NON-NEGATIVELY CURVED C-TOTALLY REAL SUBMANIFOLDS IN A SASAKIAN MANIFORD

By
Masumi Kameda
Dedicated to Professor Y. Tashiro on his 60th birthday

§ 0. Introduction.

Several authors have investigated minimal totally real submanifolds in a complex space form and obtained many interesting results. Recently F. Urbano [6] and Y. Ohnita [4] have studied pinching problems on their curvatures and stated some theorems.

On the other hand, in a ($2 n+1$)-dimensional Sasakian space form of constant ϕ-sectional curvature $c(>-3)$, if a submanifold M is perpendicular to the structure vector field, then M is said to be C-totally real. For such a submanifold M, it is well-known that if the mean curvature vector field of M is parallel, then M is minimal. S. Yamaguchi, M. Kon and T. Ikawa [8] obtained that if the squared length of the second fundamental form of M is less than $n(n+1)(c+3) / 4(2 n-1)$, then M is totally geodesic. Furthermore, D. E. Blair and K. Ogiue [2] proved that if the sectional curvature of M is a greater than $(n-2)(c+3) / 4(2 n-1)$, then M is totally geodesic.

In this paper, we consider a curvature-invariant C-totally real submanifold M in a Sasakian manifold with η-parallel mean curvature vector field. Then M is not necessary minimal. Making use of methods of [3] and [4], we prove that if the sectional curvature of M is positive, then M is totally geodesic.

In Sec. 1, we recall the differential operators on the unit sphere bundle of a Riemannian manifold. Sec. 2 is devoted to stating about fundamental formulas on a C-totally real submanifold in a Sasakian manifold. In Sec. 3, we prove Theorems and Corollaries. Throughout this paper all manifolds are always C^{∞}, oriented, connected and complete. The author wishes to thank Professor S. Yamaguchi for his help.

§ 1. A differential operator defined by A. Gray.

Let M be an n-dimensional Riemannian manifold and $\Gamma(M)$ the Lie algebra

[^0]of vector fields on M. Denote by $\langle\rangle,, \nabla$ and $R_{X Y}:=\left[\nabla X, \nabla_{Y}\right]-\nabla_{[X, Y]}(X, Y \in$ $\Gamma(M)$) the metric tensor of M, the Riemannian connection on M and the curvature tensor of M, respectively. The Ricci tensor ρ of M is given by
\[

$$
\begin{equation*}
\rho_{X Y}:=\sum_{\alpha=1}^{n}\left\langle R_{e_{\alpha}} X Y, e_{\alpha}\right\rangle \text { for } X, Y \in \Gamma(M), \tag{1.1}
\end{equation*}
$$

\]

where $\left\{e_{1}, \cdots, e_{n}\right\}$ is an arbitrary local orthonormal frame field. For $m \in M$ we denote by M_{m} the tangent space to M at m. Then we write $R_{w x y z}$ in place of $\left\langle R_{w x} y, z\right\rangle$ for $w, x, y, z \in M_{m}$ and shall sometimes use such expressions as $R_{x a y \beta}$ instead of $R_{x e_{a}(m) y e_{\beta}(m)}$.

Now we define the unit sphere bundle $S(M)$ of M by

$$
S(M)=\left\{(m, x): m \in M, x \in M_{m},\langle x, x\rangle=1\right\} .
$$

For any unit vector x in a fibre S_{m} we take an orthonormal basis $\left\{e_{1}, \cdots, e_{n}\right\}$ of M_{m} such that $x=e_{1}$. Denote by (y_{2}, \cdots, y_{n}) the corresponding system of normal coordinates defined on a neighborhood of x in S_{m}.

