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\S $0$ . Introduction.

Several authors have investigated minimal totally real submanifolds in a $com$.
plex space form and obtained many interesting results. Recently F. Urbano [6]

and Y. Ohnita [4] have studied pinching problems on their curvatures and stated
some theorems.

On the other hand, in a $(2n+1)$ -dimensional Sasakian space form of constant
$\phi$ -sectional curvature $c(>-3)$ , if a submanifold $M$ is perpendicular to the structure
vector field, then $M$ is said to be C-totally real. For such a submanifold $M$, it is
well-known that if the mean curvature vector field of $M$ is parallel, then $M$ is
minimal. S. Yamaguchi, M. Kon and T. Ikawa [8] obtained that if the squared
length of the second fundamental form of $M$ is less than $n(n+1)(c+3)/4(2n-1)$ ,
then $M$ is totally geodesic. Furthermore, D. E. Blair and K. Ogiue [2] proved
that if the sectional curvature of $M$ is a greater than $(n-2)(c+3)/4(2n-1)$ , then
$M$ is totally geodesic.

In this paper, we consider a curvature-invariant C-totally real submanifold $M$

in a Sasakian manifold with $\eta$ -parallel mean curvature vector field. Then $M$ is not
necessary minimal. Making use of methods of [3] and [4], we prove that if the
sectional curvature of $M$ is positive, then $M$ is totally geodesic.

In Sec. 1, we recall the differential operators on the unit sphere bundle of a
Riemannian manifold. Sec. 2 is devoted to stating about fundamental formulas on
a C-totally real submanifold in a Sasakian manifold. In Sec. 3, we prove Theo $\cdot$

rems and Corollaries. Throughout this paper all manifolds are always $C^{\infty}$, oriented,
connected and complete. The author wishes to thank Professor S. Yamaguchi for
his help.

\S 1. A differential operator defined by A. Gray.

Let $M$ be an n-dimensional Riemannian manifold and $\Gamma(M)$ the Lie algebra
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of vector fields on $M$. Denote by $\langle$ , $\rangle,$
$\nabla$ and $RxY:=[\nabla x, \nabla y]-\nabla[X,Y]$ (X, $ Y\in$

$\Gamma(M))$ the metric tensor of $M$, the Riemannian connection on $M$ and the curva-
ture tensor of $M$, respectively. The Ricci tensor $\rho$ of $M$ is given by

(1.1) $\rho XY:=\Sigma_{\alpha}^{n_{=1}}\langle R_{e_{\alpha}}xY, e_{\alpha}\rangle$ for $X,$ $Y\in\Gamma(M)$ ,

where $\{e_{1}, \cdots, e_{n}\}$ is an arbitrary local orthonormal frame field. For $m\in M$ we
denote by $M_{m}$ the tangent space to $M$ at $m$ . Then we write $R_{wxyz}$ in place of
$\langle R_{wx}y, z\rangle$ for $w,$ $x,$ $y,$ $z\in M_{m}$ and shall sometimes use such expressions as $R_{x\alpha y\rho}$

instead of $R_{xe_{a}(m)ye_{\beta}(m)}$ .
Now we define the unit sphere bundle $S(At)$ of $M$ by

$S(M)=\{(m, x) : m\in M, x\in M_{m}, \langle x, x\rangle=1\}$ .

For any unit vector $x$ in a fibre $S_{m}$ we take an orthonormal basis $\{e_{1}, \cdots, e_{n}\}$ of
$M_{m}$ such that $x=e_{1}$ . Denote by $(y_{2}, \cdots, y_{n})$ the corresponding system of normal
coordinates defined on a neighborhood of $x$ in $S_{m}$ .

LEMMA A [3]. Let $F:S_{m}\rightarrow R$ be a function. Then we have

$\frac{\partial^{\alpha_{2^{+\cdots+\alpha}n}}F}{\partial y_{2}^{a_{2}}\cdots\partial y_{n^{n}}^{\alpha}}(m, x)=\frac{\partial^{\alpha_{2^{+\ldots+a}n}}}{\partial u_{2^{2}}^{\alpha}\cdots\partial u_{n^{n}}^{\alpha}}F((\cos r)x+(\frac{\sin r}{r})\Sigma_{\gamma=2}^{n}u_{\gamma}e_{\gamma})(0)$ ,

where we have set $r^{2}=\Sigma_{\gamma=2}^{n}u_{\gamma}^{2}$ .

