
TSUKUBA J. MATH.
Vol. 13 No. 1 (1989) 83–98

THE SHRINKING PROPERTY OF $\Sigma$-PRODUCTS
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Yukinobu YAJIMA

1. Introduction.

Concerning the study of the normality of $\Sigma$-products, the following results
have been proved in order:

(A) A $\Sigma$-product of metric spaces is normal ( $b\acute{y}$ Gul’ko [6] and Rudin [15]

in 1977).

(B) A $\Sigma$-product of paracompact p-spaces is normal iff it has countable
tightness (by Kombarov [8] in 1978).

(C) A $\Sigma$-product of paracompact $\Sigma$-spaces is normal if it has countable
tightness (by the author [17] in 1984).

On the other hand, the shrinking property is between paracompactness and
normality. Rudin [16] in 1983 began to study the shrinking property of $\Sigma_{-}$

products and LeDonne [10] in 1985 extended her results. That is, they respec-
tively proved the following:

(A’) A $\Sigma$-product of metric spaces is shrinking.
(B’) A $\Sigma$-product of paracompact p-spaces is shrinking iff it is normal.
The main purpose of the present paper is to prove the further extension,

according to (C), as follows:
(C’) A $\Sigma$-product of strong $\Sigma$-spaces is shrinking iff it is normal. More-

over, we prove that the “strong $\Sigma$-spaces” in (C) can be replaced by “semi-
metric spaces”. This gives another generalization of (A’).

The weak re-property is weaker than the shrinking one. Chiba [2] proved

that a $\Sigma$-product of compact spaces has the weak S-property. So she asked in
[3] whether a $\Sigma$-product of paracompact M-spaces ( $=p$-spaces) has the weak
$\mathscr{Q}$ -property. Here, we give an affirmative answer to this question.

All results proved here were early announced in [19] as a report.

All spaces are assumed to be regular $T_{1}$ . The letters $n,$ $m,$ $k,$ $i,$ $j$ and 1
denote non-negative integers.
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2. The shrinking and subshrinking properties.

Let $S$ be a space. Let $\mathcal{G}=\{G_{\gamma} : \gamma\in\Gamma\}$ be an open cover of $S$ . We say that
$\{H_{\gamma} : \gamma\in\Gamma\}$ is a (regular) shrinking of $\mathcal{G}$ if it is a (an open) cover of $S$ such
that $\overline{H}_{\gamma}\subset G_{\gamma}$ for each $\gamma\in\Gamma$. Moreover, we say that { $H_{\gamma.n}$ : $\gamma\in\Gamma$ and $n\geqq 1$ } is
a (regular) $\sigma$-shrinking of $\mathcal{G}$ if it is a (an open) cover of $S$ and $\overline{H}_{\gamma.n}\subset G_{\gamma}$ for
each $\gamma\in\Gamma$ and $n\geqq 1$ . A space $S$ is said to be shrinking if every open cover of
$S$ has a (regular) shrinking. A space $S$ is said to be subshrinking if every
open cover of $S$ has a $\sigma$ -shrinking. The following diagram is true:

$paracompact\leftrightarrow shrinking\rightarrow nomal$

$sub\infty mcompa\alpha\downarrow\rightarrow sukhrinking\downarrow\rightarrow subnoma1^{*)}\downarrow$

We say that a space $S$ has the weak B-property [21] if every monotone
increasing open cover $\{U_{\gamma} : \gamma<\kappa\}$ (that is, $U_{\gamma}\subset U_{\gamma^{\prime}}$ , if $\gamma<\gamma^{\prime}<\kappa$) has a regular
skrinking. This property is between shrinking one and countable paracom-
pactness.

PROPOSITION 1. ([1, Corollary 3.2]). The following are equivalent for a
space $S$ :

(a) $S$ is shrinking.
(b) $S$ is normal and subshrinking.
(c) Every open cover of $S$ has a regular $\sigma$-shrinking.

Observe that subparacompact spaces and perfect spaces (each closed set is
$G_{\delta})$ are subshrinking. It follows from Proposition 1 that normal subpara-

compact spaces and perfectly normal spaces are shrinking (cf. [22, Theorems 3
and 4]).

Let $S$ be a set. A collection $\mathcal{A}$ of subsets of $S$ is said to be directed if
for any $A_{1},$ $A_{2}\in d$ there is some $A_{3}\in tA$ such that $A_{1}\cup A_{2}\subset A_{3}$ .

Since a countable increasing cover of a space is directed, the proof of [1,

Corollary 3.2] also shows

PROPOSITION 2. If every directed open cover of a space $S$ has a regular $\sigma-$

shrinking, then every directed open cover of $S$ has a regular shrinking.

Fixing an open cover of a normal space, we have

$*)$ A space $S$ is said to be subnormal if for any disjoint closed sets $A$ and $B$ there are
disjoint $G_{\delta}$ -sets $G$ and $H$ such that $A\subset G$ and $B\subset H$.
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PROPOSITION 3. Let $S$ be a normal space and $\mathcal{G}$ an open cover of S. If $\mathcal{G}$

has a $\sigma$ -shrinking, then it has a shrinking.

This was kindly pointed out by Yasui. Indeed, it follows from

PROPOSITION 4 (The proof of [22, Theorem 4]). Let $S$ be a space and $\mathcal{G}=$

$\{G_{\gamma} : \gamma\in\Gamma\}$ an open cover of S. If there is a regular $\sigma$ -shrinking { $U_{\gamma.n}$ : $\gamma\in\Gamma$

and $n\geqq 1$ } of $\mathcal{G}$ such that $\overline{U}_{\gamma,n}\subset U_{\gamma.n+1}$ for each $\gamma\in\Gamma$ and $n\geqq 1$ , then $\mathcal{G}$ has a
shrinking.

3. Theorems and corollaries.

As $\Sigma$-products are well-known, they are dealt with not here but in the next
section.

A space $X$ is called a strong $\Sigma$-space ( $\Sigma$-space) [13] if there are a $\sigma$-locally

finite closed cover $\mathcal{F}$ of $X$ and a cover $ j\zeta$ of $X$ by (countably) compact sets
such that, whenever $ K\in J\zeta$ and $U$ is open in $X$ with $K\subset U,$ $K\subset F\subset U$ for some
$F\in \mathcal{F}$ .

Strong $\Sigma$-spaces and subparacompact $\Sigma$-spaces are coincident. The class
of (strong) $\Sigma$-spaces is broad in the sense that it contains the classes of $\sigma-$

spaces and (paracompact) M-spaces below.
Our main theorem is as follows:

THEOREM 1. A $\Sigma$-product of strong $\Sigma$-spaces is shrinking iff it is normal.

By Theorem 1 and [18, Theorem 1], we have

COROLLARY 1. Let $\Sigma$ be a $\Sigma$ -product of paracompact $\Sigma$-spaces. Then the
following are equivalent:

(a) $\Sigma$ is collectionwise normal.
(b) $\Sigma$ is normal.
(c) $\Sigma$ is shrinking.

Recall that a paracompact M-space ( $=p$-space) [11] means the inverse image
of a metric space by a perfect map.

THEOREM 2. Let $\Sigma$ be a $\Sigma$-product of paracompact M-spaces. Then every

directed open cover of $\Sigma$ has a regular shrinking.

This result immediately gives an affirmative answer to the question in [3].

That is,
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COROLLARY 2. A $\Sigma$ -product of paracompact M-spaces has the weak $\mathscr{Q}-$

property.

In particular, we have

COROLLARY 3. A $\Sigma$-product of paracompact M-spaces is countably para-
compact.

Recall that a $\sigma$ -space [14] is a space with a $\sigma$ -locally finite (closed) net.

THEOREM 3. A $\Sigma$-product of $\sigma$ -spaces is subshrinking.

