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CYCLIC-PARALLEL REAL HYPERSURFACES OF
A COMPLEX SPACE FORM
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Introduction.

In 1973 Takagi [14] classified homogeneous hypersurfaces of a complex pro-
jective space $P_{n}C$ by proving that all of them could be divided into six types,

and he [15], [16] showed also that if a real hypersurface $M$ has two or three
distinct constant principal curvatures, then $M$ is congruent to one of the homo-
geneous hypersurfaces of type $A_{1},$ $A_{2}$ and $B$ among these ones. This result is
generalized by Kimura [6], who gives the complete classification that a real
hypersurface $M$ of $P_{n}C$ has constant principal curvatures and $FC$ is principal
if and only if $M$ is congruent to one of homogeneous examples, where $C$ denotes
the unit normal and $F$ is the almost complex structure. The study of real hy-
persurfaces of type $A_{1},$ $A_{2}$ and $B$ of $P_{n}C$ was originated by Cecil and Ryan [1],

Kimura [7], Kon [8], Maeda [10], Okumura [13] and so on.
Real hypersurfaces with cyclic-parallel Ricci tensor of a complex space form

$M^{n}(c)$ have recently been classified by Kwon and Nakagawa [9] in the case
where $FC$ is principal. They also gave another characterization of real hy-
persurfaces of type $A_{1}$ and $A_{2}$ of $P_{n}C$ .

On the other hand, many subjects for real hypersurfaces of a complex hy-
perbolic space $H_{n}C$ were investigated from different points of view ([2], [3],

[11], [12] etc.) one of which, done by Chen, Ludden and Montiel [3], asserts
that a real hypersurface $M$ of $H_{n}C$ is of cyclic-parallel if and only if the struc-
ture tensor $J$ induced on $M$ and the shape operator $A$ derived from the unit
normal commute each other, that is, $JA=AJ$. In particular, real hypersurfaces
of $H_{n}C$ , which are said to be of type $A$ , similar to those of type $A_{1}$ and $A_{2}$ of
$P_{n}C$ , were treated by Montiel and Romero [12].

The purpose of the present paper is to show that a real hypersurface of a
complex space form $M^{n}(c),$ $c\neq 0$ , is of cyclic-parallel if and only if $JA=AJ$, and
to give a complete classification of such hypersurfaces by using those examples
constructed in [9], [12] and [15].
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1. Preliminaries.

We begin by recalling fundamental properties on real hypersurfaces of a
Kaehlerian manifold. Let $N$ be a real $2n$ -dimensional Kaehlerian manifold
equipped with a parallel almost complex structure $F$ and a Riemannian metric
tensor $G$ which is F-Hermitian, and covered by a system of coordinate neigh-
borhoods $\{U;x^{A}\}$ . Let $M$ be a real hypersurface of $N$ covered by a system of
coordinate neighborhoods {V; $y^{h}$ } and immersed isometrically in $N$ by the im-
mersion $i:M\rightarrow N$. Throughout the present paper the following convention on
the range of indices are used, unless otherwise stated:

$A,$ $B,$ $\cdots=1,2,$ $\cdots,$
$2n$ ; $i,$ $j,$ $\cdots=1,2,$ $\cdots,$ $2n-1$ .

The summation convention will be used with respect to those system of indices.
When the argument is local, $M$ need not be distinguished from $i(M)$ . Thus, for
simplicity, a point $p$ in $M$ may be identified with the point $i(p)$ and a tangent

vector $X$ at $p$ may also be identified with the tangent vector $i_{*}(X)$ at $i(p)$ via
the differential $i_{*}$ of $i$ . We represent the immersion $i$ locally by $x^{A}=x^{A}(y^{h})$ and
$B_{j}=(B_{J^{A}})$ are also $(2n-1)$-linearly independent local tangent vectors of $M$, where
$B_{j^{A}}=\partial_{j}x^{A}$ and $\partial_{j}=\partial/\partial y^{j}$ . A unit normal $C$ to $M$ may then be chosen. The
induced Riemannian metric $g$ with components $g_{ji}$ on $M$ is given by $g_{ji}=$