Lemma A [3]. Let $F: S_{m} \longrightarrow \boldsymbol{R}$ be a function. Then we have

$$
\frac{\partial^{\alpha_{2}+\ldots+\alpha_{n}} F}{\partial y_{2}^{\alpha_{2} \ldots \partial y_{n}^{\alpha_{n}}}(m, x)=\frac{\partial^{\alpha_{2}+\ldots+\alpha_{n}}}{\partial u_{2}^{\alpha_{2}} \ldots \partial u_{n}^{\alpha_{n}}} F\left((\cos r) x+\left(\frac{\sin r}{r}\right) \sum_{r=2}^{n} u_{r} e_{r}\right)(0), ~, ~, ~}
$$

where we have set $r^{2}=\sum_{r=2}^{n} u_{r}{ }^{2}$.
Next we lift the frame $\left\{e_{1}, \cdots, e_{n}\right\}$ to an orthonormal basis $\left\{f_{1}, \cdots, f_{n} ; g_{2}, \cdots\right.$, $\left.g_{n}\right\}$ of the tangent space $S(M)_{(m, x)}$, where we require that f_{1}, \cdots, f_{n} are horizontal and g_{2}, \cdots, g_{n} are vertical. Denote by ($x_{1}, \cdots, x_{n} ; y_{2}, \cdots, y_{n}$) the corresponding normal coordinate system on a neighborhood of (m, x) in $S(M)$. We define a second-order linear differential operator $L(\lambda, \mu)$ by

$$
L(\lambda, \mu)_{(m, x)}:=\left[\sum_{\alpha=1}^{n} \frac{\partial^{2}}{\partial x_{\alpha}^{2}}-\lambda \sum_{\alpha, \beta=2}^{n} p_{\alpha \beta} \frac{\partial^{2}}{\partial y_{\alpha} \partial y_{\beta}}+\mu \sum_{\alpha=2}^{n} q_{\alpha} \frac{\partial}{\partial y_{\alpha}}\right]_{(m, x)},
$$

where $p_{\alpha \beta}(m, x):=R_{\alpha x \beta x}, \quad q_{\alpha}(m, x):=\rho_{\alpha x}$ and λ, μ are constants to be chosen later. This definition is independent of the choice of normal coordinates at (m, x). Hence $L(\lambda, \mu)_{(m, x)}$ is well-defined. Here we note that the sign of the second term in the right hand side is minus because of the definition on curvature tensor.

For a compact Riemannian manifold M, we define an inner product (,) on the space of functions by $(f, g):=\int_{M} f g_{*} 1$. Then the differential operator $L(\lambda, \mu)$ is self-adjoint with respect to (,) provided that $\lambda=-\mu$ (cf. [3]).

If f is a real-valued function on $S(M)$, we denote by $\operatorname{grad}^{v} f$ and $\operatorname{grad}^{h} f$ the
vertical and horizontal components of grad f respectively.
Lemma B [3]. In a compact Riemannian manifold M, we have

$$
\int_{S(M)}\left[f L(\lambda,-\lambda)(f)(m, x)+\left|\operatorname{grad}^{h} f\right|^{2}(m, x)+\lambda K_{x(\operatorname{grad} v f)(x)}\right] * 1=0,
$$

where the letter K indicates the sectional curvature of M.

§ 2. Fundamental formulas.

Let M be a submanifold of a Riemannian manifold N. We denote by the same 〈, > the Riemannian metrics of M and N, and by $\bar{\nabla}$ (resp. ∇) the Riemannian connection of N (resp. M) respectively. In the sequel the letters W, X, Y and Z (resp. V) will always denote any vector fields tangent (resp. normal) to M. Then the Gauss and Weingarten formulas are respectively given by

$$
\begin{gather*}
\bar{\nabla}_{x} Y=\nabla x Y+B(X, Y), \tag{2.1}\\
\bar{\nabla}_{X} V=-A_{V} X+D_{X} V \tag{2.2}
\end{gather*}
$$

where B (resp. A) and D are the second fundamental form (resp. shape operator) and the normal connection of M respectively. Then first and second covariant derivatives of B are respectively defined by