A space $X$ is said to be semi-metric (cf. [7]) if it has a function $g$ of $ X\times$

$\{n:n\geqq 1\}$ into the topology of $X$, satisfying
(i) $\{g(x, n):n\geqq 1\}$ is a neighborhood $(=nbd)$ base of $x$ for each $x\in X$,

(ii) $y\in\bigcap_{n=1}^{\infty}g(x_{n}, n)$ implies that $\{x_{n}\}$ converges to $y$ .
We call the function $g$ a semi-metric function of $X$. Note that a space $X$ is
semi-metric iff it is first countable and semi-stratifiable.

THEOREM 4. A $\Sigma$-product of semi-metric spaces is subshrinking.

By Proposition 1 and Theorem 4, we have

COROLLARY 4. A $\Sigma$-product of semi-metric spaces is shrinking iff it is
normal.

4. Notations for $\Sigma$-products.

Let $\{X_{\lambda} : \lambda\in\Lambda\}$ be a collection of spaces. Let $X=\Pi_{\lambda\in\Lambda}X_{\lambda}$ be the product
of $X_{\lambda},$ $\lambda\in\Lambda$ . Take a point $0=(O_{\lambda})\in X$. For each $x=(x_{\lambda})\in X$, let $Supp(x)=$

$\{\lambda\in\Lambda:x_{\lambda}\neq 0_{\lambda}\}$ . Then the subspace $\Sigma=$ { $x\in X:Supp(x)$ is at most countable}
of $X$ is called a $\Sigma$-product [4] of spaces $X_{\lambda},$ $\lambda\in\Lambda$ . Such a point $ 0=(0_{\lambda})\in\Sigma$ is
called the base point of $\Sigma$ . Such a space $\Sigma$ is called a $\Sigma$-product of $\cdots$ spaces if
each $X_{\lambda}$ is $a\ldots$ space.

Here we must prepare some notations of $\Sigma$-products for the proofs of our
theorems.

For the index set $\Lambda$ , we denote by $\Lambda_{\omega}$ the set of all non-empty countable
subsets of $\Lambda$ . For each $R\in\Lambda_{\omega}$ , $X_{R}$ and $\Sigma_{\Lambda\backslash R}$ denote the countable product
$\Pi_{\lambda\in R}X_{\lambda}$ and the $\Sigma$-product of $X_{\lambda},$ $\lambda\in\Lambda\backslash R$ , with the base point $(0_{\lambda})_{\lambda\in\Lambda\backslash R}$ , re-
spectively. Moreover, $p_{R}$ and $p_{\Lambda\backslash R}$ denote the projections of $\Sigma$ onto $X_{R}$ and
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$\Sigma_{\Lambda\backslash R}$ , respectively.
Let $--$ be an index set such that one can assign $R_{\xi}\in\Lambda_{\omega}$ for each $\xi\in--$ .

Then $X_{R_{\xi}},$ $\Sigma_{\Lambda\backslash R_{\xi}},$
$p_{R_{\xi}}$ and $p_{\Lambda\backslash R_{\xi}}$ are abbreviated by $X_{\xi},$ $\Sigma_{\Lambda\backslash \xi},$ $p_{\xi}$ and $p_{\Lambda\backslash \xi}$ , respec-

tively.
Note that strong $\Sigma$-spaces, $\sigma$ -spaces and semi-metric spaces are subpara-

compact and that the three classes of these spaces and the class of paracompact
M-spaces are all countably productive. So, in case of $\Sigma$ being a countable
product, all our theorems are trivial.

Henceforth, all $\Sigma$-products are assumed to be proper. That is, we assume
without special mention that the index set $\Lambda$ is uncountable and each space $X_{\lambda}$ ,
$\lambda\in\Lambda$ , contains the point $1_{\lambda}$ different from $0_{\lambda}$ .

For each $R\in\Lambda_{\omega}$ and finite $ r\subset\Lambda$ with $ R\cap r=\emptyset$ , consider an open nbd $W_{r}$ of
$0_{\Lambda\backslash R}(=(0_{\lambda})_{\lambda\in\Lambda\backslash R})$ in $\Sigma_{\Lambda\backslash R}$ . The open nbd $W_{r}$ is said to be r-basic if

$W_{r}=(\Pi\{X_{\lambda} : \lambda\in\Lambda\backslash (R\cup r)\}\times\Pi\{W_{\lambda} : \lambda\in r\})\cap\Sigma_{\Lambda\backslash R}$ ,

where $W_{\lambda}$ is an open nbd of $0_{\lambda}$ in $X_{\lambda}$ with $1_{\lambda}\not\in W_{\lambda}$ for each $\lambda\in r$ .
For each $R\in\Lambda_{\omega}$ , a subset $E$ of $\Sigma$ is said to be R-cylindrically closed in $\Sigma$

(cf. [20]) if $p_{R^{-1}}p_{R}(E)=E$ and $p_{R}(E)$ is closed in $X_{R}$ .
For two index sets $\Delta$ and $\Xi,$ $\Delta\oplus_{-}^{-}$ denotes the disjoint sum of $\Delta$ and $\Xi$ .

5. Basic lemmas.

Let $\Sigma$ be the $\Sigma$-product of spaces $X_{\lambda},$ $\lambda\in\Lambda$ , with the base point $ 0=(0_{\lambda})\in\Sigma$ .
Let $\mathcal{G}=\{G_{\gamma} : \gamma\in\Gamma\}$ be an open cover of $\Sigma$ .

For each subset of $F$ of $X_{R}$ , where $R\in\Lambda_{\omega}$ , we put
$M^{*}(F)=\{r\subset\Lambda\backslash R:r$ is a non-empty finite set and there is an r-basic open

nbd $W_{r}$ of $0_{\Lambda\backslash R}$ such that $\overline{F}\times\overline{W}_{r}\subset G_{\gamma_{1}}\cup\cdots\cup G_{\gamma_{m}}$ for some finite $\gamma_{1},$ $\cdots$ , $\gamma_{m}\in\Gamma$ }.

LEMMA 1. Let $R\in\Lambda_{\omega}$ . Let $F$ be a non-empty subset of $X_{R}$ . If
$p_{R^{-1}}(F)\subset\cup\{(p_{\Lambda\backslash R})^{-1}(W_{r}):r\in M^{*}(F)\}$ ,

then there is a pairwise disjoint subcollection $\{r(\delta):\delta<\omega_{1}\}$ of $M^{*}(F)$ .

PROOF. The proof is essentially due to Rudin [16]. Take any $r(O)\in M^{*}(F)$ .
For each $\delta<\omega_{1}$ , assume that there is a pairwise disjoint subcollection $\{r(\zeta):\zeta<\delta\}$

of $M^{*}(F)$ . Let $Q=\cup\{r(\zeta):\zeta<\delta\}$ . Then $Q\in\Lambda_{\omega}$ with $ Q\cap R=\emptyset$ . Let $N=$

$\{r\in M^{*}(F):r\cap Q\neq\emptyset\}$ . It suffices to show that $\{(p_{\Lambda\backslash R})^{-1}(W_{r}):r\in N\}$ does not
cover $p_{R^{-1}}(F)$ . Pick $x\in F$ . We take the point $ y=(y_{\lambda})\in\Sigma$ defined by $p_{R}(y)=x$ ,
$y_{\lambda}=1_{\lambda}$ for each $\lambda\in Q$ and $y_{\lambda}=0_{\lambda}$ for each $\lambda\in\Lambda\backslash (R\cup Q)$ . Then we have $ y\in$

$p_{R^{-1}}(F)\backslash \cup\{(p_{\Lambda\backslash R})^{-1}(W_{r}):r\in N\}$ .
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BASIC LEMMA I. Let $\Sigma,$ $\mathcal{G}$ and $M^{*}(\cdot)$ be the same ones as above. Assume
that the $\Sigma$-product $\Sigma$ is normal. If there is a $\sigma$ -locally finite closed cover
$\{E(\xi);\xi\in\Delta^{+}\}$ of $\Sigma$ and for each $\xi\in\Delta^{+}$ one can assign $R_{\xi}\in\Lambda_{\xi}$ such that

$p_{\xi^{-1}}p_{\xi}(E(\xi))\subset\cup\{(p_{\Lambda\backslash \xi})^{-1}(W_{r}):r\in M^{*}(p_{\xi}(E(\xi)))\}$ ,

then $\mathcal{G}$ has a $\sigma$ -shrinking.

