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NON-COMPACT SIMPLE LIE GROUP Ejg

By
Ichiro YOKOTA and Osami YASUKURA

It is known that there exist three simple Lie groups of type Eg up to local isomorphism,
one of them is compact and the others are non—compact. We have shown in [8] that the

group
Es={aelsoc(es, e§) la[ Ry, Re]=[aRy, aR;], {aRy, aRy>={ R, R;>}
is a simply connected compact simple Lie group of type Ej, in that the group
Ey, = {aelsoc(es, e§) || Ry, R;]=[aR, aR;], {aR:, aR;y>, ={ Ry, Ry),)

is a connected non-compact simple Lie group of type Eg 24 and its polar decomposition is
given by

Eg, =(SUQ2)x Ey)/Z, Rz,
In the present paper, we show that the group
Es= {a €lsog(es, es) |a[ Ry, R;]=[aRy, R, ]}

(where ez is a simple Lie algebra of type Ejgg) is a connected non—-compact simple Lie
group of type Egg and its polar decomposition is given by

E3=Ss(16) x R,

1. Preliminaries.

1.1. Notations.

Throughout this paper, we use the following notations. R, C, H: the fields of real, com-
plex and quaternionic numbers, respectively. M(n, K), K=R, C, H: all of » X n matrices
with entries in K. E: the # X n unit matrix (» is arbitrary).

f‘ 0 -1
J= " eM8, C) or eM(16, R) where f=< L o >
J
LI
. , 1 0
L= . eM (16, R) where L =< 0 —1 )
L’
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X4, H)={HeM@, H)|H*=H)}. (4, H),={He34, H)|tr (H)=0}.
&8, C)=({SeM(, C)|'S=—-S}.
SO(16)= {Be M (16, R)|'BB=E, det B=1}: a special orthogonal group.
Ss(16)=Spin (16)/2Z,(not SO(16)): a semispnor group.
SU@B)={DeM(8, C)|D*D=E, det D=1}: a special unitary group.
Sp(4)={CeM (4, H)|C*C=E}: a symplectic group.
80(16)={BeM(16, R)|'B=—B}.
u@B)={DeM(8, C)|D*=—-D}, su®={Deu®)|tr (D)=0}.
sp(4)={CeM (8, H)|C*=-C}.

The identity mapping of a set is always denoted by 1.

1.2. The split Cayley algebra €', the split exceptional Jordan algebra & and the
Freudenthal vector space P’.
Let @ =H® He' denote the split Cayley algebra with the multiplication

(a+be)(c+de’)=(ac+db)+ (bc+da)e’.

and the conjugation a+be’=a—be’. Let y: € =@’ be the involutive automorphism defined
by
y(@+be'y=a—be'.

Let 3'={XeM(3, €)|X*=X} denote the split exceptional Jordan algebra with the
multiplication X o Y=3 (XY + YX). The above involution y: €' =€’ is naturally extended
to the involutive automorphism y: ¥ »%’. In PB’, the inner product (X, Y)’, the positive
definite inner product (X, Y), the Freudenthal multiplication X X Y, the trilinear form
(X, Y, Z) and the determinant det X are defined respectively by

(X, Y)=tr(XoY), (X,Y)=0X,Y),

Xx Y=% CXoY—tr(X)Y—tr (Y)X+(tr (X) tr (Y)—(X, Y))E),

1
(X,Y,ZY=(X, YxZ), det X=§ (X, X, X).

Finally consider the vector space B'=3 DY ® RD R called the Freudenthal vector
space. We define linear transformations y, 1 and v of B’ respectively (y is used the same
notation as above) by

X, Y, EmM=0X,yY,¢n), (XY, En=(Y, -X,n =&, v=p=1y.

In P’, the inner product (P, Q)’, the positive definite inner product (P, @) and the skew—
symmetric inner product {P, @}’ are defined respectively by

(P, Q)'=(X,2) +(Y, W) +{+nw, (P,Q)=(P,Q),
(P, Q) =(X, W) —(Z, Y) +¢w—({n=(P,1Q)'=—(P, Q)
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where P=(X, Y, & n), Q=(Z, W, {, w)eP’.
1.3. The Lie group Ej;g and the subgroup Sp (4)/Z,
We have shown in that the group
E¢e= {a €lsor(Y, )| det a X=det X}
is a connected non-compact simple Lie group of type E), its Lie algebra is
es=es0= {¢ € Home (3, ) 1(¢ X, X, X) =0}

and found a subgroup of type C, in Eﬁ(s;. To find this subgroup, we use a linear isomor-
phism ﬁ 3'_’3(4’ H)09

Ao by by b
61 (Z3+b3€l dz_bze’ —0 ! ? _3
_ ’ , bl 111 as a
f| as—bse &2 a+be = o _
P . b, as A a
az+bze al—ble 63 -

b3 a, a A.3

where &eR, a, beH, i=1, 2, 3 and A;=3 E+&+E), =3 (E—&—&),
=7 (&= &= &), As=7 (&3— & —¢&;). Then f satisfies

FXofY=f /(XX YD+ (X, VIE, X, ¥ e

where the rhultiplication H, o H, is 3(4, H) is defined by H; o Hy=5 (HH,+ H,H,). Now,
a subgroup ( Ege)x of the group Egg,
(Ee@)k= {a € Ee | (@ X, aY)=(X, Y)}
is isomorphic to the group Sp (4)/Z, by the correspondence
¢: Sp(4) — (Ese)r, (C)X="HC(fX)C*), X ¥
with Ker ¢=2,= {E, —E}. Therefore the Lie algebra (ese)x of the group (Ese)x,
()= (ese)x= {9 €651 (0 X, Y)=—(X, ¢Y)}
is isomorphic to the Lie algebra 8p (4) by the correspondence

dx: 8p (4) — (e6)x, ¢+ (C) X=/"HC(fX)—(fX)C), Xe¥.

