A NOTE ON STRONG HOMOLOGY OF INVERSE SYSTEMS

By

Sibe Mardešić

1. Introduction.

Ju. T. Lisica and the author have defined in [4] strong homology groups $H_p(X;G)$ of inverse systems of spaces $X=(X_\lambda,\,p_{\lambda\lambda'},\,\Lambda)$ over directed cofinite sets Λ (every element $\lambda\in\Lambda$ has only finitely many predecessors). It was shown in [5] that these groups are functors on the coherent prohomotopy category CPHTop, introduced in [2] and [3]. The notion of strong or Steenrod homology $H_p^s(X;G)$ of an arbitrary space X was then defined [1], [6] and shown to be a functor on the strong shape category SSh [2], [3]. The procedure consisted in choosing a cofinite ANR-resolution $p: X \to X$ of X ([7], [8], [9]) and of defining $H_p^s(X;G)$ as $H_p(X;G)$. That the group $H_p^s(X;G)$ does not depend on the choice of the resolution is a consequence of the following factorization theorem ([3], Theorem II. 2.3). If $p: X \to X$ is a resolution and $f: X \to Y$ is a coherent map into a cofinite ANR-system, then there exists a unique coherent homotopy class of coherent maps $g: X \to Y$ such that gp and f are coherently homotopic.

The definition of composition in CPHTop and the proof of the factorization theorem essentially used the assumption that the index sets Λ be cofinite. On the other hand, the construction of the homology groups $H_p(X;G)$ did not require this assumption. Therefore, it remained unclear whether one can use also non-cofinite ANR-resolutions to determine the homology groups $H_p^s(X;G)$ of the space X. To prove that this is indeed the case is the main purpose of this paper. Such an information can prove useful in situations where a non-cofinite ANR-resolution naturally arises.

The main idea of the proof is to replace a given ANR-resolution $p: X \to X$ by a cofinite ANR-resolution $p^*: X \to X^*$ using the "trick" described in ([9], Theorem I, 1.2). What remains to be done is to exhibit a natural isomorphism $u_*: H_p(X; G) \to H_p(X^*; G)$. The correct formula for u_* is easily found. However, the formula for the inverse v_* of u_* is less obvious. Even more complicated is the verification of the two equalities $u_*v_*=1$, $v_*u_*=1$.

In order to simplify notations throughout the paper we omit the coefficient groups G, although all results hold for an arbitrary G.

2. Coherent maps and homotopy of systems.

Let $X=(X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ and $Y=(Y_{\mu}, q_{\mu\mu'}, M)$ be inverse systems of spaces over directed sets Λ and M respectively, i.e., X and Y are assumed to be objects of the category pro-Top (see I. 1 of [9]). In all but the last section we will assume that Λ and M are antisymmetric, i.e. $\lambda \leq \lambda'$ and $\lambda' \leq \lambda$ implies $\lambda = \lambda'$.

We denote by Λ^n , $n \ge 0$, the set of all increasing sequences $l = (\lambda_0, \dots, \lambda_n)$ in Λ of length n, $\lambda_0 \le \dots \le \lambda_n$. If $0 \le j \le n$, $l_j = (\lambda_0, \dots, \hat{\lambda}_j, \dots, \lambda_n)$ denotes the sequence of length n-1 obtained from l by deleting λ_j . Dually, $l^j = (\lambda_0, \dots \lambda_j, \lambda_j, \dots, \lambda_n)$ is obtained from l by repeating λ_j . The standard n-simplex is denoted by Λ^n and $\partial_j^n : \Lambda^{n-1} \to \Lambda^n$, $\sigma_j^n : \Lambda^{n+1} \to \Lambda^n$ denote the face and degeneracy operators.

According to [2], [3], a coherent map $f: X \rightarrow Y$ consists of the following:

(i) a function $\varphi: \bigcup_{n\geq 0} M^n \to \Lambda$ such that

(1)
$$\varphi(\mathbf{m}) \ge \varphi(\mathbf{m}_j), \quad 0 \le j \le n, \ n > 0;$$

(ii) maps $f_m: \Delta^n \times X_{\varphi(m)} \to Y_{\mu_0}$, $m \in M^n$, $n \ge 0$, such that

(2)
$$f_{m}(\partial_{j}^{n}t, x) = \begin{cases} q_{\mu_{0}\mu_{1}}f_{m_{0}}(t, p_{\varphi(m_{0})\varphi(m)}(x)), & j=0, \\ f_{m_{j}}(t, p_{\varphi(m_{j})\varphi(m)}(x)), & 0 < j \leq n. \end{cases}$$

$$f_{m}(\sigma_{j}^{n}t, p_{\varphi(m)\varphi(m^{j})}(x)) = f_{m}j(t, x), \quad 0 \leq j \leq n.$$

A coherent homotopy $F: I \times X \to Y$, connecting coherent maps f, $f': X \to Y$, is a coherent map, given by a function Φ and by maps $F_m: \Delta^n \times I \times X_{\Phi(m)} \to Y_{\mu_0}$, such that

$$\Phi(m) \geqq \varphi(m), \varphi'(m),$$

(5)
$$F_{m}(t, 0, x) = f_{m}(t, p_{\varphi(m)}\phi(m)(x)),$$

(6)
$$F_{m}(t, 1, x) = f'_{m}(t, p_{\varphi'(m)\phi(m)}(x)).$$

In [3] a coherent map $f: X \rightarrow Y$ was called *special* provided there existed an increasing function $\chi: M \rightarrow \Lambda$ satisfying

(7)
$$\varphi(\mathbf{m}) = \chi(\mu_n), \quad \mathbf{m} = (\mu_0, \dots, \mu_n).$$

If M is cofinite, then every coherent map $f: X \to Y$ admits a special coherent map $f': X \to Y$ such that f and f' are coherently homotopic, i.e. $f \cong f'$. Moreover, if f', $f'': X \to Y$ are special coherent maps and $f' \cong f''$, then there exists a special coherent homotopy connecting f' and f'' (see [3], Lemmas I.6.5 and I.6.6). In [2] and [3] compostion of special coherent maps $f: X \to Y$, $g: Y \to Z$ was defined. In the case of cofinite systems, it induces a composition of co-

herently homotopic classes of coherent maps, yielding thus the category CPHTop.

3. Strong homology groups of systems.

Let $X=(X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ be an inverse system over a directed set Λ . Following [4], we define a chain complex $C_{\#}(X)$ as follows. For $p \geq 0$, a strong p-chain of X is a function x which assigns to every $l \in \Lambda^n$ a singular (p+n)-chain x_l of X_{λ_0} , $x_l \in C_{p+n}(X_{\lambda_0})$. The group $C_p(X)$ consists of all strong p-chains of X. The boundary operator $d: C_{p+1}(X) \to C_p(X)$ is given by

$$(1) (dx)_{\lambda_0} = \partial(x_{\lambda_0}),$$

(2)
$$(-1)^{n}(dx)_{l} = \partial(x_{l}) - p_{\lambda_{0}\lambda_{1} * x_{l_{0}}} - \sum_{j=1}^{n} (-1)^{j} x_{l_{j}}, \quad n \ge 1.$$

Strong homology groups $H_p(X)$ of a system X are defined as the homology groups of the chain complex $C_{\sharp}(X)$.

If $f: X \to Y$ is a special coherent map, given by an increasing function $\varphi: M \to \Lambda$ and by maps $f_m: \Delta^n \times X_{\varphi(\mu_n)} \to Y_{\mu_0}$, then f induces a chain mapping $f_*: C_*(X) \to C_*(Y)$, defined in (4.1) of [5] by

(3)
$$(f_*x)_{\mu_0\cdots\mu_n} = \sum_{i=0}^n f_{\mu_0\cdots\mu_i*}(\Delta^i \times x_{\varphi(\mu_i)\cdots\varphi(\mu_n)}).$$

Special coherently homotopic maps f, $f': X \to Y$ induce chain homotopic chain maps $f_* \cong f'_*$. Moreover, $(gf)_* \cong g_* f_*$ (see [5]). Consequently, special coherent maps $f: X \to Y$ induce homomorphisms $f_*: H_p(X) \to H_p(Y)$ satisfying $(gf)_* = g_* f_*$. By definition, f_* is the homomorphism induced by the chain mapping $f_*: C_*(X) \to C_*(Y)$ and depends only on the coherent homotopy class of f. How to define f_* for coherent maps, which are not special, will be shown in 8.

4. Associated cofinite systems.

With every inverse system $X=(X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ we will now associate a new system $X^*=(X^*_{\alpha}, p^*_{\sigma\alpha'}, \Lambda^*)$, defined as follows (see [9], the proof I, 1, Theorem 2). The set Λ^* consists of all finite subsets $\alpha \subseteq \Lambda$ having a maximum. Since we have assumed that Λ is antisymmetric, the maximum of α is unique and we denote it shortly by $\bar{\alpha}$. We order Λ^* by inclusion \subseteq . Clearly, Λ^* is directed, antisymmetric and cofinite. We now put

$$(1) X_{\alpha}^* = X_{\bar{\alpha}},$$

$$p_{\alpha\alpha'}^* = p_{\bar{\alpha}\bar{\alpha}'}.$$

We refer to X^* as to the cofinite system associated with X.

