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ON THE THEORY OF MULTIVALENT FUNCTIONS

By

Mamoru NUNOKAWA

I would like to dedicate this paper to the late Professor Shigeo Ozaki.

1. Introduction.

Let A(p) be the class of functions of the form
@ fD=Nar  (ap£0; peN={(1,2,3,-})
n=p

which are regular in |2| <1.
A function f(z) in A(p) is said to be p-valently starlike iff

Re_—zféi’;) >0 (2] <D).

We denote by S(p) the subclass of A(p) consisting of functions which are
p-valently starlike in |2|<1.
Further, a function f(2) in A(p) is said to be p-valently convex iff

1+Refjff,”(%)>>o (=] <1).

Also we denote by C(p) the subclass of A(p) consisting of all p-valently convex

functions in |z|<1.

2. Preliminaries.

At first, we prove the following lemma by using the method of Ozaki [10].

LEMMA 1. Let f(2)€A(p) and

@ Re—z-:fféé—)—>K in |z|<1
where K is a real bounded constant, then we have
S(2)+#0 in 0<|2|<1.

PROOF. Suppose that f(2) has a zero of order n (n=1) at a point « that
satisfies 0<|a|<1. Then f(2) can be written as f(2) =(z—a)"g(z), g(a)+#0 and
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it follows that

2f'(z) _ nz 4 zg’'(2)
(=) z—a g(2)

By a brief calculation, we have

=na+0

Z—a

which result contradicts (2), because (2) shows that 2f”(2z)/f(z) has no pole in
0<|z|<1. Therefore f(z) can not have any zero in 0<|z|<1.
Applying the same method as the proof of Lemma 1, we have the following

lemma.

LEMMA 2. Let f()€A(p) and

1+Re—7—,”(-(z—z7)—>K in |2|<1,

where K is a real bounded constant, then
f(2)+#0 in 0<|z|<1.

We owe this lemma to Ozaki and we owe the following lemma to Ozaki
[10, 117.

LEMMA 3. Let the function f(z) defined by (1) be in the class A(p) and
f®()+#0 for £=0,1,2,:--,p on |z|=1.
Then we have

$I1|=1ld arg dff(z)léjm |d arg di*if(2)]

=1

for j=0,1,2,.--,p—1, or, by a modification of the above inequalities,

[ |+ ReE 2 <

for j=0,1,2,.--, p—1, where z=¢'* and 0<0<2r,

. G+2)
j+1+ Re—————sz(jﬂ) ((zz)) do

LEMMA 4. Let f(2) be regular in |z|<1 and f'(2)#0 on |z|=1.
If the next relation

e "(2)
L |1+Re% do<2z(p+1)

holds, then f(z) is at most p-valent in |z|<1.
We owe this lemma to Umezawa [15, 17].
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LEMMA 5. If F(2) and G(z) are regular in |2|<1, F(0)=G(0)=0, G(2)
maps |2| <1 onto a many-sheeted region which is starlike with respect to the

origin, and Re(F'(2)/G’(2))>0 in |2|<1, then
Re(F(2)/G(2))>0 in |z|<1.

We owe the above lemma to Sakaguchi and Libera [4, Lemma 17.
Applying the same method as the proof of [4, Lemma 2], we can prove the
following lemma.

LEMMA 6. Let f(z)eS(p). Then

F(z) =S: fOdteS(p+1)

or

Re—z%g)z)—>0 in |z|<1.

PROOF. Put D(2)=2F'(2)=2zf(2) and N(2)=F(2), then D(2) is (p+1)-

valently starlike with respect to the origin, since

D' (z) _ zf(2) ;

By an easy calculation, we can have

D' (2) _ zf'(2) :
ReN,(i)—1+Re—f(—2—:3—>O in |2|<1.

Therefore we have

N'(z) :
Rem>0 mn IZI<1-

Applying we have

Re ggzg >0 in |zl<1

or

Re 2&2 >0  in |z|<L

This shows that

Re-z—§—/(<72)>——>0 in |2|<1.

This complets our proof.

LEMMA 7. If f(2)ES(p), then f(z) is p-valent in |z|<1.



276 Mamoru NUNOKAWA

PrROOF. From the definition of S(p) and Lemma 1, we have
fl2)+0 in 0<|z|<]1.