$G(B_{j}, B_{i})$ because the immersion is isometric.
For the unit normal $C$ to $M$, the following representation are obtained in

each coordinate neighborhood:

(1.1) $FB_{i}=J_{i^{h}}B_{h}+P_{i}C$ , $FC=-P^{i}B_{t}$ ,

where we have put $J_{ji}=G(FB_{j}, B_{i})$ and $P_{i}=G(FB_{i}, C),$ $P^{h}$ being components of

a vector field $P$ associated with $P_{i}$ and $J_{ji}=J_{j^{r}}g_{ri}$ . By the properties of the

almost Hermitian structure $F$, it is clear that $J_{ji}$ is skew-symmetric. A tensor

field of type $(1,1)$ with components $J_{i^{h}}$ will be denoted by $J$. By the properties

of the almost complex structure $F$, the following relations are then given:

$J_{i}^{r}J_{r}^{h}=-\delta_{\iota^{h}}+p_{i}p^{h}$ , $p^{r}J_{r^{h}}=0$ , $p_{r}J_{i}^{r}=0$ , $p_{i}p^{i}=1$ ,

that is, the aggregate $(J, g, P)$ defines an almost contact metric structure.

Denoting by $\nabla_{j}$ the operator of van der Waerden-Bortolotti covariant differentia-
tion formed with $g_{ji}$ , equations of Gauss and Weingarten for $M$ are respectively

obtained:
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(1.2) $\nabla_{j}B_{i}=h_{ji}C$ , $\nabla_{j}C=-h_{j^{r}}B_{r}$ ,

where $h_{ji}$ are components of a second fundamental from $\sigma,$ $A=(h_{J^{k}})$ which is
related by $h_{ji}=h_{j^{r}}g_{ri}$ being the shape operator derived form $C$ . We notice here
that $h_{ji}$ is symmetric. By means of (1.1) and (1.2) the covariant derivatives of
the structure tensors are yielded:

(1.3) $\nabla_{j}J_{ih}=-h_{ji}p_{h}+h_{jh}p_{i}$ , $\nabla_{j}p_{i}=-h_{jr}J_{i}^{r}$ .

In the sequel, the ambient Kaehlerian manifold $N$ is assumed to be of con-
stant holomorphic sectional curvature $c$ and real dimension $2n$ , which is called
a complex space form and denoted by $M^{n}(c)$ . Then the curvature tensor $K$ of
$M^{n}(c)$ takes the following form:

$K_{DCBA}=\frac{c}{4}(G_{DA}G_{CB}-G_{DB}G_{CA}+F_{DA}F_{CB}-F_{DB}F_{CA}-2F_{DC}F_{BA})$ .

Thus, equations of Gauss and Codazzi for $M$ are respectively obtained:

(1.4) $R_{kjih}=\frac{c}{4}(g_{kh}g_{ji}-g_{jh}g_{ki}+J_{kh}J_{ji}-J_{jh}J_{ki}-2J_{kj}J_{ih})+h_{kh}h_{ji}-h_{jh}h_{ki}$ ,

(1.5) $\nabla_{k}h_{ji}-\nabla_{j}h_{ki}=\frac{c}{4}A_{kji}$ , $A_{kji}=p_{k}J_{ji}-p_{j}J_{ki}-2p_{i}J_{kj}$ ,

where $R_{kjih}$ are components of the Riemannian curvature tensor $R$ of $M$. Let
$S_{ji}$ be components of the Ricci tensor $S$ of $M$, then the Gauss equation implies

(1.6) $S_{ji}=\frac{c}{4}\{(2n+1)g_{ji}-3p_{j}p_{i}\}+hh_{ji}-h_{ji}^{2}$ ,

where $h$ denotes the trace of the shape operator $A$ and $h_{ji}^{2}=h_{jr}h_{i^{r}}$ .

