ON THE THEORY OF MULTIVALENT FUNCTIONS

By

Mamoru NUNOKAWA

I would like to dedicate this paper to the late Professor Shigeo Ozaki.

1. Introduction.

Let A(p) be the class of functions of the form

(1)
$$f(z) = \sum_{n=p}^{\infty} a_n z^n$$
 $(a_p \neq 0; p \in \mathbb{N} = \{1, 2, 3, \dots\})$

which are regular in |z| < 1.

A function f(z) in A(p) is said to be p-valently starlike iff

$$\operatorname{Re}\frac{zf'(z)}{f(z)} > 0 \qquad (|z| < 1).$$

We denote by S(p) the subclass of A(p) consisting of functions which are p-valently starlike in |z| < 1.

Further, a function f(z) in A(p) is said to be p-valently convex iff

$$1 + \text{Re} \frac{zf''(z)}{f'(z)} > 0$$
 $(|z| < 1).$

Also we denote by C(p) the subclass of A(p) consisting of all p-valently convex functions in |z| < 1.

2. Preliminaries.

At first, we prove the following lemma by using the method of Ozaki [10].

LEMMA 1. Let $f(z) \in A(p)$ and

(2)
$$\operatorname{Re} \frac{zf'(z)}{f(z)} > K \quad in \quad |z| < 1$$

where K is a real bounded constant, then we have

$$f(z) \neq 0$$
 in $0 < |z| < 1$.

PROOF. Suppose that f(z) has a zero of order n ($n \ge 1$) at a point α that satisfies $0 < |\alpha| < 1$. Then f(z) can be written as $f(z) = (z - \alpha)^n g(z)$, $g(\alpha) \ne 0$ and

Received August 11, 1986. Revised November 11, 1986.

it follows that

$$\frac{zf'(z)}{f(z)} = \frac{nz}{z-\alpha} + \frac{zg'(z)}{g(z)}$$

By a brief calculation, we have

$$\lim_{z \to a} (z - \alpha) \frac{zf'(z)}{f(z)} = \lim_{z \to a} \left(nz + (z - \alpha) \frac{zg'(z)}{g(z)} \right)$$
$$= n\alpha \neq 0$$

which result contradicts (2), because (2) shows that zf'(z)/f(z) has no pole in 0<|z|<1. Therefore f(z) can not have any zero in 0<|z|<1.

Applying the same method as the proof of Lemma 1, we have the following lemma.

LEMMA 2. Let $f(z) \in A(p)$ and

$$1 + \operatorname{Re} \frac{zf''(z)}{f'(z)} > K \qquad in \quad |z| < 1,$$

where K is a real bounded constant, then

$$f'(z) \neq 0$$
 in $0 < |z| < 1$.

We owe this lemma to Ozaki [10] and we owe the following lemma to Ozaki [10, 11].

LEMMA 3. Let the function f(z) defined by (1) be in the class A(p) and $f^{(k)}(z) \neq 0$ for $k=0,1,2,\dots,p$ on |z|=1.

Then we have

$$\int_{|z|=1} |d \operatorname{arg} d^{j} f(z)| \leq \int_{|z|=1} |d \operatorname{arg} d^{j+1} f(z)|$$

for $j=0,1,2,\dots,p-1$, or, by a modification of the above inequalities,

$$\int_{0}^{2\pi} \left| j + \operatorname{Re} \frac{z f^{(j+1)} z}{f^{(j)}(z)} \right| d\theta \leq \int_{0}^{2\pi} \left| j + 1 + \operatorname{Re} \frac{z f^{(j+2)}(z)}{f^{(j+1)}(z)} \right| d\theta$$

for $j=0,1,2,\dots,p-1$, where $z=e^{i\theta}$ and $0 \le \theta \le 2\pi$.

LEMMA 4. Let f(z) be regular in $|z| \le 1$ and $f'(z) \ne 0$ on |z| = 1. If the next relation

$$\int_0^{2\pi} \left| 1 + \operatorname{Re} \frac{zf''(z)}{f'(z)} \right| d\theta < 2\pi (p+1)$$

holds, then f(z) is at most p-valent in $|z| \le 1$.