Next we lift the frame $\{e_{1}, \cdots, e_{n}\}$ to an orthonormal basis { $f_{1},$
$\cdots,$

$f_{n}$ ; $g_{2},$ $\cdots$ ,
$g_{n}\}$ of the tangent space $S(\Lambda\emptyset(m,x)$

’ where we require that $f_{1},$
$\cdots,$

$f_{n}$ are horizontal
and $g_{2},$ $\cdots,$ $g_{n}$ are vertical. Denote by $(x_{1}, \cdots, x_{n} ; y_{2}, \cdots, y_{n})$ the corresponding
normal coordinate system on a neighborhood of $(m, x)$ in $S(M)$ . We define a
second-order linear differential operator $L(\lambda, \mu)$ by

$L(\lambda, \mu)_{(m,x)}$ $:=[\Sigma_{\alpha}^{n_{=1}}\frac{\partial^{2}}{\partial x_{a}^{2}}-\lambda\Sigma_{a,\beta=2}^{n}p_{a\beta}\frac{\partial^{2}}{\partial y_{\alpha}\partial y_{\beta}}+\mu\Sigma_{\alpha}^{n_{=2}}q_{\alpha}\frac{\partial}{\partial y_{a}}]_{(m,x)}$ ,

where $p_{\alpha\beta}(m, x):=R_{\alpha x\beta x}$ , $q_{\alpha}(m, x):=\rho_{\alpha x}$ and $\lambda,$
$\mu$ are constants to be chosen

later. This definition is independent of the choice of normal coordinates at $(m, x)$ .
Hence $L(\lambda, \mu)_{(m,x)}$ is well-defined. Here we note that the sign of the second term
in the right hand side is minus because of the definition on curvature tensor.

For a compact Riemannian manifold $M$, we define an inner product $(, )$ on
the space of functions by $(f, g);=\int_{M}fg_{*}1$ . Then the differential operator $L(\lambda, \mu)$

is self-adjoint with respect to $(, )$ provided that $\lambda=-\mu$ (cf. [3]).

If $f$ is a $real\cdot valued$ function on $S(M)$ , we denote by $grad^{v}f$ and $grad^{h}f$ the
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vertical and horizontal components of $gradf$ respectively.

LEMMA $B[3]$ . In a compact Riemannian manifold $M$, we have

$\int_{S(M)}[fL(\lambda, -\lambda)(f)(m, x)+|grad^{h}f|^{2}(m, x)+\lambda K_{x(grad^{v}f)(x)}]_{*}1=0$ ,

where the letter $K$ indicates the sectional curvature of $M$.

\S 2. Fundamental formulas.

Let $M$ be a submanifold of a Riemannian manifold $N$. We denote by the
same $\langle , \rangle$ the Riemannian metrics of $M$ and $N$, and by $\overline{\nabla}$ (resp. $\nabla$) the Riemannian
connection of $N$ (resp. $M$) respectively. In the sequel the letters $W,$ $X,$ $Y$ and
$Z$ (resp. $V$) will always denote any vector fields tangent (resp. normal) to $M$. Then
the Gauss and Weingarten formulas are respectively given by

(2.1) $\overline{\nabla}xY=\nabla xY+B(X, Y)$ ,

(2.2) $\overline{\nabla}xV=-A_{V}X+DxV$,

where $B$ (resp. $A$) and $D$ are the second fundamental form (resp. shape operator)

and the normal connection of $M$ respectively. Then first and second covariant
derivatives of $B$ are respectively defined by