Therefore we have

"2" —————re;z(f /(ir:;w) di =2pn
for an arbitrary , 0<r<1.

This shows that f(z) is p-valent in |z|<1 [1, p. 212].

From the definition of C(p), and [1, p. 2117, we have the following

lemma.
LEMMA 8. If f(z)eC(p), then f(2) is p-valent in |z|<1.

REMARK 1. Let f(2)€A(p). Then we can easily confirm that f(z) is p-
valently convex if and only if zf’(2) is p-valently starlike.

LEMMA 9. Let f(2)€A(p) and suppose there exists a positive integer j for
which

. (J+1 .
]+Re—zfﬁg)—>0 in |2]<1
where 1<j<p.
Then we have
. 6] .
]—~1+Re—;{;_—l)((zz))—>0 in |z|<l.

PrROOF. For the case p=1, from [5, 14] it is clear.
Therefor we assume p=2. Put

Y@
ED=BG—T i Day o T

Then we have

1+Re=2 22 zg:((z)) =1+Re= 2 zj}((j;( ()z) >1—j in |2|<1.

From we have

P (2) -
3 /() = f £0 0 1.
© ¢ D= 56D p—i+ D o 0<lel<
On the other hand, if f¥Y-(z) has such a zero as z=a of multiplicity /(I=1)
in 0<|z|<1, then we can choose p such that 0<|a|<p<1 and so

SIP(2)#0 on |z|=
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because if this reasoning is impossible, then from elementary analytic function

theory (for emample [2, Theorem 8.1.3, p. 1987, we have
FUD(2)=0 in |a|<|z|<L,
which contradicts
f-D(2) #constant.

Applying the principle of the argument, (3) and the assumption
of we have the following inequalities :
(€]
2n(p+l)<j "(j—1+ReZL fé_lfé)) )ao
2fP(2)
f‘(j"'l)(z> Ida

_ldarg @)

G+
i e

2z Cj+1)
=["(j+Re z{%( ()z) EIRALONP

I
J
=(,_darg @@
NE
J

where z=pe!’ and 0<0<2x.

But this result contradicts 2pr <2z (p+1).

This shows that fU=D(2)#0 in 0<|z|<1(fYP(z) has a zero 2=0 of order
p—j+1).

Theretore we have

2pm= Sj"(j— 1+Reﬂ@_—)do

fYI(=)
_ 2z - zf(j)(z) ‘
So J 1+Re~—————f(1_1)<z) do
=2pr
for an arbitrary r, 0<r<1, z=re? and 0027,
This shows
@ j—1+Re-2LP(® ¢ in |2]<L

f(j-l) (Z)

But if there is a point 2, satisfying |z0|<1 and

. ¢
j—14+ReZ/ 2 (20) jg(fj ﬁgzo) —0,



278 Mamoru NUNOKAWA
then we can choose a point 2z in some neighborhood of 2, in |2[<1 such that
j—1+Re-H 2= <o,
This contradicts (4). Therefore we have

. (%) .
]"1'%I{ei;¥;:T§%%%—:>O 1n Izl<:1.

3. Statement of results.

THEOREM 1. Let f(2)€A(p) and suppose

16 p+Resz—;’f(%§—z—>>o in |z|<l.
Then f(2) is p-valent in |z|<1 and
k+Rei}t%g—§i)>0 in |2l<1

for £=0,1,2,.--, p—1.
This shows that f(2)eC(p) and f(2)S(p).

ProOOF. From [Lemma 9 and (5), we easily have

(k+1)
k+Re£]lfm(—z§i)>o in 2] <1

for £=0,1,2,---, p—1.
This shows that f(z) is p-valent in |2|<1, f(2)eC(p) and f(z)=S(p).

THEOREM 2. Let f(z)€A(p) and

(p+Dd .
P+Re—z—f(p%z§z)>—% in |z|<1.

Then f(2) is p-valent in |z|<1.

PrROOF. For the case p=1, this is due to Umezawa [15, 17].

If we put
L N
e =y e~ p=2,
then we have
1+Rezg”(z) >l—p in |z|<1.

gz) 72
From Lemma 2, we have
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SP)=p(p—1)---3-2-apg’ (2) #0 in [z|<1.
On the other hand, if f® 1 (2) has a zero 2=« of multiplicity /(/=1) in
0<|z]<1, then we can choose r satisfying 0<|a]<7r<1 such that
JPV()+#0 on |z]|=
because if this supposition is impossible, then from elementary analytic function
theory (for example [2, Theorem 8.1.3, p. 1987]), we have

Fv(2)=0 in |a|<|z|<]1.
This contradicts
@ (2)*=constant in |a|<[|z|<1.