We owe this lemma to Umezawa [15, 17].

Lemma 5. If F(z) and G(z) are regular in |z| < 1, F(0) = G(0) = 0, G(z) maps |z| < 1 onto a many-sheeted region which is starlike with respect to the origin, and Re(F'(z)/G'(z)) > 0 in |z| < 1, then

$$Re(F(z)/G(z)) > 0$$
 in $|z| < 1$.

We owe the above lemma to Sakaguchi [12] and Libera [4, Lemma 1].

Applying the same method as the proof of [4, Lemma 2], we can prove the following lemma.

LEMMA 6. Let $f(z) \in S(p)$. Then

$$F(z) = \int_0^z f(t) dt \in S(p+1)$$

or

$$\operatorname{Re} \frac{zF'(z)}{F(z)} > 0$$
 in $|z| < 1$.

PROOF. Put D(z) = zF'(z) = zf(z) and N(z) = F(z), then D(z) is (p+1)-valently starlike with respect to the origin, since

$$Re \frac{zD'(z)}{D(z)} = 1 + Re \frac{zf'(z)}{f(z)} > 1 > 0$$
 in $|z| < 1$.

By an easy calculation, we can have

$$\operatorname{Re} \frac{D'(z)}{N'(z)} = 1 + \operatorname{Re} \frac{zf'(z)}{f(z)} > 0$$
 in $|z| < 1$.

Therefore we have

$$\operatorname{Re} \frac{N'(z)}{D'(z)} > 0$$
 in $|z| < 1$.

Applying Lemma 5, we have

$$\operatorname{Re} \frac{N(z)}{D(z)} > 0$$
 in $|z| < 1$

or

$$\operatorname{Re} \frac{D(z)}{N(z)} > 0$$
 in $|z| < 1$.

This shows that

$$\operatorname{Re} \frac{zF'(z)}{F(z)} > 0$$
 in $|z| < 1$.

This complets our proof.

LEMMA 7. If $f(z) \in S(p)$, then f(z) is p-valent in |z| < 1.

PROOF. From the definition of S(p) and Lemma 1, we have

$$f(z) \neq 0$$
 in $0 < |z| < 1$.

Therefore we have

$$\int_0^{2\pi} \operatorname{Re} \frac{re^{i\theta} f'(re^{i\theta})}{f(re^{i\theta})} d\theta = 2p\pi$$

for an arbitrary r, 0 < r < 1.

This shows that f(z) is p-valent in |z| < 1 [1, p. 212].

From the definition of C(p), Lemma 2 and [1, p. 211], we have the following lemma.

LEMMA 8. If $f(z) \in C(p)$, then f(z) is p-valent in |z| < 1.

REMARK 1. Let $f(z) \in A(p)$. Then we can easily confirm that f(z) is p-valently convex if and only if zf'(z) is p-valently starlike.

LEMMA 9. Let $f(z) \in A(p)$ and suppose there exists a positive integer j for which

$$j + \text{Re} \frac{zf^{(j+1)}(z)}{f^{(j)}(z)} > 0$$
 $in |z| < 1$

where $1 \leq j \leq p$.

Then we have

$$j-1+{\rm Re}\frac{zf^{(j)}(z)}{f^{(j-1)}(z)}>0 \qquad \quad in \quad |z|<1.$$

PROOF. For the case p=1, from [5, 14] it is clear.

Therefor we assume $p \ge 2$. Put

$$g(z) = \frac{f^{(j-1)}(z)}{p(p-1)\cdots(p-j+2)a_p} = z^{p-j+1} + \cdots.$$

Then we have

$$1 + \operatorname{Re} \frac{zg''(z)}{g'(z)} = 1 + \operatorname{Re} \frac{zf^{(j+1)}(z)}{f^{(j)}(z)} > 1 - j \qquad \text{in} \quad |z| < 1.$$

From Lemma 2, we have

(3)
$$g'(z) = \frac{f^{(j)}(z)}{p(p-1)\cdots(p-j+2)a_p} \neq 0 \quad \text{in } 0 < |z| < 1.$$