2. Cylic-parallel hypersurfaces.

Let $M$ be a real hypersurface of a complex space form $M^{n}(c)$ . The hy-
persurface $M$ is called cyclic-parallel if the cyclic sum of $\nabla\sigma$ vanishes identically,

namely

(2.1) $\nabla_{k}h_{ji}+\nabla_{j}h_{ik}+\nabla_{i}h_{kj}=0$ .
It was proved in [4] that geodesic hypersurfaces of a complex space form $M^{n}(c)$ ,
$c\neq 0$, are cyclic-parallel and not parallel. Throughout the present paper we only
consider the case where the holomorphic sectional curvature $c$ is not zero.

From now on we suppose that $M$ is of cyclic-parallel. Then we have from
(1.5)

$2\nabla_{k}h_{ji}=-\nabla_{i}h_{kj}+\frac{c}{4}A_{kji}$ ,
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or equivalently $3\nabla_{k}h_{\uparrow i}=c/4(A_{kji}-A_{ikj})$ . By the second equation of (1.5), it
follows that

(2.2) $\nabla_{k}h_{ji}=\frac{c}{4}(P_{J}J_{ik}+P_{i}J_{jk})$ .

Differentiating this covariantly along $M$ and making use of (1.3), we find

(2.3) $\nabla_{m}\nabla_{k}h_{ji}=\frac{c}{4}\{(\nabla_{m}p_{j})J_{ik}+(\nabla_{m}p_{i})J_{jk}-h_{mi}p_{j}p_{k}-h_{mj}p_{k}p_{i}+2h_{mk}p_{j}p_{i}\}$ .

Since equation (2.2) tells us that $\nabla_{k}h_{J^{k}}=0$ , the Ricci formula for $h_{ji}$ gives rise to

$\nabla_{k}\nabla_{j}h_{i^{k}}=S_{jr}h_{i^{r}}-R_{kjih}h^{kh}$ .
If we substitute (1.4), (1.6) and (2.3) into the last equation and take account of
(1.3), we get

(2.4) $hh_{ji}^{2}=\{h_{2}-\frac{c}{2}(n+1)\}h_{ji}+ch_{rs}J_{J^{r}}J_{i}^{s}$

$+\frac{c}{2}\{(h_{jr}p^{r})p_{i}+(h_{ir}p^{r})p_{j}\}+\frac{c}{4}h(g_{ji}-p_{j}p_{i})$ ,

where $h_{2}=h_{ji}h^{ji}$ , which yields

(2.5) $hh_{jr^{2}}p^{r}=(h_{2}-\frac{c}{2}n)h_{jr}p^{r}+\frac{c}{2}\alpha p_{j}$ ,

where we have have defined $\alpha=h_{rs}p^{r}p^{s}$ . Thus, it follows that

(2.6) $h\beta=\{h_{2}-\frac{c}{2}(n-1\rangle\}\alpha,$ $\beta=h_{ji}^{2}p^{j}p^{i}$ .

On the other hand, if we substitute (1.4) and (2.3) into the Ricci formula,
which is given by

$\nabla_{m}\nabla_{k}h_{ji}-\nabla_{k}\nabla_{m}h_{ji}=-R_{mkjr}h_{i^{r}}-R_{mki\tau}h_{j^{r}}$ ,

then we have

(2.7) $h_{ik^{2}}h_{mj}-h_{im^{2}}h_{kj}+h_{jk^{2}}h_{im}-h_{jm^{2}}h_{ik}$

$=\frac{c}{4}\{h_{mi}(g_{kj}-P_{k}P_{J})-h_{ki}(g_{mj}-p_{m}p_{j})+h_{jm}(g_{ki}-p_{k}p_{i})-h_{jk}(g_{mi}-p_{m}p_{i})$

$+J_{jk}(\nabla_{m}p_{i}+\nabla_{i}p_{m})-J_{jm}(\nabla_{k}p_{i}+\nabla_{i}p_{k})+J_{ik}(\nabla_{m}p_{j}+\nabla_{j}p_{m})$