Applying the principle of the argument and we have the following
inequalities :

(6) 2n(p+D =" (p—-1+Re ZLEE o

FFoGy

(p—-1
p=1+Re 70D ap

Jdarg drif(2)]

)
)
b

<{,_|darg F ()]
(o |p+Re 223 a0
)
)

0 P (=)
=5 |t 3+ 2 -5 |ae
<§| o+ 3+ HLm Do
= (p+E+Re zjff(;”f(”)(z))doﬂ
=2z(p+D,

where z=ret? and 0<60=<2x.

But this result contradicts 27(p+1)<2x(p+/). Thus it is not possible for
F@D(2) to vanish in 0<]z|<1.

From (6) we have

) S:l P_1+Re% do

=Sm=7|d arg dr-f(2) | <2z(p+1)

for an arbitrary r, 0<r<1, and z=ret".
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Repeating the same method as the above, we have f®2(z), fP3(2),-,
f"(2), f’(2) that do not vanish in 0<|2|<1 and for an arbitrary r, 0<r<1,

® [, |darg df(a)]
=j: 1+Reifff—”(%l d6<2x(p+1).
From (8) shows that f(z) is p-valent in |2]<1.
This is a generalization of the theorem in [11, 15].
Applying the same method as the proof of [Theorem 2 and [Lemma 4, we
have the following theorems.

THEOREM 3. Let f(2)€A(p) and suppose

[lrresfis2lmcarcns

for an arbitary r, 0<r<1, and z=re®.
Then f(2) is p-valent in |z|<1.
This is a generalization of [10, 15, 16, 17].

THEOREM 4. Let f(z)€A(p) and

22 2fPD(2)
[ |1+ Re 2L 2 | a0 < ax

for an arbitrary r, 0<r<1, and z=re'.
Then f(z) is p-valent in |z|<1.

THEOREM 5. Let f(2)€A(p) and suppose

(2 .
Re%%A>O in |z<1.
Then we have
Re%%>0 in |z|<1

or
[P eSk)
for k=1,2,3,---,p.
PrROOF. For the case p=1, the theorem is trivial, so we assume p=2.
Put

_ (p—l)(z) . .
g(x)= p(pj—c—l)---S-Z-ap =z+
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Then we have

¢) .
Re zgg( (? =Re Jz{{;_l’l)((z)) >0 in |z|<1.

This shows that g(z) is univalently starlike in [2]<1.
An application of shows that

2 _ P2 (2)
yog@dt_ p(p—T1)---3-2-a, €5@)
or
(p-1) .
?—fpfz)((§>>0 in |z|<1.
Applying the same method as the above over again, we have
f R ()eSk)
or
Re Ji{;(_"f,((z% >0 in |el<1.

for £=1,2,3,---,p. This completes our proof.

THEOREM 6. Let f(z)€A(p) and if there exists a positive integer q(1<
q=<p) that satisfies
T (q
[ |Re L2 |do2n(p+1-0)

for an arbitrary r, 0<r<1, and z=re'’, then we have

Re Ji(f:kl’)((z% >0 in |z|<1

or
fEO(HeS(p+1-F)
Sfor k=1,2,3,--,q

PrROOF. From the principle of the argument and the assumption, we have
2”(P+1 q><g Re2fP(z) Zf(q)(Z) 2P (=)
2f () 'd0§27r(p+1—q)

Fo0 )
=|, [ReHen

for an arbitrary r, 0<r<1, and z=re?’.

Therefore we must have



282 Mamoru NUNOKAWA

Q@ .
ReSim@-20  in lzI<L.
Applying the same method as the proof of [Theorem 1, we can show
Q@ .
Re—j—rz%z_l)—((zz))——>0 in |2|<1

or
faresSp+1-9.

Integrating £~V (z), then from we have
fPP@eSp+2—9.

Repeating the same method as the above, we can complete the proof of

(I'heorem 6
Applying the same method as the proof of and 2, we can easily

prove
THEOREM 7. Suppose f(z)eC(p). Then we have f(z)&S(p).