On the other hand, if $f^{(j-1)}(z)$ has such a zero as $z=\alpha$ of multiplicity $l(l \ge 1)$ in 0 < |z| < 1, then we can choose ρ such that $0 < |\alpha| < \rho < 1$ and so

$$f^{(j-1)}(z) \neq 0$$
 on $|z| = \rho$,

because if this reasoning is impossible, then from elementary analytic function theory (for emample [2, Theorem 8.1.3, p. 198], we have

$$f^{(j-1)}(z) \equiv 0$$
 in $|\alpha| < |z| < 1$,

which contradicts

$$f^{(j-1)}(z) \not\equiv \text{constant}.$$

Applying the principle of the argument, Lemma 3, (3) and the assumption of Lemma 9, we have the following inequalities:

$$2\pi(p+l) \leq \int_{0}^{2\pi} \left(j-1 + \operatorname{Re} \frac{zf^{(j)}(z)}{f^{(j-1)}(z)}\right) d\theta$$

$$\leq \int_{0}^{2\pi} \left|j-1 + \operatorname{Re} \frac{zf^{(j)}(z)}{f^{(j-1)}(z)}\right| d\theta$$

$$= \int_{|z|=r} |d \operatorname{arg} d^{j-1}f(z)|$$

$$\leq \int_{|z|=r} |d \operatorname{arg} d^{j}f(z)|$$

$$= \int_{0}^{2\pi} \left|j + \operatorname{Re} \frac{zf^{(j+1)}(z)}{f^{(j)}(z)}\right| d\theta$$

$$= \int_{0}^{2\pi} \left(j + \operatorname{Re} \frac{zf^{(j+1)}(z)}{f^{(j)}(z)}\right) d\theta$$

$$= 2p\pi$$

where $z = \rho e^{i\theta}$ and $0 \le \theta \le 2\pi$.

But this result contradicts $2p\pi < 2\pi(p+l)$.

This shows that $f^{(j-1)}(z) \neq 0$ in 0 < |z| < 1 ($f^{(j-1)}(z)$ has a zero z = 0 of order p-j+1).

Therefore we have

$$2p\pi = \int_0^{2\pi} \left(j - 1 + \operatorname{Re} \frac{zf^{(j)}(z)}{f^{(j-1)}(z)} \right) d\theta$$
$$= \int_0^{2\pi} \left| j - 1 + \operatorname{Re} \frac{zf^{(j)}(z)}{f^{(j-1)}(z)} \right| d\theta$$
$$= 2p\pi$$

for an arbitrary r, 0 < r < 1, $z = re^{i\theta}$ and $0 \le \theta \le 2\pi$.

This shows

(4)
$$j-1+\operatorname{Re}\frac{zf^{(j)}(z)}{f^{(j-1)}(z)} \ge 0$$
 in $|z|<1$.

But if there is a point z_0 satisfying $|z_0| < 1$ and

$$j-1+\operatorname{Re}\frac{z_0f^{(j)}(z_0)}{f^{(j-1)}(z_0)}=0,$$

then we can choose a point z in some neighborhood of z_0 in |z| < 1 such that

$$j-1+\text{Re}\frac{zf^{(j)}(z)}{f^{(j-1)}(z)}<0.$$

This contradicts (4). Therefore we have

$$j-1+\text{Re}\frac{zf^{(j)}(z)}{f^{(j-1)}(z)}>0$$
 in $|z|<1$.

3. Statement of results.

THEOREM 1. Let $f(z) \in A(p)$ and suppose

(5)
$$p + \operatorname{Re} \frac{z f^{(p+1)}(z)}{f^{(p)}(z)} > 0$$
 in $|z| < 1$.

Then f(z) is p-valent in |z| < 1 and

$$k + \text{Re} \frac{z f^{(k+1)}(z)}{f^{(k)}(z)} > 0$$
 in $|z| < 1$

for $k=0,1,2,\dots,p-1$.

This shows that $f(z) \in C(p)$ and $f(z) \in S(p)$.

