal{V})$, we have $g_{\xi}(x_{\eta}, k) \notin \mathcal{O}$ for each $k \ge 1$. So, we can find a sequence $\{y_{\eta, k}\}$ of points in Σ , satisfying (7b). Define R_{η} as in (7c). We can take a semi-metric function g_{η} of X_{η} which satisfies (6). Here, ranging ξ over $\mathcal{Z}(\xi)$, we set

$$\mathcal{C}_{n+1} = \bigcup \{ \mathcal{C}(\boldsymbol{\xi}) : \boldsymbol{\xi} \in \boldsymbol{\Xi}_n \} \text{ and } \boldsymbol{\Xi}_{n+1} = \bigoplus \{ \boldsymbol{\Xi}(\boldsymbol{\xi}) : \boldsymbol{\xi} \in \boldsymbol{\Xi}_n \}.$$

It is easy to check that the conditions (1)-(7) are satisfied for n+1.

By (1) and (2), $\bigcup_{n=1}^{\infty} C_n$ satisfies the conditions of Basic Lemma II except that it covers Σ . So it suffices to show

LEMMA 7. $C = \bigcup_{n=1}^{\infty} C_n$ covers Σ .

PROOF. Assume the contrary, pick some $y \in \Sigma \setminus \bigcup C$. Then there is a sequence $\{\xi(n): n \ge 0\}$ of finite sequences such that $\xi(n) \in \mathbb{Z}_n$, $\xi(n+1)_- = \xi(n)$ and $y \in E(\xi(n))$ for each $n \ge 0$ (see Claim 1 in the proof of [20, Theorem 1]). For each $m \ge 1$, the sequence $\{p_{m-1}^{n-1}(x_{\xi(n)}): n \ge m\}$ of points converges to $p_{m-1}(y)$ in $X_{\xi(m-1)}$, where p_{m-1}^{n-1} and p_{m-1} denote the projections of $X_{\xi(n-1)}$ and Σ , respectively, onto $X_{\xi(m-1)}$ (see Claim 2 in the proof of [20, Theorem 1]). Let $R = \bigcup_{n=1}^{\infty} R_{\xi(n)}$. Pick the point $z \in \Sigma$ defined by $p_R(z) = p_R(y)$ and $p_{A\setminus R}(z) = 0_{A\setminus R}$. Take some $\gamma_0 \in \Gamma$ with $z \in G_{\gamma_0}$, and an open nbd B of z in Σ such that $B \subset G_{\gamma_0}$ and

$$B = p_{m-1}(B) \times X_{R \setminus R_{\xi(m-1)}} \times p_{A \setminus R}(B)$$

for some $m \ge 1$. Since $p_{m-1}^{n-1}(x_{\xi(n)}) \rightarrow p_{m-1}(y)$ $(n \rightarrow \infty)$, there is some $k \ge m$ such that $p_{m-1}^{k-1}(x_{\xi(k)}) \in p_{m-1}(B)$. Let $g_{k-1} = g_{\xi(k-1)}$. Since $p_{k-1}(B)$ is an open nbd of $x_{\xi(k)}$ and $\{g_{k-1}(x_{\xi(k)}, i) : i \ge 1\}$ is a nbd base of $x_{\xi(k)}$ in $X_{\xi(k-1)}$, we can choose some $l \ge 1$ such that $\overline{g_{k-1}(x_{\xi(k)}, l)} \subset p_{k-1}(B)$. There is some finite $q \subset A \setminus R$ and a q-basic open nbd W_q of $0_{A \setminus \xi(k-1)}$ in $\Sigma_{A \setminus \xi(k-1)}$ such that $\overline{W}_q \subset X_Q \times p_{A \setminus R}(B)$, where $Q = R \setminus R_{\xi(k-1)}$. Then we have

$$\overline{g_{k-1}(x_{\xi(k)}, l)} \times \overline{W}_q \subset p_{k-1}(B) \times X_Q \times p_{\Lambda \setminus R}(B) = B \subset G_{\gamma_0}.$$

Hence $q \in M(g_{k-1}(x_{\xi(k)}, l))$. By (7b), $y_{\xi(k), l} \notin g_{k-1}(x_{\xi(k)}, l) \times W_q$ is true. On the other hand, by (7c), $\text{Supp}(y_{\xi(k), l}) \subset R_{\xi(k)} \subset R$. Since R and q are disjoint and $p_{k-1}(y_{\xi(k)}, l) \in g_{k-1}(x_{\xi(k)}, l)$, we have

$$y_{\xi(k),l} \in g_{k-1}(x_{\xi(k)}, l) \times X_Q \times \{0_{A \setminus R}\} \subset g_{k-1}(x_{\xi(k)}, l) \times W_q$$

which is a contradiction. Lemma 7 has been proved. Therefore, the proof of Theorem 4 is completed. \Box

8. Questions.

The subshrinking property of Σ -products seems to be important for the study of the shrinking one of them. So we raise

QUESTION 1. If a Σ -product of strong Σ -spaces is subnormal, is it sub-

shrinking?