PROOF. Pick $\xi\in\Delta^{+}$ . Let $F_{\xi}=p_{\xi}(E(\xi))$ . It follows from Lemma 1 that there
is a pairwise disjoint subcollection $\{r(\beta):\beta<\omega_{1}\}$ of $M^{*}(F_{\xi})$ . For each $\beta<\omega_{1}$ ,

we can choose a finite subset $\phi(\xi, \beta)$ of $\Gamma$ such that $\overline{F}_{\xi}\times\overline{W}_{r(\beta)}\subset\cup\{G_{\gamma} : \gamma\in\phi(\xi, \beta)\}$ .
It follows from the $\Delta$-system lemma (for example, see [9, p. 49]) that there is
a $\Delta$-system $\{\phi(\xi, \beta_{\delta}):\delta<\omega_{1}\}$ with the root $\theta(\xi)$ . We may rewrite $\{\beta_{\delta} : \delta<\omega_{1}\}$

by $\{\delta:\delta<\omega_{1}\}$ for brevity. Then it satisfies
(i) $\{r(\delta):\delta<\omega_{1}\}$ is pairwise disjoint collection of finite subsets of $\Lambda\backslash R_{\xi}$ ,

(ii) $\overline{F}_{\xi}\times\overline{W}_{r(\delta)}\subset\cup\{G_{\gamma} : \gamma\in\phi(\xi, \delta)\}$ and $\phi(\xi, \delta)$ is a finite subset of $\Gamma$,

(iii) $\phi(\xi, \delta)\cap\phi(\xi, \delta^{\prime})=\theta(\xi)$ for each $\delta,$ $\delta^{\prime}<\omega_{1}$ with $\delta\neq\delta^{\prime}$ .
By the normality of $\Sigma$ and (ii), for each $\delta<\omega_{1}$ there is a finite collection

$\{U(\xi, \delta, \gamma):\gamma\in\phi(\xi, \delta)\}$ of open sets in $\Sigma$ such that

$\overline{F}_{\xi}\times\overline{W}_{r(\delta)}\subset\cup\{U(\xi, \delta, \gamma):\gamma\in\phi(\xi, \delta)\}$ ,

$\overline{U(\xi,\delta,\gamma)}\subset G_{\gamma}$ whenever $\gamma\in\phi(\xi, \delta)$ .

It should be noted by (i) that the $\Sigma$-product $\Sigma_{\Lambda\backslash \xi}$ (see Section 4) is covered by
$\{W_{r(\delta)} : \delta<\omega_{1}\}$ . By (iii), we have

$E(\xi)\subset p_{\xi^{-1}}(F_{\xi})=F_{\text{\’{e}}}\times\Sigma_{\Lambda\backslash \xi}=\cup\{F_{\xi}\times W_{r(\delta)} : \delta<\omega_{1}\}$

$\subset\cup$ { $U(\xi,$ $\delta,$ $\gamma):\gamma\in\phi(\xi,$ $\delta)$ and $\delta<\omega_{1}$ }

$\subset$ ( $\cup\{U(\xi,$ $\delta,$ $\gamma):\gamma\in\phi(\xi,$ $\delta)\backslash \theta(\xi)$ and $\delta<\omega_{1}\}$ ) $\cup(\cup\{G_{\gamma} : \gamma\in\theta(\xi)\})$ .
Again by the normality of $\Sigma$ , there is a finite collection $\{E(\xi, \gamma):\gamma\in\theta(\xi)\}$ of
closed sets in $\Sigma$ such that $E(\xi)$ is covered by

{ $U(\xi,$ $\delta,$ $\gamma):\gamma\in\phi(\xi,$ $\delta)\backslash \theta(\xi)$ and $\delta<\omega_{1}$ } $\cup\{E(\xi, \gamma):\gamma\in\theta(\xi)\}$

and $E(\xi, \gamma)\subset G_{\gamma}\cap E(\xi)$ for each $\gamma\in\theta(\xi)$ . Put $E(\xi, \delta, \gamma)=\overline{U(\xi,\delta,\gamma})\cap E(\xi)$ for each
$\gamma\in\phi(\xi, \delta)\backslash \theta(\xi)$ and $\delta<\omega_{1}$ . Then

{ $E(\xi,$ $\delta,$ $\gamma):\gamma\in\phi(\xi,$ $\delta)\backslash \theta(\xi)$ and $\delta<\omega_{1}$ } $\cup\{E(\xi, \gamma):\gamma\in\theta(\xi)\}$

is a collection of closed sets in $\Sigma$ such that it covers $E(\xi),$ $E(\xi, \gamma)\subset G_{\gamma}$ for each
$\gamma\in\theta(\xi)$ and $E(\xi, \delta, \gamma)\subset G_{\gamma}$ for each $\gamma\in\phi(\xi, \delta)\backslash \theta(\xi)$ and $\delta<\omega_{1}$ .

We represent $\Delta^{+}=\bigcup_{n=1}^{\infty}\Delta_{n}^{+}$ such that $\{E(\xi):\xi\in\Delta_{n}^{+}\}$ is locally finite in $\Sigma$
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for each $n\geqq 1$ . Now, we put

$H_{\gamma.n}=$ ( $\cup\{E(\xi,$ $\delta,$ $\gamma):\xi\in\Delta_{n}^{+},$ $\delta<\omega_{1}$ and $\gamma\in\phi(\xi,$ $\delta)\backslash \theta(\xi)\}$ )

$\cup$ ( $\cup\{E(\xi,$ $\gamma):\xi\in\Delta_{n}^{+}$ and $\gamma\in\theta(\xi)\}$ )

for each $\gamma\in\Gamma$ and $n\geqq 1$ . It is easy to see that { $H_{\gamma,n}$ : $\gamma\in\Gamma$ and $n\geqq 1$ } is a
cover of $\Sigma$ such that $H_{\gamma,n}\subset G_{\gamma}$ for each $\gamma\in\Gamma$ and $n\geqq 1$ . We show that each
$H_{\gamma,n}$ is closed in $\Sigma$ . Pcik any $\gamma_{0}\in\Gamma$ and $n_{0}\geqq 1$ . By $E(\xi, \gamma_{0})\subset E(\xi),$ { $E(\xi, \gamma_{0})$ :
$\xi\in\Delta_{n_{0}}^{+}$ with $\gamma_{0}\in\theta(\xi)$ } is a locally finite collection of closed sets in $\Sigma$ . It fol-
lows from (iii) that

{ $E(\xi,$ $\delta,$ $\gamma_{0}):\delta<\omega_{1}$ with $\gamma_{0}\in\phi(\xi,$ $\delta)\backslash \theta(\xi)$ }

consists of at most one member for each $\xi\in\Delta_{n_{0}^{+}}$ . So, by $E(\xi, \delta, \gamma_{0})\subset E(\xi)_{f}$

{ $E(\xi,$ $\delta,$ $\gamma_{0}):\xi\in\Delta_{n_{0}^{+}}$ and $\delta<\omega_{1}$ with $\gamma_{0}\in\phi(\xi,$ $\delta)\backslash \theta(\xi)$ }

is a locally finite collection of closed sets in $\Sigma$ . By the choice of $H_{\gamma_{0},n_{0}}$ , it is
closed in $\Sigma$ . Therefore { $H_{\gamma.n}$ : $\gamma\in\Gamma$ and $n\geqq 1$ } is a $\sigma$ -shrinking of $\mathcal{G}$ . $\square $

Next, for each subset $F$ of $X_{R}$ , where $R\in\Lambda_{\omega}$ , we put

$M(F)=\{r\subset\Lambda\backslash R:r$ is a non-empty finite set and there is an r-basic
open nbd $W_{r}$ of $0_{\Lambda\backslash R}$ in $\Sigma_{\Lambda\backslash R}$ such that $\overline{F}\times\overline{W}_{r}\subset G_{\gamma}$ for some $\gamma\in\Gamma$ }.