We now define a map of systems $u=u_X:X\to X^*$ (in the sense of [4]). It is given by the increasing function $\alpha\mapsto\bar{\alpha}$, $\alpha\in\Lambda^*$, and by the maps $u_\alpha=id:X_{\bar{\alpha}}\to X_\alpha^*=X_{\bar{\alpha}}$. It generates a chain mapping $u_\#=u_{X\#}:C_\#(X)\to C_\#(X^*)$ (§ 3. of [4]), given by

$$(3) (u_*x)_{\alpha_0\cdots\alpha_n} = x_{\bar{\alpha}_0\cdots\bar{\alpha}_n}, \quad (\alpha_0, \cdots, \alpha_n) \in \Lambda^{*n}.$$

If $x \in C_p(X)$, then $x_{\bar{\alpha}_0 \cdots \bar{\alpha}_n} \in C_{p+n}(X_{\bar{\alpha}_0}) = C_{p+n}(X_{\alpha_0}^*)$ as desired.

REMARK 1. If one first associates with u a special coherent map u' as in (2.8) of [5], then the induced chain mapping u'_* is chain homotopic to u_* and is given by a formula more complicated than (3).

Let $Y^*=(Y^*_{\beta}, q^*_{\beta\beta'}, M^*)$ be the cofinite system associated with $Y=(Y_{\mu}, q_{\mu\mu'}, M)$. With every coherent map $f: X \to Y$ we now associate a coherent map $f^*: X^* \to Y^*$. If f is given by φ and $f_{\beta_0 \cdots \beta_n}$, we define f^* by φ^* and $f^*_{\beta_0 \cdots \beta_n}: \Delta^n \times X^*_{\varphi^*(\beta_0, \cdots, \beta_n)} \to Y^*_{\beta_0}$, where

$$(4) \qquad \varphi^*(\beta_0, \dots, \beta_n) = \{ \varphi(\bar{\beta}_{i_0}, \dots, \bar{\beta}_{i_k}) : 0 \leq i_0 < \dots < i_k \leq n, \ 0 \leq k \leq n \},$$

$$f_{\bar{\beta}_0\cdots\beta_n}^*=f_{\bar{\beta}_0\cdots\bar{\beta}_n}.$$

Note that $\beta_0 \subseteq \cdots \subseteq \beta_n$ implies $\bar{\beta}_{i_0} \leq \cdots \leq \bar{\beta}_{i_k}$ so that $\varphi^*(\beta_0, \dots, \beta_n)$ is a well-defined finite subset of Λ . It belongs to Λ^* because (2.1) implies that $\varphi(\bar{\beta}_0, \dots, \bar{\beta}_n)$ is the maximum of $\varphi^*(\beta_0, \dots, \beta_n)$, i.e.,

(6)
$$\overline{\varphi^*(\bar{\beta}_0, \cdots, \bar{\beta}_n)} = \varphi(\bar{\beta}_0, \cdots, \bar{\beta}_n)$$

That φ^* and $f_{\beta_0\cdots\beta_n}^*$ satisfy 2.(2)-2.(3) is immediate. We refer to f^* as to the coherent map associated with f.

If $f: X \to Y$ is a special coherent map, given by an increasing function $\varphi: M \to \Lambda$ and by maps $f_m: \Delta^n \times X_{\varphi(\mu_n)} \to Y_{\mu_0}$, then one can associate with f a special coherent map $f^+: X^* \to Y^*$, given by $\varphi^+: M^* \to \Lambda^*$ and $f^+_{\beta_0 \cdots \beta_n}: \Delta^n \times X^*_{\varphi^+(\beta_n)} \to Y^*_{\beta_0}$, defined as follows.

(7)
$$\varphi^+(\beta) = \varphi(\beta), \quad \beta \in M^*,$$

$$f_{\beta_0\cdots\beta_n}^+=f_{\bar{\beta}_0\cdots\bar{\beta}_n}.$$

Note that $\varphi(\beta)$ is a finite subset of Λ , because β is a finite subset of M. Moreover, $\varphi(\bar{\beta})$ is the maximum of $\varphi(\beta)$, i.e.,

$$\varphi(\bar{\beta}) = \overline{\varphi^{+}(\beta)}, \quad \beta \in M^*,$$

which shows that indeed $\varphi^+(\beta) \in \Lambda^*$: Furthermore, $\beta_0 \subseteq \beta_1$ implies $\varphi(\beta_0) \subseteq \varphi(\beta_1)$, which shows that φ^+ is an increasing function.

Also note that (9) implies $X_{\varphi^+(\beta_n)}^* = X_{\overline{\varphi^+(\beta_n)}} = X_{\varphi(\bar{\beta}_n)}$, $Y_{\beta_0}^* = Y_{\bar{\beta}_0}$, so that (8) defines a map $f_{\beta_0\cdots\beta_n}^+: \Delta^n \times X_{\varphi^+(\beta_n)}^* \to Y_{\beta_0}^*$. A straightforward verification shows that f^+ satisfies (2.2) and (2.3) (put $\varphi^+(\beta_0, \dots, \beta_n) = \varphi^+(\beta_n)$).

REMARK 2. If f is a special coherent map, then the coherent maps f^* , f^+ : $X^* \rightarrow Y^*$ are coherently homotopic. Indeed, if we put $\Phi(\beta_0, \dots, \beta_n) = \varphi(\beta_n)$, then

(10)
$$\varphi^*(\beta_0, \dots, \beta_n) \subseteq \Phi(\beta_0, \dots, \beta_n).$$

Indeed, when f is a special coherent map, $\varphi(\bar{\beta}_{i_0}, \cdots, \bar{\beta}_{i_k}) = \varphi(\bar{\beta}_{i_k})$ and therefore (4) becomes $\varphi^*(\beta_0, \cdots, \beta_n) = \{\varphi(\bar{\beta}_0), \cdots, \varphi(\bar{\beta}_n)\}$. However, $\bar{\beta}_i \in \beta_i \subseteq \beta_n$ and so $\varphi(\bar{\beta}_i) \in \varphi(\beta_n) = \Phi(\beta_0, \cdots, \beta_n)$, $0 \le i \le n$. Also, $\varphi^+(\beta_0, \cdots, \beta_n) = \varphi(\beta_n) = \Phi(\beta_0, \cdots, \beta_n)$. Furthermore, note that

(11)
$$f_{\beta_{0}\cdots\beta_{n}}^{*}(p_{\varphi^{*}(\beta_{0},\cdots,\beta_{n})}^{*}\phi(\beta_{0},\cdots,\beta_{n})}(x), t) = f_{\bar{\beta}_{0}\cdots\bar{\beta}_{n}}^{*}(x, t) = f_{\beta_{0}\cdots\beta_{n}}^{+}(p_{\varphi^{+}(\beta_{0},\cdots,\beta_{n})}^{*}\phi(\beta_{0},\cdots,\beta_{n})}(x), t).$$

Indeed, since f is special (φ increases), (6) yields $\overline{\varphi^*(\beta_0,\cdots,\beta_n)} = \varphi(\bar{\beta}_0,\cdots,\bar{\beta}_n) = \varphi(\bar{\beta}_0,\cdots,\bar{\beta}_n) = \varphi(\bar{\beta}_n) = \varphi(\bar{\beta}_n) = \varphi(\bar{\beta}_n)$. Since f^+ is special, formula (7) yields $\varphi^+(\beta_0,\cdots,\beta_n) = \varphi^+(\beta_n) = \varphi(\bar{\beta}_n)$. By definition, $\overline{\varphi(\beta_0,\cdots\beta_n)} = \overline{\varphi(\beta_n)}$. All this shows that the constant homotopies $F_{\beta_0\cdots\beta_n}$ yield a coherent homotopy between f^* and f^+ .

REMARK 3. If f is a special coherent map, then the induced chain mappings $f_{\#}$ and $f_{\#}^{+}$ satisfy

$$f_{\#}u_{X\#}=u_{Y\#}f_{\#},$$

i.e. the following diagram of chain mappings commutes

$$C_{\#}(X^{*}) \stackrel{u_{X\#}}{\longleftarrow} C_{\#}(X)$$

$$f_{\#}^{+} \downarrow \qquad \qquad \downarrow f_{\#}$$

$$C_{\#}(Y^{*}) \stackrel{u_{X\#}}{\longleftarrow} C_{\#}(Y) .$$

Indeed,

$$(14) \qquad (f_{\#}^{+}u_{X\#}x)_{\beta_{0}\cdots\beta_{n}}$$

$$= \sum_{i=0}^{n} f_{\beta_{0}\cdots\beta_{i}\#}^{+}(\Delta^{i}\times(u_{X\#}x)_{\varphi^{+}(\beta_{i})\cdots\varphi^{+}(\beta_{n})})$$

$$= \sum_{i=0}^{n} f_{\bar{\beta}_{0}\cdots\bar{\beta}_{i}\#}(\Delta^{i}\times x_{\varphi(\bar{\beta}_{i})\cdots\varphi(\bar{\beta}_{n})})$$

$$= (f_{\#}x)_{\bar{\beta}_{0}\cdots\bar{\beta}_{n}} = (u_{Y\#}f_{\#}x)_{\beta_{0}\cdots\beta_{n}}.$$

Passing to homology and the induced homomorphisms, we conclude that the following diagrams commute for $p \ge 0$:

(15)
$$H_{p}(X^{*}) \xleftarrow{u_{X^{*}}} H_{p}(X)$$

$$f_{*}^{+} \downarrow \qquad \qquad \downarrow f_{*}$$

$$H_{p}(Y^{*}) \xleftarrow{u_{X^{*}}} H_{p}(Y) .$$

The main result of this paper is the following theorem proved in 5-7.