$-J_{im}(\nabla_{k}p_{j}+\nabla_{j}p_{k})+2J_{mk}(\nabla_{j}p_{i}+\nabla_{i}p_{j})\}$ ,

where we have used the second equation of (1.3). By transvecting (2.7) with
$J^{ik}$ and $p^{j}p^{i}p^{k}$ respectively and making use of the fact that properties of the
almost contact metric structure $(J, g, P)$ , we can see that
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(2.8) $J^{sr}(h_{ms}h_{jr}^{2}+h_{js}h_{mr}^{2})$

$=\frac{1}{4}(2n+1)c(\nabla_{j}p_{m}+\nabla_{m}p_{j})-\frac{1}{4}c\{(p^{r}\nabla_{r}p_{j})p_{m}+(p^{r}\nabla_{r}p_{m})P_{j}\}$ ,

(2.9) $\alpha h_{mr}^{2}p^{r}=\beta h_{mr}p^{r}$ .
Combining (2.5) and (2.6) with (2.9), it follows that $\alpha(h_{jr}p^{r}-\alpha p_{j})=0$ and hence
$\alpha(\beta-a^{2})=0$ .

Let $M_{1}$ be a set consisting of points of $M$ at which the function $\beta-\alpha^{2}$ does
not vanish. Suppose that $M_{1}$ is not empty. We then have $\alpha=0$ and thus
$\beta h_{mr}p^{r}=0$ because of (2.9). By transvecting $h_{s}^{m}p^{s}$ , it follows that $\beta^{2}=0$ and
hence $\beta$ vanishes on $M_{1}$ . Therefore the assumption of $M_{1}$ will produce a con-
tradiction. Accordingly we have $\beta=\alpha^{2}$ on $M_{j}$ which means that $P$ is the
principal curvature vector corresponding to $\alpha$ , that is,

(2.10) $h_{jr}p^{r}=\alpha p_{j}$ .
Applying $p^{m}$ to (2.8) and summing up $m$ , we obtain

(2.11) $p^{r}\nabla_{r}p_{j}=0$

because of the fact that $c\neq 0$ . By means of (2.2), (2.10), (2.11) and the defini-
tion of $\alpha$ , we can easily see that $\alpha$ is constant everywhere. Thus, differentiat-
ing (2.10) covariantly along $M$, we find

$(\nabla_{k}h_{jr})p^{r}+h_{jr}\nabla_{k}p^{r}=\alpha\nabla_{k}p_{j}$ ,

which together with (1.3) and (2.2) yield

(2.12) $\frac{c}{4}J_{jk}-h_{jr}h_{ks}J^{rs}=\alpha\nabla_{k}p_{j}$ .

If we take the symmetric part of this, then we obtain $\nabla_{k}p_{j}+\nabla_{j}p_{k}=0$ provided
that $\alpha\neq 0$ . But, if $\alpha=0$ , then (2.12) implies $h_{jr}h_{is}^{2}J^{rs}=-(c/4)\nabla_{i}p_{j}$ with the aid
of (1.3), which together with (2.8) and (2.11) give $\nabla_{j}p_{m}+\nabla_{m}p_{j}=0$ . Consequently
we see in any case that $h_{j^{r}}J_{r}^{k}=J_{j^{r}}h_{r}^{k}$ . Thus we have the following fact:

LEMMA 1. Let $M$ be a cyclic-parallel real hypersurfaces of $M^{n}(c),$ $c\neq 0$ .
Then the shape operator and the induced structure tensor commute each other, that is,

(2.13) $AJ=JA$ .

REMARK 1. Chen, Ludden and Montiel [3] proved this lemma for the case
where $c<0$ . The converse assertion of Lemma 1 is well known. The proof
was used the theory of Riemann fibre bundles (cf. [3], [8]). But, we introduce
here the other simple proof. The method is similar to that used in the previous
paper [5].
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From (2.13), it is easy to see that

(2.14) $h_{jr}p^{7}=ap_{j}$

by means of the properties of the almost contact metric structure. Differentiat-
ing (2.14) covariantly and taking account of (1.3), we obtain

\langle 2.15) $(\nabla_{k}h_{jr})p^{r}-h_{jr}h_{ks}J^{rs}=\alpha_{k}p_{j}-\alpha h_{kr}J_{j^{r}}$ ,

where $\alpha_{k}=\nabla_{k}\alpha$ , which together with equations of Codazzi and (2.13) give

(2.16) $\frac{c}{2}J_{jk}+2h_{jr}h_{s^{r}}J_{k^{s}}=\alpha_{k}p_{j}-a_{j}p_{k}+2ah_{jr}J_{t^{r}}$ .