Note that Lemma 1 is also true for the $M(F)$ instead of $M^{*}(F)$ .

BASIC LEMMA II. Let $\Sigma,$ $\mathcal{G}$ and $M(\cdot)$ be the same ones as above. If there
is a $\sigma$-locally finite closed (open) cover $\{E(\xi):\xi\in\Delta^{+}\}$ of $\Sigma$ and for each $\xi\in\Delta^{+}$

one can assign $R_{\xi}\in\Lambda_{\omega}$ such that

$p_{\xi^{-1}}p_{\xi}(E(\xi))\subset\cup\{(p_{\Lambda\backslash \xi})^{-1}(W_{r});r\in M(p_{\xi}(E(\xi)))\}$ ,

then $\mathcal{G}$ has a (regular) $\sigma$ -shrinking.

PROOF. The proof is simpler than the previous one. Let $F_{\xi}=p_{\xi}(E(\xi))$ for
each $\xi\in\Delta^{+}$ . It follows from Lemma 1 for $M(\cdot)$ that there is a pairwise disjoint
subcollection $\{r(\delta):\delta<\omega_{1}\}$ of $M(F_{\xi})$ . We can choose some $\gamma(\xi, \delta)\in\Gamma$ such that
$\overline{F}_{\xi}\times\overline{W}_{r(\delta)}\subset G_{\gamma(\xi.\delta)}$ for each $\xi\in\Delta^{+}$ and $\delta<\omega_{1}$ . Without loss of generality, we
may assume that all $\gamma(\xi, \delta),$ $\delta<\omega_{1}$ , are the same or different. So we put

$\Delta^{1}=$ { $\xi\in\Delta^{+}:$ All $\gamma(\xi,$ $\delta),$ $\delta<\omega_{1}$ , are the same},

$\Delta^{2}=$ { $\xi\in\Delta^{+}:$ All $\gamma(\xi,$ $\delta),$ $\delta<\omega_{1}$ , are different}.

Then $\Delta^{+}=\Delta^{1}\oplus\Delta^{2}$ . Moreover, we may put $\gamma_{\xi}=\gamma(\xi, \delta)$ for each $\xi\in\Delta^{1}$ and $\delta<\omega_{1}$ .
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Similarly, we can check that $\overline{E(\xi)}\subset G_{\gamma}$ for each $\xi\in\Delta^{1}$ .
Let $\Delta^{+}=U_{n=1}^{\infty}\Delta_{n}^{+}$ such that $\{E(\xi):\xi\in\Delta_{n}^{+}\}$ is locally finite in $\Sigma$ for each

$n\geqq 1$ . Here, we put

$H_{\gamma n}=$ ( $\cup\{E(\xi):\xi\in\Delta_{n}^{+}\cap\Delta^{1}$ with $\gamma_{\xi}=\gamma\}$ ) $\cup$

( $\cup\{(F_{\xi}\times W_{r(\delta)})\cap E(\xi):\xi\in\Delta_{n}^{+}\cap\Delta^{2}$ and $\delta<\omega_{1}$ with $\gamma(\xi,$ $\delta)=\gamma\}$ )

for each $\gamma\in\Gamma$ and $n\geqq 1$ . Then { $H_{\gamma.n}$ : $\gamma\in\Gamma$ and $n\geqq 1$ } is a (an open) cover of
$\Sigma$ . Moreover, we can show that $\overline{H}_{\gamma.n}\subset G_{\gamma}$ for $\gamma\in\Gamma$ and $n\geqq 1$ . This verifica-
tion is similar to the previous one. Therefore { $H_{\gamma.n}$ : $\gamma\in\Gamma$ and $n\geqq 1$ } is a (re-

gular) $\sigma$-shrinking of $\mathcal{G}$ . $\square $

Basic Lemmas I and II are necessary for the proofs of Theorem 1 and
others, respectively.

6. Proof of Theorem 1.

LEMMA 2 ([13, Lemma 1]). Let $X$ be a strong $\Sigma$-space. Then there is a
sequence $\{\mathcal{F}_{n}\}$ of locally finite closed covers of $X$, satesfying

(a) $\mathcal{F}_{n}=\{F(\alpha_{1}\cdots\alpha_{n}):\alpha_{1},$ $\cdots$ , $\alpha_{n}\in\Omega$ { for each $n\geqq 1$ ,
(b) $F(\alpha_{1}\cdots\alpha_{n})=\cup\{F(\alpha_{1}\cdots\alpha_{n}\alpha_{n+1});\alpha_{n+1}\in\Omega\}$ for each $\alpha_{1},$

$\cdots$ , $\alpha_{n}\in\Omega$ ,
(c) for each $x\in X$, there is a sequence $\alpha_{1},$ $\alpha_{2},$

$\cdots\in\Omega$ such that
(i) $\bigcap_{n=1}^{\infty}F(\alpha_{1}\cdots\alpha_{n})$ is a compact set containing $x$ ,

(ii) if $\{D_{n}\}$ is a decreasing sequence of non-empty closed sets in $X$ such
that $D_{n}\subset F(\alpha_{1}\cdots\alpha_{n})$ for each $n\geqq 1$ , then $\bigcap_{n=1}^{\infty}D_{n}\neq\emptyset$ .

The above sequence $\{\mathcal{F}_{n}\}$ is a called a spectral strong $\Sigma$-net [13] of $X$

Moreover, the sequence $\{F(\alpha_{1}\cdots\alpha_{n}):n\geqq 1\}$ in (c) is called a local $\Sigma$-net at $x$ .
Lemma 2 was used in $[17, 18]$ .
For an $n\times n$ matrix $\xi=(\alpha_{ij})_{i.j\leq n}$ and $1\leqq k\leqq n$ , the $k\times k$ matrix $(\alpha_{ij})_{i.j\leq k}$ is

denoted by $\xi|k$ . In particular, $\xi|n-1$ is often abbreviated by $\xi_{-}$ and $\xi|0$ im-
plies the $0\times 0$ matrix $(\emptyset)$ .

PROOF OF THEOREM 1. Let $\Sigma$ be the $\Sigma$-product of strong $\Sigma$-spaces $X_{\lambda}$ ,
$\lambda\in\Lambda$ , with the base point $ 0=(0_{\lambda})\in\Sigma$ , and assume that $\Sigma$ is normal. Let $\mathcal{G}=$

$\{G_{\gamma} : \gamma\in\Gamma\}$ be any open cover of $\Sigma$ . We use the notation $M^{*}(\cdot)$ defined in the
previous section.

For each $n\geqq 0$ , we construct an index set $\Delta_{n}=\Delta_{n}^{+}\oplus_{-n}^{-}$ of $n\times n$ matrices
such that for each $\xi\in\Delta_{n}$ one can assign $ E(\xi)\subset\Sigma$ and for each $\xi\in--n$ one can
assign $ x_{\xi}\in\Sigma$ and $R_{\xi}\in\Lambda_{\omega}$ , satisfying the following conditions (1)$-(6)$ for each
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$n\geqq 1$ :
(1) For each $\mu\in_{-n-1}-$ , $\{F(\alpha_{n1}\cdots\alpha_{nk}):\alpha_{n1}, \cdots, \alpha_{nk}\in\Omega(\mu)\}$ , $k\geqq 1$ , is a

spectral strong $\Sigma$-net of $X_{\mu}$ .
(2) $\Delta_{n}=$ { $\xi=(\alpha_{ij})_{i,j\leq n}$ : $\xi_{-\in}-\cdot-n-1$ and $\alpha_{ij}\in\Omega(\xi|i-1)$ for $1\leqq i,$ $j\leqq n$ } and $\Delta_{0}=$