PROOF. From Lemma 9 and (5), we easily have

$$k + \text{Re} \frac{zf^{(k+1)}(z)}{f^{(k)}(z)} > 0$$
 in $|z| < 1$

for $k=0,1,2,\dots,p-1$.

This shows that f(z) is p-valent in |z|<1, $f(z)\in C(p)$ and $f(z)\in S(p)$.

THEOREM 2. Let $f(z) \in A(p)$ and

$$p + \text{Re} \frac{z f^{(p+1)}(z)}{f^{(p)}(z)} > -\frac{1}{2}$$
 in $|z| < 1$.

Then f(z) is p-valent in |z| < 1.

PROOF. For the case p=1, this is due to Umezawa [15, 17]. If we put

$$g(z) = \frac{f^{(p-1)}}{p(p-1)\cdots 3\cdot 2\cdot a_p} = z + \cdots, \qquad p \ge 2,$$

then we have

$$1 + \text{Re} \frac{zg''(z)}{g'(z)} > \frac{1}{2} - p$$
 in $|z| < 1$.

From Lemma 2, we have

$$f^{(p)}(z) = p(p-1)\cdots 3\cdot 2\cdot a_p g'(z) \neq 0$$
 in $|z| < 1$.

On the other hand, if $f^{(p-1)}(z)$ has a zero $z=\alpha$ of multiplicity $l(l \ge 1)$ in 0 < |z| < 1, then we can choose r satisfying $0 < |\alpha| < r < 1$ such that

$$f^{(p-1)}(z) \neq 0$$
 on $|z| = r$,

because if this supposition is impossible, then from elementary analytic function theory (for example [2, Theorem 8.1.3, p. 198]), we have

$$f^{(p-1)}(z) \equiv 0$$
 in $|\alpha| < |z| < 1$.

This contradicts

$$f^{(p-1)}(z) \not\equiv \text{constant}$$
 in $|\alpha| < |z| < 1$.

Applying the principle of the argument and Lemma 3, we have the following inequalities:

(6)
$$2\pi(p+l) \leq \int_{0}^{2\pi} \left(p - 1 + \operatorname{Re} \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \right) d\theta$$

$$\leq \int_{0}^{2\pi} \left| p - 1 + \operatorname{Re} \frac{zf^{(p-1)}(z)}{f^{(p-1)}(z)} \right| d\theta$$

$$= \int_{|z|=r} |d \operatorname{arg} d^{p-1}f(z)|$$

$$\leq \int_{|z|=r} |d \operatorname{arg} d^{p}f(z)|$$

$$= \int_{0}^{2\pi} \left| p + \operatorname{Re} \frac{zf^{(p+1)}(z)}{f^{(p)}(z)} \right| d\theta$$

$$= \int_{0}^{2\pi} \left| p + \frac{1}{2} + \frac{zf^{(p+1)}(z)}{f^{(p)}(z)} - \frac{1}{2} \right| d\theta$$

$$< \int_{0}^{2\pi} \left| p + \frac{1}{2} + \frac{zf^{(p+1)}(z)}{f^{(p)}(z)} \right| d\theta + \pi$$

$$= \int_{0}^{2\pi} \left(p + \frac{1}{2} + \operatorname{Re} \frac{zf^{(p+1)}(z)}{f^{(p)}(z)} \right) d\theta + \pi$$

$$= 2\pi(p+1),$$

where $z=re^{i\theta}$ and $0 \le \theta \le 2\pi$.

But this result contradicts $2\pi(p+1) \le 2\pi(p+l)$. Thus it is not possible for $f^{(p-1)}(z)$ to vanish in 0 < |z| < 1.

From (6) we have

(7)
$$\int_{0}^{2\pi} \left| p - 1 + \operatorname{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)} \right| d\theta$$
$$= \int_{|z|=r} |d \operatorname{arg} d^{p-1} f(z)| < 2\pi (p+1)$$

for an arbitrary r, 0 < r < 1, and $z = re^{i\theta}$.

