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A NOTE ON STRONG HOMOLOGY OF INVERSE SYSTEMS

By

Sibe MARDESIC

1. Introduction.

Ju. T. Lisica and the author have defined in strong homology groups
H,(X;G) of inverse systems of spaces X=(X;, pa1, A) over directed cofinite
sets 4 (every element A€ 4 has only finitely many predecessors). It was shown
in that these groups are functors on the coherent prohomotopy category
CPHTop, introduced in and [3]. The notion of strong or Steenrod homology
H3(X; G) of an arbitrary space X was then defined [1], and shown to be a
functor on the strong shape category SSh [2], [3]. The procedure consisted
in choosing a cofinite ANR-resolution p: X—X of X ([7], [8], [9]) and of defin-
ing Hj(X; G) as Hy(X ; G). That the group Hj(X; G) does not depend on the
choice of the resolution is a consequence of the following factorization theorem
([3], Theorem II.2.3). If p: X—X is a resolution and f:X—Y is a coherent
map into a cofinite ANR-system, then there exists a unique coherent homotopy
class of coherent maps g:X—Y such that gp and f are coherently homotopic.

The definition of composition in CPHTop and the proof of the factorization
theorem essentially used the assumption that the index sets A be cofinite. On
the other hand, the construction of the homology groups H,(X; G) did not re-
quire this assumption. Therefore, it remained unclear whether one can use also
non-cofinite ANR-resolutions to determine the homology groups Hj(X; G) of the
space X. To prove that this is indeed the case is the main purpose of this

paper. Such an information can prove useful in situations where a non-cofinite
ANR-resolution naturally arises.

The main idea of the proof is to replace a given ANR-resolution p: X—X
by a cofinite ANR-resolution p*:X—X* using the “trick” described in ([9],
Theorem I, 1.2). What remains to be done is to exhibit a natural isomorphism
Us: Hpy(X ; G)—=Hp(X*; G). The correct formula for uy is easily found. How-
ever, the formula for the inverse vy of u, is less obvious. Even more compli-
cated is the verification of the two equalities uxvs=1, vsusx=1.

In order to simplify notations throughout the paper we omit the coefficient
groups G, although all results hold for an arbitrary G.
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2. Coherent maps and homotopy of systems.

Let X=(X;, par, A) and Y=(Y,, qu,r, M) be inverse systems of spaces
over directed sets 4 and M respectively, i.e., X and Y are assumed to be ob-
jects of the category pro-Top (see I. 1 of [9]). In all but the last section we
will assume that 4 and M are antisymmetric, i.e. A<’ and A’<2 implies 1=2".

We denote by A", n=0, the set of all increasing sequences I=(4,, -+, 4,) in
A of length n, 2,< --- <2,. If 0=j;=n, I,=(,, -, 4, -*-, 4;) denotes the se-
quence of length n—1 obtained from [ by deleting 2; Dually, '=(4,, - 4;,
Aj, -++, A,) is obtained from I by repeating 4, The standard n-simplex is denoted
by A™ and 0% :A"'—A", ¢%:A"*'—»A" denote the face and degeneracy operators.

According to [2], [3], a coherent map f: X—Y consists of the following :

(i) a function ¢:\J) M"—A such that

nao
(1) em)=p(m;), 0=;=n,n>0;

(i) maps fm:A*X Xomy—Y ,,, meM™, nz0, such that

0L 1. "'o(t: p mg m (X)), .7:0,
(2) fm(a?t, x)-—-{ Qo f pimp pm) |
f"'j(t: p(p("’j)ga(m)(x))y O<]§7‘l.
(3) fm(a%t, Pomyomi(x))=[fmit, x), 0=j=n.

A coherent homotopy F:IXX—Y, connecting coherent maps f, f': X—Y,
is a coherent map, given by a function @ and by maps Fm:A"XIX Xpwm—Y ,,,

such that

(4) O(m)zp(m), ¢’(m),

(5) Fu(t, 0, x)=fm(t, ppemom(x)),
(6) Fu(t, 1, x)=funlt, ppr myomy(x)).

In [3] a coherent map f:X—Y was called special provided there existed

an increasing function X: M—A satisfying

(7) om)=X(t,), m=(to, >+, ta).

If M is cofinite, then every coherent map f : X—Y admits a special coherent
map f’: X—Y such that f and f’ are coherently homotopic, i.e. f=f’. More-
over, if f’, f”:X—Y are special coherent maps and f’=f”, then there exists
a special coherent homotopy connecting f’ and f” (see [3], Lemmas 1.6.5 and
1.6.6). In and [3] compostion of special coherent maps f: X—Y, g: ¥Y—Z
was defined. In the case of cofinite systems, it induces a composition of co-
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herently homotopic classes of coherent maps, yielding thus the category CPHTop.