THEOREM 1. $u_{X*}: C_*(X) \rightarrow C_*(X^*)$ is a chain equivalence and theorefore, $u_{X*}: H_p(X) \rightarrow H_p(X^*)$ is an isomorphism.

5. The homotopy inverse v of u_* .

For $u_*=u_{X*}: C_*(X) \to C_*(X^*)$ we will now define a chain homotopy inverse $v=v_X: C_*^*(X) \to C_*(X)$.

We first introduce some notation. P(n), $n \ge 0$, will denote the group of all permutations of the set $\{0, 1, \dots, n\}$. If $l = (\lambda_0, \dots, \lambda_n) \in \Lambda^n$ and $\pi \in P(n)$, we put

$$l\pi = (\lambda_{\pi(0)}, \dots, \lambda_{\pi(n)}),$$

(2)
$$[l\pi] = (\{\lambda_{\pi(0)}\}, \{\lambda_{\pi(0)}, \lambda_{\pi(1)}\}, \cdots, \{\lambda_{\pi(0)}, \cdots, \lambda_{\pi(n)}\}).$$

 $l\pi$ is a sequence in Λ of length n (which need not be increasing).

Each $\{\lambda_{\pi(0)}, \dots, \lambda_{\pi(i)}\} \subseteq \{\lambda_0, \dots, \lambda_n\}$, $0 \le i \le n$, is an element of Λ^* , because it is a finite totally ordered subset of Λ . Moreover, $[l\pi]$ is an increasing sequence in Λ^* of length n, so that $[l\pi] \in (\Lambda^*)^n$.

For $y \in C_p(X^*)$, we now define $vy \in C_p(X)$ as follows. If $n \ge 0$ and $l = (\lambda_0, \dots, \lambda_n) \in \Lambda^n$, we put

$$(3) \qquad (vy)_{l} = \sum_{\pi \in P(n)} \operatorname{sgn} \pi p_{\pi} y_{\lceil l\pi \rceil},$$

where

$$p_{\pi}=p_{\lambda_0\lambda_{\pi}(0)\#}.$$

Clearly, $y_{[l\pi]} \in C_{p+n}(X^*_{(\lambda_{\pi(0)})}) = C_{p+n}(X_{\lambda_{\pi(0)}})$ so that $(vy)_l \in C_{p+n}(X_{\lambda_0})$ as desired. $v: C_p(X^*) \to C_p(X)$ is a homomorphism for each $p \ge 0$. Moreover, we have the following assertion.

LEMMA 1. $v: C_*(X^*) \rightarrow C_*(X)$ is a chain mapping, i.e.

$$(5) (vdy)_{l} = (dvy)_{l}, \quad l \in \Lambda^{n}.$$

PROOF. Let
$$l=(\lambda_0, \dots, \lambda_n)$$
. If $n=0$, then

$$(dvy)_{\lambda_0} = \partial(vy)_{\lambda_0} = \partial y_{(\lambda_0)} = (dy)_{(\lambda_0)} = (vdy)_{\lambda_0}$$

We will therefore assume that $n \ge 1$.

By (3) and 3.(2), we see that

(6)
$$(vdy)_{i} = (-1)^{n} \sum_{\pi \in P(n)} \operatorname{sgn} \pi p_{\pi} \partial (y_{\lceil i\pi \rceil})$$

$$+ (-1)^{n-1} \sum_{\pi \in P(n)} \operatorname{sgn} \pi p_{\pi} p_{\pi}^{*} y_{\lceil i\pi \rceil_{0}}$$

$$+ (-1)^{n-1} \sum_{j=1}^{n-1} \sum_{\pi \in P(n)} (-1)^{j} \operatorname{sgn} \pi p_{\pi} y_{\lceil i\pi \rceil_{j}}$$

$$- \sum_{\pi \in P(n)} \operatorname{sgn} \pi p_{\pi} y_{\lceil i\pi \rceil_{j}},$$

where we have put

$$p_{\pi}^* = p_{\nu_0(\pi)\nu_1(\pi)}^* *$$

(8)
$$\nu_0(\pi) = \{\lambda_{\pi(0)}\}, \quad \nu_1(\pi) = \{\lambda_{\pi(0)}, \lambda_{\pi(1)}\}.$$

We will now show that

$$(9) \qquad \qquad \sum_{\pi \in P(n)} \operatorname{sgn} p_{\pi} p_{\pi}^* y_{[l\pi]_0} = 0,$$

(10)
$$\sum_{\pi \in P(n)} \operatorname{sgn} \pi p_{\pi} y_{\lceil I_{\pi} \rceil_{j}} = 0, \quad 1 \leq j \leq n-1,$$

so that (6) reduces to the first and the last sum. Indeed, put

(11)
$$P_{j}(n) = \{ \pi \in P(n) : \pi(j) < \pi(j+1) \}, \quad 0 \le j \le n-1,$$

For any $\pi \in P_j(n)$, $0 \le j \le n-1$, define $\pi' \in P(n) \setminus P_j(n)$ by

(12)
$$\pi'(i) = \begin{cases} \pi(i), & i \neq j, j+1, \\ \pi(j+1), & i=j, \\ \pi(j), & i=j+1. \end{cases}$$

Clearly, in $[l\pi]$ and $[l\pi']$ only the j^{th} terms differ so that

(13)
$$[l\pi]_j = [l\pi']_j, \quad \pi \in P_j(n), \quad 0 \le j \le n-1.$$

Furthermore, for $1 \le j \le n-1$, $\pi'(0) = \pi(0)$ so that

(14)
$$p_{\pi} = p_{\pi'}, \quad \pi \in P_{j}(n), \quad 1 \leq j \leq n-1.$$

By (4) and (7), for any $\pi \in P(n)$, we have $p_{\pi}p_{\pi}^* = p_{\lambda_0\overline{\nu_1(\pi)}}$ because $\overline{\nu_0(\pi)} = \lambda_{\pi(0)}$. However, for $\pi \in P_0(n)$, $\nu_1(\pi) = \{\lambda_{\pi(0)}, \lambda_{\pi(1)}\} = \nu_1(\pi')$, so that

(15)
$$p_{\pi}p_{\pi}^{*}=p_{\pi'}p_{\pi'}^{*}, \quad \pi \in P_{0}(n).$$

Since $\operatorname{sgn} \pi = -\operatorname{sgn} \pi'$ and the permutations of P(n) come in pairs π , π' , where $\pi \in P_j$, we obtain (9) and (10).

We now consider $(dvy)_{l}$. By 3. (2), we have

(16)
$$(dvy)_{\boldsymbol{\ell}} = (-1)^n \partial (vy)_{\boldsymbol{\ell}} + (-1)^{n-1} p_{\lambda_0 \lambda_1 \#} (vy)_{\boldsymbol{\ell}_0} + \sum_{i=1}^n (-1)^{n+j-1} (vy)_{\boldsymbol{\ell}_j}.$$

We will now examine $(vy)_{l_j}$ for $0 \le j \le n$. We first define $\lambda'_0, \dots, \lambda'_{n-1}$ by

(17)
$$\lambda_{i}' = \begin{cases} \lambda_{i}, & i \leq j-1 \\ \lambda_{i+1}, & i \geq j. \end{cases}$$

Clearly, $l_j = (\lambda'_0, \dots, \lambda'_{n-1})$. With every $\pi \in P(n-1)$ and $0 \le j \le n$, we associate a permutation $\pi'_j \in P(n)$ by putting

(18)
$$\pi'_{j}(i) = \begin{cases} \pi(i), & \text{if } 0 \leq i \leq n-1 \text{ and } \pi(i) \leq j-1, \\ \pi(i)+1, & \text{if } 0 \leq i \leq n-1 \text{ and } \pi(i) \geq j, \\ j, & \text{if } i=n. \end{cases}$$

Note that π'_i belongs to

(19)
$$Q_{j}(n) = \{ \pi \in P(n) : \pi(n) = j \}, \quad 0 \le j \le n,$$

(20)
$$\operatorname{sgn} \pi'_{i} = (-1)^{n-j} \operatorname{sgn} \pi, \quad 0 \leq j \leq n,$$

