A DIRECT PROOF THAT EACH PEANO CONTINUUM WITH A FREE ARC ADMITS NO EXPANSIVE HOMEOMORPHISMS

Ву

Kazuhiro KAWAMURA

A homeomorphism $f: X \rightarrow X$ of a compact metric space X is said to be expansive if there exists a constant c>0 (called expansive constant) such that

(*) for each pair x, y of distinct points of X, there exists an integer n such that $d(f^n(x), f^n(y)) > c$, where d is a metric for X. Expansiveness does not depend on the choice of metrics for compact metric spaces.

A compact connected metric space is called a *continuum*. A *Peano continuum* means a locally connected continuum. An arc A in a continuum X with end points $\{a,b\}$ is denoted by [a,b]. bd A means $\{a,b\}$ and int A = A - bd A. An arc A in X is called a *free arc* if int A is open in X. Let (X,d) be a continuum. For a point $x \in X$ and $\varepsilon > 0$, $U(x,\varepsilon)$ denotes the ε -neighbourhood of x. The Hausdorff metric is denoted by d_H .

In this paper, we give a direct proof of the following theorem, which is a consequence of Proposition C in Hiraide [2].

THEOREM. Let X be a Peano continuum with a free arc. Then there does not exist expansive homeomorphisms of X.

The author benefits from reading Proposition C in [2] and wishes to thank to Professor K. Sakai for his helpful suggestions.

First we list known results which are necessary for the proof of Theorem.

LEMMA 1 ([3] p. 257, theorem 4). Let (X, d) be a Peano continuum. For each $\varepsilon > 0$, there exists a $\delta > 0$ such that each pair of points $x, y \in X$ with $d(x, y) < \delta$ can be joined by an arc whose diameter is less than ε .

LEMMA 2 ([3] p. 179, theorem 1). A continuum X is homeomorphic to an arc if and only if there exist two points a and b of X such that

- 1) X-a and X-b are connected and
- 2) for each $x \in X$ with $a \neq x \neq b$, X-x is not connected.

LEMMA 3 ([1] p. 63-68). Let $f: X \rightarrow X$ be an expansive homeomorphism of a compoct metric space X.

- 1) For each integer k, f^k is also expansive.
- 2) Suppose a closed subset A of X satisfies f(A)=A. Then $f \mid A$ is also expansive.
 - 3) There exist no expansive homeomorphisms of arcs and simple closed curves.

To prove Theorem, we first show the following.

(A) Let (L_n) be an increasing sequence of free arcs in X and $M=\lim L_n$ (Lim means the limit by the Hausdorff metric).

Then M is either a free arc or

a simple closed curve such that $M \cap cl(X-M)$ is a point.

Let $L_n = [p_n, q_n]$. It is easy to see that $M = cl(\bigcup L_n)$. Without loss of generality, we may assume that there exist two points p and q of M such that $p = \lim p_n$ and $q = \lim q_n$. We consider two cases.

Case a) $p \neq q$. In this case, M is a free arc. To see this, we show

1) $M=cl(\bigcup L_n)=\bigcup L_n\bigcup \{p, q\}.$

Suppose that there exists a point $u \in cl(\cup L_n) - \cup L_n \cup \{p, q\}$. We can choose a sequence u_n 's of points in L_n 's which converges to u. Since $p \neq u \neq q$, we may assume that $u_n \in \operatorname{int} L_n$. By Lemma 1, there exists a sequence A_n 's of arcs joing u and u_n and $\dim A_n \to 0$ as $n \to \infty$. On the other hand, $u_n \in \operatorname{int} L_n$ and $u \notin L_n$, and so $A_n \cap bd L_n \neq \emptyset$. Therefore there exists an integer N > 0 such that for each n > N, $\dim A_n > \min\{d(u, p), d(u, q)\}/2 > 0$, which is a contradiction. Hence $cl(\cup L_n) \subset \cup L_n \cup \{p, q\}$. Clearly $cl(\cup L_n) \supset \cup L_n \cup \{p, q\}$, and therefore $M = \cup L_n \cup \{p, q\}$. It is easy to see that M - p and M - q are connected and M - x is not connected for each $x \in M - \{p, q\}$. By Lemma 2, M is an arc. $M - \{p, q\}$ is open in X, so M is a free are.

Case b) p=q. In this case, M is a simple closed curve and $M \cap cl(X-M)$ is a point. To prove this, take $c \in \operatorname{int} L_1$ and let $A_n = [p_n, c]$ and $B_n = [q_n, c]$. Since L_n 's are free arcs, $p=q\neq c$. Applying the argument of Case a), we see that $A=\operatorname{Lim} A_n$ and $B=\operatorname{Lim} B_n$ are free arcs with end points $\{p,c\}$ and $\{q,c\}$ respectively. Clearly $M=A \cup B$ and since $A_n \cap B_n = \{c\}$, $A= \cup A_n \cup \{p\}$ and $B= \cup B_n \cup \{q\}$, we have $A \cap B = \{c, p=q\}$. Therefore M is a simple closed curve. Since M is a limit of free arcs, $M \cap cl(X-M)$ is a point.

Let \mathcal{F} be the collection defined by

 $\mathcal{F} = \big\{ K \, \big| \, \begin{array}{c} K \text{ is a subcontinuum of } X \text{ and there exists an increasing} \\ \text{sequence of free arcs which converges to } K \end{array} \big\}.$

 \mathcal{F} is a partially ordered set by the usual inclusions. We show

(B) Each totally ordered subset of \mathcal{F} has an upper bound.