3. Strong homology groups of systems.

Let X=(X;, paa, A) be an inverse system over a directed set 4. Follow-
ing [4], we define a chain complex Cu(X) as follows. For p=0, a strong p-
chain of X is a function x which assigns to every leA"™ a singular (p+n)-
chain x; of X;, x;€Cp+n(X;,). The group C,(X) consists of all strong p-
chains of X. The boundary operator d:C,.(X)—Cy(X) is given by

(1) (d%)3,=0(x2,),
(2) (=D(dx)=0(x)— Prgrsexs,— 2 (—Dixyy, nZl.

Strong homology groups H,(X) of a system X are defined as the homology
groups of the chain complex C,(X).

If f:X>Y is a special coherent map, given by an increasing function
¢: M—/A and by maps fm:A"X Xycu,>—Y 4, then f induces a chain mapping
fu:Cu(X)—Cy(Y), defined in (4.1) of by

(3) (f#X)ﬂo...#n: ingO“'!‘i*(AiX x(p(#i)...?(”n)).

Special coherently homotopic maps f, f’: X—Y induce chain homotopic chain
maps fs=f% Moreover, (gf)s=gsfs (see [5]). Consequently, special coherent
maps f : X—Y induce homomorphisms fx : Hy(X)—H,(Y) satisfying (g/)«=gxf %
By definition, fx is the homomorphism induced by the chain mapping f4: Cy(X)
—C,(Y) and depends only on the coherent homotopy class of f. How to define
f« for coherent maps, which are not special, will be shown in 8.

4. Associated cofinite systems.

With every inverse system X =(X;, p11, 4) we will now associate a new
system X*=(X¥, p¥,., A*), defined as follows (see [9], the proof I, 1, Theorem
2). The set A* consists of all finite subsets «S/4 having a maximum. Since
we have assumed that A is antisymmetric, the maximum of a is unique and
we denote it shortly by @ ~We order A* by inclusion S. Clearly, A* is
directed, antisymmetric and cofinite. We now put

(1) X¥=X,,
(2) ’z‘fa':paa'-

We refer to X* as to the cofinite system associated with X.
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We now define a map of systems u=uy: X—X* (in the sense of [4]). It
is given by the increasing function a—a&, a< A*, and by the maps u,=id: X;
—X*=X,;. It generates a chain mapping us=1u x4 : C4(X)—C4(X*) (§3. of [4]),
given by

(3) (UsD)ag-an="ZXag-a,r (X0, =, An)EA*".

If xeCy(X), then xz,.a,ECp+n(Xz)=Cp+a(X%,)) as desired.

REMARK 1. If one first associates with u a special coherent map u’ as in
(2.8) of [5], then the induced chain mapping u} is chain homotopic to u, and
is given by a formula more complicated than (3).

Let Y*=(Y}, g%p-, M*) be the cofinite system associated with Y=(Y ,, ¢un, M).
With every coherent map f:X—Y we now associate a coherent map f*:X*
—Y* If f is given by ¢ and f4,.5,, we define f* by ¢* and f§,.5,:A"X
X&po - ppp—Y%, where

(4) (P*(,Bo, Tty ﬁn)—_—{SD(‘EiO, T ,gik): 0§ZO< <ik§n) ngén}l
(5) Sbo-8n=SBobin-
Note that B,S -+ £, implies B;,< - <B;, so that ¢*(B,, ===, Br) is a well-

defined finite subset of A. It belongs to A* because (2.1) implies that ¢(B,, -, )
is the maximum of @*(B,, -+, Ba), i.€.,

(6) SD*(IBO; R IBn)ng(.,B_O: B ,B-n)

That ¢* and f},.p, satisfy 2.(2)-2.(3) is immediate. We refer to f* as to
the coherent map associated with f.

If f:X—Y is a special coherent map, given by an increasing function
¢:M—A and by maps fm:A"XX,u»—Y, then one can associate with f a
special coherent map f*: X*—Y*, given by ¢*: M*—A* and [}, .5, A" X X§+5,
—Y7%,, defined as follows.

(7) p*(B)=¢(B), BeM*,
(8) [hgbn=SBo-Bn

Note that ¢(B) is a finite subset of A, because 8 is a finite subset of M.
Moreover, ¢(f) is the maximum of ¢(B), i.e.,

(9) p(B)=¢*(B), BEM*,

which shows that indeed ¢*(8)e A* Furthermore, B,S B, implies ¢(B0)S¢(By),
which shows that ¢* is an increasing function.
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Also note that (9) implies X§+s,,=XoF5=Xohn Y5,=Y 5, so that (8)
defines a map f§,.p,: A" X X§+p—Y 5. A straightforward verification shows
that f+ satisfies (2.2) and (2.3) (put ¢*(Bo, ==+, Ba)=¢"(Br)-

REMARK 2. If f is a special coherent map, then the coherent maps f*, f*:
X*—Y* are coherently homotopic. Indeed, if we put @(B,, -+, Bn)=¢(B,), then

(10) @*(ﬁo; ) ,Bn)g¢(,80; Ty ﬁ‘n)-

Indeed, when f is a special coherent map, ¢(Bi,, -+, Bi,)=¢(B:,) and there-
fore (4) becomes @*(8,, -, Bn)={¢(B0), -+, ¢(Bx)}. However, B;p;SB, and
SO ¢(Bi)e¢(ﬂn)=¢(ﬂo: "ty ,Bn): O§Z§ n. AISO; ¢+(ﬁ0’ Tty ﬁn):SD(,Bn)-_—(D(ﬁo, Tty ‘Bn)-

Furthermore, note that
11) fﬁo...ﬁn(pi-(}go,..., BB 5n)(x), 1)
= BB (s D= F (DB 8008 B2, D).