Finally, for A, Beg', AVBeeg is defined by

(AVB)X=% (B, X)A +% (A,B)X—-2Bx(AxX), Xe¥%'.

1.4. The Lie group E; and the subgroup SU (8)/Z,

For pee¢s, A, BeY', ve R, we define a linear transformation @(¢, A, B, v) of B’ by
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[ ¢X—§X+2Bx Y+nA

X
v
Y Y+—
®(6, A, B. v) ; _| 2AxX+¢'Y 3 Y+¢B
n A, Y)+v
B, X)—vn

where ¢’ € e denotes the skew-transpose of ¢ with respect to the inner product (X, Y)":
(60X, Y)=—(X,¢'Y). For P=(X, Y, & n),Q=(Z, W,{,w)eP’, we define a linear
transformation Px @ of P’ by

-

b= —% (XVW+2ZVY),

A=—-1— QYxW—-¢Z-(X),
PxQ=®(¢, A, B, v), 4 .
B=Z CXxZ—nW-wY),

1
v=g (X, W)'+(Z, Y) = 3¢w+n).

~

We have shown in that the group
Ea={aelsor(P’, P)|a(PxQ)a '=aPxa@)
is a connected non-compact simple Lie group of type E;, its Lie algebra is
er=e;ny= (D(p, A, B,v)|pees, A, BeX', veR)

and found a subgroup of type A; in E;;. To find this subgroup, we use a linear isomor-
phism x: P'—&(8, C),

(X Y. 6 m=(k (/X-FE) +ik (rov1-2E)) 7

where k: M (4, H)—~M (8, C) is the algebraic homomorphism defined by % (@ai;j+ijb;)
_ < a; —by
b,'j (i;,-

SUbgroup (E7(7))K of the group E7(7),
(Evm)k= {a €E7(7)I(OLP, aQ)=(P, Q)}

is isomorphic to the group SU (8)/Z, by the correspondence

) ,a;;, bjje C(ie C, je H are the usual elements: i?=—1, j2=—1). Now, a

w: SU®) — (Exp)k, w(D)P=x " D(xP)D), Pep’
with Ker y=Z,= {E, —E}. Therefore the Lie algebra (e;)x of the group (E;q)k,

(en)k= (ez)k= {Peerl(@P, Q)= (P, DQ))}
={®(¢, A, —yA, 0)|pe(ee)s, AeT)
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is isomorphic to the Lie algebra su(8) by the correspondence
wx: 8u(8) —> (enx, wx(D)P=x"Y(D(x(P)+(xP)'D), Pep'.
If D esu(8) has the form D=k (C)+ik(fA), Cesp(4), AeS’, then w« is given by
v (R(C)+ik(fA))=P(¢x(C), A, —yA, ).

2. The Lie algebra ¢ and the Lie group E;

An exceptional Lie algebra eg is defined as follows. In a 248 dimensional vector space
es over R:

=, OP PP PRPRDPR,
we define the Lie bracket [ R, R;] by
[(¢17 Pla Ql’ rly S1, tl)) (¢2, PZy QZ) 72, S2, t2)]=(¢, P) Qv 7, S, t)
where
(P=[D), D]+ P, xQ,— P, X @,
P=®,P,— D, P+ 1 P,— 1P +5Q2—5:Q 4,
Q=0,Q;,—P,Q,—1nQ:+nQ .+t PL— 1P,

1 1
r= —‘é‘ {P), @} +§ {Py, @1} +518,— 5214,

1
S=Z {Py, P} +2r15,— 27,5,

1
t= 7 {Q1, @2} —2rt,+ 27,1,
L
Then ez is a simple Lie algebra of type Eg [3], [8]. For R €eg, the adjoint transformation
ad R: eg—eg, (ad R) Ri=[R, R,], R, € e3, will be denoted by @(R).
The group Ej is defined to be the automorphism group of the Lie algebra eg:

Ei= {aeIsog(es, es) |la[ Ry, R;]=[aR;, aR;]}.

Our purpose of this paper is to find a maximal compact subgroup of Eg explicitly and to
show that the group Ej is connected.

The group Ej contains a subgroup

E { E | «(0,0,0,0,1,0)=(,0,0,0,1,0) }
={a€
1% 14(0,0,0,0,0,1)=(0,0,0,0,0,1)
which is isomorphic to the group E;; defined in the section 1.4 by the correspondence
aeEy—a’ e E;CEg, where
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a,(¢r P; Qy 7, S, t)=(a¢a—1’ (XP, QQ, r,sS, t)°

From now on, we identify these groups Ey; and E; under the above correspondence:
a=a’. Therefore, elements p, 1, v € E;; are regarded as elements y, 1, ve E;CEj.
We define linear transformations w, 7 and ¥ of eg respectively by

w(Q’ P’ Q) r’ s, t)=(¢’ —Q’ P’ —r’ —t’ _s)’
i=wi=1iw and =wv=vw.

PROPOSITION 1. (1) w=exp (0 <0, 0,0, 0,%, —%)) eE;, w?=1.

(2) 1, DeEs b=iy=yi, i’=p*=1.