Repeating the same method as the above, we have $f^{(p-2)}(z)$, $f^{(p-3)}(z)$, ..., f''(z), f'(z) that do not vanish in 0 < |z| < 1 and for an arbitrary r, 0 < r < 1,

(8)
$$\int_{|z|=r} |d \operatorname{arg} df(z)|$$

$$= \int_{0}^{2\pi} \left| 1 + \operatorname{Re} \frac{zf''(z)}{f'(z)} \right| d\theta < 2\pi(p+1).$$

From Lemma 4, (8) shows that f(z) is p-valent in |z| < 1.

This is a generalization of the theorem in [11, 15].

Applying the same method as the proof of Theorem 2 and Lemma 4, we have the following theorems.

THEOREM 3. Let $f(z) \in A(p)$ and suppose

$$\int_{0}^{2\pi} \left| p + \text{Re} \frac{z f^{(p+1)}(z)}{f^{(p)}(z)} \right| d\theta < 2\pi (p+1)$$

for an arbitary r, 0 < r < 1, and $z = re^{i\theta}$.

Then f(z) is p-valent in |z| < 1.

This is a generalization of [10, 15, 16, 17].

THEOREM 4. Let $f(z) \in A(p)$ and

$$\int_{0}^{2\pi} \left| 1 + \text{Re} \frac{z f^{(p+1)}(z)}{f^{(p)}(z)} \right| d\theta < 4\pi$$

for an arbitrary r, 0 < r < 1, and $z = re^{i\theta}$.

Then f(z) is p-valent in |z| < 1.

THEOREM 5. Let $f(z) \in A(p)$ and suppose

$$\operatorname{Re} \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} > 0$$
 in $|z| < 1$.

Then we have

$$Re \frac{zf^{(k)}(z)}{f^{(k-1)}(z)} > 0$$
 in $|z| < 1$

or

$$f^{(p-k)}(z) \in S(k)$$

for $k=1, 2, 3, \dots, p$.

PROOF. For the case p=1, the theorem is trivial, so we assume $p \ge 2$. Put

$$g(z) = \frac{f^{(p-1)}(z)}{p(p-1)\cdots 3\cdot 2\cdot a_p} = z + \cdots.$$

Then we have

$$Re \frac{zg'(z)}{g(z)} = Re \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} > 0$$
 in $|z| < 1$.

This shows that g(z) is univalently starlike in |z| < 1.

An application of Lemma 6 shows that

$$\int_0^z g(t)dt = \frac{f^{(p-2)}(z)}{p(p-1)\cdots 3\cdot 2\cdot a_p} \in S(2)$$

or

$$\operatorname{Re} \frac{zf^{(p-1)}(z)}{f^{(p-2)}(z)} > 0$$
 in $|z| < 1$.

Applying the same method as the above over again, we have

$$f^{(p-k)}(z) \in S(k)$$

or

$$\operatorname{Re} \frac{zf^{(k)}(z)}{f^{(k-1)}(z)} > 0$$
 in $|z| < 1$.

for $k=1,2,3,\dots$, p. This completes our proof.

THEOREM 6. Let $f(z) \in A(p)$ and if there exists a positive integer $q(1 \le q \le p)$ that satisfies

$$\int_0^{2\pi} \left| \operatorname{Re} \frac{z f^{(q)}(z)}{f^{(q-1)}(z)} \right| d\theta \leq 2\pi (p+1-q)$$

for an arbitrary r, 0 < r < 1, and $z = re^{i\theta}$, then we have

$$Re \frac{zf^{(k)}(z)}{f^{(k-1)}(z)} > 0$$
 in $|z| < 1$

or

$$f^{(k-1)}(z) \in S(p+1-k)$$

for $k=1, 2, 3, \dots, q$.

PROOF. From the principle of the argument and the assumption, we have

$$2\pi(p+1-q) \le \int_0^{2\pi} \operatorname{Re} \frac{zf^{(q)}(z)}{f^{(p-1)}(z)} d\theta$$

$$\leq \int_0^{2\pi} \left| \operatorname{Re} \frac{z f^{(q)}(z)}{f^{(q-1)}(z)} \right| d\theta \leq 2\pi (p+1-q)$$

for an arbitrary r, 0 < r < 1, and $z = re^{i\theta}$.