Indeed, since f is special (¢ increases), (6) yields *(Bo, -+, Bn)=¢(Bo, ***» Bn)
=@(Ba)=¢(Bn). Since f* is special, formula (7) yields ¢*(B,, -, Bn)=0"(Bn)=
¢©(B.). By definition, @(B,, - Ba)=¢(B.). All this shows that the constant
homotopies Fjg,.5, vield a coherent homotopy between f* and f+.

REMARK 3. If f is a special coherent map, then the induced chain mappings
f» and f3% satisfy

12) fiuxs=uysfs,

i.e. the following diagram of chain mappings commutes

13) Uxy
Cy(X*) < Cy(X)

A B

Cy(Y*)e———— Cu(Y) .

Uy
Indeed,

(14) (fEuxax)po-sn
= i=20 S boBip(A X (U x4 %)+ pptcppd)

-,
e

F BBt (B X X (B pchny)

=(f#x)ﬁo...ﬁn:(uYﬁf#x>ﬁ0“‘/5n '
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Passing to homology and the induced homomorphisms, we conclude that the
following diagrams commute for p=0:

15
= Hy(X9 <2 H.(X)

fil 1f*

Hp(Y*) <__—HP(Y) .
Uyx

The main result of this paper is the following theorem proved in 5-7.

THEOREM 1. 1wy, :Cu(X)—Cy(X*) is a chain equivalence and theorefore,
Uxe: Hy(X)—> Hp(X*) is an isomorphism.

5. The homotopy inverse v of u,.

For uy=uyxy: Co(X)—Cy(X*) we will now define a chain homotopy inverse
v=vy:CHX)—>Cy(X).
We first introduce some notation. P(n), n=0, will denote the group of all

permutations of the set {0, 1, ---, n}. If I=(4,, -+, 4,)eA™ and = P(n), we put
(1) lﬂ:(xn(o): Tty ln(n))r
(2) Ur]l={Ax}> {Z2c03s Azcvr}s =+ 5 {Zncors *** 5 Arcmd})-

Ir is a sequence in A4 of length n (which need not be increasing).

Each {2z, =, Aectr} S {Ao, **+, An}, 0=Zi<n, is an element of A*, because it
is a finite totally ordered subset of 4. Moreover, [Iz] is an increasing sequence
in A* of length n, so that [Ix]e(A*)".

For ye(C,(X*), we now define vyesC,X) as follows. If n=0 and I=
(Ao, *+, An)EA™, We put

(3) Wyhi= 2 SEDTP:Ycin,
TEP(N)

where

(4) DPr=Drja 0%

Clearly, Y€ Cprn) X, (0;) =Corsn( X, (oy) 50 that (W) ECp4a(X,,) as desired.
v:Cp(X*)>CH(X) is a homomorphism for each p=0. Moreover, we have
the following assertion.

LEMMA 1. v:Cp(X*)—Cy(X) is a chain mapping, i.e.
(5) (vdy)=(dvy);, leA™.
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PrROOF. Let I=(4, -+, 4,). If n=0, then
(dvy) 21,=0WY) 2,=0y120 =AW 2 p=WdY)3,-

We will therefore assume that n=1.
By (3) and 3.(2), we see that

(6) wdy)=(=1)" 3 sgnap0(yum)

(=1t 3 sgnappEyua,
rEP(N)
n-1 .

+(_1)n_1 2 2 (_1)'7 sgn zpnytlnjj
j=1rEeP(n)

— 2 SgNThYriix,

TeEP(n)
where we have put
(7) PE=Dlymvim
(8) V()= {2xor}, ¥1(m)=A{2zc0r, Az}

We will now show that

( 9 ) ”€§n> Sgnpnp;‘:ytln]o:o’
(10) S sgnapyum,=0, 1=j=n—1,
TEP(N)

so that (6) reduces to the first and the last sum.
Indeed, put

(11) Pin)={r€P(n): z(j)<z(j+D1)}, 0=5=n—1,
For any me Py(n), 0<;j<n—1, define =’ P(n)\Py(n) by

z(@@), i#J, j+1,
(12) n'()=4 z(j+1), i=7,

m(7), i=5+1.
Clearly, in [Iz] and [Iz’] only the j'* terms differ so that
(13) [Ux];=[Ix"];, m<Pjn), 0=j=n-—1.
Furthermore, for 1<7<n—1, n’(0)==(0) so that

(14) Pe=pw, mEPyn), l<j<n—1.

183

By (4) and (7), for any =< P(n), we have p.pr=prsms because vo(m)=2xo-

However, for < Py(n), vi()= {20y, Axc1y} =v1(t’), so that
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(15) pabE=pup¥, wEF(n).

