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ANTILOCALITY AND ONE-SIDED ANTILOCALITY
FOR STABLE GENERATORS ON THE LINE

By

Yasushi ISHIKAWA

1. Introduction.

Let $X$ be an open domain in $R^{n}$ . Consider alinear operator $A:C_{0}^{\infty}(X)\rightarrow\alpha(X)$ ,

where $C^{\infty}(X)$ is the class of infinitely differentiable functions on $X$ and $C_{0}^{\infty}(X)$ is

the set of functions of $C^{\infty}(X)$ which have compact support in $X$ We say $A$ is
antilocal if $suppf\cup suppAf=X$ for every $f\in C_{0}^{\infty}(X)$ such that $f\not\equiv O$ . Equivalently,

if $f=Af=0$ in an open subset of $X$, then $f\equiv 0$ in $X$

Antilocality was firstly proved by Reeh-Schlieder [71 for the operator $(m^{2}I-\Delta)^{1\prime 2}$ ,

where $\Delta$ denotes the Laplacian. Subsequently it was extended by Goodman-Segal
[1], Masuda [6] and Murata [3] for $(m^{2}I-\Delta)^{\lambda},$ $\lambda\in C\backslash Z$. Recently it was extended to

the complex powers (z-powers) of elliptic diffetential operators with analytic co-
efficients of order $m$ such that $mz\not\in 2Z$ by Liess [2].

In this paper we study the following operators:

$(*)$ $\mathfrak{a}_{p,q}(D)f(x)\equiv\int_{-\infty}^{+\infty}(f(x+y)-f(x))[p1_{R_{-}}(y)+q1_{R_{+}}(y)]\frac{dy}{|y|^{1+\alpha}}$ ,

where $p\geqq 0,$ $q\geqq 0,$ $p+q=1,0<\alpha<1$ and $1_{R\pm}(y)=1$ or $0$ according as $y\in R_{\pm}$ or not.
Here $R_{+}=(0, +\infty)$ and $R_{-}=(-\infty, 0)$ . These operators appear as generators of
stable processes on the line with index $\alpha$ in probability theory. So we call them
stable generators. In case $p=q$ it is known that the stable generator with index
$\alpha$ is $\alpha/2$-power of the constant multiple of $-\Delta$ , and therefore it is antilocal by
the result mentioned above. However, in case $p\neq q$ , the stable generator is not a
fractional power of $-\Delta$ . Especially, in case $p=0,$ $q=1$ , this is completely asym-
metric. Indeed, the trajectory of stable process with index $\alpha$ moves only to the
right only in case $q=1$ . Therefore it would not be expected that the antilocality

holds for this case, and so we introduce the one-sided antilocality as follows:

DEFINITION. An operator $T:C_{0}^{\infty}(R^{1})\rightarrow C^{\infty}(R^{1})$ is antilocal to the right (to the
left), if $f\equiv 0$ in $U+R_{+}$ (resp. $f\equiv 0$ in $U+R_{-}$) for every $f\in C_{0}^{\infty}(R^{1})$ such that $f=Tf=0$
in $U$, where $U$ is an open subset in $R^{1}$ and $U+R_{\pm}\equiv\{x+y\in R^{1} ; x\in U, y\in R_{\pm}\}$ . $T$ is
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simply called antilocal if $T$ is antilocal both to the right and to the left.
$ln$ case that $T$ is antilocal to the right (to the left) and is not antilocal, $T$ is

called one-sided antilocal to the right (to the left).

Our result is:

THEOREM. $lf$ both $p$ and $q$ are positive, then $a_{p.q}(D)$ is antilocal. $lfq=1(p=1)$ ,

then $\mathfrak{a}_{p.q}(D)$ is one-sided antilocal to the right (resp. to the left).

As mentioned above, these operators have a probabilitistic meaning. However
our proof of Theorem heavily depends on the theory of analytic pseudodifferential
operators and is carried out without using probability theory.

In the following part of this paper, we will only treat the case $q=1$ in case
$p\cdot q=0$ for simplicity, since the result for the case $p=1$ follows similarly by chang-
ing $p$ and $q$ and the signature. And so we say simply one-sided antilocal in place
of one-sided antilocal to the right.

The author expresses his hearty thanks to Professor M. Kanda for his kind
advices and encouragements. He is also grateful to the referee who communicated
to him invaluable comments in profound perspective.

