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1. Introduction.

A topological property $\mathcal{P}$ is said to be nowhere densely generated in a class
$C$ of topological spaces if each $X\in C$ has te whenever every nowhere dense
closed subset of $X$ has $\mathcal{P}[5]$ . For example, Kat\v{e}tov showed in [41 that the sub-
space of nonisolated points of a $T_{1}$ -space $X$ is compact if each nowhere dense
closed subset is compact. This means that compactness is a nowhere densely

generated property in the class of $T_{1}$ -spaces without isolated points. More general-
ly, it was showed in [1] [5] that $[\kappa, \lambda]$ -compactness is also a nowhere densely
generated property in the same class. Other nowhere densely generated propert-

ies were investigated in [1], $\alpha$-closed-completeness, $\alpha$-compactness and $pseudo-(\kappa$ ,
$\lambda)$ -compactness. The purpose of this paper is to consider nowhere densely gene-
rated properties in topological measure theory. In this paper we examine measure-
compactness, (weak) Borel measure-completeness, Borel measure-compactness, pre-
Radon-ness and Radon-ness.

Terminologies and notations are due to [3]. we denote by .S2(X) $(\mathscr{D}^{*}(X))$ the
Borel (Baire) $\sigma$-algebra in a space $X$ A Borel (Baire) measure $\mu$ is a a-additive
non-negative real-valued set function on $\mathscr{D}(X)(\mathscr{D}^{*}(X))$ . We assume that all mea-
sures are finite $(i.e. \mu(X)<\infty)$ . A measure $\mu$ which is $\mu(X)=1$ is called a pro-
bability. A Borel measure $\mu$ is called regular (Radon) if for each $B\in \mathscr{D}(X)\mu(B)$

is the supremum of measures of closed (compact) subsets contained to $B$. A non-
empty family $d$ of sets is called directed upwards if for each $A,$ $B\in d$ there
exists $C\in d$ such that $A\cup B\subset C$. A Borel measure $\mu$ is called weakly $\tau$ -additive
if for each directed upwards open cover $cA$ of $X,$ $\mu(X)=\sup\{\mu(U):U\in d\}$ . A
Borel measure $\mu$ is called $\tau$ -additive if for given open subset $V$ and a directed
upwards open cover $d$ of $V,$ $\mu(\eta=\sup\{\mu(U):U\in d\}$ . Regularity and $\tau$ -additivity
of Baire measures are also defined by the same way.

We assume all spaces are $T_{2}$ .
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2. Nowhere densely generated properties.

DEFINITION 2. 1. [31 A space $X$ is called
(1) measure-compact if each Baire measure in $X$ is $\tau$ -additive.
(2) (weakly) Borel measure-complete if each Borel measure in $X$ is (weakly)

$\tau$ -additive.
(3) Borel measure-compact if each regular Borel measure in $X$ is $\tau$ -additive.

These concepts are motivated by the characterization of real-compactness as-
sociated with 2-valued Baire measures. A space is realcompact if and only if
each 2-valued Baire muasure in the space is $\tau$-additive.

DEFINITION 2.2. [3] A space $X$ is called

(1) pre-Radon if each $\tau$ -additive Borel measure in $X$ is Radon.
(2) Radon if each Borel measure in $X$ is Radon.

Compact spaces are pre-Radon [3, 11.3].

A cardinal $\kappa$ is called real-valued measurable if there is a discrete space $X$

with $|X|=\kappa$ and a diffused Borel probablity $\mu$ in $X$, where a diffused measure is
a measure such that $\mu(\{x\})=0$ for any $x\in X$. By $(*)(c1(*))$ we denote the condi-
tion that the cardinality of each (closed) discrete subspace is not real-valued
measurable.

THEOREM 2. 3. Let $X$ be a Tychonoff space satisfying cl $(*)$ , and assume that
$\mathscr{Q}^{*}(Y)=\{B\cap Y:B\in \mathcal{D}^{*}(X)\}$ for each closed subset $Y$ in $X$ Then $X$ is measure-
compact if each nowhere dense closed subset of $X$ is measure-compact.