3. Connectedness of Ej

In this section, we shall show that the group Ej is connected. This proof is similar to
[19] Theorem 30, however we need some remarks. So we give the outline of its proof.
For R ee;, we define a linear transformation R X R of e by

1
(RXR)R,=O(R)*R, +% By(R, R)R, Riees

where By is the Killing form of the Lie algebra eg, and define a subspace w’ of e¢g by
w={Reeg| RxR=0, R+0}.
Since the Killing form Bs is calculated in [8] Theorem 27 as

5 ’ r
Bg(R,, R2)=§ By(®,, 9,)+15{Q,, P} ' —15{P;, Q.} + 12077, +60¢, 5, + 60s, £,

(where B; is the Killing form of the Lie algebra e;) for R;=(®;, P;, Q;, 7;, 5;, t;) €es, 1=1, 2,
we have the following

PROPOSITION 2. For R=(®,P, Q,7,s,t)ees, R#+0, R belongs to w’ if and only if R
satisfies

(1) 2s6—PxP=0 (2) 2t6+QxQ=0 (3) 2rd+PxQ=0
(4) ®P-3rP—-3s5Q=0 (5) PQ+3rQ—3tP=0 (6) (P, Q}' —16(st+7r%)=0
(7) 2(PPxQ1+2PX PQ,—rPxQ,—sQ*xQ;)— {P, Q,} =0
(8) 2(PQXP,+2Qx ®P,+7rQx P,—tPx P)— {Q, P;} =0
9) 8((PxQ)Q—stQ,—7r’Q— D°Q,1+2r9Q)+5{P, @} 'Q—2({Q, Q,} 'P=0
(10) 8((Q X P,) P+stP,+ 7P, + &P, +2r®P,)+5(Q, P,} ' P—2{P, P,}'Q=0
(11) 18((ad®)’d,+ Q x & P—Px &,Q)+ By P, ®,)D=0
(12) 18(®,®P—2&&, P—rd,P—s6,Q)+By(®, d;) P=0
(13) 18(®, PQ—20®,Q+rd,Q—t®, P)+By(D, $,)Q=0
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Jor any ®1€e7, P, Q€.
For a while, we use the following notations briefly.

1=(0,0,1,0)ep’, 1=(0,0,0,1)e%p,
§=(0,0,0,0,5,0)ees, t=(0,0,0,0,0, %) ees,
P=(0,P,0,0,0,0)ee;, Q=(0,0,Q,0,0,0)ee;,
P'={Pees|PeP’}, R={teeslteR}.

THEOREM 3. The group Eg acts transitively on w’ (which is connected) and the isotropy
subgroup (Eg), of Egat 1 ew’ is (exp () exp (R))E7. Therefore we have the homeomorphism
Eg/(exp (P) exp (R)) Er=w'.

In particular, the group Eg is connected.
PROOF. Obviously the group Ejz acts on w’. Since 1 ew’, in order to prove the tran-

sitivity of Ej, it suffices to show that any element R e w’ can be transformed to 1 by a cer-
tain element « € (Eg), (which denotes the identity component of Eg).

Case (1) R=(®,P, Q,r,s,t), t>0. In this case, from (2), (5), (6) of [Proposition 2, we
have
1 r 1 rr 1
=2 QxQ, P=7 Q—@ @%xQ)Q, s= —7'*'@ Q,(@xQ)Q}.
Put

_ logt 0 S__rlogt __1ogt
1 Z(ﬁ—t) ’ 1 t_l ’ 1 2 .

Then, for ®=0(0, P,, 0, 7, $;, 0) e ad es, we have (exp @)1 =R (about its calculation, see
Theorem 30). So R is transformed to 1 by exp (— @) € (Eg)o.

Case (1') ©@=(®, P, Q, 7, 5, t), t<0. Similarly as the case (1), we see that R can be
transformed to -1 by (Ejs). Furthermore -1 can be transformed to 1 by (Ejg),. In fact, for
©=@(0,0,1,0,0,0)ead e,

. . 1
(exp ©)(0,0,1, 0,0, 0)= (0, 0,1,0,0, —) — 1,

4 @ -
) . 1
(exp (=)0, 0, i, 0, 0, o>=(o, 0,1,0,0, ‘Z) — -1

This shows that —1 can be transformed to 1 by (Ejg),.

Case (2) R=(®,P, Q,7,s,t),s>0. Similarly as the case (1), R can be transformed to
1 and 1 is transformed to —1 by w=exp (©(0, 0, 0, 0, >, —3) € (Eg)o: w1=—1. Further-
more, —1 is transformed to 1 as was seen in the case (1°).

Case 2') R=(®,P, Q,7,s,t), s<0. Similarly as the case (2), R can be transformed to
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—1 and then to 1 by w.

Case 3) R=(®,P, Q,7r,0,0), r#0. In this case, from (2), (5), (6) of [Proposition 2, we
have @xQ=0, ¢Q=—3rQ, {P, Q}'=1672. Now, for ®=0(0, Q, 0, 0, 0, 0) ead e;, we
have

(exp O)R=(®, P+2rQ, Q, r, —4r? 0), —4r2+0.

So we can reduce to the case (2°).
Case (4) R=(®,P, Q,0,0,0), @Q+0. Choose P, e B’ such that {P,, @} #0. Then for
@=0(0,P,0,0,0, 0)cad eg, we have

(exp ©) R= ( ., —% (P, Q) », )

So we can reduce to the case (3).
Case (5) R=(®, P, Q, 0,0, 0), P¥0. This is similar to the case (4).
Case (6) R=(9,0,0,0,0,0), +0. In this case, from (10) of [Proposition 2, we have
@?=0. Now, choose P, € B’ such that &#P;+0. Then for &=6(0, P,, 0, 0, 0, 0) ead ¢;,
we have

(exp ©)= (qb, ~ P, 0,0, - (oP,, P}, 0) .

So we can reduce to the case (5).

Thus the transitivity of (Eg), on w’ is proved. Hence m’=(Eg),1, so w’ is connected.
Next, the isotropy subgroup (Eg), of Es at 1 is the semi-direct product of subgroups exp
(B") exp (R) and E; of the group (Eg):: (Eg)1=(exp (B’) exp (R))E7(about its proof, see[9],
[18]). Thus we have the homeomorphism Ej/(exp (B') exp (R)) E7=w’. The space w’ and
the group (exp (B’') exp (R)) E7 are connected, so the group Ej is also connected.