Since sgnr=-—sgn=z’ and the permutations of P(n) come in pairs =, #’, where
m< P;, we obtain (9) and [10).
We now consider (dvy),. By 3.(2), we have

(16)  (doyh == (=1 paa,e @+ =DMy,

We will now examine ()i, for 0=j=n. We first define A;, ---, 47-; by

{li, 171

2i+1 ’ Z.2].-

17) A=

Clearly, 1,=(, ---, A,-1). With every e P(n—1) and 0<;7<n, we associate
a permutation z;= P(n) by putting

@), if 0</<n—1 and zn())<;—1,
(18) w;@)=4 n@)+1, if 0=/<n—1 and =()=7,
7> if 1=n.
Note that =} belongs to
(19) Qn)={nsP(n): n(n)=s}, 0=j<n,
sgnrj=(—1)"Isgnz, 0<;<n,
(21) Arr=450(), 0=i=n—1,0=;7=<n.

This shows that the sequence l;x=(A%¢», **y Azcn-») (0f length n—1) is ob-
uained from the sequence ln-}:(l,,}(o), e lngm) (of length n) by omitting the
last term. Therefore,

(22) (Lz]l=[In}],, 0=j;<n.

Also note that

plollpx’ ]=0:

Pz» l=/=n.

Indeed, by [2I), for 0= <n, D5 =D 202 zyc008 =D 202 ncort" If j=1 the first term of
l;is A, and the first term of l;x is A¢). Therefore, Pr=D1y1%0p4 @Dd We have
P =br If 7=0, then the first term of I, is 4, and the first term of I,z is A%
so that Pr=Diia7 04 and Paoa px=P o7 oy =D

We therefore have, by (3),

24) (_—1)n—1p2 0l 1(vy)10: —R’Gon(n) sgn /Py Y,
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(25) (=D wy)=— | = sgna’byyaws,, 1=j=n.

' €Q;(nd -

Now notice that P(n)= CJOQj(n) is a decomposition of P(n) in disjoint sets.
j=
Therefore, by [(16),
(26) (dvyz)=(~1)"a(vy)z—”EZP)(n)Sgn P2y tindy, -
Since, by (3), (—1)"d(vy), equals the first sum in (6), we obtain the desired con-

clusion (5).

6. The homotopy u,v=1.

In this section we will define a chain homotopy D on C,(X*) such that

(1) (de)a+(Ddx)a:ua—<u#Ux)a
for every a=(ay, -, a,)eA4*" and x<=C,H(X*).
Note that
(2) (UgvX)a=WX)a= 2 SENTPrX(anl,
TEP(N)

where a=(a,, ---, @,),
(3) Pr=Dagarcoss-

In order to define D we need more notation. Let n=0, a=(a,, -, a,)<
A**, 0<k<n, n=P(k). Then we put

(4) AT =(Arc0), """ » Xack))>
(5) lar]=({Az}, ***» {Qrcors =5 Arerr})-
(6) a(k)=(a, -, az).

is a totally ordered finite set, hence, an element of A*. Consequently, [@r]e
A**. Moreover, a(k)e A*" * and [@rx]a(k)c A*"+!, because {@zcy, ' *, Xncry} =
{a,, -+, @z} Sa; E. g., if a=(a,, a1, a;), k=1 and n permutes 0 and 1, then
[@x]a(k)=({a,}, {@&, @i}, a;, @;). Note that ax and [@r] can be interpreted as
5.(1) and 5. (2) for I=(a,, ---, a;). For x=C,(X*) we now put

Since a,& -+ Sa,, we have @,< --- <&, and therefore {@zco), =+, Xnery}, 0SiZ ke,

n

(7) (Dx)e=(—D" 2 3 (=1*sgnapsxcamace -

k=0rmEP(k

LEMMA 2. D is a chain homotopy connecting identity with uv, i.e., D satis-

fies (1).
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Note that xtasiacer € Cprntri(Xazy)=Coprn1(Xarg;) 0 that prxramecw €
Cpin+1(Xa)=Cpin+1(X%,) as desired.

In the verifiecation of formula (1) we omit the easier cases n=0 and n=1
and concentrate on n=2. By 3.(2) and (7), we have

(8) (Ddx)a=S:+S;+S;,
where
(9) Si=—2> X (—1)k5gn7f]5na(xran]ack)),
k=0mEP(k)
) Si=3 3 (—D1)*sgnmf.FExcanacio,
n n+l -
(11) Si= 33 3 (—1)**Isgnapixccanacer,s
k=0 j=17xEP(k)
(12) ﬁj:zpro(n)vl(n)# ’
{an(o): an(l)}, lékén)
(13) vo(m)={az}, wi(m)=
Ay, k=0

(ef. with 5.(7) and 5. (8)).

For k=0 the only permutation of {0} is the identity so that [@r]=[a]=
{a@,} and thus ([ar]a(0)),=a(0)=a. Moreover, p,=id, p¥=id. Therefore, the
first term in S, equals x,. The sum of all the remainig terms of S, equals 0,
because we will see that

(14) 2 sgnmh.pEX tantackn,=0, 1=k<n.

