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A DIRECT PROOF THAT EACH PEANO CONTINUUM
WITH A FREE ARC ADMITS NO
EXPANSIVE HOMEOMORPHISMS

By

Kazuhiro KAWAMURA

A homeomorphism f:X—X of a compact metric space X is said to be
expansive if there exists a constant ¢>0 (called expansive constant) such that

(*) for each pair x, y of distinct points of X, there exists an integer n such
that d(f™(x), f™(y))>c, where d is a metric for X. Expansiveness does not
depend on the choice of metrics for compact metric spaces.

A compact connected metric space is called a continuum. A Peano continuum
means a locally connected continuum. An arc A in a continuum X with end
points {a, b} is denoted by [a, b]. bd A means {a, b} and int A=A—bd A. An
arc A in X is called a free arc if int A is open in X. Let (X, d) be a conti-
nuum. For a point x&X and £>0, U(x, ¢) denotes the g-neighbourhood of x.
The Hausdorff metric is denoted by dg.

In this paper, we give a direct proof of the following theorem, which is a
consequence of Proposition C in Hiraide [2].

THEOREM. Let X be a Peano continuum with a free arvc. Then there does
not exist expansive homeomorphisms of X.

The author benefits from reading Proposition C in [2] and wishes to thank
to Professor K. Sakai for his helpful suggestions.
First we list known results which are necessary for the proof of [Theoreml.

LEMMA 1 ([3] p. 257, theorem 4). Let (X, d) be a Peano continuum. For
each €>0, there exists a 6>0 such that each pair of points x, y=X with d(x, y)
<0 can be joined by an arc whose diameter is less than e.

LEMMA 2 ([3] p. 179, theorem 1). A continuum X is homeomorphic to an
arvc if and only if there exist two points a and b of X such that

1) X—a and X—b are connected and

2) for each x=X with a#x+b, X—x is not connected.
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LEMMA 3 ([1] p. 63-68). Let f: X—X be an expansive homeomorphism of a
compoct metric space X.

1) For each integer k, f* is also expansive.

2) Suppose a closed subset A of X satisfies f(A)=A. Then f|A is also
expansive.

3) There exist no expansive homeomorphisms of arcs and simple closed curves.

To prove [Theoreml, we first show the following.
(A) Let (L,) be an increasing sequence of free arcs in X and M=Lim L,
(Lim means the limit by the Hausdorff metric).

Then M is either a free arc or
a simple closed curve such that MN\cl(X—M) is a point.

Let L,=[pns, go]. It is easy to see that M=cl/(\JL,). Without loss of
generality, we may assume that there exist two points p and ¢ of M such that
p=Ilim p, and ¢g=limgq,. We consider two cases.

Case a) p+#gq. In this case, M is a free arc. To see this, we show

1) M=cl(JL,)=JL,\J{p, q}.

Suppose that there exists a point uscl(\UL,)—\JL,\J{p, gq}. We can choose a
sequence u,’s of points in L,’s which converges to u. Since p+u+q, we may
assume that u,<int L,. By [Lemma ], there exists a sequence A,’s of arcs
joing u# and u, and diam A,—0 as n—oo. On the other hand, u,=int L, and
ué¢L,, and so A,N\bd L,+@. Therefore there exists an integer N>0 such
that for each n>N, diam A,>min{d(u«, p), d(u, q)}/2>0, which is a contra-
diction. Hence cl(\UL,)C\ UL ,\J{p, q}. Clearly cl(JL,)DUL,J{p, q}, and
therefore M=\UL,U{p, q}. It is easy to see that M—p and M—gq are con-
nected and M— x is not connected for each x& M—{p, q}. By M is

an arc. M—{p, q} is open in X, so M is a free are.