$$
\begin{align*}
\left(\tilde{\nabla}_{x} B\right)(Y, Z)= & D_{x} B(Y, Z)-B\left(\nabla_{x} Y, Z\right)-B\left(Y, \nabla_{x} Z\right), \tag{2.3}\\
\left(\tilde{\nabla}_{W X}^{2} B\right)(Y, Z) & =D_{W}\left(\tilde{\nabla}_{x} B\right)(Y, Z)-\left(\tilde{\nabla}_{\nabla_{W}} B\right)(Y, Z) \tag{2.4}\\
& -\left(\tilde{\nabla}_{x} B\right)\left(\nabla_{w} Y, Z\right)-\left(\tilde{\nabla}_{x} B\right)\left(Y, \nabla_{w} Z\right)
\end{align*}
$$

Denoting by \bar{R} the Riemannian curvature tensor of N and putting as $\left(\bar{R}_{W X} Y\right)^{n}$ the normal part of $\bar{R}_{W X} Y$, we have the equation of Codazzi:

$$
\begin{equation*}
\left(\bar{R}_{W X} Y\right)^{n}=\left(\tilde{\nabla}_{W} B\right)(X, Y)-\left(\tilde{V}_{X} B\right)(W, Y) . \tag{2.5}
\end{equation*}
$$

If $\left(\bar{R}_{W X} Y\right)^{n}$ vanishes identically, then we call such a submanifold M curvatureinvariant.

From (2.4), the formula of Ricci with respect to the second covariant derivative of B is given by

$$
\begin{align*}
& \left(\tilde{V}_{W X}^{2} B\right)(Y, Z)-\left(\tilde{V}_{X W}^{2} B\right)(Y, Z) \tag{2.6}\\
& =R_{W X}^{D} B(X, Z)-B\left(R_{W X} Y, Z\right)-B\left(Y, R_{W X} Z\right),
\end{align*}
$$

where $R_{W X}^{D}:=\left[D_{W}, D_{X}\right]+D_{[W, X]}$ indicates the normal curvature tensor of M.
From now on let M be an n-dimensional C-totally real submanifold in a $(2 n+1)$-dimensional Sasakian manifold N with structure (ϕ, ξ, η). Then it is shown that ([7], [8], [9], [11])

$$
\begin{gather*}
\langle B(Y, Z), \xi\rangle=0, \tag{2.7}\\
D_{X} \phi Y=-\langle X, Y\rangle \xi+\phi_{\nabla} Y \tag{2.8}\\
\left\langle R_{W X}^{D} \phi Y, \phi Z\right\rangle=\left\langle R_{W X} Y, Z\right\rangle-\langle W, Z\rangle\langle X, Y\rangle+\langle W, Y\rangle\langle X, Z\rangle, \tag{2.9}\\
\left\langle\left(\tilde{\nabla}_{x} B\right)(Y, Z), \xi\right\rangle=-\langle B(Y, Z), \phi X\rangle . \tag{2.10}
\end{gather*}
$$

For such a C-totally real submanifold M, we state the definitions as follows:
Definition [11]. We say that the mean curvatare vector field of M is η-parallel if

$$
\begin{equation*}
\sum_{a=1}^{n}\left\langle(\tilde{\nabla} w B)\left(e_{\alpha}, e_{\alpha}\right), \phi X\right\rangle=0 . \tag{2.11}
\end{equation*}
$$

We say that the second fundamental form of M is η-parallel if

$$
\begin{equation*}
\langle\tilde{\nabla} w B\rangle(Y, Z), \phi X\rangle=0 . \tag{2.12}
\end{equation*}
$$