4. The positive definite inner product (R;, R,) in e;
We define an inner product (R;, R;) in eg by
)
(Ry, Ry)=——=Bg(bRy, R,)
15
(the coefficient 5 is not essential).

PROPOSITION 4. The inner product (Ry, R;) in e is positive definite.

PROOF.

1 ’ -~
(Ry, Ry)= —E B3(bR,, Ry)
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1,
B —1_5_BS(D(¢1’ Pl; Qla 71, S1, tl), (¢21 PZ’ Q2’ Y2, S2, tg))

1 14 f—
= —1—5_38((0¢lv 1, —lea vPl) =7, —S1,, _tl)’ (¢2) PZ, QZ, 72, S2, tZ))

1
=1 (%BQ(MPW—I, @;)+15{vPy, Pp} ' —15{—0vQ,, Q)"
+120(_71)7'2+6O("‘31)32+60(_t1)t2>

1
=§ Br(v®1v, Dy)+(Py, Py)+ (@1, Q2) +8n73+4s15:+4thts.

So it is sufficient to show that B; (v®,v, D,) is positive definite. From [8] Theorem 27, this
is calculated as follows.
B;(v¢1 v, ¢2)=B',7(!)¢(¢1, Al’ Bl) vl)v) ¢(¢29 AZy B2’ vZ))
=B;(¢(—J’¢i)’, yBl, yAly vl)’ ¢(¢29 AZ) BZ’ v2))

3 . , , ,
=§ Bs(—yo1y, ¢2) +36(yBy, By) +36(yA;, As)" +24v,v,

3 4 ’
= ) Bg(yo1y, ¢2) +36(By, By) +36(A,, Az)+24v,v,
where Bg is the Killing form of the Lie algebra eg. So it is sufficient to show that Bg (y¢17,
@) is positive definite. From Theorem 27, we have
Bi(y$1y, $2)=Bi((6:+ TV)'y, 8+ To)=Bi(y(61— Ty, 62+ T>)

4 oud o 4 ’ ’
=Bg(yoy—yTi, 62+ T2)=§ By(yd1y, 02) —12(yT5, T?)

4 ’
=3 Bi(y617, ¢2)—12(Ty, T3)

where B; is the Killing form of the Lie algebra fi={d€es|0E=0}, d;€fs,
TieSo={Te Itr (T)=0} and TeHomg(¥, %) is defined by TX=ToX. So it is
sufficient to show that By (ypd;y, d,) is negative definite. Since the Lie algebra f; is simple,
fa is generated by &': fs= {2, [ A;, B;]|1A;, B;eY'}. We define an inner product (d;, d2)4 in f4
by

o, Z [A;, B;])s= Z (yoyB;, A;), d€fs, A, Biey'.

Then this inner product is well-defined Proposition 2) and positive definite. In fact,
under the notations
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5,‘1 0 0 0 5;3x 6,-25:
E,= 0 5,’2 0 y F,(X)= 5,356 0 6,~lx )eg',xe@', i=1,2, 3
0 0 5,'3 ngx Juf 0

(0,; is the Kronecker’s delta), we can easily verify that

V2[E\, Fy(e)], V2] E,, Fs(e)), V2[ Es, Fi(e)],=0,1,2, ---, 7
1 ~ ~ ..
ﬁ [Fi(e), Fi(e))], 0s:i<5=7

(where {eo=1, e1=1i, e,=j, e3=Kk, e,=¢’, es=i¢’, es=je’, e;=ke’} ({1, i, j, k} is the canonical
basis of H)) is an orthonormal basis with respect to the inner product (;, 8,),. Hence (d;,
J2)4 is positive definite. Now, B; (yd,y, ;) is again calculated in Proposition 27 (cf. §8,
§11) as

Bi(ydyy, Z [A; B:D=-9 Z (yoyB;, A))'.

Therefore By (yd,y, d,) is negative definite. Thus we see that the inner product (R,, R,) is
positive definite.

5. The subgroup (Ej3)x of E; and its Lie algebra (ez)x
We define a subgroup (Eg)x of the group Ej by

(Eg)x= {a e Eg|ba=ab}
= {a € B3l (aRy, aRy)=(R,, R))}.

Our present purpose is to show that the group (Ej3)x is isomorphic to the semispinor group
Ss (16). First, we shall show that the Lie algebra (eg)x of the group (Eg)x,

(eg)x= {@ e ad ez | 0O=Ob}
= {@ead ¢3|(OR), R))=—(R,, OR,)}
={0(®,vP, P, 0,s, —s)ead eg| D ee7, v®=Pv, PeP’)

is isomorphic to the Lie algebra 80(16). For this purpose, we give some preliminaries (cf.

§1).
LEMMA 5. For X;, X,e€%’, we have
o[ X1, [X2]=2( X, Vy X, — X, V yXy).
PrOOF. First note that [ X, fX;]e8p(4). Now, for Xe&’,
f@2(XVyX,)X)

’ 1 r
=f ((sz, XY X+ (X, 7X) X~ 49X, % (X, xX))
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1
=(Xz, X)Xy +§ (X1, Xo) fFX—4f X, 0 f (p( Xy X X))+ (X, W( Xy X X))E

=(Xz, X)X, +% (X1, Xo) fX— 41X, 0 (fX1 0 fX)+ (X1, X) fX>+ (X, Xi, X)'E.