Case b) p=q. In this case, M is a simple closed curve and MNcl(X—M)
is a point. To prove this, take c=int L, and let A,=[pn, ¢c] and B,=[¢,, c].
Since L,’s are free arcs, p=¢g+c. Applying the argument of Case a), we see
that A=Lim A, and B=Lim B, are free arcs with end points {p, ¢} and {q, ¢}
respectively. Clearly M=AUB and since A,N\B,={c}, A=UA,U{p} and
B=UB,U{q}, we have ANB={c, p=q}. Therefore M is a simple closed
curve. Since M is a limit of free arcs, MNcl(X—M) is a point.
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Let ¢ be the collection defined by

_ {K‘ K is a subcontinuum of X and there exists an 1ncreasmg}
- sequence of free arcs which converges to K

g is a partially ordered set by the usual inclusions. We show

(B) Each totally ordered subset of & has an upper bound.

Let 4 be a totally ordered subset of ¥ and K,=c/(\UX). We must find an
increasing sequence of free arcs which converges to K, Notice that each
Ked is either a free arc or a simple closed curve by (A). We consider two

cases.
Case a) Each K% is a free arc. Let {x,, -, x,}CK, be a finite set
such that Ko \JU(xi, 1/2). For each i=1, -, n, there exist K,,=9 and a

point p;€K,, such that d(p;, x;)<1/2. Take a K,=F which contains all of
K., -, K,,. Then it is easy to see that dz(K,, K,)<l.

Take a finite set {v,, -=*, yn}C K, such that KOCQU(yi, 1/4). For each

i=1, ---, m, there exist K, and a point ¢;=K,, such that d(g;, y:)<1/4. Take
a K,=4% which contains all of K, Kj,, ---, Ky_. Then du(K,, K)<1/2:---.
Continuing this processes, we can take an increasing sequence of free arcs
which converges to K,.

Case b) There exists an L<X which is a simple closed curve. Each
Ne X which contains L is a simple closed curve. Hence K,=L which is the
limit of an increasing sequence of free arcs. Therefore K, is an upper bound
of K. This proves (B).

Using Zorn’s lemma, we can find a maximal element M of &.

Now suppose that f: X—X is an expansive homeomorphism with expansive
constant ¢>0. If f*(M)=M for some integer n+0, we have a contradiction
by Lemma 3, 2) and 3). Thus we have f*M)+M for each n+0. Then the
following holds.

(C) C-1) diam f*(M)—0 as n—oco and

C-2) diam f~*(M)—0 as n—co.

We prove C-1). Suppose that there exist an ¢>0 and a subsequence (7;)
such that diam f"i{(M)>e. Taking a subsequence if necessary, we may assume
that f"{(M) converges to a continuum M, Set M,=f"i(M). Again, we con-
sider two cases.

Case a) M is a free arc. By the maximality of M, M;\M,;Cbd M;N\bd M,
for each 7#;. For each 7, take a point x;&M; such that d(x;, bd M;)=¢/2.
Without loss of generality, we may assume that x,’s converge to a pomnt
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xEM, By Lemma 1|, there exists a sequence (A;) of arcs joing x and x; such
that diam A;—0 as i—o. If x&M; for each 7, then A;N\bd M;+ @ for each 7.
If xeM; for some 7, then for each j#i7, either x&M; or xebd M;N\bd M;.
Therefore A;N\bd M;+ @ for each j. In any case, diam A,=¢/2 for each k&,
which is a contradiction.

Case b) M is a simple closed curve. Let MN\c/(X—M)={b} and b,= f"i(b).
In this case, M;"\M,;,=@ or {b;=b;}=M;N\M; for each i1#j. For each 7, take
a point x,=M; such that d(x;, b;)=¢/2. Using the same argument as in Case
a), we have a contradiction.

The proof of C-2) is similar, so we omit it.

Finally we take an integer m such that for each n>m, diam f*(M)<c/2
and diam f-*(M)<c¢/2. There exists a 6>0 such that if d(x, y)<é(x, yeM),
then Ii|r=nla">.cmd(ff(x), fYy)<c. Then, for distinct points x, y of M with

d(x, y)<08, d(fi(x), fi(y)<c for each integer ;. This contradiction completes
the proof.
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