If M has η-parallel mean curvature vector field, then the equations (2.8) and (2.10) yield

$$
\begin{aligned}
& \sum_{\alpha=1}^{n}\left\langle\left(\tilde{\nabla}_{W X}^{2} B\right)\left(e_{\alpha}, e_{\alpha}\right), \phi Y\right\rangle \\
& =-\sum_{\alpha=1}^{n}\left[\left\langle\left(\tilde{\nabla}_{X} B\right)\left(e_{\alpha}, e_{\alpha}\right), D_{W} \phi Y\right\rangle+2\left\langle\left(\tilde{\nabla}_{X} B\right)\left(\nabla w e_{\alpha}, e_{\alpha}\right), \phi Y\right\rangle\right] \\
& \left.=-\sum_{\alpha=1}^{n}\left[-\langle W, Y\rangle\left\langle B\left(e_{\alpha}, e_{\alpha}\right), \phi X\right\rangle+2\left\langle\tilde{V}_{X} B\right)\left(\nabla w e_{\alpha}, e_{\alpha}\right), \phi Y\right\rangle\right] .
\end{aligned}
$$

Taking the normal coordinate system, we can state the following.
Lemma 2.1. If M has η-parallel mean curvature vector field, then we have

$$
\begin{equation*}
\sum_{\alpha=1}^{n}\left\langle\left(\tilde{\nabla}_{W X}^{2} B\right)\left(e_{\alpha}, e_{\alpha}\right), \phi Y\right\rangle=-\sum_{\alpha=1}^{n}\langle W, Y\rangle\left\langle B\left(e_{\alpha}, e_{\alpha}\right), \phi X\right\rangle . \tag{2.13}
\end{equation*}
$$

§ 3. C-totally real submanifolds.

Throughout this section let M be an n-dimensional curvature-invariant C-totally real submanifold in a $(2 n+1)$-dimensional Sasakian manifold. We denote the components of the second fundamental form B by

$$
\begin{equation*}
h_{\alpha \beta \gamma}:=\left\langle B\left(e_{\alpha}, e_{\beta}\right), \phi e_{\gamma}\right\rangle \quad \text { for } 1 \leqq \alpha, \beta, \gamma \leqq n . \tag{3.1}
\end{equation*}
$$

As M is C-totally real, we find that h is symmetric, i.e.,

$$
\begin{equation*}
h_{\alpha \beta \gamma}=h_{\alpha \gamma \beta}=h_{\beta \alpha \gamma} \quad \text { for } 1 \leqq \alpha, \beta, \gamma \leqq n . \tag{3.2}
\end{equation*}
$$

The components of first and second covariant derivatives of B with respect to $\phi \Gamma(M)$ are respectively expressed as

$$
\begin{gather*}
\left(\nabla_{\alpha} h\right)_{\beta \gamma \delta}:=\left\langle\left(\tilde{\nabla}_{\alpha} B\right)\left(e_{\beta}, e_{\gamma}\right), \phi e_{\delta}\right\rangle \quad \text { for } 1 \leqq \alpha, \beta, \gamma, \delta \leqq n, \tag{3.3}\\
\left(\nabla_{\alpha \beta}^{2} h\right)_{\gamma \tilde{\delta}_{\varepsilon}}:=\left\langle\left(\tilde{\nabla}_{\alpha \beta}^{2} B\right)\left(e_{r}, e_{\delta}\right), \phi e_{\Delta}\right\rangle \quad \text { for } 1 \leqq \alpha, \beta, \gamma, \delta, \varepsilon \leqq n . \tag{3.4}
\end{gather*}
$$

Since M is curvature-invariant, then, from (2.5) and (3.3), we find that ∇h is symmetric with respect to $\phi \Gamma(M)$, i.e.,

$$
\begin{equation*}
\left(\nabla_{\alpha} h\right)_{\beta \gamma \delta}=\left(\nabla_{\beta} h\right)_{\alpha \gamma \delta} \quad \text { for } 1 \leqq \alpha, \beta, \gamma, \delta \leqq n . \tag{3.5}
\end{equation*}
$$

We consider a function f on $S(M)$ defined by $f(m, x)=h_{x x x}$ for any point ($m, x) \in S(M)$ and then prove the following Lemma to use later.

Lemma 3.1. Let M be an n-dimensional curvature-invariant C-totally real submanifold in a $(2 n+1)$-dimensional Sasakian manifold N. If M has η-parallel mean curvature vector field, then we have $L(1 / 3,-1 / 3)(f)=0$.