$\{(\emptyset)\}$ .
(3) For each $\xi=(\alpha_{ij})_{i,j\leq n}\in\Delta_{n}$ ,

$E(\xi)=\bigcap_{i=1}^{n}(p_{\xi 1i-1})^{-1}(F(\alpha_{i1}\cdots\alpha_{in}))$

and $ E(\emptyset)=\Sigma$ .
(4) $\Delta_{n}^{+}=\{\xi\in\Delta_{n} : E(\xi)\subset\cup\{(p_{\Lambda\backslash \xi-})^{-1}(W_{r});r\in M^{*}(p_{\xi-}(E(\xi)))\}\}$ .
(5) For each $\xi\in\Xi_{n},$ $x_{\xi}\in E(\xi)\backslash \cup\{(p_{\Lambda\backslash \xi_{-}})^{-1}(W_{r}):r\in M^{*}(p_{\xi_{-}}(E(\xi)))\}$ .
(6) For each $\xi\in\Xi_{n},$ $R_{\xi}=R_{\xi-}\cup Supp(x_{\xi})$ .
Using Lemma 2, this construction is easily performed. Note that $E(\xi)$ is

an $R_{\xi_{-}}$-cylindrically closed set in $\Sigma$ (see Section 4) such that $E(\xi)\subset E(\xi_{-})$ for
each $\xi\in\Delta_{n}$ and $n\geqq 1$ . It is verified that $\{E(\xi):\xi\in\Delta_{n}\}$ is locally finite in $\Sigma$ for
each $n\geqq 1$ . Let $\Delta^{+}=\bigcup_{n=1}^{\infty}\Delta_{n}^{+}$ . Considering $R_{\xi-}$ instead of $R_{\xi}$ , the $\sigma$ -locally
finite collection $\{E(\xi):\xi\in\Delta^{+}\}$ of closed sets in $\Sigma$ satisfies the conditions of
Basic Lemma I except the following:

LEMMA 3. $\{E(\xi):\xi\in\Delta^{+}\}$ covers $\Sigma$ .

PROOF. Assuming the contrary, pick some $y\in\Sigma\backslash \cup\{E(\xi):\xi\in\Delta^{+}\}$ . By (1)

and the choice of $y$ , we can inductively choose a sequence $\{\alpha_{ij} ; i, j\geqq 1\}$ such
that for each $n\geqq 1\xi(n)=(\alpha_{ij})_{i,j\leq n-n}\in-$ and $\{F(\alpha_{n1}\cdots\alpha_{nk});k\geqq 1\}$ is a local $\Sigma_{-}$

net at $p_{\xi(n-1)}(y)$ in $X_{\xi(n-1)}$ , where $\alpha_{nk}\in\Omega(\xi(n-1))$ and $\xi(0)=(\emptyset)$ . Let $R=$

$\bigcup_{n=1}^{\infty}R_{\xi(n)}$ . Then $R\in\Lambda_{\omega}$ . In this proof, $p_{\xi(n-1)}$ is abbreviated by $p_{n-1}$ . Put
$K_{n}=\bigcap_{k\geq n}p_{n-1}(E(\xi(k)))$ for each $n\geqq 1$ . Since $p_{n-1}(E(\xi(k))$ is contained in
$F(\alpha_{n1}\cdots\alpha_{nk})$ for each $k\geqq n$ , it follows from (i) of (c) in Lemma 2 that $K_{n}$ is
compact. Since $y\in E(\xi(k))$ for each $k\geqq 1$ , we have $p_{n-1}(y)\in K_{n}$ . Note that
$p_{n-1}^{n}(K_{n+1})\subset K_{n}$ , where $p_{n-1}^{n}$ is the projection of $X_{\xi(n)}$ onto $X_{\xi(n-1)}$ . Hence
$\{K_{n}, p_{n-1}^{n}|K_{n}\}$ is an inverse sequence of non-empty compact spaces. Then the
limit $K=\lim_{\leftarrow}\{K_{n}, p_{n-1}^{n}|K_{n}\}$ is non-empty and compact. Since each $p_{n-1}^{n}$ is the
projection, we can consider that $K$ is a subspace of $X_{R}$ . So there are some
finite $\gamma_{1},$ $\cdots$ , $\gamma_{m}\in\Gamma$ such that $K\times\{0_{\Lambda\backslash R}\}\subset G_{\gamma_{1}}\cup\cdots\cup G_{\gamma_{m}}$ . Take some open sets
$U$ and $V$ in $X_{R}$ and $\Sigma_{\Lambda\backslash R}$ , respectively, such that $K\subset U,$ $0_{\Lambda\backslash R}\in V$ and $ U\times V\subset$

$G_{\gamma_{1}}\cup\cdots\cup G_{\gamma_{m}}$ .

CLAIM. $p_{n-1}(E(\xi(n))\times X_{Q(n)}\subset U$ for some $n\geqq 1$ , where $Q(k)=R\backslash R_{\xi(k-1)},$ $k\geqq 1$ .
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PROOF. Assume the contrary. We can take some

$\mathcal{U}_{n}\in(p_{n-1}(E(\xi(n))\times X_{Q(n)})\backslash U$

for each $n\geqq 1$ . Pick $n\geqq 1$ . Put $L_{nk}=\{p_{n-1}^{\infty}(u_{k}), p_{n-1}^{\infty}(u_{k+I}), \cdots\}$ for each $k\geqq n$ ,
where $p_{n-1}^{\infty}$ is the projection of $X_{R}$ onto $X_{\xi(n-1)}$ . Since $L_{nk}\subset p_{n-1}(E(\xi(k)))$ , we
have

$\overline{L}_{nk}\subset\overline{p_{n-1}(E(\xi(k)))}\subset F(\alpha_{n1}\cdots\alpha_{nk})$

for each $k\geqq n$ . Since $\{F(\alpha_{n1}\cdots\alpha_{nk}):k\geqq 1\}$ is a local $\Sigma$-net at $p_{n-1}(y)$ in $X_{\xi(n-1)}$ ,

it follows from (ii) of (c) in Lemma 2 that $\bigcap_{k\geq n}\overline{L}_{nk}$ is non-empty. Let $L_{n}=$

$\bigcap_{k\geq n}\overline{L}_{nk}$ . Then we have $L_{n}\subset K_{n}$ . Moreover, by $p_{n-1}^{n}(L_{n+1k})=L_{nk}$ , we have
$p_{n-1}^{n}(L_{n+1})\subset L_{n}$ . Hence $\{L_{n}, p_{n-1}^{n}|L_{n}\}$ is an inverse sequence of non-empty
compact spaces. Then the limit $L=\lim_{\leftarrow}\{L_{n}, p_{n-1}^{n}|L_{n}\}$ is a non-empty subspace
of $K(\subset X_{R})$ . Pick some $z\in L$ . Since $p_{n-1}^{\infty}(z)\in L_{n}\subset\overline{L}_{nn}$ for each $n\geqq 1$ , the $z$

is a cluster point of $\{u_{n}\}$ in $X_{R}$ . Since each $u_{n}$ is not in $U,$ $z$ is not in $U$ .
On the other hand, we have $z\in L\subset K\subset U$ . This is a contradiction. Claim has
been proved.