Hence we have

SR(X,VyXe— X, VX)) X) = —4fX, 0 (fX, 0 fX) +4fX; © (fX; 0 fX)
=[/X1, XX = X[ fX4, 1 Xe 1=f (94 £X3, fX2 D X).

Since f is a momomorphism, we have the required formula.

PROPOSITION 6. For S, Sy, S, € &(8, C), we have
1) vy 1S=-—x"lS.
(@) tr(S$:5;—S:S)=4i{x7'S,, x71S;}".

3) w« <Sl SZ'.SZSI'—_;— tr (S SZ_SZSI)E> =4(ux7ISi X x 1S, —vx TIS, x x T1S)).
PROOF. (1) Put x~1S=P=(X, Y, &, n). Then we have
xx T IS=xvP=xv(X, Y, & n=x(Y, —yX, n, —¢&)
= (k (f(yY)—%E> +ik <f(y( yX»__cE> )) J

- (k <fX—§E> +ik <f(yY)——'2’—E) )) J

=—ix(X, Y, ¢ n=—ixP=—iS.

), @) Put x"1S;=P,=(X, Y, &, n;), i=1, 2. First note that
515,—5,5,— 3 tr (5,5,—S,5)) E € 8u(8). Now,

51§2=XP1X—_P;=X(X1, Yy, &, m) x (X, Yo, &2, 112)

- (b(-g) o (om-3)) 5 T (g o (o 52))
g3 g3
-t (-4s) ()« (rom-25) (-2
(me8) (om-22)

—ik ( (f(yYﬂ—%E) (sz——E

Hence we have
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515~ 8$51=—k(fX1 [ X=X X+ YD YD) —f (YD (Y1)

—ik(f YD) X —f Y ) X=X fY) +f X f (p Y1) —m f X+ n2 X,

+&6Hf(Y) &Sy Yl))+—;' (&n2—Em)E

=k(=[fX, fX]-[f (Y1), f(Y2))
+ik(fCyXix Y, —2yXo X Yi+m Xo—n X1 — &1y Yo+ &9 Y0))

+§ (X, Vo) —( X, Y1) +Eime—Em))E

~ k(C)+ik(fA)+%{P1,P2}'E, Cesp(4),Aey.

Take the traces of the above, then we have

tr (S:5:—S:S)=4i { P, P} '=4i {x7'S), x 7Sz} .

Therefore we have also

81§2_82§1_% tr (8152_82§1)E=k(C)+ik(fA)

On the other hand

Thus we have

VP, xP,—uvP,xPi=¢&

1

N N N I

—

(X, VyX,+ X, Vy X —yY1VY,+yY,VY))
@CyXix Y, =2y Xox Yi+mXo—n X1+ &Y 1— &1y Y))

CXoxyY 12Xy Xy Y, +ny Xi—myXo+ &, Y~ 6 Y)

-1
—35 PNV Y+ XV (—pX)

1
—Z @C(—yX)x Y,—mX,— &y YY)

1
1 2rY1 X Xo— (=&)Y —n(— X))

1

3 (YY1, Yo)' +( Xz, —yX1) —3(mnz+&(—¢1) |

0 1



Non-compact Simple Lie Group Egg, 343

1 1 1
=@ <4 ¢*C,4A, ——

1 pA, 0) (Lemma 5)

| =

. 1 = = - ~
wx(R(C)+ik (fAN=7 ‘//*(SISZ_SZSI_% tr (5:5:—5,5) E).

We define an algebraic homomorphism /: M (8, C)—M (16, R) by

Xej Tk

I (epjt+1ys)) =< >, Xz, Vi€ R.

Yo Xk
Then we have
IX=0X"), LIX)=IX)L, JI(X)=I(X)] for XeM(8, C).
PROPOSITION 7.
(1) I(u(8)={Beso(16)|B/=]B}, (&8, C))L={Beso(16)|B/=—]B}.
(2) Any element B of (eg)x is represented by the form

B=1(D)+I(S)L, D' eu(8),Se&(8, C)
=l(D)+I(S)L+I(sE), Desu8),Se&(@8, C),seR.

THEOREM 8. The Lie algebra (eg)x ts isomorphic to the Lie algebra 80(16)
by the correspondence ¢: 80(16)— (eg)x,
LA(D)+I(S)L+IGSE))=(w«D, 2vx 1S, 2x 1S, 0, 2s, —s)
where De 80(8), Se&(8, C), seR.

PROOF. The mapping ¢ is clearly bijective. We shall show that { is a homomorphism.

(1) S[UD»), U(Dy)]={I[ Dy, D;1=(w«[ D1, D¢}, 0, 0, 0, 0, 0)
=(ws+D1, w+Ds], 0,0, 0, 0, 0)
=[(yxD1,0,0,0,0,0), (wxD5, 0,0, 0,0, 0)1=[{I(Dy), {I(Dy)].
(2) C[I(D), I(S)L]=¢((DS—SD)L)=¢(I(DS+S'D)L)
=(0, 2vx "(DS+S'D), 2x "ADS+S'D), 0, 0, 0). On the other hand,

[¢UD), LU(S)L)]=[(wxD, 0,0, 0, 0, 0), (0, 2vx 'S, 2x71S,0,0,0)]
=(0, 2(w«D)vx 'S, 2(w+D) x 'S, 0, 0, 0).

Since (wx D)v=uv(y«D) and (w« D)y ~1S=x DS+ S'D), this is equal to the above.