2. Preliminaries I.

In this section we introduce some terminologies and prove a lemma which
follows from the Paley-Wiener-Schwartz theorem. For a suitable function $f$ on $R^{1}$

we denote the Fourier transform of $f$ by $f$ or $\mathfrak{F}f$. That is

$\hat{f}(\xi)=\mathfrak{F}f(\xi)=\int_{R^{1}}e^{-ix\xi}f(x)dx$ .

The celebrated Paley-Wiener-Schwartz theorem states that

The Paley-Wiener-Schwartz theorem. Let $f$ be a temperate distribution on $R^{1}$ .
Then the following two conditions are equivalent;

a) $suppf\subset(-\infty, 0$] (resp. $[0,$ $+\infty$))

b) There exists $G(\zeta)$ which is holomorphic in $\{{\rm Im}\zeta>0\}$

(resp. in $\{{\rm Im}\zeta<0\}$ ) and satisfies
$G(\zeta)=0(e^{||})$ in $\{{\rm Im}\zeta\geqq\epsilon\}$ (resp. in $\{{\rm Im}\zeta\leqq-\epsilon\}$ )

for any $\epsilon>0$ and such that
$f(\xi)=G(\xi+i0)$ (resp. $G(\xi-iO)$).

We next note that the operator $\mathfrak{a}_{p.q}(D)$ may be written as
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$\mathfrak{a}_{p,q}(D)f(x)=\mathfrak{F}^{-1}[\mathfrak{a}_{p,q}(\xi)\hat{f}(\xi)](x)$ ,

where

$\mathfrak{a}_{p,q}(\xi)=-\frac{\Gamma(1-\alpha)}{\alpha}[\cos\frac{\pi\alpha}{2}-i(q-p)sgn(\xi)\sin\frac{\pi\alpha}{2}]|\xi|^{\alpha}$

See Feller [4] page 541.
Probabilists call $\mathfrak{a}_{p,q}(\xi)$ the exponent of the stable process of index $\alpha$ but we

use the term ” symbol” of the operator $\mathfrak{a}_{p.q}(D)$ following the terminology of
pseudodifferential operators.

The restriction $\mathfrak{a}_{p.q}|_{(0.+\infty)}$ of $\mathfrak{a}_{p,q}$ to $(0, +\infty)$ has an analytic continuation to $C\backslash $

$(-\infty, 0]$ , which we denote by $\mathfrak{a}_{p,q}(\zeta)$ . Choosing the branch from the upper half
plane of $\mathfrak{a}_{p,q}(\zeta)$ , we extend the domain of $\mathfrak{a}_{p,q}(\zeta)$ to the negative real axis. We
denote it by $\mathfrak{a}_{p.q}^{+}(\xi)$ . We also choose the branch from the lower half plane on the
negative real axis and denote it by $\mathfrak{a}_{\overline{p},q}(\xi)$ . That is

$\mathfrak{a}_{p.q}^{\pm}(\xi)=\left\{\begin{array}{l}-A\frac{\Psi(1-\alpha)}{\alpha}[cos\frac{\pi\alpha}{2}-i(q-p)sin\frac{\pi\alpha}{2}]\xi^{\alpha} \xi\in(0,+\infty),\\-\frac{\Gamma(1-\alpha)}{\alpha}[cos\frac{\pi\alpha}{2}-i(q-p)sin\frac{\pi\alpha}{2}]e^{\pm ia\pi}(-\xi)^{\alpha}, \xi\in(-\infty,0).\end{array}\right.$

Put

$\mathfrak{a}_{p.q}^{\pm}(D)f(x)=\mathfrak{F}^{-1}[\mathfrak{a}_{p.q}^{\pm}(\xi)\hat{f}(\xi)](x)$ , $f\in C_{0}^{\infty}(R^{1})$ .

Then we have

LEMMA 1. For every function $f$ of $C_{0}^{\infty}(R^{1})$ with $suppf\subset(-\infty, 0$] (resp. $suppf\subset$

$[0, +\infty))$ , we have

($\iota_{p.q}^{+}(D)f(x)=0$ for $x>0$ , (resp. $\mathfrak{a}_{\overline{p}.q}(D)f(x)=0$ for $x<0$).

PROOF. We only prove the first statement, since the second follows similarly.
We first note that $\mathfrak{a}_{p.q}^{+}(\zeta)$ is holomorphic in $\{{\rm Im}\zeta>0\}$ . Let $G(\zeta)$ be as in the

Paley-Wiener-Schwartz theorem for the given $f$. Since the order $\alpha$ in $\zeta$ of $\mathfrak{a}_{p.q}^{+}(\zeta)$

is at most one, it follows that

$\mathfrak{a}_{p.q}^{+}(\zeta)G(\zeta)=0(e^{*|\zeta|})$ on $\{{\rm Im}\zeta\geqq\epsilon\}$

for any $\epsilon>0$ . Thus the statement of the lemma follows directly by the same
theorem. Q. E. D.