Proof. We take any point (m, x) of $S(M)$. For each $\alpha, 1 \leqq \alpha \leqq n$, let $\gamma_{\alpha}(s)$ be a geodesic in M such that $\gamma_{\alpha}(0)=m$ and $\gamma_{\alpha}^{\prime}(0)=e_{\alpha}$. Then we denote a vector field by parallel translating of x along γ_{α} as the same letter x. By virtue of (2.7)-(2.10), we obtain

$$
\begin{aligned}
\left(\frac{\partial^{2} f}{\partial x_{\alpha}^{2}}\right)(m, x) & =\left\langle\phi x, D_{\alpha}\left(\tilde{\nabla}_{\alpha} B\right)(x, x)\right\rangle+\left\langle D_{\alpha} \phi x,\left(\tilde{\nabla}_{\alpha} B\right)(x, x)\right\rangle \quad \text { at } m \\
& =\left\langle\phi x,\left(\tilde{\nabla}_{\alpha \alpha}^{2} B\right)(x, x)\right\rangle+x_{\alpha}\left\langle\phi e_{\alpha}, B(x, x)\right\rangle \quad \text { at } m \\
& =\left(\nabla_{\alpha \alpha}^{2} h\right)_{x x x}+x_{\alpha} h_{\alpha x},
\end{aligned}
$$

where we have put $x_{\alpha}:=\left\langle e_{\alpha}, x\right\rangle$, which implies

$$
\begin{equation*}
\sum_{\alpha=1}^{n}\left(\frac{\partial^{2} f}{\partial x_{\alpha}^{2}}\right)(m, x)=\sum_{\alpha=1}^{n}\left(\nabla_{\alpha \alpha}^{2} h\right)_{x x x}+h_{x x x} . \tag{3.6}
\end{equation*}
$$

From (2.6), (2.9), (3.2) and (3.5), we can verify

$$
\begin{aligned}
&\left(\nabla_{\alpha \alpha}^{2} h\right)_{x x x}=\left(\nabla_{\alpha x}^{2} h\right)_{\alpha x x} \\
&=\left\langle\phi x,\left(\tilde{\nabla}_{x \alpha}^{2} B\right)\left(x, e_{\alpha}\right)\right\rangle+\left\langle\phi x, R_{\alpha x}^{D} B\left(x, e_{\alpha}\right)\right\rangle \\
& \quad-\left\langle\phi x, B\left(R_{\alpha x} x, e_{\alpha}\right)\right\rangle-\left\langle\phi x, B\left(x, R_{\alpha x} e_{\alpha}\right)\right\rangle \\
&=\left\langle\phi x,\left(\tilde{V}_{x x}^{2} B\right)\left(e_{\alpha}, e_{\alpha}\right)\right\rangle-\left\langle B\left(x, e_{\alpha}\right), R_{\alpha x}^{D} \phi x\right\rangle \\
& \quad \text { at } m \\
& \quad-\left\langle B\left(x, e_{\alpha}\right), \phi R_{\alpha x} x\right\rangle-\left\langle B(x, x), \phi R_{\alpha x} e_{\alpha}\right\rangle \text { at } m \\
&=\left(\nabla_{x x}^{2} h\right)_{\alpha \alpha x}+\sum_{\beta=1}^{n}\left[-2 h_{\beta \alpha x} R_{\alpha x x \beta}-h_{\beta x x} R_{\alpha x \alpha \beta}\right. \\
&\left.\quad+\delta_{\alpha \beta} h_{\beta \alpha x}-h_{\beta \alpha x} x_{\alpha} x_{\beta}\right],
\end{aligned}
$$

from which follows that
(3.7) $\quad \sum_{\alpha=1}^{n}\left(\nabla_{\alpha \alpha}^{2} h\right)_{x x x}=\sum_{\alpha=1}^{n}\left[\left(\nabla_{x x}^{2} h\right)_{\alpha \alpha x}-2 \sum_{\beta=1}^{n} h_{\beta \alpha x} R_{\alpha x x \beta}+h_{\alpha x x} \rho_{\alpha x}+h_{\alpha \alpha x}\right]-h_{x x x}$.