Let \mathcal{H} be a totally ordered subset of \mathcal{F} and $K_0 = cl(\cup \mathcal{K})$. We must find an increasing sequence of free arcs which converges to K_0 . Notice that each $K \in \mathcal{F}$ is either a free arc or a simple closed curve by (A). We consider two cases.

Case a) Each $K \in \mathcal{F}$ is a free arc. Let $\{x_1, \cdots, x_n\} \subset K_0$ be a finite set such that $K_0 \subset \bigcup_{i=1}^n U(x_i, 1/2)$. For each $i=1, \cdots, n$, there exist $K_{a_i} \in \mathcal{F}$ and a point $p_i \in K_{a_i}$ such that $d(p_i, x_i) < 1/2$. Take a $K_1 \in \mathcal{F}$ which contains all of K_{a_1}, \cdots, K_{a_n} . Then it is easy to see that $d_H(K_1, K_0) < 1$.

Take a finite set $\{y_1, \cdots, y_m\} \subset K_0$ such that $K_0 \subset \bigcup_{i=1}^m U(y_i, 1/4)$. For each $i=1, \cdots, m$, there exist K_{b_i} and a point $q_i \in K_{b_i}$ such that $d(q_i, y_i) < 1/4$. Take a $K_2 \in \mathcal{H}$ which contains all of $K_1, K_{b_1}, \cdots, K_{b_m}$. Then $d_H(K_2, K_0) < 1/2 \cdots$. Continuing this processes, we can take an increasing sequence of free arcs which converges to K_0 .

Case b) There exists an $L \in \mathcal{K}$ which is a simple closed curve. Each $N \in \mathcal{K}$ which contains L is a simple closed curve. Hence $K_0 = L$ which is the limit of an increasing sequence of free arcs. Therefore K_0 is an upper bound of \mathcal{K} . This proves (B).

Using Zorn's lemma, we can find a maximal element M of \mathcal{F} .

Now suppose that $f: X \to X$ is an expansive homeomorphism with expansive constant c>0. If $f^n(M)=M$ for some integer $n\neq 0$, we have a contradiction by Lemma 3, 2) and 3). Thus we have $f^n(M)\neq M$ for each $n\neq 0$. Then the following holds.

- (C) C-1) diam $f^n(M) \rightarrow 0$ as $n \rightarrow \infty$ and
 - C-2) diam $f^{-n}(M) \rightarrow 0$ as $n \rightarrow \infty$.

We prove C-1). Suppose that there exist an $\varepsilon > 0$ and a subsequence (n_i) such that diam $f^{n_i}(M) > \varepsilon$. Taking a subsequence if necessary, we may assume that $f^{n_i}(M)$ converges to a continuum M_0 . Set $M_i = f^{n_i}(M)$. Again, we consider two cases.

Case a) M is a free arc. By the maximality of M, $M_i \cap M_j \subset bd \ M_i \cap bd \ M_j$ for each $i \neq j$. For each i, take a point $x_i \in M_i$ such that $d(x_i, bd \ M_i) \geq \varepsilon/2$. Without loss of generality, we may assume that x_i 's converge to a point

524

 $x \in M_0$. By Lemma 1, there exists a sequence (A_i) of arcs joing x and x_i such that diam $A_i \to 0$ as $i \to \infty$. If $x \notin M_i$ for each i, then $A_i \cap bd$ $M_i \neq \emptyset$ for each i. If $x \in M_i$ for some i, then for each $j \neq i$, either $x \notin M_j$ or $x \in bd$ $M_j \cap bd$ M_i . Therefore $A_j \cap bd$ $M_j \neq \emptyset$ for each j. In any case, diam $A_k \ge \varepsilon/2$ for each k, which is a contradiction.

Case b) M is a simple closed curve. Let $M \cap cl(X-M) = \{b\}$ and $b_i = f^{n_i}(b)$. In this case, $M_i \cap M_j = \emptyset$ or $\{b_i = b_j\} = M_i \cap M_j$ for each $i \neq j$. For each i, take a point $x_i \in M_i$ such that $d(x_i, b_i) \geq \varepsilon/2$. Using the same argument as in Case a), we have a contradiction.

The proof of C-2) is similar, so we omit it.

Finally we take an integer m such that for each n > m, diam $f^n(M) < c/2$ and diam $f^{-n}(M) < c/2$. There exists a $\delta > 0$ such that if $d(x, y) < \delta(x, y \in M)$, then $\max_{i:i=1,\dots,m} d(f^i(x), f^i(y)) < c$. Then, for distinct points x, y of M with $d(x, y) < \delta$, $d(f^i(x), f^i(y)) < c$ for each integer i. This contradiction completes the proof.

References

- [1] Aoki, N. and Shiraiwa, K., Rikigaku-kei to entropy (Dynamical systems and entropy), Kyoritsu Schuppan (1985), 1st ed., in Japanese.
- [2] Hiraide, K., Expansive homeomorphisms on compact surfaces are pseudo-Anosov, preprint.
- [3] Kuratowski, K., Topology II, Academic Press (1968).

Institute of Mathematics University of Tsukuba Ibaraki 305, Japan