TEPCR)
This will prove that
(15) Se=2%q.
Similarly, we will show that a part of the triple sum S,;, vanishes, because

(16) D SENTPX(tantackr; =0, 1Zj<k—1,2<k<n.
rEPCk)

In order to prove and [16), we use some arguments from 5. In par-
ticular, since

(17) ([@r]a(k));=[@r])a(k), 0=j=<k—1, r=P(k),
5.(A3) for I=(a,, -, &,) implies
(18) ([@n]a(k)),=([@r"]la(k));, mePyk), 0=j<k—1.

Furthermore, 5. and 5. imply
m ﬁn=ﬁz’; ﬂEPj(k), l_S_]_S_k—l,
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(20) p-zﬁj:zﬁn' —ﬁ' ’ 7'L'Eljo(k)~

Since sgnn’=—sgnr and the permutations of P(k) come in pairs =, 7/,
where we P;(k), we conclude that and hold indeed.

The summation in S; is over the set {(k, 7): 0=k=n, 1=7=<n+1}, which
decomposes in the following subsets of Z X Z :

Ui={(k, 7): 25k<n, 155k —1},
Uy=1{(k, j): 1Sk=n, j=k},

Us={(k, /): 0Zk=n—1, j=k+1},
Ui={(n, n+1)},

Us={(k, ): 0=k=n—1, k+2=;=n+1},

Denote the part of S, corresponding to U; by Si Then

(21) Si= 338t
Now implies
(22) Si=0.
The terms of S% equal
(23) —SgN T PrXramy, 7wEP(n),
because
(24) (Larla(mDni=([@x]an)nr=[ax].
Hence, by (2),
(25) Si=—(Uyvx)q.

We will now consider S2+Si. If we replace in the expression for S the
summation index k by k-+1, we obtain

n-1

(26) Si= > >, sgn ﬂﬁnxdan]a(kﬂnkﬂo
k=0nEP(k+1)

On the other hand,

n=-1

(27) Sg:‘— E 2 Sgnn‘ﬁnx([an]a(k))k_,.l'

k=0rEP(k)

With every permutation m<P(k) we now associate a permutation n’e
Qr+1(k+1) such that n’())==() for 0<i<k and =n'(k+1)=k+1 (see 5.[I8).
Note that

(28) [ﬁn”]a(k—{—l):[&i‘r], {an(o); oty Aacrdy a—k:}} Apy1y, *°t, Upy
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(29) [aﬂ]a(k):[dajy Apy Apyyy =, Ay,
so that
(30) ([ar’]a(k+1))pri=([@n]alk))r+1.

We also have sgnzn’=sgnr and p, =p, because n’(0)==(0), Since nm—=n’ is a

bijection P(k)—Q i+ (k+1)E P(k+1) and P(k+1)= U:Q,-(k+1), we conclude that
=

n-1 k

(31) Si+S3=2 2 2 sgn ﬂp-zx([anjackH))kH-

k=0, =07€Q;(k+1)

We will now show that

(32) f=—5
k=

n . -
2 3 (=D sgnapaxcrajeia e -
0j=k+1nEP(k)

Let 0=k=<n, n= P(k), and let k+1<;=<n-+1. Then

(33) (Larla(k);=Lax](a(k));-k-1.

On the other hand, if 0<k<n—1, n=P(k) and k+1Zj7<n, then

(34) (a;x]a;(k)=[an](alk));-¢,
because [@r]=[ar]. Consequently, and imply
(35) ([arla(k));=[a;-,7la;-(k), 0=k=n—1, k+2=5;=<n+1,

and follows.
We will now compute (dDx),. By 3.(2) and (7) we see that

(36) (de)a=T1+T2+T3)

where

37) T,=3 S (—1*sgnapd(Xcamace),
k=0r€P(k)
n-1 -

(38) T,= ;§1 xe%zk) (—1)*sgn 7 pa a4 PaXragniagcey s
n-1 n . -

(39) T3: E 2 E (_1>k+JSgn n.pnx[ajn]aj(k)°

k=0j=1nEP(k)

We see, by (9) and [37), that
(40) S+ T,=0.

We now decompose T, in two summands 7'}, T3 corresponding to the decom-
position of the set V={(k, j): 0<k<n—1, 1<7<n} in sets

Vi={(k, )): 1=k=n—1, 1575k},
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Vo={(k, /): 0=k=n—1, k+1=5<n}.

It follows from that
(41) S3+T:=0.

Taking into account [I5), [22), (25), (40) and (41), in order to prove (1), it

remains to show that
(42) S24+ S3=—(T,+TY).