Q) (D), IGsE))={I[ D, isE]=(0=0=[(y+D, 0, 0, 0, 0, 0), (0, 0, 0, 0, 2s, —25)]
=[{U(D), LIGsE)].
@ LUSIL, [(S)L]1=¢(S:1S:— S, S))

— ~ ~ ~ 1 — ~
=¢ <l <5152—SZSI—%tr (5152—5251)E> +/ (gtr (Slsz_SZSl)E>>
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_ 1 _ _
= (W# (Slsz—SZSl—‘é‘ tr (S1Sz—stl)E ) , 0, O, 0,

—fl‘ tr ($,5:—S:S)), —41—tr (31§2—52§1)>
=@y 'S xx 1S —vx 1S, x x 7151, 0,0, 0, {x 'S, xSl
—{x71S, x71S2))
(2), (3)). On the other hand
[ZA(S)L), CU(S,)L)])
=[(O’ ZUX-ISI, 2X_lsl, 07 O’ 0)’ (O, ZUX—ISZ’ ZX_ISZ’ 0’ 0: 0)]

1 r
= (va‘lSl X 2x 718, —2vx 1S, x2x71S,, 0, 0, 0, 3 (— {20x7'S,, 2x71S,)

1 , 1 ,
+2{vx 1S, 2x 7S} '),Z {20 7Sy, 2vx 1Sy}, vy {2x 1Sy, 2x 'S} )

=the above.
(5) ([IGSE), I(S)L])=¢(2l(sS)L)
=(0, 4vx ~1(isS), 4x ~1(isS), 0, 0, 0)
=(0, 4x "1(sS), —4vx~(sS), 0,0, 0) (Proposition 6(1))
=[(0, 0, 0, 0, 2s, —2s), (0, 2vx 'S, 2x~1S, 0, 0, 0)]
=[{lGsE), {U(S)D)].
6) ([l E), l(is, E)]=l[is E, is; E]=¢0=0
=[(0, 0, 0, 0, 254, —2s7), (0, 0, 0, 0, 2s5, —2s,)]
=[{l(is, E), {l(is: E)].

6. The polar decomposition of E; and connectedness of (Eg)x
To give the polar decomposition of the group Eg, we prepare
LEMMA 9. The group Eg is an algebraic subgroup of a general linear group GL(248, R)

=Isog(es, es) and satisfies the condition that o € Eg implies ‘o € Eg, where ‘a is the transpose of
a with respect to the inmer product (R,, R;): (‘aR,, R;)=(R;, aRy).

PROOF.

1
Since (‘aRy, R;)=(R), aR;)= —% Bg(0Ry, aRy)= 15 By(a™'0R,, Ry)=(ba"'0R;, Ry)

for a € Eg, we have
‘a=bda"0eEs (Proposition 1 (2)).

It is obvious that the group Ej is algebraic, because it is defined by the algebraic relation
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o Ry, R;]=[aR;, aks).
According to Chevalley’s lemma Lemma 2, p.201), we have the homeomorphism

E3=(E3NO(e)) X R*=(Eg)x x R*
where Of(eg) = {a € Isog(es, es) | (aRy, aRy)=(R;, R;)} and d is calculated as d=dim Eg—
dim 80(16) =248 —120=128. Thus we have the following

THEOREM 10. The group Eg is homeomorphic to the topological product of
the group (Eg)x and the Euclidean space R'%:
Ey=(Egx*x R,

In particular, the group (Eg)x 1s connected.
Since (Eg)x is a connected compact simple Lie group of type Dy (Theorem 8, 10), we
see that the group (E3)k is isomorphic to one of the following four groups

Spin(16), Ss(16), SO(16), PSO(16).

7. Isomorphism (Ej3)x=Ss(16)
In order to determine the group-type of the group (Ejg)k, consider
(es)x=(Rees|bR=R}, (es)p={Rees|0R=—R}.
Then we have
es=(eg)x D (es)r

which is the Cartan decomposition of the Lie algebra ez with respect to the involutive
automorphism b, in particular we have [(eg)k, (es)r]C (es)p. The adjoint representation ¥ of
(es)k to (eg)p:

Y(R)R,=[R, R1], Re(es)k, Rie(es)r
is irreducible ([4](8.5.1)). Moreover, since the Lie algebra (eg)x is simple (Theorem 8), the

complexification representation ¥ of ¥ to the complexification representation space
((eg)p)® is also irreducible [4](8.8.3)). Thus we have

LEMMA 11. The representation of the group (Eg)x to ((eg)p)C is irreducible.
PROPOSITION 12. The center 2((Eg)x) of the group (Eg)k is {1, b}.

PROOF. Obviously {1, b} Cz((Es)k). Conversely let a € 2((Es)x). The action of « to
((eg)p) is constant: «|((eg)p)°=A1, 1 € C, from and Schur’s lemma. Since a €
(Ejg)k preserves the inner product (R;, R,)(which is naturally extended to the complexifica-
tion Lie algebra (e3)C of eg): (R, aRy)=(R1, R,), Ry, Ro € ((e5)p)C, we have 12=1. Next
from the simplicity of the Lie algebra (eg)x, it is generated by (eg)p: (es)x= {Z;; [ R, R;]|R;,
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R; € (eg)p} . Therefore o is A21=1, i. e. the identity mapping on (eg)x. Consequently, if A=1
then a=1 and if A= —1 then «=0. Thus we have z((Eg)x)= {1, b}.

From [Proposition 12, we see that the group (Eg)x is not either Spin(16) or PSO(16).
Therefore (Eg)k is isomorphic to one of SO(16) and Ss(16).