LEMMA 2. For every $f\in C_{0}^{\infty}(R^{1})$ , there exists a function $G^{\pm}=G_{f}^{\pm}$ which is holo-
morphic in $\{{\rm Im}\zeta<0\}$ such that
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$G^{\pm}(x-i0)=\mathfrak{a}_{p,q}(D)f(x)-\mathfrak{a}_{p,q}^{\pm}(D)f(x)$ .

PROOF. Since

$(\mathfrak{a}_{p.q}(D)-\mathfrak{a}_{p.q}^{\pm}(D))f(x)=\mathfrak{F}^{-1}[1_{R_{-}}(\xi)\hat{f}(\xi)\{-\frac{\Gamma(1-\alpha)}{\alpha}((\cos\frac{\pi\alpha}{2}+i(q-p)\sin\frac{\pi\alpha}{2})$

$-(\cos\frac{\pi\alpha}{2}-i(q-p)\sin\frac{\pi\alpha}{2})e^{\pm i\alpha\pi})\}|\xi|^{\alpha}](x)$ ,

it follows that

$\mathfrak{F}[(\mathfrak{a}_{p,q}(D)-\mathfrak{a}_{p,q}^{\pm}(D))f](\xi)=0$ for $\xi>0$ , and so
$supp\mathfrak{F}^{-1}[(\mathfrak{a}_{p.q}(D)-\mathfrak{a}_{p.q}^{\pm}(D))f]\subset[0, +\infty)$ .

Now we have only to apply the Paley-Wiener-Schwartz theorem. Q.E.D.

REMARK. In case $q=1,$ $G^{+}$ is identically zero. This fact reflects the one-sided
antilocality for $\mathfrak{a}_{0.1}(D)$ . See Lemma 3.

3. Preliminaires II.

In this section we prepare some results on analytic pseudodifferential operators,
especially in connection with singular spectrum. Subsequently we give a lemma
which plays a key role in proving our theorem. For details confer with Kaneko
[5] and its references.

A distribution (more generally a hyperfunction) $u$ is said to be micro-analytic at
$(x^{0}, -i\xi dx\infty)$ (resp. $(x^{0},$ $i\xi dx\infty)$), denoted by $(x^{0}, -i\xi dx\infty)\not\in S.S$ . $u$ (resp. $(x^{0}, i\xi dx\infty)\not\in$

S.S. u), where S.S. $u$ denotes the singular spectrum of $u$ , if $u$ admits the analytic
continuation into the half space $\{z\in C;{\rm Re}\langle-i\xi, z\rangle>0\}$ (resp. $\{z\in C;{\rm Re}\langle i\xi,$ $z\rangle>0\}$)

near the point $x^{0}\in R^{1}$ .

The following theorem plays a key role in the proof of our result.

THEOREM (Kashiwara-Kawai cf. Kaneko [51).

Let $u(x)$ be a distribution (more generally a hyperfunction) defined on a neigh-

borhood of $O\in R^{1}$ with $suppu\subset[0, +\infty$ ). If $u$ is micro-analytic at $(0, idx\infty)$ or $(0$ ,

-idxoo), then $u$ vanishes on a neighborhood of $0$ .

We next give a brief explanation of some notations to quote two theorems.
For an open cone $\Gamma\subset R^{1}\backslash \{0\}$ and $\epsilon>0,$ $\delta>0$ , we put

$\Gamma..\delta\equiv\{\zeta\in C;{\rm Re}\zeta\in\Gamma, |\zeta|>\delta, |{\rm Im}\zeta|<\epsilon|{\rm Re}\zeta|\}$ .
Let $S^{\mu}(\Gamma)$ ( $\Gamma$ denotes an open cone in $R^{1}\backslash \{0\}$) be the set of all functions $ a(\xi)\in$
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$C^{\infty}(\Gamma)$ such that for every open cone $\Gamma^{\prime}\Subset\Gamma$ there are $\epsilon>0,$ $\delta>0$ , and $c>0$ for
which $a(\xi)$ extends to an analytic function on $\Gamma_{\epsilon.\delta}^{\prime}$ which satisfies $|a(\xi)|\leqq c(1+|\zeta|)^{\mu}$

on $\Gamma_{s.\delta}^{\prime}$ .
The elements of $S^{\mu}(\Gamma)$ will be called analytic symbols with constant coefficients

of order $\mu$ defined on $\Gamma$ .
We denote by $SF^{\mu}(\Gamma)$ the set of all formal sums $\sum_{j\geq 0}a_{j}(\xi),$

