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A TRANSFORMATION GROUP OF
THE PYTHAGOREAN NUMBERS

Jun MORITA

Our purpose in this note is to study a transformation group of the Pythagorean
numbers using the theory of Kac-Moody Lie algebras. We will essentially use
the conjugacy theorem, established by Kac [1], for null roots in infinite root sys-
tems. Mariani [3] has also given a transformation group of the Pythagorean
numbers in a different way. We will discuss about the relationship.

It is well-known that all the integral solutions, called the Pythagorean num-
bers, of the Pythagorean equation:

$x^{2}+y^{2}=z^{2}$

are given by

$\left\{\begin{array}{l}x=n(a^{2}-b^{2})\\y=2nab\end{array}\right.$

$z=n(a^{2}+b^{2})$

or $\left\{\begin{array}{l}x=2nab\\y=n(a^{2}-b^{2})\\z=n(a^{2}+b^{2})\end{array}\right.$

for all $n,$ $a,$ $b\in Z$.
Put $M=\{(x, y, z)\in Z^{3}|x^{2}+y^{2}=z^{2}, gcd(x, y, z)=1\}$ , the set of all the primitive

Pythagorean numbers, and $M^{\prime}=\{(x, y, z)\in M|y=even, z>0\}$ . We choose the follow-
ing basic transformations of $M$ :

$r_{1}$ : $(x, y, z)-(-x, y, z)$ ,
$r_{3}$ : $(x, y, z)-(x, -y, z)$ ,

-I: $(x, y, z)(-x, -y, -z)$ ,
$t$ ; $(x, y, z)(y, x, z)$ .

These are arising from the symmetries of the Pythagorean equation. Further-
more we can find an important transformation of $M$ :

$r_{2}$ : $(x, y, z)(-x-2y+2z, -2x-y+2z, -2x-2y+3z)$ .
Let $W$ be the subgroup of $GL_{3}(Z)$ generated by the $r_{i}(1\leq i\leq 3)$ , and $G$ the sub-
group of $GL_{3}(Z)$ generated by $W$, $tand-I$. Put $O_{2,1}(Z)=O(2,1)\cap GL_{3}(Z)$ , the
orthogonal group over $Z$ defined by the quadratic form $x^{2}+y^{2}-z^{2}$ .

THEOREM. (a) $M^{\prime}=W.(1,0,1)$ and $M=G.(1,0,1)$ .
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(b) $[G:W]=4$ and $G=O_{2.1}(Z)$ .
(c) The stabilizer of $(1, 0,1)$ in $W$ is the infinite dihedral group generated by

$r_{2}$ and $r_{3}$ .

PROOF. We choose the following generalized Cartan matrix of hyperbolic type
(cf. [2]) :

$A=\left(\begin{array}{lll}2 & -2 & 0\\-2 & 2 & -2\\0 & -2 & 2\end{array}\right)$

.

Let $\Lambda=\sum_{i=\iota}^{3}Z\alpha_{i}$ be the root lattice and $\Delta$ the root system associated with $A$ . We
define the bilinear form on $\Lambda$ by

$((\alpha_{i}, \alpha_{f}))=\left(\begin{array}{lll}1 & -1 & 0\\-1 & 1 & -1\\0 & -1 & 1\end{array}\right)$

.

Then $\alpha\in\Delta$ if $\alpha\in\Lambda$ has the property $(\alpha, \alpha)=0$ (cf. [1], [41). Such an element is
called a null root. Put $N=\{\alpha\in\Lambda|\frac{1}{n}\alpha\not\in\Lambda(n=2,3, \cdots),$ $(\alpha, \alpha)=0\}$ , the set of primi-

tive null roots.

Let $\beta_{1}=-\alpha_{1},$ $\beta_{2}=-\alpha_{3},$ $\beta_{3}=\alpha_{1}+a_{2}+\alpha_{3}$ . Then $\{\beta_{1}, \beta_{2}, \beta_{3}\}$ is a new basis of $\Lambda$

and $(\beta_{3}, \beta_{3})=-1$ . Therefore an element $\beta=x\beta_{1}+y\beta_{2}+z\beta_{3}$ is a null root if and
only if

$(\beta, \beta)=x^{2}+y^{2}-z^{2}=0$ ,

that is, $(x, y, z)$ is a Pythagorean number. We identify $M$ with $N$. Then $r_{i}$ is the
reflection with respect to $\alpha_{i}$ , and $W$ is the Weyl group of $\Delta$ . In general, it has
been established by Kac [1; Lemma 1. 9 $d)$] that a null root is conjugate to a
null root of an affine subdiagram under the action of the Weyl group. There-
fore, in our case, we see $N=W.(\pm\alpha_{1}\pm\alpha_{2})\cup W.(\pm\alpha_{2}\pm\alpha_{3})$ , which implies (a). (b):

The index $[G:W]$ is 4 since $G=(WX\langle t\rangle)\times\{\pm I\}$ . An element $\alpha\in A$ with $(\alpha, \alpha)$

$=1$ is a root, so $\{g(\alpha_{i})|1\leq i\leq 3\}$ is a fundamental system of $\Delta$ for all $g\in O_{2,1}(Z)$ .
Therefore the conjugacy theorem of Kac for fundamental systems (cf. [2]) leads to
$G=O_{2.1}(Z)$ . (c) follows from the fact that $\alpha_{2}+\alpha_{8}$ is in the (standard) fundamental
domain for the action of $W$ on the positive imaginary roots (cf. [2]). $\square $

Let $\phi$ be the isomorphism of $W$ into $PGL_{2}(Z)$ defined by $\phi(r_{1})=\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right),$ $\phi(r_{2})$

$=\left(\begin{array}{ll}-1 & 2\\0 & 1\end{array}\right)$ , and $\phi(r_{\epsilon})=\left(\begin{array}{ll}-1 & 0\\0 & 1\end{array}\right)$ mod $\left(\begin{array}{ll}\pm 1 & 0\\0 & \pm 1\end{array}\right)$ . The group which Mariani $\lceil 3$]

has constructed is $\phi(W)$ . However, his theorems 2 and 3 are misunderstanding
–he claims that $\phi(W)$ is isomorphic to $GL_{2}(Z)$ in Theorem 2 and that the sta-
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bilizer of an element of $M^{\prime}$ is the direct product of an infinite cyclic group and
a group of order 2 in Theorem 3. To be exact, $\phi(W)$ is a subgroup of $PGL_{2}(Z)$

with the group index $[PGL_{2}(Z):\phi(W)]=3$ and the stabilizer of an element of $M^{\prime}$

is an infinite dihedral group.
The author wishes to express his sincere gratitude to Professor S. Uchiyama

for his valuable advice.
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