We shall show that 128 dimensional complex irreducible representation of the Lie
algebra 80(16) are only two. In fact, the dimension of the complex irreducible representa-

tion corresponds to a dominant weight w can be calculated by Weyl’s demension formula
(e.g. [4](7.5.9)) as follows:

w | 20)1 I (1)) | 20)2 | 3 I ICL)4 | Ws | We | @7 | g I
16 | 135 | 120 | 5304 | 560 | 1820 | 4368 | 8008 | 128 | 128 I --

where w;, w;, - - - wg are the fundamental weights of 80(16). From this, we see that only w;
and wg have 128 dimension among complex irreducible representations of 80(16). On the
other hand, we know that the spinor group Spin(16) has two 128 dimensional complex ir-
reducible representations A, A1, called the spinor representations, and these are both
not representations of the group SO(16)(e.g. [20] Lemma 4.4.6). Now, ((es)p)¢ was a 128
dimensional complex irreducible representation space of the group (Eg)x (Lemma 11). The
above arguments mean that (Ejg)k is not isomorphic to SO(16). That is, we have

THEOREM 13. The group (Eg)x= {a € Eg|(aR;, aR;)=(R,, R;)} is isomorphic to the
semispinor group Ss(16): (Eg)x=Ss(16).
Thus, from [Theorem 10, we have the following theorem which was our main pur-
pose.

THEOREM 14. The group Egz= {a €lsog(es, eg) la[ Ry, R:]=[aR;, aR,]} is homeomor-
Dhic to the topological product of the semispinor group Ss(16) and the 128 dimensional Eucli-
dean space R'%:

E;=Ss(16) x R'*

8. The subgroup Ss(16) in the compact simple Lie group E;

It is known that the simply connected compact simple Lie group E; has Ss(16) as a
subgroup of maximal rank [10] Here we find out this subgroup Ss(16) explicitly in the
group Ei.

Let C=H® He denote the Cayley division algebra with the multiplication

(a+ be)(c+de)=(ac—db) + (bc + da)e

and C°= {x+ v —1y|x, ye @} its complexification. The split Cayly algebra €’ is naturally
imbedded in C°,

atbe'e@ — a+ v —1beeCC
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and its complexification @ + +/— 1€’ is also €% (€')¢=€C. The involutive automorphism
y: @' =€’ is naturally extended to the complex linear involutive automorphism y: C¢— €C.
Let 7 denote the complex conjugation on @° with respect to C: (a+ «/———Ib) =a— «/——lb),
a,be @. Then @' = {x e C°|x=yx} by the above inclusion. Similarly & and P’ are imbedd-
edin § and B€ as ¥ = {X eS|t X=yX} and P’'= {Pe B¢ |tP=yP} respectively, where t
are the complex conjugations on §°, B with respect to , B respectively and finally y is the
complex extension of y on §C, BC.

Let e§=¢S D PC D PC D R° D R° D RC be complex Lie algebra of type Eg constructed
basing on €° (3], [8). The involution 7: e§ —ef is defined by

(D, P, Q, 7, s, t)=(Pr, tP, 1Q, 17, 18, T1).

Since ¢f is also the complexification of es: eS=e5+ v — 1 eg, involutive automorphisms y, i,
¥: eg—eg are naturally extended to involutive automorphisms y, i, b: e§ —~e§ respectively.
Another involution p: e§—e§ is defined by p=1y=7y1:

p(D, P, Q, 7 s, t)=(yrdry, ytP, y1Q, 7, 18, t).
Then eg is naturally imbedded in ¢S as
es={0eef|po=0) = (B eef|yo=16}.
In e§, we define a positive definite Hermitian inner product {R;, R, and an inner pro-
duct <R, R,); respectively by
(Ry Roy= == Bo(eiRs, ), <Ry, Rodo=CoRy, Re>=(pRs, Ry

where By is tHe Killing form of the Lie algebra ¢f. We have shown in that the group
E§= {aelsoc(ef, ef) |of R;, R;]=[aR;, aR;]}
is a simply connected complex Lie group of type Eg and the group
Eg={a € E§|<aRy, aR; > =< R, R2)}

‘is a simply connected compact simple Lie group of type Es. Now we define subgroups
(ES)*, ES, b respectively by

(E§)={aecEf|pa=ap}, EF, ;= {a € E§|{aR, aR);=< Ry, Ry:}.
PROPOSITION 15. (E§)?=ES, ; and it is isomorphic to the group Ej.

PRROF. <Ry, Ry>y=<Ry, Ry>=—1 By(tioRy, R;)=—1 Bs(pRy, Ry), Ry, Ro € ef.
Hence for aeES, {aR:, aR,);=<R;, R;D; holds if and only if pa=ap. Thus we have
(E§)?=ES,;. Next, since it is easy to see that the Lie algebra (ef)’= {Ree§|pR=R} is
isomorphic to the Lie algebra es: (eS)”=es and ef is the complexification of (e§)”, the cor-
respondence o €Ez—a’e(EfS)?(where of denotes the complexification of «) gives an
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isomorphism between Ej and (E$)”.

THEOREM 16. The simply connected compact simple Lie group Eg contains a subgroup
(Eg)’= la € Eg|lpa=ap} which is isomorphic to the semispinor group Ss(16).

PROOF. (E;)’={aeEgl{aR;, aRy>={R;, R;), pa=ap)
= {a € (Ef)’|<aRy, aR;>=<{R,, R)}
= {a € Eg|(aR;, aRy)=(R;, R;)} (Proposition 16)
=(Eg)x=Ss(16)(Theorem 13).