(21)
$$\lambda'_{\pi(i)} = \lambda'_{\pi'_i}(i), \quad 0 \leq i \leq n-1, \quad 0 \leq j \leq n.$$

This shows that the sequence $l_j\pi=(\lambda'_{\pi(0)}, \cdots, \lambda'_{\pi(n-1)})$ (of length n-1) is obuained from the sequence $l\pi'_j=(\lambda_{\pi'_j(0)}, \cdots, \lambda_{\pi'_j(n)})$ (of length n) by omitting the last term. Therefore,

$$[\boldsymbol{l}_{j}\pi] = [\boldsymbol{l}\pi'_{j}]_{n}, \quad 0 \leq j \leq n.$$

Also note that

$$p_{\pi'_{j}} = \begin{cases} p_{\lambda_{0}\lambda_{1}}p_{\pi}, & j=0, \\ p_{\pi}, & 1 \leq j \leq n. \end{cases}$$

We therefore have, by (3),

(24)
$$(-1)^{n-1} p_{\lambda_0 \lambda_1}(vy)_{l_0} = -\sum_{\pi' \in Q_0(\pi)} \operatorname{sgn} \pi' p_{\pi'} y_{\lceil l\pi' \rceil_n},$$

(25)
$$(-1)^{n+j-1}(vy)_{l_j} = -\sum_{\pi' \in Q_j(\pi)} \operatorname{sgn} \pi' p_{\pi'} y_{\lceil l_{\pi'} \rceil_n}, \quad 1 \leq j \leq n.$$

Now notice that $P(n) = \bigcup_{j=0}^{n} Q_{j}(n)$ is a decomposition of P(n) in disjoint sets. Therefore, by (16),

(26)
$$(dvy_l) = (-1)^n \partial (vy)_l - \sum_{\pi \in P(n)} \operatorname{sgn} \pi p_{\pi} y_{[l\pi]_n}.$$

Since, by (3), $(-1)^n \partial (vy)_l$ equals the first sum in (6), we obtain the desired conclusion (5).

6. The homotopy $u_*v \cong 1$.

In this section we will define a chain homotopy D on $C_*(X^*)$ such that

$$(dDx)_{\mathbf{a}} + (Ddx)_{\mathbf{a}} = u_{\mathbf{a}} - (u_{\sharp}vx)_{\mathbf{a}}$$

for every $a=(\alpha_0, \dots, \alpha_n) \in A^{*n}$ and $x \in C_p(X^*)$.

Note that

$$(2) \qquad (u_*vx)_a = (vx)_a = \sum_{\pi \in P(n)} \operatorname{sgn} \pi \bar{p}_\pi x_{[\bar{a}\pi]},$$

where $\bar{\boldsymbol{a}} = (\bar{\alpha}_0, \dots, \bar{\alpha}_n)$

$$\bar{p}_{\pi} = p_{\alpha_0 \overline{\alpha_{\pi(0)}} \#}.$$

In order to define D we need more notation. Let $n \ge 0$, $\alpha = (\alpha_0, \dots, \alpha_n) \in \Lambda^{*n}$, $0 \le k \le n$, $\pi \in P(k)$. Then we put

$$\bar{\boldsymbol{a}}\pi = (\overline{\alpha_{\pi(0)}}, \dots, \overline{\alpha_{\pi(k)}}),$$

$$[\bar{\boldsymbol{a}}\pi] = (\{\bar{\alpha}_{\pi(0)}\}, \dots, \{\bar{\alpha}_{\pi(0)}, \dots, \bar{\alpha}_{\pi(k)}\}).$$

(6)
$$\boldsymbol{a}(k) = (\alpha_k, \dots, \alpha_n).$$

Since $\alpha_0 \subseteq \cdots \subseteq \alpha_n$, we have $\bar{\alpha}_0 \subseteq \cdots \subseteq \bar{\alpha}_n$ and therefore $\{\bar{\alpha}_{\pi(0)}, \cdots, \bar{\alpha}_{\pi(i)}\}$, $0 \le i \le k$, is a totally ordered finite set, hence, an element of Λ^* . Consequently, $[\bar{a}\pi] \in \Lambda^{*k}$. Moreover, $a(k) \in \Lambda^{*n-k}$ and $[\bar{a}\pi]a(k) \in \Lambda^{*n+1}$, because $\{\bar{\alpha}_{\pi(0)}, \cdots, \bar{\alpha}_{\pi(k)}\} = \{\bar{\alpha}_0, \cdots, \bar{\alpha}_k\} \subseteq \alpha_k$ E. g., if $a = (\alpha_0, \alpha_1, \alpha_2)$, k = 1 and π permutes 0 and 1, then $[\bar{a}\pi]a(k) = (\{\bar{\alpha}_1\}, \{\bar{\alpha}_0, \bar{\alpha}_1\}, \alpha_1, \alpha_2)$. Note that $\bar{a}\pi$ and $[\bar{a}\pi]$ can be interpreted as 5. (1) and 5. (2) for $l = (\bar{\alpha}_0, \cdots, \bar{\alpha}_k)$. For $x \in C_p(X^*)$ we now put

(7)
$$(Dx)_{\boldsymbol{a}} = (-1)^n \sum_{k=0}^n \sum_{\pi \in P(k)} (-1)^k \operatorname{sgn} \pi \bar{p}_{\pi} x_{\lceil \bar{\boldsymbol{a}}\pi \rceil \bar{\boldsymbol{a}}(k)}.$$

LEMMA 2. D is a chain homotopy connecting identity with uv, i.e., D satisfies (1).

Note that $x_{\lceil \bar{a}\pi \rceil \bar{a}(k)} \in C_{p+n+1}(X^*_{\lceil \bar{a}\pi \rceil \bar{a}(k)}) = C_{p+n+1}(X_{\bar{a}\pi \rceil \bar{a}(k)})$ so that $\bar{p}_{\pi}x_{\lceil \bar{a}\pi \rceil \bar{a}(k)} \in C_{p+n+1}(X_{\bar{a}_0}) = C_{p+n+1}(X^*_{\bar{a}_0})$ as desired.

In the verification of formula (1) we omit the easier cases n=0 and n=1 and concentrate on $n \ge 2$. By 3. (2) and (7), we have

$$(8) (Ddx)_a = S_1 + S_2 + S_3,$$

where

$$(9) S_1 = -\sum_{k=0}^n \sum_{\pi \in P(k)} (-1)^k \operatorname{sgn} \pi \bar{p}_{\pi} \partial(x_{\lceil \bar{a}\pi \rceil a(k)}),$$

(10)
$$S_2 = \sum_{k=0}^{n} \sum_{\pi \in P(k)} (-1)^k \operatorname{sgn} \pi \bar{p}_{\pi} \bar{p}_{\pi}^* \chi_{([\bar{a}\pi]a(k))_0},$$

(11)
$$S_{s} = \sum_{k=0}^{n} \sum_{i=1}^{n+1} \sum_{\pi \in P(k)} (-1)^{k+j} \operatorname{sgn} \pi \bar{p}_{\pi} x_{([a\pi]a(k))_{j}},$$

(12)
$$\bar{p}_{\pi}^* = p_{\nu_0(\pi)\nu_1(\pi)\#}^*$$
,

(13)
$$\nu_0(\pi) = \{\overline{\alpha_{\pi(0)}}\}, \quad \nu_1(\pi) = \begin{cases} \{\overline{\alpha_{\pi(0)}}, \overline{\alpha_{\pi(1)}}\}, & 1 \leq k \leq n, \\ \alpha_0, & k = 0 \end{cases}$$

(cf. with 5. (7) and 5. (8)).

For k=0 the only permutation of $\{0\}$ is the identity so that $[\bar{a}\pi]=[\bar{a}]=\{\bar{\alpha}_0\}$ and thus $([\bar{a}\pi]a(0))_0=a(0)=a$. Moreover, $\bar{p}_\pi=id$, $\bar{p}_\pi^*=id$. Therefore, the first term in S_2 equals x_a . The sum of all the remaining terms of S_2 equals 0, because we will see that

(14)
$$\sum_{\pi \in P(k)} \operatorname{sgn} \pi \bar{p}_{\pi} \bar{p}_{\pi}^* x_{([a\pi]a(k))_0} = 0, \quad 1 \leq k \leq n.$$

This will prove that

$$S_2 = x_a.$$

Similarly, we will show that a part of the triple sum S_3 , vanishes, because

(16)
$$\sum_{\pi \in P(k)} \operatorname{sgn} \pi \bar{p}_{\pi} x_{(\lceil \bar{a}_{\pi} \rceil a(k))j} = 0, \quad 1 \leq j \leq k-1, \ 2 \leq k \leq n.$$

In order to prove (14) and (16), we use some arguments from 5. In particular, since

$$([\bar{\boldsymbol{a}}\pi]\boldsymbol{a}(k))_{i} = [\bar{\boldsymbol{a}}\pi]_{i}\boldsymbol{a}(k), \quad 0 \leq i \leq k-1, \ \pi \in P(k),$$

5. (13) for $l=(\bar{\alpha}_0, \dots, \bar{\alpha}_k)$ implies

(18)
$$([\bar{\boldsymbol{a}}\pi]\boldsymbol{a}(k))_{j} = ([\bar{\boldsymbol{a}}\pi']\boldsymbol{a}(k))_{j}, \quad \pi \in P_{j}(k), \ 0 \leq j \leq k-1.$$

Furthermore, 5. (14) and 5. (15) imply

(19)
$$\bar{p}_{\pi} = \bar{p}_{\pi'}, \quad \pi \in P_j(k), \quad 1 \leq j \leq k-1,$$

(20)
$$\bar{p}_{\pi}\bar{p}_{\pi}^{*} = \bar{p}_{\pi'}\bar{p}_{\pi'}^{*}, \quad \pi \in P_{0}(k).$$

Since $\operatorname{sgn} \pi' = -\operatorname{sgn} \pi$ and the permutations of P(k) come in pairs π , π' , where $\pi \in P_i(k)$, we conclude that (14) and (16) hold indeed.