REMARK 2. For the case p=1, C(p) and S(p) are the subclasses of classical
univalent functions which are convex and starlike respectively, and S(1) DC(1).
It is worth noting that for p=2, then S(p)DC(p), if f(z) is not normalized

such that f(2)= 3 anz?, (ap+0).
n=p
A. W. Goodman noticed Remark 2 [1, p. 212].

THEOREM 8. Let f(2)€A(p) and if there exists a (p—k+1)-valent starlike
Sunction g(z)= § bnz", (bp-ks1#0) that satisfies

n=p—k+1

) Re—zig%)z()i)— >0 in |zl<1,

then f(2) is p-valent in |z|<1.

PROOF. For the case p=1, it is well-known in [3]. So we assume p=2.
If we put g(2)==2¢’(2), then from Remark 1, ¢(z) is a (p—k+1)-valently
convex function. From o(2) is (p—k+1)-valently starlike in |2| <1

and from (9) we can have

Re%” in |z]<L.

Applying repeatedly, we have

Reg((;; >0 in |z|<1
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where ¢%*®(2)=¢(2), $(0)=¢"(0)=¢"(0)="---=¢*"2(0) =0.
Then from #(2) is a (p—1)-valently starlike function.
On the other hand, if we put G(z)=2¢(2), then we have

Re 2G'(z) _ darg G(z) _ darg 24(=)
G(2) do do

_14_darg ¢(2)

for an arbitrary r, 0<r<1, 2=re?® and 0<0<27, and furthermore we have

N TS

=2pr.
It shows that G(z2) is p-valently starlike in |z|<1.
Therefore we have

Re zs{(fs) —Re z&(zz)) >0 in |z|<1

where G(z) is a p-valently starlike function.
From [6, 18], f(2) is p-valent in |z|<1. This completes our proof.

Let f(z)€A(p) and let a be a real number. Then f(2) is said to be p-
valently a-convex in |z| <1 iff

holds in |z]<1.

This is a generalization of a-convex functions [7, 8, 9].

THEOREM 9. Let f(2) defined by (1) be p-valently a-convex in |z|<1 and
let (a—1) not be a positive integer.
Then we have that f(z) is p-valent in |z|<1 and
92 )
Re—JzT(l:—_—D—%zz)j—>0 in |z|<1
for k=1,2,3,---,p.

PROOF. For the case a=1, from the assumption we have

(1D 1+Re_z_§%%’z%@~>o in |z|<l.
If we put
g(2)= FED(2) T

pG-D3-2:4;
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then from (11) we have

1+Re zg’((z)) >0 in |z|<1,

and so g(2)eCQ).
By Marx-Strohhicker’s theorem [5, 14], we have

Re28 (2) Re}éﬂ’i’)((@ >1s0  in Jel<1

Then, from [Theorem 5 we have

Re ;.é(_k:)—((z%—>0 in |z|<1

for £=1,2,3,---,p
Next, we assume that a is not a positive integer. Applying the same method
as the proof of [13, Theorem 2] (It is the same idea as the proof of Lemma 1),
we can prove that f@D(2)+#0 in 0<|z|<1 and f®(2)+#0 in 0<|z|<1.
Because, if f»~V(z) has a zero of order n (n=1) at a point 8 such that 0<|8|<
1, then f"1(2) may be put
foP@ ==,  gB)=0.

Then by an easy calculation, we can have

ime— 8 (1—a) 2L P 222
lim (2 .3){(1 a>'an<z;)‘+“(l z{“"’( )z >}

=B(n—a)+0

But this is a contradiction to [(10), because

Qe S a1+ e2)

has no zero in |z|<1. Therefore f#~V(2) can not have any zero in 0<|z|<1.
Then from the assumption [10), f®(2) has no zero in 0<|z|<1 either.

Hence we have that f»(2)+#0 in 0<|2|<1 and f®(2)+#0 in 0<|z|<1.
Therefore, if we put p(2)=2f®(2)/f®¥(2) in [(10), then we can obtain

Re[ p(2) —ia—a%log p()]>0

for an arbitrary r, 0<r<1 and z=re*".
Applying the same method as the proof of [7], we can have

Re f{;(_l’:)((z)) >0 in |z|<1.

From it follows that
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h .
Re—%{;:ﬁ(é%->0 in |z]<1
for £=1,2,3,---, p.