$a_{j}\in S^{\mu-j}(\Gamma)$ , with the
property below;

for every cone $\Gamma^{\prime}\subset\Gamma$ there are $\epsilon>0,$ $\delta>0,$ $c>0$ and $A>0$ such that every
$a_{k}(\xi)$ can be extended as an analytic function on $\Gamma_{\delta}^{\prime}$ and satisfies
$|a_{k}(\zeta)|\leqq cA^{k}k!(1+|\zeta|)^{\mu-k}$ on $\Gamma_{*.\delta}^{\prime}$ .

For $\Sigma a_{j},$ $\Sigma b_{j}\in SF^{\mu}(\Gamma)$ , we write $\sum a_{j}\sim\sum b_{j}$ in $SI^{v}(\Gamma)$ if for every open cone
$\Gamma^{\prime}\subset\Gamma$ there exist $\epsilon>0,$ $\delta>0,$ $c>0$ and $A>0$ such that

$|\sum_{j<s}(a_{j}(\zeta)-b_{j}(\zeta))|\leqq cA^{s}s!(1+|\zeta|)^{\mu-s}$ on $\Gamma_{\epsilon.\delta}^{\prime}$

for every integer $s>0$ .
Let $S_{10}^{\mu}(R^{1})$ be the class of classical pseudodifferential operators with constant

coefficients of order $\mu$ of type $(1,0)$ , that is the set of all functions $a(\xi)\in C^{\infty}(R^{1})$

such that for every $j>0$ there exists $C_{j}>0$ for which $a(\xi)$ satisfies

$|\frac{d^{j}}{d\xi^{j}}a(\xi)|\leqq C_{j}(1+|\xi|)^{\mu-j}$ in $R^{1}$ .

By $S^{\mu}(R^{1}, \Gamma)$ we denote the space of symbols $a\in S_{10}^{\mu}(R^{1})$ such that the restriction
$a(\xi)$ to $\Gamma$ belongs to $S^{\mu}(\Gamma)$ .

Next two theorems are important in the proof.

THEOREM (M. Sato [8], L. Hormander [9]).

Consider $a\in S^{\mu}(R^{1}, \Gamma)$ and suppose there exists $b\in S^{-\mu}(\Gamma)$ such that the restriction
(also denoted by a) of $a$ to $\Gamma$ satisfies ab–l in $SF^{0}(\Gamma)$ and further $(x^{0}, i\xi^{0}dx\infty)\not\in S$ . S.
$\mathfrak{a}(D)f$ for some $\xi^{0}\in\Gamma$ . Then

$(x^{0}, i\xi^{0}dx\infty)\not\in S$ . S. $f$.
THEOREM (Analytic pseudolocal property, cf. Liess [2]).

For $a\in S^{\mu}(R^{1}, \Gamma)$ , if $(x^{0}, i\xi^{0}dx\infty)\not\in S$ . S. $f$ , then $(x^{0}, i\xi^{0}dx\infty)\not\in S.S$ . $a(D)f$ for $(x^{0}, \xi^{0})\in$

$ U\times\Gamma$ , where $U$ is a domain.

Now we return to our operators $\mathfrak{a}_{p,q}(D)$ and $\mathfrak{a}_{p,q}^{\pm}(D)$ introduced in \S 1 and in \S 2
respectively. Let $\omega(\xi)$ be a function of $C^{\infty}(R^{1})$ which is identically one for large
$|\xi|(e.g. |\xi|\geqq 1/4)$ and vanishes near zero. For a suitable analytic symbol $a(\xi)$ , we
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define a pseudodifferential operator $\mathfrak{a}^{\prime}(D)$ by

$\mathfrak{a}^{\prime}(D)f(x)\equiv \mathfrak{F}^{-1}[\omega(\xi)a(\xi)f(\xi)](x)$ .

We note that both $\mathfrak{a}_{p.q}(\xi)_{C\ell)}(\xi)$ and $\mathfrak{a}_{p,q}^{\pm}(\xi)\omega(\xi)$ belong to $S^{\alpha}(R^{1}, R_{+})\cap S^{\alpha}(R^{1}, R_{-})$ .