The summation in S_3 is over the set $\{(k, j): 0 \le k \le n, 1 \le j \le n+1\}$, which decomposes in the following subsets of $\mathbb{Z} \times \mathbb{Z}$:

$$U_{1} = \{(k, j): 2 \leq k \leq n, 1 \leq j \leq k-1\},$$

$$U_{2} = \{(k, j): 1 \leq k \leq n, j = k\},$$

$$U_{3} = \{(k, j): 0 \leq k \leq n-1, j = k+1\},$$

$$U_{4} = \{(n, n+1)\},$$

$$U_{5} = \{(k, j): 0 \leq k \leq n-1, k+2 \leq j \leq n+1\},$$

Denote the part of S_3 corresponding to U_i by S_3^i . Then

(21)
$$S_3 = \sum_{i=1}^5 S_3^i.$$

Now (16) implies

(22)
$$S_3^1=0$$
.

The terms of S_3^4 equal

$$-\operatorname{sgn} \pi \bar{p}_{\pi} x_{\lfloor \bar{a}\pi \rfloor}, \quad \pi \in P(n),$$

because

$$([\bar{a}\pi]a(n))_{n+1} = ([\bar{a}\pi]\alpha_n)_{n+1} = [\bar{a}\pi].$$

Hence, by (2),

$$(25) S_3^4 = -(u_*v_*x)_a.$$

We will now consider $S_3^2 + S_3^3$. If we replace in the expression for S_3^3 the summation index k by k+1, we obtain

(26)
$$S_3^2 = \sum_{k=0}^{n-1} \sum_{\pi \in P(k+1)} \operatorname{sgn} \pi \bar{p}_{\pi} x_{([a\pi]a(k+1))_{k+1}}.$$

On the other hand,

(27)
$$S_{3}^{3} = -\sum_{k=0}^{n-1} \sum_{\pi \in P(k)} \operatorname{sgn} \pi \bar{p}_{\pi} x_{([a\pi]a(k))_{k+1}}.$$

With every permutation $\pi \in P(k)$ we now associate a permutation $\pi' \in Q_{k+1}(k+1)$ such that $\pi'(i) = \pi(i)$ for $0 \le i \le k$ and $\pi'(k+1) = k+1$ (see 5.(18)). Note that

(28)
$$[\bar{\boldsymbol{a}}\pi']\boldsymbol{a}(k+1) = [\bar{\boldsymbol{a}}\pi], \{\overline{\alpha_{\pi(0)}}, \cdots, \overline{\alpha_{\pi(k)}}, \overline{\alpha_{k+1}}\}, \alpha_{k+1}, \cdots, \alpha_n,$$

(29)
$$[\bar{\boldsymbol{a}}\pi]\boldsymbol{a}(k) = [\bar{\boldsymbol{a}}\alpha], \ \alpha_k, \ \alpha_{k+1}, \ \cdots, \ \alpha_n,$$

so that

$$(30) \qquad ([\bar{\boldsymbol{a}}\boldsymbol{\pi}']\boldsymbol{a}(k+1))_{k+1} = ([\bar{\boldsymbol{a}}\boldsymbol{\pi}]\boldsymbol{a}(k))_{k+1}.$$

We also have $\operatorname{sgn} \pi' = \operatorname{sgn} \pi$ and $\bar{p}_{\pi'} = \bar{p}_{\pi}$, because $\pi'(0) = \pi(0)$, Since $\pi \mapsto \pi'$ is a bijection $P(k) \mapsto Q_{k+1}(k+1) \subseteq P(k+1)$ and $P(k+1) = \bigcup_{j=0}^{k+1} Q_j(k+1)$, we conclude that

(31)
$$S_3^2 + S_3^3 = \sum_{k=0}^{n-1} \sum_{j=0}^k \sum_{\pi \in Q_j(k+1)} \operatorname{sgn} \pi \bar{p}_{\pi} x_{(\lceil \bar{a}\pi \rceil \bar{a}(k+1))_{k+1}}.$$

We will now show that

(32)
$$S_3^5 = -\sum_{k=0}^{n-1} \sum_{j=k+1}^n \sum_{\pi \in P(k)} (-1)^{k+j} \operatorname{sgn} \pi \bar{p}_{\pi} x_{([\bar{a}_j\pi]\bar{a}_j(k))}.$$

Let $0 \le k \le n$, $\pi \in P(k)$, and let $k+1 \le j \le n+1$. Then

$$(\bar{\boldsymbol{a}}\boldsymbol{\pi}]\boldsymbol{a}(k))_{j} = [\bar{\boldsymbol{a}}\boldsymbol{\pi}](\boldsymbol{a}(k))_{j-k-1}.$$

On the other hand, if $0 \le k \le n-1$, $\pi \in P(k)$ and $k+1 \le j \le n$, then

$$[\bar{\boldsymbol{a}}_{j}\pi]\boldsymbol{a}_{j}(k) = [\bar{\boldsymbol{a}}\pi](\boldsymbol{a}(k))_{j-k},$$

because $[\bar{a}_{i}\pi] = [\bar{a}\pi]$. Consequently, (33) and (34) imply

$$(35) ([\bar{\boldsymbol{a}}\pi]\boldsymbol{a}(k))_{j} = [\bar{\boldsymbol{a}}_{j-1}\pi]\boldsymbol{a}_{j-1}(k), \quad 0 \leq k \leq n-1, \ k+2 \leq j \leq n+1,$$

and (32) follows.

We will now compute $(dDx)_a$. By 3.(2) and (7) we see that

$$(36) (dDx)_a = T_1 + T_2 + T_3,$$

where

(37)
$$T_1 = \sum_{k=0}^{n} \sum_{\pi \in P(k)} (-1)^k \operatorname{sgn} \pi \bar{p}_{\pi} \partial(x_{\lceil \bar{a}\pi \rceil \bar{a}(k)}),$$

(38)
$$T_{2} = \sum_{k=1}^{n-1} \sum_{\pi \in P(k)} (-1)^{k} \operatorname{sgn} \pi p_{\bar{\alpha}_{0}\bar{\alpha}_{1} \#} \bar{p}_{\pi} x_{[\bar{\alpha}_{0}\pi]\bar{\alpha}_{0}(k)},$$

(39)
$$T_{8} = \sum_{k=0}^{n-1} \sum_{j=1}^{n} \sum_{\pi \in P(k)} (-1)^{k+j} \operatorname{sgn} \pi \bar{p}_{\pi} x_{[\bar{a}_{j}\pi]\bar{a}_{j}(k)}.$$

We see, by (9) and (37), that

$$(40) S_1 + T_1 = 0.$$

We now decompose T_3 in two summands T_3^1 , T_3^2 corresponding to the decomposition of the set $V = \{(k, j): 0 \le k \le n-1, 1 \le j \le n\}$ in sets

$$V_1 = \{(k, j): 1 \le k \le n-1, 1 \le j \le k\},$$

$$V_2 = \{(k, j): 0 \le k \le n-1, k+1 \le j \le n\}.$$

It follows from (32) that

$$(41) S_3^5 + T_3^2 = 0.$$

Taking into account (15), (22), (25), (40) and (41), in order to prove (1), it remains to show that

$$(42) S_3^2 + S_3^3 = -(T_2 + T_3^1).$$

We now analyze T_2 and T_3^1 . Let $0 \le k \le n-1$. With every $\pi \in P(k)$ and $0 \le j \le k$ we associate a permutation $\pi'_j \in Q_j(k+1)$, defined by 5. (18) (with k+1 in place of n). Then (see 5. (20), 5. (22))

(43)
$$\operatorname{sgn} \pi_{j}' = (-1)^{k+1-j} \operatorname{sgn} \pi, \quad 0 \leq j \leq k,$$

$$[\bar{\boldsymbol{a}}_{i}\pi] = [\bar{\boldsymbol{a}}\pi'_{j}]_{k+1}, \quad 0 \leq j \leq k.$$