This completes our proof.

Applying the same method as the proof of [13, Theorem 2] and
we can prove

THEOREM 10. Let f(z)€A(p) and suppose

(p+1) () 1 .
Re<1+ z;(p)(;f) - Jz‘{;“lf(zz)) >> —5 in |z|<L.
Then we have
R 2f P (2) >0 in |z|<1

WARION
for k=1,2,3,---,p.
THEOREM 11. Let f(2)€A(p) and if f(2) satisfies the following condition

2z )
So l1+Re%<fﬁ—ﬁ—>((zz%— di<4rn

for an arbitrary r, 0<r<1 and z=re'’, then f*V(2)eS(p+1-—Fk)
for k=1,2,3,---,p—1.

PrOOF. From the principle of the argument and assumption, we have

2x 2P (2) v
(12) dr< So <1+ReW>d0
2 2P (2)
=\ ‘1+Rerd0§4z
for an arbitrary r, 0<r<1 and z=re?.
Applying the same reason as in the proof of and from [(12), we
can have
2fP(z) :
1+Rew>o mn [‘Zl<1.

From the definition of the class C(p), this shows f@=2(2)=C(2).
Then from we have f@2(2)&S(2).
Applying we have

SED(HES(p+1-k)

for 2=1,2,3, .-, p—1. This completes our proof.

The author is indebted to the referee for helpful comments and suggestions.



286

Mamoru NUNOKAWA

Acknowledgement. I would like to thank Prof. W. M. Causey for much

help during the preparation of this paper at the University of Mississippi.

(1]
2]
[3]
(4]
(5]
[6]
7]
(8]
£9]
{10]
[11]
£12]
[13]
(14]
[15]
[16]

(17]
(18]

References

Goodman, A. W., On the Schwarz-Christoffel transformation and p-valent functions,
Trans., Amer. Math. Soc. §8 (1950), 204-223,
Hill, E., Analytic Function Theory, Vol. 1, Chelsea, New York, 1959,
Kaplan, W., Close-to-convex schlicht functions, Michigan Math J. 1 (1952), 169-185.
Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc.
16 (1965), 755-758. :
Marx, A., Untersuchungen iiber schlichte Funktionen, Math. Ann. 107 (1932), 40-
67.
Livingston, A. E., p-valent close-to-convex functions, Trans. Amer. Math. Soc. 115
(1965), 161-179.
Miller, S. S., Mocanu, P. and Reade, M. O., All a-convex functions are univalent
and starlike, Proc. Amer. Math. Soc. 37 (1973), 553-554.
Mocanu, P. and Reade, M. O., On generalized convexity in conformal mappings,
Rev. Roumaine Math. Pures Appl. 16 (1971), 1541-1544.
, The order of starlikeness of certain univalent functions, Notices Amer.
Math. Soc. 18 (1971), 815.
Ozaki, S., On the theory of multivalent functions II, Sci. Rep. Tokyo Bunrika
Daigaku A. 4 (1941), 45-87.
, On the theory of multivalent functions in a multiply connected domain,
Sci. Rep. Tokyo Bunrika Daigaku A. 4 (1944), 115-135.
Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan. 11 (1959),
72-75.
Sakaguchi, K. and Fukui, S., On alpha-starlike functions and related functions,
Bull. Nara Univ. Education. 28 (1979), 5-12.
Strohhicker, E., Beitrage zur Theorie der schlichten Funktionen, Math. Z. 37 (1933),
356-380.
Umezawa, T., Analytic functions convex in one direction, J. Math. Soc. Japan. 4
(1952), 194-202.
, Star-like theorems and convex-like theorems in an annulus, J. Math. Soc.
Japan. ¢ (1954), 68-75.
————, On the theory of univalent functions, Téhoku Math. J. 7 (1955), 212-228.
»  Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8 (1957),
869-874.

Department of Mathematics
Gunma University
Aramaki, Maebashi, 371

Japan



	ON THE THEORY OF MULTIVALENT ...
	1. Introduction.
	2. Preliminaries.
	3. Statement of results.
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 3. ...
	THEOREM 4. ...
	THEOREM 5. ...
	THEOREM 6. ...
	THEOREM 7. ...
	THEOREM 8. ...
	THEOREM 9. ...
	THEOREM 10. ...
	THEOREM 11. ...

	References