We now analyze T, and T%i Let 0=Zk=n—1. W
0=/=<%k we associate a permutation nj=Q;(k+41), defin

in place of n). Then (see 5.[20), 5.[22))
(43) sgnrj=(—1)***Jsgnw, 0=<;<k,
(44) lajm]l=[ax}]r+, O0=7=k.
Moreover, a;(k)=a(k-+1) for j<k and (since [az}] is

[anjlena(k+D)=([azx}]la(k+1))

We thus obtain

(45) La;m]a(k)=(a@rjla(k+1)r+1, 0=]
Also note (see 5.[23)) that

Pagaubs, 7=0,
(46) “n;:{ e ,

D> 155k,

Finally, observe that =—=xj is a bijection P(k)—Q,

n-1

(47) T2:_ 2 2 sgn n,ﬁn’x([un']a(k+1
E=0rmreQo(k+1)
n—1 -

(48) Ti=—2 2 2 SgN7 Py Xraniaj

k=1j=1x'€Q;j(k+1)

The summation in (31) is over the set {(k, j): 0=k
decomposes in {(k, 7): 0=k=<n—1, y=0} and {(%, J

ith every m< P(k) and
ed by 5.(18) (with £+1

f length k+1)

1.

IA
x>

k+1). Therefore,

Nps1?

k)

<n—1, 0<j<k}, which
s 1<ksn—1, 1< <k}

Therefore, (31), and (48) show that indeed holds. This completes the

proof of Lemma 2.

7. The homotopy vu,=1.

In §7 of [4] with every inverse system X a reduced chain complex é#(X)
was defined. It was the restriction of C,(X) to non-degenerate sequences I=
(Roy **+, Zn)eﬁ”. These are sequences such that 4;<2;+; and A; #4441, =0, ---, n—1.
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There is a chain mapping z':Q,(X)—»CA?,,(X) defined by

(1) Gx=x1, led.

Also in §7 of [4], a chain mapping r:é,(X)——»C#(X) was defined by
v, ledr,

(2) (r(y»,:{o’ le e in

and it was shown that ;»=1, »:=1. The latter relation means that there ex-
ists a chain homotopy E such that

(3) dEx+Edx=x—rix, x&Cyu(X).

LEMMA 3. The chain mapping vuy : Co(X)—Cyu(X) satisfies
(4) vugry=ry, yeCq4X).

PrROOF. It suffices to show that for and x=C,(X) and any I=(4,, -, 4,)E
A" the chain (vuyx—x), is a finite sum of terms of the form =p;,1;sx,, Where
A=A, U=4g, -, 2;,)6/1"\/1". Indeed, if this is the case, then for x=ry, ye
C.(X), one can express (vugry—ry), leA™, as a finite sum of terms of the
form =+p,2,4(ry)i. Since, by (2), each of these terms vanishes, we conclude
that (4) holds.

By 5.(3), we have

(5) (ugx)y= > sgnap(UaX)um, leA™.
nEP(N)

If = is the identity map, then Ix=I, so that

(6) xl={4}, =+, {4o, -+, 4a}), m=id.
Since max{4,, ---, 4;} =4;, we conclude that
(7) SEN TP (U g X)uma=Xx1, w=idEP(n).

Therefore, (vugx—x), is a finite sum of terms of %pj,z, ,#(¥ X))y, Where nE
P(n) and n+#id. For any such x there exist indexes j, 0<;7<n, such that
n(74+1)<n(j). For the smallest such j we have #(0)< --- <zn(j), #(7+1)<=(s5) so
that

(8) max {4z, " » 2z<j>}=2u<j)=max{2n<o>; o+ Aaiys Ancjente
Since [Iz] is of the form (v,, -+, va) With v;={4.c0», *** » Anciy}, We see that

D;=0Uj41, S0 that U'=(D,, -+, D)= A™\A". However, (U X1 = (U g Xygow = X5gs

=x,; as desired.
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LEMMA 4. Let E be a homotopy satisfying (3). Then
(9) D=vuE—E
iS a chain homotopy satisgying

10 dDx+Ddx=vux—x, x&CyX).

ProOOF. By (3) and (4), we have
dDx+ Ddx=dvuEx+vuFEdx
—dEx—Edx=vu(dEx+ Edx)—(dEx+ Edx)
=pu(x—rix)—(x—rix)
=(ux—eix)—(x—rix)=vux—x.

Lemmas 1, 2 and 4 complete the proof of Theorem 1.

8. Homomorphisms induced by arbitrary coherent maps.

Let f:X—Y be an arbitrary coherent map. In order to define the induced
homomorphisms fy : H,(X)—H,(Y) one proceeds as follows. Consider the cofinite
systems X* and Y* associated with X and Y respectively and consider the
chain mappings u xy: Cy(X)—>Cu(X*) and uyy: Co(Y)—=Cu(Y™*). Let vyy: Cu(Y*)
—Cy(X*) be the homotopy inverse of uy,. Let f*:X*—>Y* be the coherent
mapping associated with f. Since Y* is cofinite, there exists a special coherent
map f*:X*—Y* which is coherently homotopic to f* (see Lemma 6.5 of [5]).
We now take for fx the homomorphism induced by the chain mapping

(1) fe=vyrsfuxs.
The homomorphism fx is independent of the choice of f*. Indeed, for another

choice f-i-, one has f+EfEfT, so that fﬁ Evygf-i_#uxg.