We can obtain an extension of Theorem 1 if this is solved in the affirmative.

The referee of [20] asked to the author whether the results (A') and (B') in the introduction can be generalized to the semi-stratifiable case. Here, we state it more concretely.

QUESTION 2. Is a Σ -product of semi-stratifiable spaces subshrinkinng (if it has countable tightness)?

QUESTION 3. If a Σ -product of semi-stratifiable spaces is normal (and has countable tightness), is it shrinking?

Of course, if the answer to Question 2 is affirmative, then so is that of Question 3. Since σ -spaces and semi-metric spaces are semi-stratifiable, Theorems 3 and 4 are partial answers to Question 2. It is assured by [20, Theorem 3] that a Σ -product of semi-stratifiable spaces is at least subnormal.

Finally, we raise the following two questions concerning the normality of Σ -products of β -spaces. The definition of β -spaces is seen in [5, Definition 7.7].

QUESTION 4. Let Σ be a Σ -product such that each finite subproduct of it is a paracompact β -space and has countable tightness. Is then Σ normal?

QUESTION 5. Let Σ be a Σ -product such that each finite subproduct of it is a paracompact β -space. If Σ is normal, is it collectionwise normal?

Observe that both Σ -spaces and semi-stratifiable spaces are β -spaces (cf. [5, Theorem 7.8]). If Question 4 (Question 5) would be solved in the affirmative, we could obtain a nice extension of [17, Theorem 1] and [20, Theorem 1] ([18, Theorem 1] and [20, Theorem 2]).

References

- [1] Besłagić, A., Normality in products. Topology Appl. 22 (1986), pp. 71-82.
- [2] Chiba, K., On the weak B-property of Σ -products. Math. Japonica, 27 (1982), pp. 737-746.
- [3] Chiba, K., Remarks on the weak B-property of Σ-products. Q & A in Gen. Top.
 3 (1985), pp. 1-9.
- [4] Corson, H.H., Normality in subsets of product spaces. Amer. J. Math. 81 (1959), pp. 785-796.
- [5] Gruenhage, G., Generalized metric spaces. Handbook of Set Theoretic Topology (eds. K. Kunen and J.E. Vaughan), North-Holland, (1984), 423-501.
- [6] Gul'ko, S.P., On the properties of subsets of Σ -products. Soviet Math. Dokl. 18 (1977), 1438-1442.

- [7] Heath, R. W., Arcwise connectedness in semi-metric spaces. Pacific J. Math. 12 (1962), 1301-1319.
- [8] Kombarov, A. P., On tightness and normality of Σ -products. Soviet Math. Dokl. 19 (1978), 403-407.
- [9] Kunen, K., Set Theory. North-Holland, Amsterdam, 1980.
- [10] LeDonne, A., Shrinking property in Σ -products of paracompact *p*-spaces. Topology Appl. 19 (1985), 95-101.
- [11] Morita, K., Products of normal spaces with metric spaces. Math. Ann. 154 (1964), 365-382.
- [12] Nagami, K., σ -spaces and product spaces. Math. Ann. 181 (1969), 109-118.
- [13] Nagami, K., Σ -spaces. Fund. Math. 65 (1969), 169-192.
- [14] Okuyama, A., Some generalizations of metric spaces, their metrization theorems and product spaces. Sci. Rep. Tokyo Kyoiku Daigaku Sect A, 9 (1967), 236-254.
- [15] Rudin, M.E., Σ -products of metric spaces are normal. preprint.
- [16] Rudin, M.E., The shrinking property. Canad. Math. Bull. 26 (1983), 385-388.
- [17] Yajima, Y., On Σ -products of Σ -spaces. Fund. Math. 123 (1984), 29-37.
- [18] Yajima, Y., The normality of Σ -products and the perfect κ -normality of Cartesian products. J. Math. Soc. Japan 36 (1984), 689-699.
- [19] Yajima, Y., The shrinking property of Σ -products. Q & A in Gen Top. 4 (1)(1986), 85-96.
- [20] Yajima, Y., On Σ -products of semi-stratifiable spaces. Topology Appl. 25 (1987), 1-11.
- [21] Yasui, Y., On the gaps between the refinements of the increasing open coverings. Proc. Japan Acad. 48 (1972), 86-90.
- [22] Yasui, Y., Some remarks on the shrinking open covers. Math. Japonica, 30 (1984), 127-131.

Department of Mathematics Kanagawa University Yokohama, 221 Japan