9. Eratta and corrections of the preceding papers about exceptional Lie groups

We have been able to realize all of connected exceptional linear Lie groups and find
their maximal compact subgroups explicitely:

Ga-149[2], [20], Gy [15].
Fy-52[2], [20], Fy-20[2], [14], Fus [16].
Es-18[17], Ee2)[12], Eg-14)[12], Eg—26)[2], Ee) [11].
E2-133[5], [7), E7-25[6], [7], Ez(—5[13], E7 [18].
Eg(— 248 [8], Eg(~24[9], Esee) [this paper].
Here we point out some of their errata and correct them.
p. 384, 1.12,[6] p. 10, l. 16. In front of “FCDI*DC” insert “eSD”.
[5] p. 384, 1.13. Upon ‘“2XXZ—nW—£&Y” insert “XVW+2ZVY”.
p. 761, . 6. For ““—9(3A, B)” read “9(6A, B)” or*‘—9(éB, A)”.
p. 761, 1. 6. For ““—12(¢A, B)”’ read "’12(¢A, B)”.
[9] p.70,1.1—6. Omit and replace with “‘T={Rees,|R*xR=0, R#0} where
RxReHomg(es, es1) is defined by (R x R)R,=(ad R’R, +31—0 Bg (R, Ry)R for Ry eeg;(Bs;
denotes the Killing form of the Lie algebra eg;)”’.
[9] p. 70, /. 10-12. Omit Proposition 10 and replace with ‘“Proposition 10, € is con-
nected”. Added in [9] The group Es; can be also defined by Eg,= {a e Isog(es1, es1)
lof Ry, R;]=[aR,, aR,]} (which is connected (see [9] Theorem 16).
p. 461, . 2. For “Z,= {1, —1}” read “Z,= {1, o} ’’.
[18]p. 60, .. 2. Instead of x use x of Remark.

References

[1] Chevalley, C., Theory of Lie groups I, Princeton univ. Press, 1946.

[2] Freudenthal, H., Oktaven, Ausnahmegruppen und Oktavengeometrie, Math. Inst. Rijksuniv. te
Utrecht, 1951.

[3] Freudenthal, H., Beziehungen der E; und E; zur Oktavenebene I, II, VIII, IX, X, XI, Nedel.
Akad. Wetensch. Proc. Ser. A. 57=Indag. Math., 16 (1954) 218-230, 363-368, Ser. A.
62=21 (1959) 447-465, 466-474, Ser. A. 66=25 (1963), 457-471, 472-487.

[4] Goto, M. and Grosshans, F. D., Semisimple Lie algebras, Dekker, 1978.



(5]
(6]
[7]
(8]
(9]
[10]
[11]
[12]

(13]

[14]
[15]
(16]
(17]
(18]
[19]

(20]

Non-compact Simple Lie Group Egg, 349

Imai, T. and Yokota, 1., Simply connected compact simple Lie group E7 33 of type Ey, J.
Math., Kyoto Univ., 21 (1981) 383-395.

Imai, T. and Yokota, I., Non-compact simple Lie group Ey 5 of type E7, J. Fac. Sci., Shinshu
Univ., 15 (1980) 1-18.

Imai, T. and Yokota, I., Another definitions of exceptional simple Lie groups of type E;_,s and
E7_133, J. Fac. Sci., Shinshu Univ., 15 (1980) 47-52.

Imai, T. and Yokota, 1., Simply connected compact simple Lie group Es(_248) of type Eg, J.
Math., Kyoto Univ., 21 (1981) 471-762.

Imai, T. and Yokota, I., Non-compact simple Lie group Eg-24 of type Eg, J Fac. Sci., Shinshu
Univ., 15 (1980) 53-76.

Ishitoya, K. and Toda, H., On the cohomology of irreducible symmetric spaces of exceptional
type, J. Math., Kyoto Univ., 17 (1977) 225-243.

Shukuzawa, O. and Yokota, I., Non-compact simple Lie group Egg of type Eg, J. Fac. Sci,,
Shinshu Univ., 14 (1979) 1-13.

Shukuzawa, O. and Yokota, I., Non-compact simple Lie groups Eg-14) and Egp, of type Eg, J.
Fac. Sci., Shinshu Univ., 14 (1979) 15-28.

Yasukura, O. and Yokota, I., Subgroup (SU(2) x Spin(12))/ Z, of compact simple Lie group E;
and non-compact simple Lie group E; , of type Ey_s), Hiroshima Math. J. 12 (1981) 59-
76.

Yokota, 1., On a non compact simple Lie group F,; of type Fy, J. Fac. Sci., Shinshu Univ., 10
(1975) 71-80.

Yokota, I., Non-compact simple Lie group G,of type G,, J. Fac. Sci., Shinshu Univ., 12 (1977)
45-52.

Yokota, I., Non-compact simple Lie group F, , of type Fy, J. Fac. Sci., Shinshu Univ., 12 (1977)
53-64.

Yokota, I., Simply connected compact simple Lie group Eg—z of type Eg and its involutive
automorphisms, J. Math., Kyoto Univ., 20 (1980) 447-573.

Yokota, 1., Subgroup SU(8)/Z, of compact simple Lie group E; and non-compact simple Lie
group E;, of type E;, Math. J. Okayama Univ., 24 (1982) 53-71.

Yokota, I. and Imai, T., and Yasukura, O., On the homogeneous space Eg/E;, J. Math., Kyoto
Univ., 23 (1983) 467-473.

Yokota, I., Groups and Representations (in Japanese), Shokabo, 1973.

Ichiro Yokota Osami Yasukura
Department of Mathematics Institute of Mathematics

Shinshu University University of Tsukuba
Asahi, Matsumoto Sakura-mura, Niihari-gun
Nagano, Japan Ibaraki, Japan

Current Address (O. Yasukura)
Ibaraki College of Technology
Fukayatsu, Nakane, Katsuta
Ibaraki, Japan



	NON-COMPACT SIMPLE LIE ...
	2. The Lie algebra $e_{8}^{\prime}$ ...
	3. Connectedness of $E_{8}^{\prime}$
	THEOREM 3. ...
	THEOREM 8. ...
	THEOREM 10. ...
	THEOREM 13. ...
	THEOREM 14. ...

	8. The subgroup $S\epsilon(16)$ ...
	THEOREM 16. ...

	9. Eratta and corrections ...
	References