Thus it is shown from (3.6) and (3.7) that

$$
\begin{equation*}
\sum_{\alpha=1}^{n}\left(\frac{\partial^{2} f}{\partial x_{\alpha}^{2}}\right)(m, x)=\sum_{\alpha=1}^{n}\left[\left(\nabla_{x x}^{2} h\right)_{\alpha \alpha x}-2 \sum_{\beta=1}^{n} R_{\alpha x x \beta} h_{\alpha \beta x}+\rho_{x \alpha} h_{\alpha x x}+h_{\alpha \alpha x}\right] \tag{3.8}
\end{equation*}
$$

From the definition of f, we have

$$
\begin{align*}
& f\left((\cos r) x+\left(\frac{\sin r}{r}\right) \Sigma_{r}>_{1} u_{r} e_{r}\right) \tag{3.9}\\
& =(\cos r)^{3} h_{x x x}+3(\cos r)^{2}\left(\frac{\sin r}{r}\right) \sum_{r>1} u_{r} h_{r x x} \\
& +3(\cos r)\left(\frac{\sin r}{r}\right)^{2} \Sigma_{r, \delta>1} u_{r} u_{\delta} h_{\delta r x}+\left(\frac{\sin r}{r}\right)^{3} \Sigma_{r, \delta,,>1} u_{r} u_{\delta} u_{d} h_{\delta \delta r} \\
& =(\cos r)^{3} h_{x x x}+3(\cos r)^{2}\left(\frac{\sin r}{r}\right) \Sigma_{r>1} u_{r} h_{r x x} \\
& +(\cos r)\left(\frac{\sin r}{r}\right)^{2} \Sigma_{r>1}\left(3 h_{r x x}-h_{x x x}\right) u_{r}{ }^{2} \\
& +6(\cos r)\left(\frac{\sin r}{r}\right)^{2} \Sigma_{r>\delta>1} u_{r} u_{\delta} h_{r \delta x}+\left(\frac{\sin r}{r}\right)^{3} \Sigma_{r, \delta,,>1} u_{r} u_{\delta} u_{d} h_{\delta \delta_{r}}
\end{align*}
$$

because of $r^{2}=\sum_{r=2}^{n} u_{r}^{2}$. Applying Lemma A to (3.9), we find

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial y_{\alpha} \partial y_{\beta}}(m, x)=-3 h_{x x x} \delta_{\alpha \beta}+6 h_{\alpha \beta x} \quad \text { for } 2 \leqq \alpha, \beta \leqq n \tag{3.10}
\end{equation*}
$$

We see from (3.8), (3.10) and (3.11) that

$$
\begin{equation*}
L(1 / 3,-1 / 3)(f)(m, x)=\sum_{\alpha=1}^{n}\left[\left(\nabla_{x x}^{2} h\right)_{\alpha \alpha x}+h_{\alpha \alpha x}\right] . \tag{3.12}
\end{equation*}
$$

On the other hand, the equation (2.13) is rewritten as

$$
\begin{equation*}
\sum_{\alpha=1}^{n}\left(\nabla_{\beta \delta}^{2} h\right)_{\alpha \alpha \gamma}=-\sum_{\alpha=1}^{n} \delta_{\beta \gamma} h_{\delta \alpha \alpha} \quad \text { for } 1 \leqq \beta, \gamma, \delta \leqq n . \tag{3.13}
\end{equation*}
$$

Combining (3.12) with (3.13), we have

$$
L(1 / 3,-1 / 3)(f)(m, x)=0 .
$$

TheOREM 3.1. Let M be an n-dimensional compact curvature-invariant C-totally real submanifold in a ($2 n+1$)-dimensional Sasakian manifold with η-parallel mean curvature vector field. If the sectional curvature of M is positive, then M is totally geodesic.