REMARK. Consider $\mathfrak{a}(D)f$ and $\mathfrak{a}^{\prime}(D)f$ defined as above. Then we have

S. S. $\mathfrak{a}(D)f\ni(x^{0}, i\xi^{0}dx\infty)\Leftrightarrow S$ . S. $\mathfrak{a}^{\prime}(D)f\ni(x^{0}, i\xi^{0}dx\infty)$

for $(x^{0}, \xi^{0})\in R^{1}\times S^{0}$ .
Combining the Theorem (Analytic pseudolocal property) with the above, we

see that $\mathfrak{a}_{p,q}(D)f$ is real analytic in $R^{1}\backslash suppf$ for every $f\in C_{0}^{\infty}(R^{1})$ .
Indeed, since $\mathfrak{a}(\xi)(1-\omega(\xi))$ is a symbol with constant coefficients of compact

support,

$\mathfrak{a}(D)f-\mathfrak{a}^{\prime}(D)f=\mathfrak{F}^{-1}[\mathfrak{a}(\xi)(1-\omega(\xi))f(\xi)]$

is an entire function. Thus the first assertion follows directly.

For the proof of the second, note that

$(R^{1}\times R_{\pm})\cap S$ . S. $\mathfrak{a}_{p,q}^{\prime}(D)f\subset S$ . S. $f$ ,

since $\omega(\xi)o_{p,q}(\xi)$ is in $S^{\alpha}(R^{1}, R_{-})$ . That is S.S. $\mathfrak{a}_{p,q}^{\prime}(D)f\subset S$ . S. $f$ . So it now follows
that

S. S. $\mathfrak{a}_{p.q}(D)\subset S$ . S. $f$ .
Since the analytic singular support of $u$ (A-sing $suppu$ for short) is the projection

to $R$ ‘ of S. S. uc $R^{1}\times iS_{\infty}^{*0}$ , we have

A-sing $supp\mathfrak{a}_{p.q}(D)f\subset A$-sing $suppf\subset suppf$ .
This shows that the second assertion holds.

LEMMA 3. Let $f$ be in $C_{0}^{\infty}(R^{1})$ . Suppose that $ B\cap suppf\subset[x^{0}, +\infty$ ) for some
open neighborhood $B$ of $x^{0}$ in $R^{1}$ . Suppose further that there are $\epsilon>0$ and a real
analytic function $h$ in $\{|x-x^{0}|<\epsilon\}$ such that

$h=\mathfrak{a}_{p.q}(D)f$ in $(x^{0}-\epsilon, x^{0})$ .

Then

$x^{0}\not\in suppf$ .
In case $q\neq 1$ and only in this case the same conclusion holds even if we replace

$suppf\subset B\cap[x^{0}, +\infty)$ with $suppf\subset(-\infty, x^{0}$] $\cap B$ and $h=\mathfrak{a}_{p,q}(D)f$ in $(x^{0}-\epsilon, x^{0})$ with
$h=\mathfrak{a}_{p,q}(D)f$ in $(x^{0}, x^{0}+\epsilon)$ respectively.



Antilocality and one-sided antilocality 7

PROOF. We may assume that $\epsilon>0$ is sufficiently small so that $\{|x-x^{0}|<\epsilon\}\subset B$ .
We write $f=f_{1}+f_{2}$ with $f_{1},f_{2}\in C_{0}^{\infty}(R^{1})$ , such that $f_{1}$ is concentrated near $x^{0}$ and
such that the support of $f_{2}$ avoids $x^{0}$ . In view of the remark, we see that $\mathfrak{a}_{p,q}(D)f_{2}$

is real analytic near $x^{0}$ , so that the hypothesis of $f$ is also satisfied for $f_{1}$ . And
so we assume $f=f_{1}$ .

Put

$u^{\pm}(x)\equiv 1_{B}(x)(\mathfrak{a}_{p,q}(D)f(x)-\mathfrak{a}_{p,q}^{\pm}(D)f(x)-h(x))$ .
Then $u^{\pm}$ is in $C^{\infty}(\{|x-x^{0}|<\epsilon\})$ . Applying Lemma 1 to $f$ and using the assumption
of this lemma, we obtain

$suppu^{+}\subset\{x\leqq x^{0}\}$ and that $suppu^{-}\subset\{x\geqq x^{0}\}$ .