Therefore we must have

$$\operatorname{Re} \frac{zf^{(q)}(z)}{f^{(q-1)}(z)} \ge 0 \quad \text{in} \quad |z| < 1.$$

Applying the same method as the proof of Theorem 1, we can show

$$Re\frac{zf^{(q)}(z)}{f^{(q-1)}(z)} > 0 \quad in \quad |z| < 1$$

or

$$f^{(q-1)}(z) \in S(p+1-q).$$

Integrating $f^{(q-1)}(z)$, then from Lemma 6, we have

$$f^{(p-2)}(z) \in S(p+2-q)$$
.

Repeating the same method as the above, we can complete the proof of Theorem 6.

Applying the same method as the proof of Theorem 1 and 2, we can easily prove

THEOREM 7. Suppose $f(z) \in C(p)$. Then we have $f(z) \in S(p)$.

REMARK 2. For the case p=1, C(p) and S(p) are the subclasses of classical univalent functions which are convex and starlike respectively, and $S(1) \supset C(1)$.

It is worth noting that for $p \ge 2$, then $S(p) \supset C(p)$, if f(z) is not normalized such that $f(z) = \sum_{n=p}^{\infty} a_n z^n$, $(a_p \ne 0)$.

A. W. Goodman noticed Remark 2 [1, p. 212].

THEOREM 8. Let $f(z) \in A(p)$ and if there exists a (p-k+1)-valent starlike function $g(z) = \sum_{n=p-k+1}^{\infty} b_n z^n$, $(b_{p-k+1} \neq 0)$ that satisfies

(9)
$$\operatorname{Re} \frac{zf^{(k)}(z)}{g(z)} > 0 \quad in \quad |z| < 1,$$

then f(z) is p-valent in |z| < 1.

PROOF. For the case p=1, it is well-known in [3]. So we assume $p \ge 2$.

If we put $g(z) = z\varphi'(z)$, then from Remark 1, $\varphi(z)$ is a (p-k+1)-valently convex function. From Theorem 7, $\varphi(z)$ is (p-k+1)-valently starlike in |z| < 1 and from (9) we can have

$$\operatorname{Re} \frac{f^{(k)}(z)}{\varphi'(z)} > 0$$
 in $|z| < 1$.

Applying Lemma 5 repeatedly, we have

$$\operatorname{Re} \frac{f'(z)}{\phi(z)} > 0$$
 in $|z| < 1$

where $\phi^{(k-2)}(z) = \varphi(z)$, $\phi(0) = \phi'(0) = \phi''(0) = \cdots = \phi^{(k-2)}(0) = 0$.

Then from Lemma 6, $\phi(z)$ is a (p-1)-valently starlike function.

On the other hand, if we put $G(z) = z\phi(z)$, then we have

$$\operatorname{Re} \frac{zG'(z)}{G(z)} = \frac{d \operatorname{arg} G(z)}{d\theta} = \frac{d \operatorname{arg} z\phi(z)}{d\theta}$$
$$= 1 + \frac{d \operatorname{arg} \phi(z)}{d\theta} > 1$$

for an arbitrary r, 0 < r < 1, $z = re^{i\theta}$ and $0 \le \theta \le 2\pi$, and furthermore we have

$$\int_0^{2\pi} \operatorname{Re} \frac{zG'(z)}{G(z)} d\theta = \int_0^{2\pi} \left(1 + \frac{d \operatorname{arg} \phi(z)}{d\theta} \right) d\theta$$
$$= 2p\pi.$$

It shows that G(z) is p-valently starlike in |z| < 1.

Therefore we have

$$\operatorname{Re} \frac{zf'(z)}{\phi(z)} = \operatorname{Re} \frac{zf'(z)}{G(z)} > 0$$
 in $|z| < 1$

where G(z) is a p-valently starlike function.

From [6, 18], f(z) is p-valent in |z| < 1. This completes our proof.

Let $f(z) \in A(p)$ and let α be a real number. Then f(z) is said to be p-valently α -convex in |z| < 1 iff

(10)
$$\operatorname{Re}\left[(1-\alpha)\frac{zf^{(p)}(z)}{f^{(p-1)}(z)} + \alpha\left(1 + \frac{zf^{(p+1)}(z)}{f^{(p)}(z)}\right)\right] > 0$$

holds in |z| < 1.