It means that $\alpha_{k}=Bp_{k}$ for some function $B$ . It is easy to see that $a$ is con-
stant everywhere. Thus, the last equation reduces to

(2.17) $h_{ji}^{2}=ah_{ji}+\frac{c}{4}(g_{ji}-p_{j}p_{i})$

because of (2.13) and the properties of $(J, g, P)$ . Accordingly (2.15) becomes

(2.18) $(\nabla_{k}h_{jr})p^{r}=\frac{c}{4}J_{jk}$ .

LEMMA 2. Let $M$ be a real hypersurface satisfying (2.13) of $M^{n}(c),$ $c\neq 0$ .
Then $M$ is of cyclic-parallel provided that $\alpha^{2}+c=0$ .

PROOF. Since we have $\alpha^{2}+c=0$ , the relationships (2.14) and (2.17) tell us
that $M$ has at most two constant principal curvatures $a$ and $\alpha/2$ . Their multi-
plicities are denoted respectively by $r$ and $2n-1-r$ . Thus, the trace of the
shape operator is given by

\langle 2.19) $h=\frac{\alpha}{2}(2n-1+r)$

and that of $A^{2}$ is given by

(2.20) $h_{2}=\frac{\alpha^{2}}{4}(2n-1+3r)$ .
On the other hand, it is seen from (2.17) that $h_{2}=\alpha h-(a^{2}/2)(n-1)$ . There-

fore, the last three equations imply that $r=1$ because of $a^{2}+c=0$ and $c\neq 0$ .
Accordingly (2.19) and (2.20) reduces respectively to

\langle 2.21) $h=na$ , $h_{2}=\frac{1}{2}(n+1)\alpha^{2}$ .

We also have the followings:

\langle 2.22) $h_{3}=\frac{1}{4}(n+3)\alpha^{3}$ , $h_{4}=\frac{1}{8}(n+7)a^{4}$ ,

where $\llcorner\ulcorner\prime h_{3}$ and $h_{4}$ denote the trace of $A^{3}$ and $A^{4}$ respectively. By using (2.21)
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and (2.22), it is not hard to see that

$h_{ji}^{\sim}=\frac{3}{2}\alpha h_{ji}-\frac{\alpha^{2}}{2}g_{ji}$ ,

which together with (2.17) implies that $h_{ji}=(1/2)\alpha(g_{ji}+p_{j}p_{i})$ because of $\alpha\neq 0$ .
Differentiating this covariantly, we find

$\nabla_{k}h_{ji}=\frac{1}{2}\alpha\{(\nabla_{k}p_{j})p_{i}+(\nabla_{k}p_{i})p_{j}\}$ .

Therefore, by means of (1.3) and (2.13) we can verify that $M$ is of cyclic-
parallel. This completes the proof.

Differentiation (2.17) covariantly and making use of (1.3), we get

(2.23) $(\nabla_{k}h_{jr})h_{i^{r}}+(\nabla_{k}h_{ir})h_{j^{r}}=\alpha\nabla_{k}h_{ji}+\frac{c}{4}\{(h_{kr}J_{j^{r}})p_{i}+(h_{kr}J_{i}^{r})p_{j}\}$ ,

from which, taking the skew-symmetric part with respect to indices $k$ and $j$

and utilizing (2.13) and (2.14),

$h_{jr}\nabla_{k}h_{i^{r}}-h_{kr}\nabla_{j}h_{i^{r}}=\frac{c}{4}\alpha(p_{k}J_{ji}-p_{j}J_{ki})+\frac{c}{2}p_{i}(h_{kr}J_{j^{r}})$ .
Thus, it follows that