Now, let $p_{n-1}(E(\xi(n)))\times X_{Q(n)}\subset U$ . Since $X_{Q(n)}\times V$ is an open nbd of $0_{\Lambda\backslash \xi(n-1)}$

in $\Sigma_{\Lambda\backslash \xi(n-1)}$ , there are some finite $q\subset\Lambda\backslash R$ and a q-basic open nbd $W_{q}$ of $0_{\Lambda\backslash \xi(n-1)}$

in $\Sigma_{\Lambda\backslash \xi(n-1)}$ such that $\overline{W}_{q}\subset X_{Q(n)}\times V$. Then we have

$\overline{p_{n-1}(E(\xi(n)))}\times\overline{W}_{q}=p_{n-1}(E(\xi(n)))\times\overline{W}_{q}\subset U\times V\subset G_{\gamma_{1}}\cup\cdots\cup G_{\gamma_{m}}$ .
Hence $q\in M^{*}(p_{n-1}(E(\xi(n))))$ . Remember $\xi(n)\in\Xi_{n}$ . By (5), $x_{\xi(n)}\not\in p_{n-1}(E(\xi(n)))$

$\times W_{q}$ is true. By (6), $Supp(x_{\xi(n)})\subset R_{\xi(n)}\subset R$ . Since $R$ and $q$ are disjoint, we
obtain

$x_{\xi(n)}\in p_{n-1}(E(\xi(n)))\times X_{Q(n)}\times\{0_{\Lambda\backslash R}\}\subset p_{n-1}(E(\xi(n)))\times W_{q}$ .
This is a contradiction. Lemma 3 has been proved. $\square $

Thus, Basic Lemma 1 assures that $\mathcal{G}$ has a $\sigma$ -shrinking. Since $\Sigma$ is normal,

it follows from Proposition 1 or 3 that $\mathcal{G}$ has a shrinking. The proof of Theo-
rem 1 is completed. $\square $

7. Proofs of other theorems.

LEMMA 4. Let $X$ be a M-space. Then there is a sequence $\{\mathcal{V}_{n}\}$ of locally

finite open covers of $X$, satisfying
(a) $\mathcal{V}_{n}=\{V(\alpha_{1}\cdots\alpha_{n}):\alpha_{1}, \cdots, \alpha_{n}\in\Omega\}$ for each $n\geqq 1$ ,
(b) $V(\alpha_{1}\cdots\alpha_{n})=\cup\{V(\alpha_{1}\cdots\alpha_{n}\alpha_{n+1}):\alpha_{n+1}\in\Omega\}$ for each $\alpha_{1},$ $\cdots,$

$\alpha_{n}\in\Omega$ ,
(b) if $\bigcap_{n=1}^{\infty}V(\alpha_{1}\cdots\alpha_{n})\neq\emptyset$ and $\{D_{n}\}$ is a decreasing sequence of non-empty
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closed sets in $X$ such that $D_{n}\subset V(\alpha_{1}\cdots\alpha_{n})$ for each $n\geqq 1$ , then $\bigcap_{n=1}^{\infty}D_{n}\neq\emptyset$ .

This lemma easily follows from the definition of M-spaces in [11]. The
proof is similar to that of [12, Theorem 1] or [13, Lemma 1.4]. Note that the

intersection $\bigcap_{n=1}^{\infty}\overline{V(\alpha_{1}\cdots\alpha_{n})}$ is compact if $X$ is a paracompact M-space. The
above sequence $\{\mathcal{V}_{n}\}$ is called a spectral M-base of $X$, for the sake of con-
venience.

Since Theorems 2 and 3 are obtained below by modifying the proof of
Theorem 1, we also use the same notations as in it except $M(\cdot)$ instead of
$M^{*}(\cdot)$ .

PROOF OF THEOREM 2. Let $\Sigma$ be the $\Sigma$-product of paracompact M-spaces
$X_{\lambda},$

$\lambda\in\Lambda$ , with the base point $ 0=(0_{\lambda})\in\Sigma$ . Let $\mathcal{G}=\{G_{\lambda} : \lambda\in\Lambda\}$ be any directed
open cover of $\Sigma$ .

For each $n\geqq 0$ , we construct an index set $\Delta_{n}=\Delta_{n}^{+}\oplus_{-n}^{-}$ of $nXn$ matrices
such that for each $\xi\in\Delta_{n}$ one can assign $ U(\xi)\subset\Sigma$ and for each $\xi\in--n$ one can
assign $ x_{\xi}\in\Sigma$ and $R_{\xi}\in\Lambda_{\omega}$ , satisfying the conditions (1)$-(6)$ in the proof of
Theorem 1, where $E,$ $F,$ $M^{*}(\cdot)$ and ”spectral strong $\Sigma$-net” should be replaced

by $U,$ $V,$ $M(\cdot)$ and “spectral M-base”, respectively.
Using Lemma 4, this construction is also easy. Let $\Delta^{+}=\bigcup_{n=1}^{\infty}\Delta_{n}^{+}$ . In the

similar way to the proof of Lemma 3, we can show that $\{U(\xi):\xi\in\Delta^{+}\}$ covers
$\Sigma$ . It should be noted there that the $G_{\gamma_{1}}\cup\cdots\cup G_{\gamma_{m}}$ can be replaced by some
$G_{\gamma}\in \mathcal{G}$ , because $\mathcal{G}$ is directed. So we may use $M(p_{n-1}(U(\xi(n))))$ instead of
$M^{*}(p_{n-1}(E(\xi(n))))$ . After all, $\{U(\xi):\xi\in\Delta^{+}\}$ satisfies the conditions in the
parenthetic part of Basic Lemma II. Hence $\mathcal{G}$ has a regular $\sigma$ -shrinking. It
follows from Proposition 2 that $\mathcal{G}$ has a regular shrinking. $\square $

LEMMA 5 ([12, Theorem 1]). Let $X$ be a $\sigma$-space. Then there is a sequence
$\{\mathcal{F}_{n}\}$ of locally finite closed covers of $X$, satisfying

(a) $\mathcal{F}_{n}=\{F(\alpha_{1}\cdots\alpha_{n}):\alpha_{1}, \cdots , \alpha_{n}\in\Omega\}$ for each $n\geqq 1$ ,

(b) $F(\alpha_{1}\cdots\alpha_{n})=\cup\{F(\alpha_{1}\cdots\alpha_{n}\alpha_{n+1}):\alpha_{n+1}\in\Omega\}$ for each $\alpha_{1},$ $\cdots,$
$\alpha_{n}\in\Omega$ ,

(c) for each $x\in X$, there is a sequence $\alpha_{1},$ $\alpha_{2},$

$\cdots\in\Omega$ such that $ x\in$

$\bigcap_{n=1}^{\infty}F(\alpha_{1}\cdots\alpha_{n})$ and each open $nbd$ of $x$ contains some $F(\alpha_{1}\cdots\alpha_{n})$ .

The above sequence $\{\mathcal{F}_{n}\}$ is called a spectral $\sigma$ -net of $X$ and the sequence
$\{F(\alpha_{1}\cdots\alpha_{n}):n\geqq 1\}$ in (c) is called a local $\sigma$ -net at $x$ .

PROOF OF THEOREM 3. Let $\Sigma$ be the $\Sigma$-product of $\sigma$ -spaces $X_{\lambda},$ $\lambda\in\Lambda$ ,

with the base point $ 0=(0_{\lambda})\in\Sigma$ . Let $\mathcal{G}=\{G_{\gamma} : \gamma\in\Gamma\}$ be any open cover of $\Sigma$ .



94 Yukinobu YAJIMA

For each $n\geqq 0$ , we construct the same $\Delta_{n}=\Delta_{n}^{+}\oplus\Xi_{n},$ $E(\xi)\subset\Sigma,$ $ x_{\xi}\in\Sigma$ and
$R_{\xi}\in\Lambda_{\omega}$ as in the proof of Theorem 1. They also satisfy the same conditions
(1)$-(6)$ except that only “spectral strong $\Sigma$-net” in (1) is replaced by “spectral
$\sigma$ -net”. Similarly, it suffices from Basic Lemma II to show the following:

LEMMA 6. $\{E(\xi):\xi\in\Delta^{+}\}$ covers $\sum$ , where $\Delta^{+}=\bigcup_{n=1}^{\infty}\Delta_{n}^{+}$ .
PROOF. Assume the contrary. Pick some $y\in\Sigma\backslash \cup\{E(\xi):\xi\in\Delta^{+}\}$ . We can

inductively choose a sequence $\{\alpha_{ij} ; i, j\geqq 1\}$ such that for each $n\geqq 1\xi(n)=$