Proof. As M has positive sectional curvature, $L(1 / 3,-1 / 3)$ is elliptic. From the above hypothesis we have $L(1 / 3,-1 / 3)(f)=0$. By maximum principle [10], f is constant on $S(M)$. Since f is an odd function, it must be zero. Thus M is totally geodesic.

Corollary 3.2. Let M be an n-dimensional compact C-totally real submanifold in a $(2 n+1)$-dimensional Sasakian space form with η-parallel mean curvature vector field. If the sectional curvature of M is positive, then M is totally geodesic.

Proof. If the ϕ-sectional curvature of Sasakian space form N is denoted by c, then the Riemannian curvature tensor \bar{R} of N restricted to M is given by

$$
\bar{R}_{W X} Y=\frac{c+3}{3}[\langle Y, X\rangle W-\langle Y, W\rangle X]
$$

which means clearly that M is curvature-invariant. By Theorem 3.1, M is totally geodesic.

REmark 1. If the normal connection of M is flat, then, from (2.9), M is of constant curvature 1, so that we have the same result as those in Theorem 3.1 or Corollary 3.2.

Remark 2. As a Corollary of Theorem 3.1, we can state the Blair-Ogiue's Theorem in the introduction of this paper.

Theorem 3.3. Let M be an n-dimensional compact curvature-invariant C-totally real submanifold in a ($2 n+1$)-dimensional Sasakian manifold with η-parallel mean curvature vector field. If the sectional curvature of M is non-negative, then M has η-parallel second fundamental form.

Proof. By use of Lemma 3.1, we have $L(1 / 3,-1 / 3)(f)=0$. Applying Lemma B, we find that $\operatorname{grad}^{h} f$ must be identically zero. From (3.2) and (3.5), the fact that $\operatorname{grad}^{h} f=0$ is equivalent to saying that the second fundamental form is η-parallel.

Corollary 3.4. Let M be an n-dimensional compact C-totally real submanifold in a $(2 n+1)$-dimensional Sasakian space form with η-parallel mean curvature vector field. If the sectional curvature of M is non-negative, then M has η-parallel second fundamental form.

References

[1] Blair, D. E., Contact manifolds in Riemannian geometry, Springer, 509, 1976.
[2] Blair, D. E. and Ogiue, K., Positively curved integral submanifolds of a contact distribution, Illinois J. Math., 19 (1975), 628-631.
[3] Gray, A., Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7 (1978), 259-280.
[4] Ohnita, Y., Totally real submanifolds with nonnegative sectional curvature, Proc. Amer. Math. Soc., 97 (1986), 474-478.
[5] Ros, A., Positively curved Kaehler submanifolds, Proc. Amer. Math. Soc., 93 (1985), 329-331.
[6] Urbano, F., Totally real minimal submanifolds of a complex projective space, Proc. Amer. Math. Soc., 93 (1985), 332-334.
[7] Yamaguchi, S. and Ikawa, T., On compact minimal C-totally real submanifolds, Tensor N. S., 29 (1975), 30-34.
[8] Yamaguchi, S. Kon, M. and Ikawa, T., On C-totally real submanifolds, J. Diff. Geom., 11 (1976), 59-64.
[9] Yamaguchi, S. Kon, M. and Miyahara, Y., A theorem on C-totally real minimal surface, Proc. Amer. Math. Soc., 54 (1976), 276-280.
[10] Yano, K. and Bochner, S., Curvature and Betti Numbers, Ann. Math. Studies 32, Princeton University Press, Princeton, New Jersey, 1953.
[11] Yano, K. and Kon, M., Anti-invariant submanifolds, Marcel Dekker, 1976.
Author's address:
Department of Mathematics
Faculty of Science
Science University of Tokyo
Tokyo 162
JAPAN.
Correct address :
Mathematical Laboratory
Science University of Tokyo,
Yamaguchi College
Onoda, Yamaguchi 756 JAPAN.

[^0]: Received August 8, 1986.