Moreover, $a_j(k) = a(k+1)$ for $j \le k$ and (since $[\bar{a}\pi'_j]$ is df length k+1)

$$[\bar{\boldsymbol{a}}\boldsymbol{\pi}_{j}']_{k+1}\boldsymbol{a}(k+1) = ([\bar{\boldsymbol{a}}\boldsymbol{\pi}_{j}']\boldsymbol{a}(k+1))_{k+1}.$$

We thus obtain

(45)
$$[\bar{\boldsymbol{a}}_{j}\pi]\boldsymbol{a}_{j}(k) = ([\bar{\boldsymbol{a}}\pi'_{j}]\boldsymbol{a}(k+1))_{k+1}, \quad 0 \leq j \leq k.$$

Also note (see 5.(23)) that

(46)
$$\bar{p}_{\pi'j} = \begin{cases} p_{\bar{\alpha}_0 \bar{\alpha}_1 * \bar{p}_{\pi}, \quad j=0, \\ \bar{p}_{\pi}, \quad 1 \leq j \leq k. \end{cases}$$

Finally, observe that $\pi \mapsto \pi'_j$ is a bijection $P(k) \to Q_j(k+1)$. Therefore,

(47)
$$T_{2} = -\sum_{k=0}^{n-1} \sum_{\pi' \in Q_{0}(k+1)} \operatorname{sgn} \pi' \bar{p}_{\pi'} x_{([\bar{a}\pi']a(k+1))_{k+1}},$$

(48)
$$T_{3}^{1} = -\sum_{k=1}^{n-1} \sum_{j=1}^{k} \sum_{\pi' \in Q_{j}(k+1)} \operatorname{sgn} \pi' \bar{p}_{\pi'} x_{\lceil \bar{a}\pi' \rceil a_{j}}(k).$$

The summation in (31) is over the set $\{(k,j): 0 \le k \le n-1, 0 \le j \le k\}$, which decomposes in $\{(k,j): 0 \le k \le n-1, j=0\}$ and $\{(k,j): 1 \le k \le n-1, 1 \le j \le k\}$. Therefore, (31), (47) and (48) show that indeed (42) holds. This completes the proof of Lemma 2.

7. The homotopy $vu_{\#}\cong 1$.

In § 7 of [4] with every inverse system X a reduced chain complex $\hat{C}_{\#}(X)$ was defined. It was the restriction of $C_{\#}(X)$ to non-degenerate sequences $l=(\lambda_0,\cdots,\lambda_n)\in \hat{A}^n$. These are sequences such that $\lambda_i\leq \lambda_{i+1}$ and $\lambda_i\neq \lambda_{i+1}$, $i=0,\cdots,n-1$.

There is a chain mapping $i: C_{\#}(X) \rightarrow \hat{C}_{\#}(X)$ defined by

$$(1) (i(x))_{l} = x_{l}, \quad l \in \hat{\Lambda}^{n}.$$

Also in § 7 of [4], a chain mapping $r: \hat{C}_{*}(X) \rightarrow C_{*}(X)$ was defined by

$$(2) (r(y))_{l} = \begin{cases} y_{l}, & l \in \hat{\Lambda}^{n}, \\ 0, & l \in \Lambda^{n} \setminus \hat{\Lambda}^{n}, \end{cases}$$

and it was shown that ir=1, $ri \cong 1$. The latter relation means that there exists a chain homotopy E such that

(3)
$$dEx + Edx = x - rix, \quad x \in C_*(X).$$

LEMMA 3. The chain mapping $vu_*: C_*(X) \rightarrow C_*(X)$ satisfies

$$vu_*ry=ry, \quad y \in \hat{C}_*(X).$$

PROOF. It suffices to show that for and $x \in C_p(X)$ and any $l = (\lambda_0, \dots, \lambda_n) \in \Lambda^n$ the chain $(vu_*x-x)_l$ is a finite sum of terms of the form $\pm p_{\lambda_0\lambda'_0*}x_{l'}$, where $\lambda_0 \leq \lambda'_0$, $l' = (\lambda'_0, \dots, \lambda'_n) \in \Lambda^n \setminus \hat{\Lambda}^n$. Indeed, if this is the case, then for x = ry, $y \in \hat{C}_*(X)$, one can express $(vu_*ry-ry)_l$, $l \in \Lambda^n$, as a finite sum of terms of the form $\pm p_{\lambda_0\lambda'_0*}(ry)_{l'}$. Since, by (2), each of these terms vanishes, we conclude that (4) holds.

By 5.(3), we have

$$(5) (vu_*x)_l = \sum_{\pi \in P(n)} \operatorname{sgn} \pi p_{\pi}(u_*x)_{[l\pi]}, \quad l \in \Lambda^n.$$

If π is the identity map, then $l\pi = l$, so that

$$[l\pi] = (\{\lambda_0\}, \dots, \{\lambda_0, \dots, \lambda_n\}), \quad \pi = id.$$

Since $\max\{\lambda_0, \dots, \lambda_i\} = \lambda_i$, we conclude that

(7)
$$\operatorname{sgn} \pi p_{\pi}(u_{\#}x)_{[l\pi]} = x_{l}, \quad \pi = id \in P(n).$$

Therefore, $(vu_*x-x)_l$ is a finite sum of terms of $\pm p_{\lambda_0\lambda_{\pi(0)}}(ux)_{[l\pi]}$, where $\pi \in P(n)$ and $\pi \neq id$. For any such π there exist indexes j, $0 \le j < n$, such that $\pi(j+1) < \pi(j)$. For the smallest such j we have $\pi(0) < \cdots < \pi(j)$, $\pi(j+1) < \pi(j)$ so that

(8)
$$\max\{\lambda_{\pi(0)}, \dots, \lambda_{\pi(j)}\} = \lambda_{\pi(j)} = \max\{\lambda_{\pi(0)}, \dots \lambda_{\pi(j)}, \lambda_{\pi(j+1)}\}.$$

Since $[\boldsymbol{l}\pi]$ is of the form (ν_0, \dots, ν_n) with $\nu_i = \{\lambda_{\pi(0)}, \dots, \lambda_{\pi(i)}\}$, we see that $\bar{\nu}_j = \bar{\nu}_{j+1}$, so that $\boldsymbol{l}' = (\bar{\nu}_0, \dots, \bar{\nu}_n) \in \Lambda^n \setminus \hat{\Lambda}^n$. However, $(u_*x)_{[l\pi]} = (u_*x)_{\nu_0 \dots \nu_n} = x_{\bar{\nu}_0 \dots \bar{\nu}} = x_{l'}$ as desired.

LEMMA 4. Let E be a homotopy satisfying (3). Then

$$(9) D = vuE - E$$

is a chain homotopy satisgying

(10)
$$dDx + Ddx = vux - x, \quad x \in C_p(X).$$

PROOF. By (3) and (4), we have

$$dDx+Ddx=dvuEx+vuEdx$$

$$-dEx-Edx=vu(dEx+Edx)-(dEx+Edx)$$

$$=vu(x-rix)-(x-rix)$$

$$=(vux-eix)-(x-rix)=vux-x.$$

Lemmas 1, 2 and 4 complete the proof of Theorem 1.

8. Homomorphisms induced by arbitrary coherent maps.

Let $f: X \to Y$ be an arbitrary coherent map. In order to define the induced homomorphisms $f_*: H_p(X) \to H_p(Y)$ one proceeds as follows. Consider the cofinite systems X^* and Y^* associated with X and Y respectively and consider the chain mappings $u_{X\#}: C_{\#}(X) \to C_{\#}(X^*)$ and $u_{Y\#}: C_{\#}(Y) \to C_{\#}(Y^*)$. Let $v_{Y\#}: C_{\#}(Y^*) \to C_{\#}(X^*)$ be the homotopy inverse of $u_{Y\#}$. Let $f^*: X^* \to Y^*$ be the coherent mapping associated with f. Since Y^* is cofinite, there exists a special coherent map $f^+: X^* \to Y^*$, which is coherently homotopic to f^* (see Lemma 6.5 of [5]). We now take for f_* the homomorphism induced by the chain mapping

$$f_{\#} = v_{Y\#} f_{\#}^{+} u_{X\#}.$$

The homomorphism f_* is independent of the choice of f^+ . Indeed, for another choice f_1^+ , one has $f^+ \cong f \cong f_1^+$, so that $f_* \cong v_{I} * f_{I}^+ * u_{I} * u_{I}$.

REMARK 4. If $f: X \to Y$ is a special coherent map, one can choose $f^+ \cong f^*$ as in Remark 2. Then, by Remark 3, $f_*^+ u_{X*} = u_{Y*} f_*$, and therefore

$$(2) v_{Y\#}f_{\#}^{+}u_{X\#} \cong f_{\#}.$$

This shows that for special f the new definition of f_* agrees with the previous one, given in 3.