REMARK 4. If f:X—Y is a special coherent map, one can choose f*t=f*
as in Remark 2. Then, by Remark 3, fifuxs=uysfs and therefore

(2) Vysfiuxs=fs.

This shows that for special f the new definition of f4 agrees with the pre-
vious one, given in 3.

REMARK 5. If f, g: X—Y are coherently homotopic coherent maps, then
f4, 84:Cus(X)—Cyx(Y) are chain homotopic chain mappings and therefore f,=
gx: Hp(X)—Hy(Y).
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In order to establish this assertion, it suffices to show that the associated
coherent mappings f*, g*: X*>Y* (defined in §4) are coherently homotopic.
Let g be given by ¢ and gm and let F:IXX—Y be a coherent homotopy from
f to g, given by @ and Fm. We associate with F the coherent map F*: X X*
—Y* as in §4. It is given by @* and Fg .5, . It is then straightforward to
verify that F* is a coherent homotopy from f* to g*.

REMARK 6. Let f:X—Y be a coherent map. If Y is cofinite, there exists
a special coherent map f,: X—Y such that f=f,. Itis a consequence of Remark
5 that f«=f,x. However, by Remark 4, f,« can be obtained directly using the
induced chain mapping f,s of the special coherent map f,.

REMARK 7. The definition of f4« for an arbitrary coherent map f:X-Y
shows that also in this case the diagram 4. (15) commutes. Moreover, by Remark
6, one can replace in this diagram f% by f% This shows the naturality of the

isomorphisms % xx.

9. Homology of spaces using arbitrary ANR-resolutions.

Let X=(X;, pas, A) be an inverse system and let p: X—X be a morphism
of pro-Top, i.e. a collection of maps p; : X—X; such that p-pir=p, for AZA".
We say that p is a resolution of X (see [7], (8) and [9]) provided the following
two conditions are satisfied :

(R1) Let P be an ANR (for metric spaces), let <V be an open covering of
P and let f: X—>P be a map. Then there exist a A4 and a map g:X;—P
such that gp; and f are ¢V-near maps.

(R2) Let P be an ANR and <V an open covering of P. Then there exists
an open covering <V’ of P such that whenever A€ 4 and g, g’: X;— P are maps
such that gp, and g’p, are V’-near maps, then there exists a =4 such that
ghar and g’p;r are CV-near maps.

If all X; are ANR’s we say that p: X—X is an ANR-resolution.

Let X*=(X¥*, p*, , A*) be the cofinite system associated with X described
in 4. We define p¥: X—>X¥*, ac A*, by p¥=ps : X—Xz=X% Note that the maps

¥, a<s A*, define a morphism p*: X— X* of pro-Top, because

oDk =p% for asa’.
THEOREM 2. If p:X—X is an arbitrary resolution (ANR-resolution) of the
space X, then p*: X—X* is also a resolution (ANR-resolution) of X and
(3) uxp=p*.
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Proor. (1) is an immediate consequence of the definitions.

In order to verify (R1), consider an ANR P, an open covering <V of Pand
a map f:X—P. Choose A= 4 and g:X;—P as in (R1) for p. If we put a=
{A}e A%, then X% =X,;, p¥=p, and gp¥=gp, is V-near f.

In order to verify (R2), consider P ANR and an open covering <V of P.
Choose <V’ as in (R2) for p. We claim that <V’ also satisfies (R2) for p*.

Indeed, let a= A* and let g, g’: X*— P be maps such that gp¥ and g’p¥ are
CY’-near. Since gpr=gpa, g'p¥=g'ps, we conclude that there is a A’ 4, I’'=a,
such that gpszi; and g’ps are CV-near maps. Put a’=a\U{1’}. Clearly, a’e
A* and @’=2A". Since p¥, =paz =pas, We conclude that gp¥,. and g'p¥*, are
¢Y-near maps.

REMARK 8. Let X be an arbitrary space and let p: X—X be an ANR-
resolution of X. By definition [1], [6], the homology group H3(X) of the space
X can be identified with the homology group H,(X*) of the cofinite ANR-
resolution X*. However, by Theorem 1, u x4 establishes a natural isomorphism
H,(X)—H,(X*). Therefore, H3(X) can also be identified with the homology
group H,(X), where p: X—X is an arbitrary (non-cofinite) ANR-resolution of’
the space X.

10. Eliminating the assumption of anti-symmetry.

In this section we assume that 4 is a directed set, which need not be anti-
symmetric. If 4,4, and 4,2, we put A,~A4;. Clearly, ~ is an equivalence
relation. Let A’S /A be a subset of 4 which contains precisely one element
from every equivalence class of 4 with respect to ~. The set A’ is directed
dnd antisymmetric

With every system X=(X;, ps,1,, 4) we now associate its restriction X’'=
(X2, Pagap, A to A’SA. We then define a map of systems s=sy: X—X’ by
the inclusion map A’—A and by the identity maps s,=:d: X;—X;. The induced
chain mappings s, : Cu(X)—>Cy(X’) is given by

(1) ($8X)2g-2,= X252, (Ao, =y An)EA™.