PROOF. It is known that a space $X$ is measure-compact if and only if each
Baire probability in $X$ has a nonempty support [3, 14.41, where the support of a
Baire (Borel) measure $\mu$ in $X$ is the set of all $x\in X$ such that $\mu(U)>0$ for each
cozero (open) neighborhood $U$ of $x$ . We assume that there exists a Baire pro-
bability $\mu$ in $X$ having the empty support. For each $x\in X$ we take a cozero
neighborhood $U_{x}$ of $x$ such that $\mu(U_{x})=0$ . Let $cU=\{U_{\alpha} ; \alpha\in A\}$ be a maximal dis-
joint collection of nonempty open subsets refining $\{U_{x} ; x\in X\}$ . Then $F=X-\cup^{c}U$

is nowhere densely closed, so $F$ is measure-compact. Since we can extend Baire
set of $F$ to a Baire set of $X$, we can consider the restricted Baire measure $\mu F$ in
$F[3,3.2]$ , where $\mu_{F}$ is constructed in the following manner: $\mu_{F}(E)=\inf\{\mu(B)$ :
$E\subset B\in \mathscr{Q}^{*}(X)\}$ for each $E\in \mathscr{D}^{*}(F)$ . Obviously the support of $\mu_{F}$ is empty, hence $\mu_{F}$

$=0$ . Therefore there exists $B\in \mathscr{Q}^{*}(X)$ such that $F\subset B$ and $\mu(B)<1$ . Since $\mu(X$

$-B)>0$ and a Baire measure is always regular [3, 14.2], there exists a zero set
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$Z$ in $X$ such that $Z\subset X-B$ and $\mu(Z)>0$ . Set $A^{\prime}=\{\alpha\in A:Z\cap U_{\alpha}\neq\phi\}$ and take $x\in Z$

$\cap U_{\alpha}$ for $\alpha\in A^{\prime}$ . Then $D=\{x_{\alpha} : \alpha\in A^{\prime}\}$ is closed discrete in $X$ We define a Borel
measure $\nu$ in $D$ by the following equation, $\nu(E)=1/\mu(Z)$ . $\mu_{Z}(Z\cap(\bigcup_{x_{\alpha}\in E}U_{\alpha}))$ for $E\subset D$ .
It is easy to show that $\nu$ is a diffused Borel probability. Hence $|D|$ is real-valued
measurable. This is a cotradiction.

The following two theorems are similarly proved.

THEOREM 2. 4. Let $X$ be a space satisfying $(*)$ . Then $X$ is weakly Borel
measure-complete if each nowhere dense closed subset of $X$ is weakly Borel
measure-complete.

COROLLARY 2. 5. A space $X$ is Borel measure-complete if and only if each
nowhere dense closed subset of $X$ is Borel measure-complete and $(*)$ is satisfied.

PROOF. Note that Borel measure-completeness is equivalent to be hereditari-
ly weakly Borel measure-complete [3, 7.4].

THEOREM 2. 6. Let $X$ be a space satisfying cl $(*)$ . Then $X$ is Borel measure-
compact if each nowhere dense closed subset of $X$ is Borel measure-compact.

Theorem 2. 3 and 2. 6 generalize Corollary 2. 5 in [1]. In fact, it is known

that a space $X$ is closed-complete if and only if each 2-valued regular Borel
measure in $X$ is $\tau$ -additive.

LEMMA 2.7. If $X$ is a countable union of pre-Radon subspaces, then $X$ is
pre-Radon.

PROOF. Let $\mu$ be a $\tau$-additive Borel measure in $X$ and $B\in \mathscr{D}(X)$ . Put $X=$

$\bigcup_{i=1}^{\infty}X_{i}$ , where $X_{i}$ is pre-Radon. For any $\epsilon>0$ , since the restricted Borel measure
$\mu_{X_{i}}$ in $X_{i}$ is $\tau$ -additive, we can take a compact suset $K_{i}$ such that $K_{i}\subset B\cap X_{i}$ and
$\mu_{X_{i}}(B\cap X_{i}-K_{i})<\epsilon/2^{i+1}$ . Then $\mu(B-\bigcup_{i=1}^{\infty}K_{i})\leq\Sigma_{\mu x_{i}}(B\cap X_{i}-K_{i})\leq\epsilon/2<\epsilon$ . Since $\mu$ is
$\sigma$-additive, $\mu(B-\bigcup_{i=1}^{n}K_{i})<\epsilon$ for some $n$ . This shows that $X$ is pre-Radon.