(2.3) $(\nabla xB)\sim(Y, Z)=DxB(Y, Z)-B(\nabla xY, Z)-B(Y, \nabla xZ)$ ,

(2.4) $(\nabla_{W}^{2}x^{B)}\sim(Y, Z)=Dw(\nabla xB)\sim(Y, Z)-(\nabla_{\nabla_{W}}xB)\sim(Y, Z)$

$-(\nabla xB)\sim(\nabla wY, Z)-(\nabla xB)\sim(Y, \nabla wZ)$

Denoting by $\overline{R}$ the Riemannian curvature tensor of $N$ and putting as $(\overline{R}$wx $Y)^{n}$

the normal part of $\overline{R}_{WX}Y$ , we have the equation of Codazzi:

(2.5) $($Rwx $Y)^{n}=(\nabla wB)\sim(X, Y)-(\nabla xB)\sim(W, Y)$ .

If $(\overline{R}_{W}xY)^{n}$ vanishes identically, then we call such a submanifold $M$ curvature-

invariant.
From (2.4), the formula of Ricci with respect to the second covariant deriv-

ative of $B$ is given by

(2.6) $(\nabla_{W}^{2}x^{B)}\sim(Y, Z)-(\nabla_{XW}^{B})\sim_{2}(Y, Z)$

$=R_{WX}^{D}B(X, Z)-B(RwxY, Z)-B(Y, RwxZ)$ ,
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where $R_{WX}^{D}$ $:=[Dw, D_{X}]+D_{[W,X]}$ indicates the normal curvature tensor of $M$.

From now on let $M$ be an n-dimensional C-totally real submanifold in a
$(2n+1)$ -dimensional Sasakian manifold $N$ with structure $(\phi, \xi, \eta)$ . Then it is
shown that ([7], [8], [9], [11])

(2.7) $\langle B(Y, Z), \xi\rangle=0$ ,

(2.8) $Dx\phi Y=-\langle X, Y\rangle\xi+\phi\nabla xY$,

(2.9) $\langle R_{WX}^{D}\phi Y, \phi Z\rangle=\langle R_{WX}Y, Z\rangle-\langle W, Z\rangle\langle X, Y\rangle+\langle W, Y\rangle\langle X, Z\rangle$ ,

(2.10) $\langle(\nabla xB)(Y, Z), \xi\rangle=-\langle B(Y, Z), \phi X\rangle$ .

For such a C-totally real submanifold $M$, we state the definitions as follows:

DEFINITION [11]. We say that the mean curvatare vector field of $M$ is
$\eta$ -parallel if

(2.11) $\Sigma_{a}^{n_{=1}}\langle(\nabla WB)(e_{a}, e_{\alpha}), \phi X\rangle=0$ .
We say that the second fundamental form of $M$ is $\eta$-parallel if

(2.12) $\langle\nabla wB\rangle\sim(Y, Z),$ $\phi X\rangle$ $=0$ .
If $M$ has $\eta$ -parallel mean curvature vector field, then the equations (2.8) and

(2.10) yield

$\Sigma_{\alpha}n_{=1}^{\sim}\langle(\nabla_{W}^{2}x^{B)(e_{\alpha},e)}(t\phi Y\rangle$

$=-\Sigma_{a}^{n_{=1}}[\langle(\nabla xB)\sim(e_{a}, e_{\alpha}), Dw\phi Y\rangle+2\langle(\nabla xB)\sim(\nabla we_{\alpha}, e_{\alpha}), \phi Y\rangle]$

$=-\Sigma_{\alpha}^{n_{=1}}[-\langle W, Y\rangle\langle B(e_{\alpha}, e_{\sigma}), \phi X\rangle+2\langle\nabla xB)(\nabla we_{\alpha}, e_{\alpha}), \phi Y\rangle]$ .

Taking the normal coordinate system, we can state the following.

LEMMA 2.1. If $M$ has $\eta$ -parallel mean curvature vector field, then we have

(2.13) $\Sigma_{\alpha}^{n_{=1}}\langle(\nabla_{W}^{2}x^{B)}\sim(e_{\alpha}, e_{\alpha}), \phi Y\rangle=-\Sigma_{\alpha=1}^{n}\langle W, Y\rangle\langle B(e_{\alpha}, e_{\alpha}), \phi X\rangle$ .