On the other hand, Lemma 2 together with the fact that $h$ is real analytic

near $x^{0}$ tells us that

S. S. $u^{\pm}\cap(B\times R^{1})=S$ . S. $(\mathfrak{a}_{p,q}(D)f-\mathfrak{a}_{p,q}^{\pm}(D)f\cap(B\times R^{1})\$(x^{0}, idx\infty)$ ,

where $(x^{0}, idx\infty)=(x^{0}, i1dx\infty)$ . Hence by the Kashiwara-Kawai theorem we have

S. S. $(a_{p,q}(D)f-ap_{q}(D)f)\$(x^{0}, -idx\infty)$ .
So we have

S. S. $\mathfrak{F}^{-1}[\omega(\xi)(\mathfrak{a}_{p,q}(\xi)-\mathfrak{a}_{p,q}^{\pm}(\xi))f(\xi)]\$(x^{0}, -idx\infty)$ .
Define

$R^{\pm}(\xi)\equiv 1_{R_{-}}(\xi)(\mathfrak{a}_{p,q}(\xi)-\mathfrak{a}_{p.q}^{\pm}(\xi))^{-1}$ ,

in case $0<q<1$ . Note that $\mathfrak{a}_{p,q}(\xi)-\mathfrak{a}_{p,q}^{+}(\xi)=0$ in case $q=1$ and so we do not define
$R^{+}(\xi)$ and define only $R^{-}(\xi)$ . Obviously

$\omega(\xi)(\mathfrak{a}_{p,q}(\xi)-\mathfrak{a}_{p,q}^{\pm}(\xi))R^{\pm}(\xi)\sim 1$ in $SF^{0}(R_{-})$ .
Since $\omega(\xi)(\mathfrak{a}_{p,q}(\xi)-\mathfrak{a}_{p,q}^{\pm}(\xi))\in S^{\alpha}(R^{1}, R_{-})$ and $R^{\pm}(\xi)\in S^{-\alpha}(R_{-})$ , it follows from the regulality
theorem of M. Sato-L. Hormander that

S. S. f$($x^{0},$ -idxoo).

Applying the Kashiwara-Kawai theorem again, it follows that $f$ must vanish near
$x^{0}$ . Q. E. D.

4. Proof of the Theorem.

Let $f$ be in $C_{0}^{\infty}(R^{1})$ and $U$ be a bounded open subset in $R^{1}$ . We put $Y=R^{1}$ in
case $p\cdot q>0$ and $Y=R_{+}$ in case $q=1$ . It is sufficient to show that

(4.1) If $f\not\equiv O$ in $U+Y$ for each connected open $U\subset R^{1}\backslash suppf$ ,
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then

(4.2) $supp\mathfrak{a}_{p.q}(D)f\supset U$ .
Indeed, if $f=\mathfrak{a}_{p,q}(D)f=0$ in an open set $U_{0}$ then it is easily seen that $f\equiv 0$ in $U_{0}$

$+Y$ by (4.2).

Assume (4.1) holds. Let us choose the connected component $T$ of $(U+Y)\backslash $

$suppf$ with contains $U$. Clearly $U+Y=T+Y$ and $T\neq U+Y$.
Noting that $\mathfrak{a}_{p.q}(D)f$ is real analytic in $T$ by the remark in \S 3, there is no

accumulation point of zero’s of $\mathfrak{a}_{p.q}(D)f$ in $T$. In fact, if such a point exists,
$\mathfrak{a}_{p.q}(D)f\equiv 0$ in $T$ (hence in $\overline{T}$ ) and therefore $\overline{T}\cap\partial(suppf)$ must be empty by
Lemma 3 in case $p\cdot q>0$ . In case $q=1$ , if such an accumulated point exists, there
is no right endpoint of $\overline{T}$ by the same reason. Hence $T=U+Y$ and this contra-
dicts to the assumption (4.1).

Henoe it follows that

$suppa_{p.q}(D)f\supset T\supset U$ . Q. E. D.

The following example shows that $\mathfrak{a}_{0.1}(D)$ is not antilocal:
Let $f$ be a function in $C_{0}^{\infty}(R^{1})$ such that

$f=\left\{\begin{array}{l}1, x\in(-3,-2),\\0, x\epsilon(-\infty,-4)\cup(-1,+\infty).\end{array}\right.$

Let $U$ be $(-1/2,1/2)$ . Noting

$\mathfrak{a}_{0.1}(D)f(x)\equiv\int_{0}^{+\infty}(f(x+y)-f(x))\frac{dy}{|y|^{1+\alpha}}$ ,

we see that both $f$ and $\mathfrak{a}_{0.1}(D)f$ vanish in $U$, whereas $f\not\equiv O$ in $R^{1}$ .
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