$h_{j^{r}}\nabla_{k}h_{ir}-h_{i^{r}}\nabla_{k}h_{jr}=\frac{c}{4}\{p_{j}h_{ir}J_{k^{r}}-p_{i}h_{jr}J_{k^{r}}+\alpha(p_{j}J_{ik}-p_{i}J_{jk})\}$ ,

where we have used (1.5), (2.13) and (2.14). From this and (2.23), it is seen that

(2.24) $2h_{J^{r}}\nabla_{k}h_{ir}-\alpha\nabla_{k}h_{ji}=\frac{c}{4}\{-2p_{i}(h_{jr}J_{k^{\mathcal{T}}})+\alpha(p_{j}J_{ik}-p_{i}J_{jk})\}$ .

Transforming this by $h_{m^{j}}$ and using (2.13), (2.17) and (2.18), we obtain

$\alpha h_{j^{r}}\nabla_{k}h_{ir}+\frac{c}{2}\nabla_{k}h_{ji}=\frac{c}{4}\{(\alpha^{2}+\frac{c}{2})J_{ik}p_{j}-\frac{c}{2}J_{k}{}_{J}P_{i}-\alpha p_{i}(h_{jr}J_{k^{r}})\}$ .

Combining this with (2.24), it follows that

$(\alpha^{2}+c)\{\nabla_{k}h_{ji}-\frac{c}{4}(p_{j}J_{ik}+p_{i}J_{jk})\}=0$ ,

which shows that $M$ is of cyclic-parallel because of Lemma 2.
From this fact and Lemma 1 we have

THEOREM 3. Let $M$ be a real hypersurface of a complex space form $M^{n}(c)$ ,
$c\neq 0$ . Then $M$ is of cyclic-parallel if and only if $AJ=JA$ .

REMARK 2. It is obvious that if $M$ is of cyclic-parallel, then the Ricci
tensor is cyclic-parallel because of (1.3), (1.6) and (2.10).
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3. Homogeneous hypersurfaces.

It is known that the complete and simply connected complex space form
$M^{n}(c)$ consists of a complex projective space $P_{n}C$ , a complex Euclidean space
$C_{n}$ or a complex hyperbolic space $H_{n}C$ , according as $c>0,$ $c=0$ or $c<0$ . Some
standard examples given by [9], [12], [14] of real hypersurfaces $M^{n}(c),$ $c\neq 0$

whose second fundamental form are cyclic-parallel are introduced. In a complex

Euclidean space $C^{n+1}$ equipped with Hermitian form $\phi$ , the Euclidean metric of
$C^{n+1}$ which is identified with $R^{2n+2}$ is given by ${\rm Re}\phi$ . The unit sphere $S^{2n+1}=$

$\{z\in C^{n+1} : \phi(z, z)=1\}$ is denoted.
First of all, examples of real hypersurfaces of $P_{n}C$ are considered. For any

positive number $r$ a hypersurface $N_{0}(2n, r)$ of $S^{2n+1}$ is defined by

$N_{0}(2n, r)=\{(z_{1}, \cdots, z_{n+1})\in S^{2n+1}\subset C^{n+1}$ : $\sum_{j=1}^{n}|z_{j}|^{2}=r|z_{n+1}|^{2}\}$ .

For an integer $m(2\leqq m\leqq n-1)$ and a positive number $s$ , a hypersurface
$N(2n, m, s)$ of $S^{2n+1}$ is defined by

$N(2n, m, s)=\{(z_{1}, \cdots, z_{n+1})\in S^{2n+1}\subset C^{n+1}$ : $\sum_{j=1}^{m}|z_{j}|^{2}=s\sum_{j=m+1}^{n+1}|z_{j}|^{2}\}$ .