\S 3. C-totally real submanifolds.

Throughout this section let $M$ be an n-dimensional curvature-invariant C-totally
real submanifold in a $(2n+1)$ -dimensional Sasakian manifold. We denote the
components of the second fundamental form $B$ by



Non-negatively curved C-totally real submanifolds 269

(3.1) $h_{a\beta\gamma}$ $:=\langle B(e_{\alpha}, e_{\beta}), \phi e_{\gamma}\rangle$ for $1\leqq\alpha,$ $\beta,$ $\gamma\leqq n$ .

As $M$ is C-totally real, we find that $h$ is symmetric, i.e.,

(3.2) $h_{\alpha\beta\gamma}=h_{\alpha\gamma\beta}=h_{\beta\alpha\gamma}$ for $1\leqq\alpha,$ $\beta,$ $\gamma\leqq n$ .

The components of first and second covariant derivatives of $B$ with respect to
$\phi\Gamma(M)$ are respectively expressed as

(3.3) $(\nabla^{h}):=\langle(\nabla^{B}\alpha)\sim(e_{\beta}, e_{\gamma}), \phi e_{\delta}\rangle$ for $1\leqq\alpha,$ $\beta,$
$\gamma,$

$\delta\leqq n$ ,

(3.4) $(\nabla_{\alpha\beta}^{2}h)_{\gamma\delta\epsilon}$
$:=\langle(\nabla_{\alpha\beta}^{2}\sim B)(e_{\gamma}, e_{\delta}), \phi e_{\epsilon}\rangle$ for $1\leqq\alpha,$ $\beta,$

$\gamma,$
$\delta,$ $\epsilon\leqq n$ .

Since $M$ is curvature-invariant, then, from (2.5) and (3.3), we find that $\nabla^{h}$

is symmetric with respect to $\phi\Gamma(M)$ , i.e.,

(3.5) $(\nabla^{h})=(\nabla\beta h)\alpha\gamma\delta$ for $1\leqq\alpha,$ $\beta,$
$\gamma,$

$\delta\leqq n$ .

We consider a function $f$ on $S(M)$ defined by $f(m, x)=h_{xxx}$ for any point
$(m, x)\in S(M)$ and then prove the following Lemma to use later.

LEMMA 3.1. Let $M$ be an n-dimensional curvature-invariant C-totally real

submanifold in a $(2n+1)$ -dimensional Sasakian manifold N. If $M$ has $\eta$ -parallel
mean curvature vector field, then we have $L(1/3, -1/3)(f)=0$ .

PROOF. We take any point $(m, x)$ of $S(M)$ . For each $\alpha,$ $1\leqq\alpha\leqq n$ , let $\gamma_{a}(s)$

be a geodesic in $M$ such that $\gamma_{a}(0)=m$ and $\gamma_{\alpha}^{\prime}(0)=e_{\alpha}$ . Then we denote a vector

field by parallel translating of $x$ along $\gamma_{a}$ as the same letter $x$. By virtue of
$(2.7)-(2.10)$ , we obtain

$(\frac{\partial^{2}f}{\partial x_{\alpha}^{2}})(m, x)=\langle\phi x, D_{\alpha}(\nabla^{B}\alpha)\sim(x, x)\rangle+\langle D_{\alpha}\phi x, (\nabla^{B)}\sim\alpha(x, x)\rangle$ at $m$

$=\langle\phi x, (\nabla_{aa}^{B)}\sim_{2}(x, x)\rangle+x_{a}\langle\phi e_{\alpha}, B(x, x)\rangle$ at $m$

$=(\nabla_{\alpha\alpha}^{2}h)_{xxx}+x_{\alpha}h_{\alpha}xx$,

where we have put $x_{\alpha}$ $:=\langle e_{a}, x\rangle$ , which implies

(3.6) $\Sigma_{\alpha}^{n_{=1}}(\frac{\partial^{2}f}{\partial x_{a}^{2}})(m, x)=\Sigma_{a}^{n_{=1}}(\nabla_{\alpha\alpha}^{2}h)_{xxx}+h_{xxx}$ .