REMARK 5. If f, $g: X \rightarrow Y$ are coherently homotopic coherent maps, then f_* , $g_*: C_*(X) \rightarrow C_*(Y)$ are chain homotopic chain mappings and therefore $f_* = g_*: H_p(X) \rightarrow H_p(Y)$.

In order to establish this assertion, it suffices to show that the associated coherent mappings f^* , $g^*: X^* \to Y^*$ (defined in § 4) are coherently homotopic. Let g be given by ϕ and g_m and let $F: I \times X \to Y$ be a coherent homotopy from f to g, given by Φ and F_m . We associate with F the coherent map $F^*: I \times X^* \to Y^*$ as in § 4. It is given by Φ^* and $F_{\beta_0 \cdots \beta_n}^*$. It is then straightforward to verify that F^* is a coherent homotopy from f^* to g^* .

REMARK 6. Let $f: X \to Y$ be a coherent map. If Y is cofinite, there exists a special coherent map $f_1: X \to Y$ such that $f \cong f_1$. It is a consequence of Remark 5 that $f_* = f_{1*}$. However, by Remark 4, f_{1*} can be obtained directly using the induced chain mapping f_{1*} of the special coherent map f_1 .

REMARK 7. The definition of f_* for an arbitrary coherent map $f: X \rightarrow Y$ shows that also in this case the diagram 4. (15) commutes. Moreover, by Remark 6, one can replace in this diagram f_*^{\dagger} by f_*^{\star} . This shows the naturality of the isomorphisms u_{X*} .

9. Homology of spaces using arbitrary ANR-resolutions.

Let $X=(X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ be an inverse system and let $p: X \to X$ be a morphism of pro-Top, i.e. a collection of maps $p_{\lambda}: X \to X_{\lambda}$ such that $p_{\lambda\lambda'}p_{\lambda'}=p_{\lambda}$ for $\lambda \le \lambda'$. We say that p is a resolution of X (see [7], (8) and [9]) provided the following two conditions are satisfied:

- (R1) Let P be an ANR (for metric spaces), let \mathcal{CV} be an open covering of P and let $f: X \rightarrow P$ be a map. Then there exist a $\lambda \in \Lambda$ and a map $g: X_{\lambda} \rightarrow P$ such that gp_{λ} and f are \mathcal{CV} -near maps.
- (R2) Let P be an ANR and $\mathcal CV$ an open covering of P. Then there exists an open covering $\mathcal CV'$ of P such that whenever $\lambda \in \Lambda$ and $g, g': X_{\lambda} \to P$ are maps such that gp_{λ} and $g'p_{\lambda}$ are $\mathcal CV'$ -near maps, then there exists a $\lambda' \ge \lambda$ such that $gp_{\lambda\lambda'}$ and $g'p_{\lambda\lambda'}$ are $\mathcal CV$ -near maps.

If all X_{λ} are ANR's we say that $p: X \rightarrow X$ is an ANR-resolution.

Let $X^*=(X^*_{\alpha}, p^*_{\alpha\alpha'}, \Lambda^*)$ be the cofinite system associated with X described in 4. We define $p^*_{\alpha}: X \to X^*_{\alpha}$, $\alpha \in \Lambda^*$, by $p^*_{\alpha} = p_{\bar{\alpha}}: X \to X_{\bar{\alpha}} = X^*_{\alpha}$. Note that the maps p^*_{α} , $\alpha \in \Lambda^*$, define a morphism $p^*: X \to X^*$ of pro-Top, because

$$p_{\alpha\alpha'}^* p_{\alpha'}^* = p_{\alpha}^*$$
 for $\alpha \leq \alpha'$.

Theorem 2. If $p: X \rightarrow X$ is an arbitrary resolution (ANR-resolution) of the space X, then $p^*: X \rightarrow X^*$ is also a resolution (ANR-resolution) of X and

$$(3) u_x p = p^*.$$

PROOF. (1) is an immediate consequence of the definitions.

In order to verify (R1), consider an ANR P, an open covering $\mathcal{C}V$ of P and a map $f: X \rightarrow P$. Choose $\lambda \in \Lambda$ and $g: X_{\lambda} \rightarrow P$ as in (R1) for p. If we put $\alpha = \{\lambda\} \in \Lambda^*$, then $X_{\alpha}^* = X_{\lambda}$, $p_{\alpha}^* = p_{\lambda}$ and $gp_{\alpha}^* = gp_{\lambda}$ is $\mathcal{C}V$ -near f.

In order to verify (R2), consider $P \in ANR$ and an open covering $\mathcal{C}V$ of P. Choose $\mathcal{C}V'$ as in (R2) for p. We claim that $\mathcal{C}V'$ also satisfies (R2) for p^* .

Indeed, let $\alpha \in \Lambda^*$ and let $g, g': X_\alpha^* \to P$ be maps such that gp_α^* and $g'p_\alpha^*$ are $\mathcal{C}V'$ -near. Since $gp_\alpha^* = gp_{\bar{\alpha}}$, $g'p_\alpha^* = g'p_{\bar{\alpha}}$, we conclude that there is a $\lambda' \in \Lambda$, $\lambda' \geq \bar{\alpha}$, such that $gp_{\bar{\alpha}\lambda'}$ and $g'p_{\bar{\alpha}\lambda'}$ are $\mathcal{C}V$ -near maps. Put $\alpha' = \alpha \cup \{\lambda'\}$. Clearly, $\alpha' \in \Lambda^*$ and $\bar{\alpha}' = \lambda'$. Since $p_{\alpha\alpha'}^* = p_{\bar{\alpha}\bar{\alpha}'} = p_{\bar{\alpha}\lambda'}$, we conclude that $gp_{\alpha\alpha'}^*$ and $g'p_{\alpha\alpha'}^*$ are $\mathcal{C}V$ -near maps.

REMARK 8. Let X be an arbitrary space and let $p: X \rightarrow X$ be an ANR-resolution of X. By definition [1], [6], the homology group $H_p(X)$ of the space X can be identified with the homology group $H_p(X^*)$ of the cofinite ANR-resolution X^* . However, by Theorem 1, u_{X^*} establishes a natural isomorphism $H_p(X) \rightarrow H_p(X^*)$. Therefore, $H_p^S(X)$ can also be identified with the homology group $H_p(X)$, where $p: X \rightarrow X$ is an arbitrary (non-cofinite) ANR-resolution of the space X.

10. Eliminating the assumption of anti-symmetry.

In this section we assume that Λ is a directed set, which need not be antisymmetric. If $\lambda_0 \leq \lambda_1$ and $\lambda_1 \leq \lambda_0$, we put $\lambda_0 \sim \lambda_1$. Clearly, \sim is an equivalence relation. Let $\Lambda' \subseteq \Lambda$ be a subset of Λ which contains precisely one element from every equivalence class of Λ with respect to \sim . The set Λ' is directed and antisymmetric

With every system $X=(X_{\lambda}, p_{\lambda_0\lambda_1}, \Lambda)$ we now associate its restriction $X'=(X_{\lambda}, p_{\lambda_0\lambda_1}, \Lambda')$ to $\Lambda' \subseteq \Lambda$. We then define a map of systems $s=s_X: X \to X'$ by the inclusion map $\Lambda' \to \Lambda$ and by the identity maps $s_{\lambda}=id: X_{\lambda} \to X_{\lambda}$. The induced chain mappings $s_{\sharp}: C_{\sharp}(X) \to C_{\sharp}(X')$ is given by

$$(1) (s_*x)_{\lambda_0\cdots\lambda_n} = x_{\lambda_0\cdots\lambda_n}, \quad (\lambda_0, \cdots, \lambda_n) \in \Lambda'^n.$$

With every coherent map $f: X \to Y$ we associate a coherent map $f': X' \to Y'$. If f is given by φ and $f_{\mu_0 \cdots \mu_n}$, then f' is given by φ' and $f'_{\mu_0 \cdots \mu_n}$ defined as follows: $\varphi'(m)$, $m = (\mu_0, \dots, \mu_n) \in M^n$, is the only element of Λ' such that $\varphi'(m) \sim \varphi(m)$. The mapping $f'_m: \Delta^n \times X_{\varphi'(m)} \to Y_{\mu_0}$ is given by

$$(2) f'_{m}(t, x) = f_{m}(t, p_{\varphi(m)\varphi'(m)}(x)).$$

REMARK 9. If $f: X \to Y$ is special, then also $f': X' \to Y'$ is special and the induced chain mappings f_* , f'_* satisfy the naturality condition

$$f'_{\#}s_{X\#} \cong s_{Y\#}f_{\#}.$$

To see this first notice that $\varphi'(m) \sim \varphi(m) = \varphi(\mu_n) \sim \varphi'(\mu_n)$, so that $\varphi'(m) = \varphi'(\mu_n)$. Furthermore, if $\mu_0 \leq \mu_1$, then $\varphi'(\mu_0) \sim \varphi(\mu_0) \leq \varphi(\mu_1) \sim \varphi'(\mu_1)$, so that φ' increases. This proves that f' is also a special coherent map.