$(\alpha_{ij})_{i,jsn}\in E_{n}$ and $\{F(\alpha_{n1}\cdots\alpha_{nk}):k\geqq 1\}$ is a local $\sigma$ -net at $p_{\xi(n-1)}(y)$ in $X_{\xi(n-1)}$ ,

where $\alpha_{nh}\in\Omega(\xi(n-1))$ and $\xi(0)=(\emptyset)$ . Let $R=\bigcup_{n=1}^{\infty}R_{\xi(n)}$ . Abbreviate $p_{\xi(n-1)}$

with $p_{n-1}$ . Pick the point $ z\in\Sigma$ defined by $p_{R}(z)=p_{R}(y)$ and $p_{\Lambda\backslash R}(z)=0_{\Lambda\backslash R}$ . Take
some $\gamma_{0}\in\Gamma$ with $z\in G_{\gamma_{0}}$ . Moreover, take an open nbd $B$ of $z$ in $\Sigma$ such that
$B\subset G_{\gamma_{0}}$ and

$B=p_{m-1}(B)\times X_{R\backslash R_{\xi(m-1)}}\times p_{\Lambda\backslash R}(B)$

for some $m\geqq 1$ . By the choice of $\{F(\alpha_{i1}\cdots\alpha_{ik}):k\geqq 1\}$ , for each $i\leqq m$ we can
choose some $n_{i}\geqq 1$ such that

$p_{i-1}(z)=p_{i-1}(y)\in F(\alpha_{i1}\cdots\alpha_{in_{i}})\subset p_{i-1}(B)$ .
Let $l=\max\{n_{1}, \cdots, n_{m}, m\}$ . Then we can easily verify $p_{l-1}(E(\xi(l)))\subset p_{l-1}(B)$ . Let
$Q=R\backslash R_{\xi(l-1)}$ . Since $X_{Q}\times p_{\Lambda\backslash R}(B)$ is an open nbd of $0_{\Lambda\backslash \xi(l-1)}$ in $\Sigma_{\Lambda\backslash \xi(l-1)}$ , there
is some finite $q\subset\Lambda\backslash R$ and a q-basic open nbd $W_{q}$ of $0_{\Lambda\backslash \xi(l-1)}$ in $\Sigma_{\Lambda\backslash \xi(l-1)}$ such
that $\overline{W}_{q}\subset X_{Q}\times p_{\Lambda\backslash R}(B)$ . Then we have

$\overline{p_{l-1}(E(\xi(l))})\times\overline{W}_{q}=p_{l-1}(E(\xi(l)))\times\overline{W}_{q}\subset p_{l-1}(B)\times X_{Q}\times p_{\Lambda\backslash R}(B)$

$=B\subset G_{\gamma_{0}}$ .
Hence $q\in M(p_{l-1}(E(\xi(l))))$ . So we can obtain a contradiction in the same way
as the last part of the proof of Lemma 3. Lemma 6 has been proved. Con-
sequently, the proof of Theorem 3 is completed. $\square $

Let $\Xi$ be a set consisting of finite sequences and $(\emptyset)$ . For each $\xi=$

$(\alpha_{1}\cdots\alpha_{n-1}\alpha_{n})\in\Xi,$ $\xi_{-}$ and $\xi\oplus\alpha$ denote $(\alpha_{1}\cdots\alpha_{n-1})$ and $(\alpha_{1}\cdots\alpha_{n}\alpha)$ , respectively.
The O-tuple sequence is only $(\emptyset)$ .

PROOF OF THEOREM 4. Let $\Sigma$ be the $\Sigma$-product of semi-metric spaces $X_{\lambda}$ ,
$\lambda\in\Lambda$ , with the base point $ 0=(0_{\lambda})\in\Sigma$ . Let $\mathcal{G}=\{G_{\gamma} : \gamma\in\Gamma\}$ be any open cover
of $\Sigma$ .

For each $n\geqq 0$ , we shall construct a collection $C_{n}$ of closed sets in $\Sigma$ and
an index set $--n$ of n-tuple sequences such that for each $\xi\in-n-$ one can assign
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$R_{\xi}\in\Lambda_{\omega},$ $E(\xi)\subset\Sigma,$ $x_{\xi}\in X_{\xi_{-}},$ $\{y_{\xi.k}\}\subset\Sigma$ and a function $g_{\xi}$ , satisfying the follow-
ing conditions (1)$-(7)$ for each $n\geqq 1$ :

(1) $C_{n}=\cup\{C(\mu):\mu\in--n-1\}$ is $\sigma$-locally finite in $\Sigma$ .
(2) Each $C\in C(\mu),$ $\mu\in_{-n-1}-$ , is an $R_{\mu}$-cylindrically closed set in $\Sigma$ such that

$C\subset\cup\{(p_{\Lambda\backslash \mu})^{-1}(W_{r}):r\in M(p_{\mu}(C))\}$ .
(3) $\xi\in--n$ implies $\xi_{-}\in\Xi_{n-1}$ .
(4) $\{E(\xi):\xi\in\Xi_{n}\}$ is $\sigma$-locally finite in $\Sigma$ , for each $\xi\in-n-E(\xi)$ is an $R_{\xi_{-}^{-}}$

cylindrically closed set in $\Sigma$ and $ E(\emptyset)=\Sigma$ .
(5) For each $\mu\in\Xi_{n-1}$ ,

$ p_{\mu}(E(\mu))\subset p_{\mu}(\cup C(\mu))\cup$ ( $\cup\{p_{\mu}(E(\xi)):\xi\in--n$ with $\xi_{-}=\mu\}$ ).

(6) For each $\xi\in\Xi_{n},$
$g_{\xi}$ is a semi-metric function of $X_{\xi}$ such that

$p_{\xi-(g_{\xi}(x}^{\xi},$ $k$ )) $\subset g_{\xi_{-}}(p_{\xi_{-}^{\xi}}(x), k)$

for each $x\in X_{\xi}$ and $k\geqq 1$ , where $p_{\xi^{\xi_{-}}}$ denotes the projection of $X_{\xi}$ onto $X_{\xi-}$ and
$g_{\emptyset}$ is a semi-metric function of $X_{\emptyset}$ .

(7) For each $\xi\in--n$
’

a) $p_{\xi-}(E(\xi))\subset g_{\xi-}(x_{\xi}, n)$ ,

b) $y_{\xi.k}\in p_{\xi_{-}^{-1}}(g_{\xi_{-}}(x_{\xi}, k))\backslash \cup\{(p_{\Lambda\backslash \xi-})^{-1}(W_{r}):r\in M(g_{\xi_{-}}(x_{\xi}, k))\}$ for each $k\geqq 1$ ,

c) $R_{\xi}=R_{\xi-}\cup(\cup\{Supp(y_{\xi.k}):k\geqq 1\})$ .
The basic idea of this construction is found in [20]. The case of $n=0$ is

trivial. Assume that it has been already performed for no greater than $n$ .
Pick $\xi\in\Xi_{n}$ and fix it. Put

$\mathcal{V}=\{V:V$ is a non-empty open set in $X_{\xi}$ such that
$p_{\xi^{-1}}(V)\subset\cup\{(p_{\Lambda\backslash \xi})^{-I}(W_{r});r\in M(V)\}$ .

Let $D_{\xi}=p_{\xi}(E(\xi))$ . Observe that $D_{\xi}=(p_{\xi-}^{\xi})^{-1}(p_{\xi_{-}}(E(\xi)))$ if $n\geqq 1$ and $D_{\emptyset}=X_{z}$ . So
$D_{\xi}$ is closed in $X_{\xi}$ . Since $D_{\xi}$ is subparacompact, there is a $\sigma$-locally finite closed
cover $\mathcal{F}$ of $D_{\xi}$ , which refines

$\{V\cap D_{\xi} : V\in \mathcal{V}\}\cup\{g_{\xi}(x, n+1)\cap D_{\xi} : x\in D_{\xi}\backslash \cup \mathcal{V}\}$ .