A space $X$ is called locally pre-Radon if each point of $X$ has a pre-Radon

neighborhood.

LEMMA 2.8. Every locally pre-Radon space is pre-Radon.

PROOF. Let $\mu$ be a $\tau$-additive Borel measure in a locally pre-Radon space $X$ .
It is enough to show that $\mu(U)=\sup\{\mu(K):K$ is a compact subset contained to
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$U.\}$ for each open set $U$ in $X[3,6.4]$ . Let $U$ be an open set in $X$ and for each
$x\in U$, take a pre-Radon neighborhood $W_{x}$ of $x$ . We may assume that $W_{x}$ is open
in $X$ and $W_{x}\subset U[3,11.6]$ . Since $\mu$ is $\tau$ -additive, for any $\epsilon>0$ , there exists $X_{1}$ ,
$\ldots$ $x_{n}\in U$ such that $\mu(U)-\mu(W_{x1}\cup\cdots\cup W_{xn})<\epsilon/2$ . $W=W_{x1}\cup\cdots\cup W_{xn}$ is pre-
Radon by Lemma 2.7 and the restricted Borel measure $\mu_{W}$ is $\tau$ -additive, hence
$\mu_{W}$ is Radon. So there exists a compact set $K\subset W$ such that $\mu W(W)-\mu_{W}(K)<\epsilon/2$ .
These facts show that $\mu(U)-\mu(K)<\epsilon$ . Thus $\mu$ is Radon.

THEOREM 2. 9. A space $X$ is pre-Radon if and only if the following (1)

and (2) are satisfied.
(1) Each nowhere dense closed subset of $X$ is pre-Radon.
(2) Each nonempty open subset of $X$ contains a nonempty open pre-Radon

set.

PROOF. A pre-Radon space obviously satisfies (1) and (2). Because each Borel
subset of a pre-Radon space is pre-Radon [3, 11.6]. We assume (1) and (2). Let
$cU$ be a maximal disjoint collectiion of nonempty open pre-Radon subsets. Since
$X-\cup^{c}U$ is nowhere dense closed in $X$, it is pre-Radon. By Lemma 2. 8, $\cup^{c}U$ is
pre-Radon, hence $X$ is pre-Radon by Lemma 2.7.

There exists a non-pre-Radon space which satisfies (1) in Theorem 2. 9, refer
to [3, 5. 11].

THEOREM 2. 10. A space $X$ is Radon if and only if the following (1), (2) and
(3) are satisfied.

(1) $(*)$ is satisfied.
(2) Each nowhere dense closed subset of $X$ is Radon.
(3) Each nonempty open subset of $X$ contains nonempty open pre-Radon set.

PROOF. Note that Radon-ness is equivalent to be Borel measure-complete and
pre-Radon. So each Radon space satisfies (1), (2) and (3). The converse follows
from Corollary 2. 5 and Theorem 2. 9.

We give an application of the above theorem. Fremlin proved under $MA+2^{\omega}$

$<\omega_{\omega}$ that a first-countable compact space of weight $<2^{\omega}$ is Radon [2]. We gen-
eralize this result.

THEOREM 2. 11. $[MA+2^{w}<\omega_{\omega}]$ A space $X$ satisfying $(*)$ is Radon if each
nowhere dense closed subset is a first-countable compact set of weight $<2^{\omega}$ .
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PROOF. As mentioned in the first section, the subspace of nonisolated points

of $X$ is compact. Hence $X$ is pre-Radon by Lemma 2. 7. By Fremlin’s result $X$

satisfies (2) of Theorem 2. 10. Thus $X$ is Radon by Theorem 2. 10.
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