From (2.6), (2.9), (3.2) and (3.5), we can verify
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$(\nabla_{\alpha a}^{2}h)_{xxx}=(\nabla_{a}^{2}xh)_{a}xx$

$=\langle\phi x, (\nabla_{xa}^{B})\sim_{2}(x, e_{a})\rangle+\langle\phi x, R_{ax}^{D}B(x, e_{\alpha})\rangle$

$-\langle\phi x, B(R_{\alpha x}x, e_{\alpha})\rangle-\langle\phi x, B(x, R_{\alpha x}e_{\alpha})\rangle$ at $m$

$=\langle\phi x, (\nabla_{xx}^{B})\sim_{2}(e_{a}, e_{a})\rangle-\langle B(x, e_{\alpha}), R_{\alpha x}^{D}\phi x\rangle$

$-\langle B(x, e_{a}), \phi R_{\alpha x}x\rangle-\langle B(x, x), \phi R_{\alpha x}e_{\alpha}\rangle$ at $m$

$=(\nabla_{xx}^{2}h)_{\alpha a}x+\Sigma_{\beta=1}^{n}[-2h_{\beta x}aR_{a}-hR_{\alpha x\alpha\beta}$

$+\delta_{\alpha\beta}h_{\rho_{\alpha}x}-h_{\rho_{\alpha}x}x_{\alpha}x_{\beta}]$ ,

from which follows that

(3.7) $\Sigma_{a}^{n_{=1}}(\nabla_{\alpha\alpha}^{2}h)_{xxx}=\Sigma_{\alpha}^{n_{=1}}[(\nabla_{xx}^{2}h)_{aax}-2\Sigma_{\rho xx}^{n_{=1}}h_{\beta\alpha}xR_{\alpha xx\beta}+h_{a}\rho_{\alpha x}+h_{\alpha ax}]-h_{xxx}$ .
Thus it is shown from (3.6) and (3.7) that

(3.8) $\Sigma_{\alpha}^{n_{=1}}(\frac{\partial^{2}f}{\partial x_{\alpha}^{2}})(m, x)=\Sigma_{a}^{n_{=1}}[(\nabla_{xx}^{2}h)_{\alpha\alpha x}-2\Sigma_{\beta}^{n_{=1}}R_{\alpha xx\rho}h_{\alpha\beta x}+\rho_{x\alpha}h_{\alpha xx}+h_{\alpha\alpha x}]$ .

From the definition of $f$, we have

(3.9) $f((\cos r)x+(\frac{\sin r}{r})\Sigma_{r>1}u_{\gamma}e_{r})$

$=(\cos r)^{3}h_{xxx}+3(\cos r)^{2}(\frac{\sin r}{r})\Sigma_{r>1}u_{\gamma}h_{\gamma xx}$

$+3(\cos r)(\frac{\sin r}{r})^{2}\Sigma_{\gamma\prime\delta>1}u_{r}u_{\delta}h_{\delta\gamma x}+(\frac{\sin r}{r})^{3}\Sigma_{\gamma\prime\delta,.>1}u_{\gamma}u_{\delta}u.h_{\delta\gamma}$

$=(\cos r)^{3}h_{xxx}+3(\cos r)^{2}(\frac{\sin r}{r})\Sigma_{\gamma>1}u_{\gamma}h_{\gamma xx}$

$+(\cos r)(\frac{\sin r}{r})^{2}\Sigma_{r>1}(3h_{rxx}-h_{xxx})u_{\gamma}^{2}$

$+6(\cos r)(\frac{\sin r}{r})^{2}\Sigma_{r>\delta>1}u_{\gamma}u_{\delta}h_{\gamma\delta x}+(\frac{\sin r}{r})^{3}\Sigma_{\gamma\prime\delta,.>1}u_{\gamma}u_{\delta}u.h_{\delta\gamma}$

because of $r^{2}=\Sigma_{\gamma}^{n_{=2}}u_{\gamma}^{2}$ . Applying Lemma A to (3.9), we find