Let $\mathcal{F}^{+}=$ { $F\in \mathcal{F};F\subset V\cap D_{\xi}$ for some $V\in \mathcal{V}$ } and $\mathcal{F}^{-}=\mathcal{F}\backslash \mathcal{F}^{+}$ . Put $C(\xi)=$

$\{C=p_{\xi^{-1}}(F):F\in \mathcal{F}^{+}\}$ . Then each $C\in C(\xi)$ satisfies (2) and $C\subset E(\xi)$ . Let $--(\xi)$

be an index set of $(n+1)$-tuple sequences such that $\mathcal{F}^{-}=\{F_{\xi\oplus\alpha} : \xi\oplus\alpha\in--(\xi)\}$ .
Take any $\eta=\xi\oplus\alpha\in\Xi(\xi)$ . Let $E(\eta)=p_{\xi^{-1}}(F_{\eta})$ . We can choose some $ x_{\eta}\in$

$D_{\xi}\backslash \cup cU(\subset X_{\xi})$ such that $p_{\xi}(E(\eta))=F_{\eta}\subset g_{\xi}(x_{\eta}, n+1)\cap D_{\xi}$ . By $x_{\eta}\not\in\cup \mathcal{V}$ , we have
$g_{\xi}(x_{\eta}, k)\not\in \mathcal{V}$ for each $k\geqq 1$ . So, we can find a sequence $\{y_{\eta.k}\}$ of points in $\Sigma$ ,

satisfying (7b). Define $R_{\eta}$ as in (7c). We can take a semi-metric function $g_{\eta}$

of $X_{\eta}$ which satisfies (6). Here, ranging $\xi$ over $\Xi(\xi)$ , we set



96 Yukinobu YAJIMA

$c_{n+1}=\cup\{C(\xi):\xi\in--n\}$ and $--n+1=\oplus\{\Xi(\xi):\xi\in--n\}$ .

It is easy to check that the conditions (1)$-(7)$ are satisfied for $n+1$ .
By (1) and (2), uee ${}_{=1}C_{n}$ satisfies the conditions of Basic Lemma II except

that it covers $\Sigma$ . So it suffices to show

LEMMA 7. $C=\cup^{\infty}{}_{n=1}C_{n}$ covers $\Sigma$ .

PROOF. Assume the contrary, pick some $y\in\Sigma\backslash \cup C$ . Then there is a
sequence $\{\xi(n);n\geqq 0\}$ of finite sequences such that $\xi(n)\in--n\xi(n+1)_{-}=\xi(n)$ and
$y\in E(\xi(n))$ for each $n\geqq 0$ (see Claim 1 in the proof of [20, Theorem 1]). For
each $m\geqq 1$ , the sequence $\{p_{m-}^{n-1_{1}}(x_{\xi(n)}):n\geqq m\}$ of points converges to $p_{m-1}(y)$ in
$X_{\xi(m-1)}$ , where $p_{m-}^{n-1_{1}}$ and $p_{m-1}$ denote the projections of $X_{\xi(n-1)}$ and $\Sigma$ , respec-
tively, onto $X_{\xi(m-1)}$ (see Claim 2 in the proof of [20, Theorem 1]). Let $R=$

$\bigcup_{n=1}^{\infty}R_{\xi(n)}$ . Pick the point $ z\in\Sigma$ defined by $p_{R}(z)=p_{R}(y)$ and $p_{\Lambda\backslash R}(z)=0_{\Lambda\backslash R}$ .
Take some $\gamma_{0}\in\Gamma$ with $z\in G_{\gamma_{0}}$ , and an open nbd $B$ of $z$ in $\Sigma$ such that $B\subset G_{\gamma_{0}}$

and
$B=p_{m-1}(B)\times X_{R\backslash R_{\xi(m-1)}}\times p_{\Lambda\backslash R}(B)$

for some $m\geqq 1$ . Since $p_{m-}^{n-1_{1}}(x_{\xi(n)})\rightarrow p_{m-1}(y)(n\rightarrow\infty)$ , there is some $k\geqq m$ such
that $p_{m-1}^{k-1}(x_{\xi(k)})\in p_{m-1}(B)$ . Let $g_{k-1}=g_{\xi(k\leftarrow I)}$ . Since $p_{k-1}(B)$ is an open nbd of
$X_{\xi(k)}$ and $\{g_{k-1}(x_{\xi(k)}, i):i\geqq 1\}$ is a nbd base of $x_{\xi(k)}$ in $X_{\xi(k-1)}$ , we can choose
some $l\geqq 1$ such that $\overline{g_{k-1}(x_{\xi(k)},l)}\subset p_{k-1}(B)$ . There is some finite $q\subset\Lambda\backslash R$ and a
q-basic open nbd $W_{q}$ of $0_{\Lambda\backslash \xi(k-1)}$ in $\Sigma_{\Lambda\backslash \xi(k-1)}$ such that $\overline{W}_{q}\subset X_{Q}\times p_{\Lambda\backslash R}(B)$ , where
$Q=R\backslash R_{\xi(k-1)}$ . Then we have

$\overline{g_{k-1}(x_{\xi(k)},l)}\times\overline{W}_{q}\subset p_{k-1}(B)\times X_{Q}\times p_{\Lambda\backslash R}(B)=B\subset G_{\gamma_{0}}$ .
Hence $q\in M(g_{k-1}(x_{\xi(k)}, l))$ . By (7b), $y_{\xi(k).l}\not\in g_{k-1}(x_{\xi(k)}, l)\times W_{q}$ is true. On the
other hand, by (7c), $Supp(y_{\xi(k).l})\subset R_{\xi(k)}\subset R$ . Since $R$ and $q$ are disjoint and
$p_{k-1}(y_{\xi(k)}, l)\in g_{k-1}(x_{\xi(k)}, l)$ , we have

$y_{\xi(k),l}\in g_{k-1}(x_{\xi(k)}, l)\times X_{Q}\times\{0_{\Lambda\backslash R}\}\subset g_{k-1}(x_{\xi(k)}, l)\times W_{q}$ ,

which is a contradiction. Lemma 7 has been proved. Therefore, the proof of
Theorem 4 is completed. $\square $

8. Questions.

The subshrinking property of $\Sigma$-products seems to be important for the study
of the shrinking one of them. So we raise

QUESTION 1. If a $\Sigma$-product of strong $\Sigma$-spaces is subnormal, is it sub-
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shrinking?
We can obtain an extension of Theorem 1 if this is solved in the affirmative.
The referee of [20] asked to the author whether the results (A) and (B’)

in the introduction can be generalized to the semi-stratifiable case. Here, we
state it more concretely.

QUESTION 2. Is a $\Sigma$-product of semi-stratifiable spaces subshrinkinng (if it
has countable tightness)?

QUESTION 3. If a $\Sigma$-product of semi-stratifiable spaces is normal (and has
countable tightness), is it shrinking?

Of course, if the answer to Question 2 is affirmative, then so is that of
Question 3. Since $\sigma$ -spaces and semi-metric spaces are semi-stratifiable, Theo-
rems 3 and 4 are partial answers to Question 2. It is assured by [20, Theorem
3] that a $\Sigma$-product of semi-stratifiable spaces is at least subnormal.

Finally, we raise the following two questions concerning the normality of
$\Sigma$-products of $\beta$-spaces. The definition of $\beta$-spaces is seen in [5, Definition 7.7].

QUESTION 4. Let $\Sigma$ be a $\Sigma$-product such that each finite subproduct of it
is a paracompact $\beta$-space and has countable tightness. Is then $\Sigma$ normal?

QUESTION 5. Let $\Sigma$ be a $\Sigma$-product such that each finite subproduct of it
is a paracompact $\beta$-space. If $\Sigma$ is normal, is it collectionwise normal?

Observe that both $\Sigma$-spaces and semi-stratifiable spaces are $\beta$-spaces (cf.

[5, Theorem 7.8]). If Question 4 (Question 5) would be solved in the affir-
mative, we could obtain a nice extension of [17, Theorem 1] and [20, Theorem
1] ([18, Theorem 1] and [20, Theorem 2]).
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