This is a generalization of α -convex functions [7, 8, 9].

THEOREM 9. Let f(z) defined by (1) be p-valently α -convex in |z| < 1 and let $(\alpha-1)$ not be a positive integer.

Then we have that f(z) is p-valent in |z| < 1 and

$$Re \frac{zf^{(k)}(z)}{f^{(k-1)}(z)} > 0$$
 in $|z| < 1$

for $k=1, 2, 3, \dots, p$.

PROOF. For the case $\alpha=1$, from the assumption we have

(11)
$$1 + \operatorname{Re} \frac{z f^{(p+1)}(z)}{f^{(p)}(z)} > 0 \quad \text{in } |z| < 1.$$

If we put

$$g(z) = \frac{f^{(p-1)}(z)}{p(p-1)\cdots 3\cdot 2\cdot a_p} = z + \cdots,$$

then from (11) we have

$$1 + \text{Re} \frac{zg''(z)}{g'(z)} > 0$$
 in $|z| < 1$,

and so $g(z) \in C(1)$.

By Marx-Strohhäcker's theorem [5, 14], we have

$$\operatorname{Re} \frac{zg'(z)}{g(z)} = \operatorname{Re} \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} > \frac{1}{2} > 0$$
 in $|z| < 1$

Then, from Theorem 5, we have

$$\operatorname{Re} \frac{z f^{(k)}(z)}{f^{(k-1)}(z)} > 0$$
 in $|z| < 1$

for $k=1, 2, 3, \dots, p$.

Next, we assume that α is not a positive integer. Applying the same method as the proof of [13, Theorem 2] (It is the same idea as the proof of Lemma 1), we can prove that $f^{(p-1)}(z) \neq 0$ in 0 < |z| < 1 and $f^{(p)}(z) \neq 0$ in 0 < |z| < 1. Because, if $f^{(p-1)}(z)$ has a zero of order n $(n \geq 1)$ at a point β such that $0 < |\beta| < 1$, then $f^{(p-1)}(z)$ may be put

$$f^{(p-1)}(z) = (z-\beta)^n g(z), \qquad g(\beta) \neq 0.$$

Then by an easy calculation, we can have

$$\lim_{z \to \beta} (z - \beta) \left\{ (1 - \alpha) \frac{z f^{(p)}(z)}{f^{(p-1)}(z)} + \alpha \left(1 + \frac{z f^{(p+1)}(z)}{f^{(p)}(z)} \right) \right\}$$

$$= \beta (n - \alpha) \neq 0$$

But this is a contradiction to (10), because

$$(1-\alpha) \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} + \alpha \left(1 + \frac{zf^{(p+1)}(z)}{f^{(p)}(z)}\right)$$

has no zero in |z|<1. Therefore $f^{(p-1)}(z)$ can not have any zero in 0<|z|<1. Then from the assumption (10), $f^{(p)}(z)$ has no zero in 0<|z|<1 either.

Hence we have that $f^{(p-1)}(z) \neq 0$ in 0 < |z| < 1 and $f^{(p)}(z) \neq 0$ in 0 < |z| < 1. Therefore, if we put $p(z) = z f^{(p)}(z) / f^{(p-1)}(z)$ in (10), then we can obtain

$$\operatorname{Re}[p(z) - i\alpha - \frac{\partial}{\partial \theta} \log p(z)] > 0$$

for an arbitrary r, 0 < r < 1 and $z = re^{i\theta}$.

Applying the same method as the proof of [7], we can have

$$\operatorname{Re} \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} > 0 \quad \text{in} \quad |z| < 1.$$

From Theorem 5, it follows that

$$Re \frac{zf^{(k)}(z)}{f^{(k-1)}(z)} > 0$$
 in $|z| < 1$

for $k=1, 2, 3, \dots, p$.

This completes our proof.