With every coherent map f: X—Y we associate a coherent map f/: X’'—Y".
If f is given by ¢ and f,,.,,, then f’ is given by ¢’ and f} .., defined as
follows: ¢’(m), m=(p,, -+, pn)EM", is the only element of A’ such that ¢’(m)
~¢(m). The mapping fm:A"XX, m—Y,, is given by

(2) Im(t, x)=fm(t, ppmypr my(x)).
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REMARK 9. If f:X—Y is special, then also f’:X’—Y"’ is special and the
induced chain mappings f4, f satisfy the naturality condition
(3) faSxs=Sysfs-

To see this first notice that ¢'(m)~e(m)=¢(u.)~¢’(¢t,), so that ¢’(m)=
¢’(¢n). Furthermore, if p,<pg,, then @'(zo)~@(ro)<@(pt1)~¢’ (1), so that ¢’
increases. This proves that f’ is also a special coherent map.

To verify (3) we first consider the special coherent map f,: X—Y’, given
by ¢ and fm, meM’®. The induced chain map f,, : C4(X)—C4(Y") satisfies

(4) f1e=Sysfs.

We then consider the special coherent map f,: X—Y’, given by ¢’ and (2),
and observe that

(5) fes=S4sxs.

Finally, since ¢<¢’, f, and f, are coherently homotopic (even congruent in
the sense of §5 of [5]) so that (see §3).

(6) f14=f 2y

THEREM 3. sxyu:Cu(X)—Cy(X") is a chain equivalence and, therefore, Sxx:
Hy(X)>H,X") is an isomorphism.

PROOF. We define the inverse chain mapping w=wy : C4(X’)—C4(X) by
(7) (W) 242y =P o254 Y 2iy2y 5
where 4’ is the only element of A’ such that A~24’. Clearly,
(8) (SsWI) 202, = (W) 2427, =Y 22y, »

when 4,, :--, A, A4’. Therefore, s,w=1.
On the other hand,

(9) (WS3X) 252, =D aga 04 X 22y s

so that sw, can differ from 1. However,

(10) wsy=1.

To establish (10), we put

(11) (=D Dx)3g10= 2 (—D¥Xig 2,221
We will now verify

(12) (de-I—Ddx)z0...17"——-(108#.76—]6)20...1n .
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We concentrate on the case n=2. If I=(4, -, 4»), n=2, and 0<k<n, we
have _

(13) (Ddx) 242, = ;j’:o A,
where

A== 3 (= D)*0(%ay242523)
(14) As=Paoapa X 22y =(WSX) 20255

n
A= El(—l)kpzozlsle...z g gl s

I
M=

k-1
A4 El(—l)k”x;o..}j...gk;'k...z'n,

k=2

n
Ag= :é‘lx,zo...jk_lg'k...z’n,

Ae-‘——kgoxzo Y LAY L

A "21 Sy (—1)k+i+t
= —_ X2gdpidpedgedl
T S0 ot kL kA

n-~-1
A= kz_)o(—l)“"“xxo---z A5 YA LA

(15) Ay=—X2g2p"
We see immediately that
(16) : As+ Aq=0.
On the other hand, we have
(17) (dDx)11,= 2 Be,
where

B,= ,:éo(—l)ka(xlo"'lkllk"'l'n) s
Bz:plo/ll# El(—l)kﬂle‘“lkl'k'"lln’

n-1 k |
B3= kgllé(—-l)k“xzo...jj...,zk+11’,e+1...,z'n s

n-1 n-1

B,= —1 k+jx,z N T LA 04
4 I§0j=k+1( ) 0 kAR Ajran?
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35272;(—1)“"):10...1kz'k...;'n_l.
We see that
A,+B,=0, A;+B,=0, A +B;=0, A,+B,=0, A;+B:;=0.
Therefore, follows from [13)-(17).

REMARK 10. We can now define the induced homomorphism fy: Hy(X)—
H,(Y) of an arbitrary coherent map f:X—Y between systems, which need not
be antisymmetric. By definition, f4 is the homomorphism induced by the chain
mapping fy=wysf4Sxs: Ca(X)—>C,(Y). Clearly, f4« satisfies the naturality con-
dition
(18) Syxfx=fxSxx.

Moreover, f=f, implies fx=f;x Also note that whenever f is special, fx can
be obtained directly from the chain mapping induced by f as in 3. This is a con-
sequence of Remark 9.

REMARK 11. If p: X—X is a resolution (ANR-resolution) of the space X,
then we define a morphism p’: X—X’ of pro-Top by putting pi=p, for A A’.
That p’ is also a resolution (ANR-resolution) of X is obvious. Moreover, sxp
=p’. Since sxx iS a natural isomorphism, one can identify H,(X’) with H,(X).
This and Remark 8 show that the homology group H$(X) of the space X can
be identified with H,(X), where p: X—X is an arbitrary ANR-resolution of X
(A need not even be anti-symmetric).
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