Then, for the projection $\pi$ of the Hopf-fibration $S^{2n+1}$ onto $P_{n}C,$ $M_{0}(2n-1, r)$

$=\pi(N_{0}(2n, r))$ and $M(2n-1, m, s)=\pi(N(2n, m, s))(n\geqq 3)$ are examples of real
hypersurfaces of $P_{n}C$ whose shape operator and the induced structure tensor

commute each other. It is known [14] that $M_{0}(2n-1, r)$ and $M(2n-1, m, s)$ are
both compact connected real hypersurfaces of $P_{n}C$ with constant two or three
distinct principal curvatures respectively, which are said to be of type $A_{1}$ and
$A_{2}$ respectively. In [13], it is proved that $M_{0}(2n-1, r)$ and $M(2n-1, m, s)$ are
only hypersurfaces of $P_{n}C$ satisfying $AJ=JA$ .

In the next place, the example of real hypersurfaces of $H_{n}C$ defined by

Montiel [11] and Montiel and Romero [12] is introduced. In $C^{n+1}$ with standard
basis, a Hermitian form $\phi$ is defined by

$\phi(z, w)=-z_{0}\overline{w}_{0}+\sum_{k=1}^{n}z_{k}\overline{w}_{k}$ .

where $z=(z_{0}, \cdots, z_{n})$ and $w=(w_{0}, \cdots, w_{n})$ are in $C^{n+1}$ . Let $H_{1}^{2n+1}$ be a real hy-

persurface of the Minkoski space $C_{1}^{n+1}$ defined by

$H_{1}^{2n+1}=\{z\in C_{1}^{n+1} : \phi(z, z)=-1\}$ ,

and let $\overline{G}$ be a semi-Riemannian metric of $H_{1}^{2n+1}$ induced from the complex

Lorentzian metric ${\rm Re}\phi$ of $C_{1}^{n+1}$ . Then $(H_{1}^{2n+1},\overline{G})$ is the Lorentzian manifold of
constant curvature $-1$ , which is called an anti-de Sitter spare.
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Let $r$ and $s$ be integers with $r+s=n-1$ and $t\in R$ with $0<t<1$ . We con-
sider a Lorentzian hypersurface $N_{r+s}(t)$ of $H_{1}^{2n+1}$ defined by the following:

$N_{r+s}(t)=\{(z_{0}, \cdots, z_{n})\in H_{1}^{2n+1}$ : $t(-|z_{0}|^{2})+\sum_{j=1}^{r}|z_{j}|^{2}=-\sum_{k=r+1}^{n}|z_{k}|^{2}\}$

and a Lorentzian hypersurface of $H_{1}^{2n+1}$ is given by

$N_{n}=\{(z_{0}, \cdots, z_{n})\in H_{1}^{2n+1} : |z_{0}-z_{1}|=1\}$ .
Since it is known that $H_{1}^{2n+1}$ is a principal $S^{1}$-bundle over a complex hyperbolic
space with projection $\overline{\pi}$ : $H_{1}^{2n+1}\rightarrow H_{n}C$ , and $N_{r+s}(t)$ and $N_{n}$ are $S^{1}$-invariant, we
see that $M_{r+s}(t)=\pi(N_{r+s}(t))$ and $M_{n}=\pi(N_{n})$ are real hypersurfaces of $H_{n}C$ ,

where $\pi:N_{r+s}(t)\rightarrow M_{r+s}(t)$ and $\pi:N_{n}\rightarrow M_{n}$ are semi-Riemannian submersions which
are compatible with $S^{1}- fibration$ . It is seen that $M_{r+s}(t)$ and $M_{n}$ are complete
connected real hypersurfaces of $H_{n}C$ with constant two or three distinct principal
curvatures, which are said to be of type A ([9]). In [12], it is proved that
$M_{r+s}(t)$ and $M_{n}$ are only complete hypersurfaces of $H_{n}C$ satisfying $AJ=JA$ .
Thus, by combining above facts and Theorem 3, we obtain the following clas-
sifications.

THEOREM 4. $M_{0}(2n-1, r),$ $M(2n-1, m, s)$ , $M.+s(t)$ and $M_{n}$ are only complete
and connected cyclic-parallel real hypersurfaces of $M^{n}(c),$ $c\neq 0$ .
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