Applying the same method as the proof of [13, Theorem 2] and Theorem 5, we can prove

THEOREM 10. Let $f(z) \in A(p)$ and suppose

$${\rm Re}\Big(1+\frac{zf^{(p+1)}(z)}{f^{(p)}(z)}-\frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\Big)>-\frac{1}{2} \qquad in \quad |z|<1.$$

Then we have

$$Re \frac{zf^{(k)}(z)}{f^{(k-1)}(z)} > 0$$
 in $|z| < 1$

for $k=1, 2, 3, \dots, p$.

THEOREM 11. Let $f(z) \in A(p)$ and if f(z) satisfies the following condition

$$\int_{0}^{2\pi} \left| 1 + \text{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)} \right| d\theta \leq 4\pi$$

for an arbitrary r, 0 < r < 1 and $z = re^{i\theta}$, then $f^{(k-1)}(z) \in S(p+1-k)$ for $k=1,2,3,\dots,p-1$.

PROOF. From the principle of the argument and assumption, we have

(12)
$$4\pi \leq \int_{0}^{2\pi} \left(1 + \operatorname{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right) d\theta$$
$$\leq \int_{0}^{2\pi} \left|1 + \operatorname{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right| d\theta \leq 4\pi$$

for an arbitrary r, 0 < r < 1 and $z = re^{i\theta}$.

Applying the same reason as in the proof of Theorem 1 and from (12), we can have

$$1 + \text{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)} > 0$$
 in $|z| < 1$.

From the definition of the class C(p), this shows $f^{(p-2)}(z) \in C(2)$.

Then from Theorem 7, we have $f^{(p-2)}(z) \in S(2)$.

Applying Theorem 5, we have

$$f^{(k-1)}(z) \in S(p+1-k)$$

for $k=1, 2, 3, \dots, p-1$. This completes our proof.

The author is indebted to the referee for helpful comments and suggestions.

Acknowledgement. I would like to thank Prof. W. M. Causey for much help during the preparation of this paper at the University of Mississippi.

References

- [1] Goodman, A. W., On the Schwarz-Christoffel transformation and p-valent functions, Trans. Amer. Math. Soc. 68 (1950), 204-223.
- Hill, E., Analytic Function Theory, Vol. 1, Chelsea, New York, 1959.
- [3] Kaplan, W., Close-to-convex schlicht functions, Michigan Math J. 1 (1952), 169-185.
- [4] Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
- [5] Marx, A., Untersuchungen über schlichte Funktionen, Math. Ann. 107 (1932), 40-
- [6] Livingston, A. E., p-valent close-to-convex functions, Trans. Amer. Math. Soc. 115 (1965), 161-179.
- [7] Miller, S. S., Mocanu, P. and Reade, M. O., All a-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553-554.
- [8] Mocanu, P. and Reade, M. O., On generalized convexity in conformal mappings, Rev. Roumaine Math. Pures Appl. 16 (1971), 1541-1544.
- —, The order of starlikeness of certain univalent functions, Notices Amer. Math. Soc. 18 (1971), 815.
- [10] Ozaki, S., On the theory of multivalent functions II, Sci. Rep. Tokyo Bunrika Daigaku A. 4 (1941), 45-87.
- On the theory of multivalent functions in a multiply connected domain, [11]Sci. Rep. Tokyo Bunrika Daigaku A. 4 (1944), 115-135.
- [12]Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan. 11 (1959), 72-75.
- [13] Sakaguchi, K. and Fukui, S., On alpha-starlike functions and related functions, Bull. Nara Univ. Education. 28 (1979), 5-12.
- [14] Strohhäcker, E., Beitrage zur Theorie der schlichten Funktionen, Math. Z. 37 (1933), 356-380.
- [15] Umezawa, T., Analytic functions convex in one direction, J. Math. Soc. Japan. 4 (1952), 194-202.
- _____, Star-like theorems and convex-like theorems in an annulus, J. Math. Soc. Japan. 6 (1954), 68-75.
- On the theory of univalent functions, Tôhoku Math. J. 7 (1955), 212-228.

 Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8 (1957), 869-874.

Department of Mathematics Gunma University Aramaki, Maebashi, 371 Japan