To verify (3) we first consider the special coherent map $f_1: X \to Y'$, given by φ and f_m , $m \in M'^n$. The induced chain map $f_{1*}: C_*(X) \to C_*(Y')$ satisfies

$$f_{1\sharp} = s_{Y\sharp} f_{\sharp}.$$

We then consider the special coherent map $f_2: X \to Y'$, given by φ' and (2), and observe that

$$f_{2\#} = f'_{\#} s_{X\#}.$$

Finally, since $\varphi \leq \varphi'$, f_1 and f_2 are coherently homotopic (even congruent in the sense of § 5 of [5]) so that (see § 3).

$$(6)$$
 $f_{1\#} \cong f_{2\#}.$

THEREM 3. $s_{X*}: C_*(X) \to C_*(X')$ is a chain equivalence and, therefore, $s_{X*}: H_p(X) \to H_p(X')$ is an isomorphism.

PROOF. We define the inverse chain mapping $w=w_X: C_{\#}(X') \rightarrow C_{\#}(X)$ by

$$(7) \qquad (wy)_{\lambda_0\cdots\lambda_n} = p_{\lambda_0\lambda'_0*}y_{\lambda'_0\cdots\lambda'_n},$$

where λ' is the only element of Λ' such that $\lambda \sim \lambda'$. Clearly,

$$(8) \qquad (s_*wy)_{\lambda_0\cdots\lambda_n} = (wy)_{\lambda_0\cdots\lambda_n} = y_{\lambda_0\cdots\lambda_n},$$

when $\lambda_0, \dots, \lambda_n \in \Lambda'$. Therefore, $s_*w=1$.

On the other hand,

$$(9) \qquad (ws_*x)_{\lambda_0\cdots\lambda_n} = p_{\lambda_0\lambda'_0*}x_{\lambda'_0\cdots\lambda'_n},$$

so that $sw_{\#}$ can differ from 1. However,

$$(10) ws_* \cong 1.$$

To establish (10), we put

$$(11) \qquad (-1)^n (Dx)_{\lambda_0 \cdots \lambda_n} = \sum_{k=0}^n (-1)^k x_{\lambda_0 \cdots \lambda_k \lambda'_k \cdots \lambda'_n}.$$

We will now verify

$$(dDx + Ddx)_{\lambda_0 \cdots \lambda_n} = (ws_*x - x)_{\lambda_0 \cdots \lambda_n}.$$

We concentrate on the case $n \ge 2$. If $l = (\lambda_0, \dots, \lambda_n)$, $n \ge 2$, and $0 \le k \le n$, we have

$$(Ddx)_{\lambda_0\cdots\lambda_n} = \sum_{i=0}^{9} A_i,$$

where

(14)
$$A_{1} = -\sum_{k=0}^{n} (-1)^{k} \partial(x_{\lambda_{0} \cdots \lambda_{k} \lambda'_{k} \cdots \lambda'_{n}}),$$

$$A_{2} = p_{\lambda_{0} \lambda'_{0} \#} x_{\lambda'_{0} \cdots \lambda'_{n}} = (wsx)_{\lambda_{0} \cdots \lambda_{n}},$$

$$A_{3} = \sum_{k=1}^{n} (-1)^{k} p_{\lambda_{0} \lambda_{1} \#} x_{\lambda_{1} \cdots \lambda_{k} \lambda'_{k} \cdots \lambda'_{n}},$$

$$A_{4} = \sum_{k=2}^{n} \sum_{j=1}^{k-1} (-1)^{k+j} x_{\lambda_{0} \cdots \lambda_{j} \cdots \lambda_{k} \lambda'_{k} \cdots \lambda'_{n}},$$

$$A_{5} = \sum_{k=1}^{n} x_{\lambda_{0} \cdots \lambda_{k-1} \lambda'_{k} \cdots \lambda'_{n}},$$

$$A_{6} = -\sum_{k=0}^{n-1} x_{\lambda_{0} \cdots \lambda_{k} \lambda'_{k+1} \cdots \lambda'_{n}},$$

$$A_{7} = \sum_{k=0}^{n-1} \sum_{j=k+1}^{n-1} (-1)^{k+j+1} x_{\lambda_{0} \cdots \lambda_{k} \lambda'_{k} \cdots \lambda'_{j} \cdots \lambda'_{n}},$$

$$A_{8} = \sum_{k=0}^{n-1} (-1)^{k+n+1} x_{\lambda_{0} \cdots \lambda_{k} \lambda'_{k} \cdots \lambda'_{n-1}},$$

$$A_{9} = -x_{\lambda_{0} \cdots \lambda_{n}}.$$
(15)

We see immediately that

$$(16) A_5 + A_6 = 0.$$

On the other hand, we have

$$(dDx)_{\lambda_0\cdots\lambda_n} = \sum_{i=1}^5 B_i,$$

where

$$\begin{split} B_1 &= \sum_{k=0}^n (-1)^k \partial(x_{\lambda_0 \cdots \lambda_k \lambda'_k \cdots \lambda'_n}), \\ B_2 &= p_{\lambda_0 \lambda_1 *} \sum_{k=1}^n (-1)^{k+1} x_{\lambda_1 \cdots \lambda_k \lambda'_k \cdots \lambda'_n}, \\ B_3 &= \sum_{k=1}^{n-1} \sum_{j=1}^k (-1)^{k+j} x_{\lambda_0 \cdots \hat{\lambda}_j \cdots \lambda_{k+1} \lambda'_{k+1} \cdots \lambda'_n}, \\ B_4 &= \sum_{k=0}^{n-1} \sum_{j=k+1}^{n-1} (-1)^{k+j} x_{\lambda_0 \cdots \lambda_k \lambda'_k \cdots \hat{\lambda}'_j \cdots \lambda'_n}, \end{split}$$

$$B_5 = \sum_{k=0}^{n-1} (-1)^{k+n} x_{\lambda_0 \cdots \lambda_k \lambda'_k \cdots \lambda'_{n-1}}.$$

We see that

$$A_1+B_1=0$$
, $A_3+B_2=0$, $A_4+B_3=0$, $A_7+B_4=0$, $A_8+B_5=0$.

Therefore, (12) follows from (13)-(17).

REMARK 10. We can now define the induced homomorphism $f_*: H_p(X) \to H_p(Y)$ of an arbitrary coherent map $f: X \to Y$ between systems, which need not be antisymmetric. By definition, f_* is the homomorphism induced by the chain mapping $f_*=w_{Y*}f'_*s_{X*}: C_*(X) \to C_*(Y)$. Clearly, f_* satisfies the naturality condition

$$(18) s_{Y*} f_* = f'_* s_{X*}.$$

Moreover, $f \cong f_1$ implies $f_* = f_{1*}$. Also note that whenever f is special, f_* can be obtained directly from the chain mapping induced by f as in 3. This is a consequence of Remark 9.

REMARK 11. If $p: X \to X$ is a resolution (ANR-resolution) of the space X, then we define a morphism $p': X \to X'$ of pro-Top by putting $p'_{\lambda} = p_{\lambda}$ for $\lambda \in \Lambda'$. That p' is also a resolution (ANR-resolution) of X is obvious. Moreover, $s_{X}p = p'$. Since s_{X*} is a natural isomorphism, one can identify $H_p(X')$ with $H_p(X)$. This and Remark 8 show that the homology group $H_p^S(X)$ of the space X can be identified with $H_p(X)$, where $p: X \to X$ is an arbitrary ANR-resolution of X (Λ need not even be anti-symmetric).

References

- [1] Ju. T. Lisica and S. Mardešić, Steenrod-Sitnikov homology for arbitrary spaces, Bull. Amer. Math. Soc., 9 (1983), 207-210.
- [2] ——, Coherent prohomotopy and a strong shape category of topological spaces, in: Topology, Proc. Intern. Topological Conference (Leningrad, 1982), Lecture Notes in Math. 1060, Springer-Verlag, Berlin 1984, pp. 164-173.
- [3] ——, Coherent prohomotopy and strong shape theory, Glasnik Mat., 19 (1984), 335-399.
- [4] ———, Strong homology of inverse systems of spaces I, Topology and its Appl., 19 (1985), 29-43.
- [5] ———, Strong homology of inverse systems of spaces II, Topology and its Appl., 19 (1985), 45-64.
- [6] ——, Steenrod homology, Proceedings Geometric and Algebraic Topology, Banach Center Publ. 18 (1986), Warsaw, pp. 333-344.
- [7] S. Mardešić, Approximate polyhedra, resolutions of maps and shape fibrations, Fund. Math., 114 (1981), 53-78.

- [8] ——, Inverse limits and resolutions, Shape Theory and Geom. Top. Proc. (Dubrovnik, 1981), Lecture Notes in Math. 870, Springer-Verlag, Berlin, 1981, 239-252.
- [9] S. Mardešić and J. Segal, Shape theory, North Holland Publ. Co., Amsterdam, 1982.

Department of Mathematics University of Zagreb p. o. box 187 41001 Zagreb, Yugoslavia