(3.10) $\frac{\partial f}{\partial y_{\alpha}}(m, x)=3h_{axx}$ for $2\leqq\alpha\leqq n$ ,

(3.11) $\frac{\partial^{2}f}{\partial y_{\alpha}\partial y_{\beta}}(m, x)=-3h_{xxx}\delta_{\alpha\beta}+6h_{\alpha\beta x}$ for $2\leqq\alpha,$ $\beta\leqq n$.
We see from (3.8), (3.10) and (3.11) that
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(3.12) $L(1/3, -1/3)(f)(m, x)=\Sigma_{\alpha}^{n_{=1}}[(\nabla_{xx}^{2}h)_{a\alpha x}+h_{\alpha ax}]$ .

On the other hand, the equation (2.13) is rewritten as

(3.13) $\Sigma_{\alpha}^{n_{=1}}(\nabla_{\beta\delta}^{2}h)_{\alpha\alpha\gamma}=-\Sigma_{\alpha}^{n_{=1}}\delta_{\beta\gamma}h_{\delta\alpha\alpha}$ for $1\leqq\beta,$
$\gamma,$

$\delta\leqq n$ .
Combining (3.12) with (3.13), we have

$L(1/3, -1/3)(f)(m, x)=0$ .

THEOREM 3.1. Let $M$ be an n-dimensional compact curvature-invariant
C-totally real submanifold in a $(2n+1)$ -dimensional Sasakian manifold with
$\eta$ -parallel mean curvature vector field. If the sectional curvature of $M$ is positive,
then $M$ is totally geodesic.

PROOF. As $M$ has positive sectional curvature, $L(1/3, -1/3)$ is elliptic.
From the above hypothesis we have $L(1/3, -1/3)(f)=0$ . By maximum principle
[10], $f$ is constant on $S(M)$ . Since $f$ is an odd function, it must be zero. Thus
$M$ is totally geodesic.

COROLLARY 3.2. Let $M$ be an n-dimensional compact C-totally real submani-

fold in a $(2n+1)$ -dimensional Sasakian space form with $\eta$ -parallel mean curva-
ture vector field. If the sectional curvature of $M$ is positive, then $M$ is totally
geodesic.

PROOF. If the $\phi$-sectional curvature of Sasakian space form $N$ is denoted by
$c$, then the Riemannian curvature tensor $\overline{R}$ of $N$ restricted to $M$ is given by

$\overline{R}_{WX}Y=\frac{c+3}{3}[\langle Y, X\rangle W-\langle Y, W\rangle X]$ ,

which means clearly that $M$ is curvature-invariant. By Theorem 3.1, $M$ is totally
geodesic.

REMARK 1. If the normal connection of $M$ is flat, then, from (2.9), $M$ is of
constant curvature 1, so that we have the same result as those in Theorem 3.1 or
Corollary 3.2.

REMARK 2. As a Corollary of Theorem 3.1, we can state the Blair-Ogiue’s
Theorem in the introduction of this paper.

THEOREM 3.3. Let $M$ be an n-dimensional compact curvature-invariant
C-totally real submanifold in a $(2n+1)$ -dimensional Sasakian manifold with
$\eta$-parallel mean curvature vector field. If the sectional curvature of $M$ is
non-negative, then $M$ has $\eta$ -parallel second fundamental form.
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PROOF. By use of Lemma 3.1, we have $L(1/3, -1/3)(f)=0$ . Applying
Lemma $B$, we find that $grad^{h}f$ must be identically zero. From (3.2) and (3.5),

the fact that $grad^{h}f=0$ is equivalent to saying that the second fundamental form
is $\eta$ -parallel.

COROLLARY 3.4. Let $M$ be an n-dimensional compact C-totally real submani-

fold in a $(2n+1)$ -dimensional Sasakian space form with $\eta$-parallel mean curva-
ture vector field. If the sectional curvature of $M$ is non-negative, then $M$ has
$\eta$-parallel second fundamental form.
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