SOME RESULTS ON PSEUDO-VALUATION DOMAINS

By

Akira OKABE

Introduction. In [7], Hedstrom and Houston defined a pseudo-valuation domain (for short, a PVD) to be an integral domain in which every prime ideal P has the property that whenever x and y are elements of the quotient field with $xy \in P$, then either $x \in P$ or $y \in P$. As the terminology suggests, these domains are closely related to valuation domains. In [7, Prop. 1.1], they showed that every valuation domain is a pseudo-valuation domain. They also showed, in [7, Theorem 2.10], that a PVD which is not a valuation domain is characterized as a quasilocal domain (D, M) with the property that $M^{-1}=D:_K M$ is a valuation overring with maximal ideal M, where K is the quotient field of D.

If I is an ideal of an integral domain R with quotient field K, then $I:{}_{\kappa}I = \{x \in K | xI \subseteq I\}$ is an overring of R. We shall call $I:{}_{\kappa}I$ the "conductor overring" of R with respect to I. In [12], we investigated conductor overrings of a valuation domain. In that paper, we introduced the notion of "recurrent closure": If I is an ideal of an integral domain R with quotient field K, then the ideal $R:{}_{\kappa}(I:{}_{\kappa}I)$ is called the "recurrent closure" of I and is denoted by I_r . In [12, Theorem 13], we proved that if I is an ideal of a valuation domain V with quotient field K such that $I:{}_{\kappa}I \neq V$, then I_r is a prime ideal of V and $I:{}_{\kappa}I = V_{I_r}$. An ideal I of an integral domain R is said to be "recurrent" in case $I = I_r$. We also showed, in [12, Theorem 13], that every nonmaximal prime ideal P of a valuation domain V is recurrent. The main purpose of this paper is to study conductor overrings of a pseudo-valuation domain.

Throughout this paper, D will be a pseudo-valuation domain with maximal ideal M, and K will denote its quotient field. Any unexplained terminology is standard, as in [5] and [10].

Let R be an integral domain with quotient field K and let $P \subset I$ be ideals of R with P prime. Then we cannot in general expect that P is also prime in $I:_{\kappa}I$, as showed in [12, Example 15]. But we showed in [12, Corollary 16]

Received December 7, 1983.

that if $P \subset I$ are ideals of a valuation domain V with P prime, then P is also prime in $I:_{\kappa}I$, where K is the quotient field of V. We show here that this result is also valid for a PVD.

THEOREM 1. Let $P \subset I$ be ideals of D. If P is prime in D, then P is also prime in $I:_{\kappa}I$.

PROOF. By [11, Corollary 1.5], it suffices to prove that $P=P:_{\kappa}I$. Since $P\subseteq P:_{\kappa}I$ is clear, we need only show that $P:_{\kappa}I\subseteq P$. To see this, let $x\in P:_{\kappa}I$. If we choose an element $t\in I\setminus P$, then we have $xt\in P$. Then, since P is strongly prime (cf. [7, Definition, p. 138]), $xt\in P$ and $t\notin P$ implies that $x\in P$, which shows that $P:_{\kappa}I\subseteq P$.

COROLLARY 2. Let I be an ideal of D and let P be a prime ideal of $I:_{\kappa}I$. If $P \cap D \subset I$, then P is also a prime ideal of D.

PROOF. If we set $Q=P\cap D$, then, by hypothesis, Q is properly contained in I and so, by [11, Proposition 1.3 (3)], we have $P=Q:_{\kappa}I$. But then, by Theorem 1, $Q=Q:_{\kappa}I$ and consequently P=Q, which implies that P is also a prime ideal of D as required.

In [7, Theorem 2.10], Hedstrom and Houston showed that $M^{-1}=D:{}_{\kappa}M$ is a valuation overring with maximal ideal M. Since $M^{-1}=M:{}_{\kappa}M$ by [9, Proposition 2.3], it then follows that M is the unique maximal ideal of $M:{}_{\kappa}M$. In this paper it will be shown that if P is a prime ideal of D, then P is the unique maximal ideal of $P:{}_{\kappa}P$.

We first establish the following lemma.

LEMMA 3. Let P be a prime ideal of D. Then

- (1) P is also a prime ideal of $P:_{K}P$.
- (2) Any proper ideal I of $P:_{K}P$ is also an ideal of D.

PROOF. (1) First, it is well known that P is an ideal of $P: {}_{\kappa}P$. Then it is easily seen that P is also a prime ideal of $P: {}_{\kappa}P$, since P is strongly prime.

(2) Let I be any proper ideal of $P: {}_{K}P$. It then suffices to show that $I \subseteq D$. Assume the converse and choose an element $x \in I \setminus D$. Then, by [7, Proposition 1.2], $x^{-1} \in P: {}_{K}P$. Hence $1 = xx^{-1} \in I(P: {}_{K}P) = I$, which implies that $I = P: {}_{K}P$. But this contradicts our assumption, and consequently $I \subseteq D$ as we wanted.

THEOREM 4. If P is a prime ideal of D, then P is the unique maximal ideal of $P: {}_{\kappa}P$.

334

PROOF. Let *I* be any proper ideal of $P: {}_{\kappa}P$. Then it is sufficient to show that *I* is contained in *P*. First, by Lemma 3, *I* is contained in *D*. Suppose that $I \not\subseteq P$ and choose an element $s \in I \setminus P$. Then $s/p \in K \setminus D$ for each nonzero $p \in P$. Therefore, by [7, Proposition 1.2], $p/s \in P: {}_{\kappa}P$. Then, since *P* is strongly prime, $s(p/s) \in P$ and $s \notin P$ implies $p/s \in P$ and therefore $p \in sP$. Thus we have $P \subseteq sP \subseteq P$, and consequently P=sP. But then, by [12, Lemma 18], *s* is a unit of $P: {}_{\kappa}P$ and so $I=P: {}_{\kappa}P$, a contradiction. This completes the proof.

In [12, Theorem 13], we showed that every nonmaximal prime ideal P of a valuation domain V is a recurrent ideal, as stated in Introduction. We can now prove, as an easy consequence of Theorem 4, that this result is also valid for any nonmaximal prime ideal of a PVD.

COROLLARY 5. If P is a nonmaximal prime ideal of D, then P is a recurrent ideal.

PROOF. First, by [11, Lemma 1.1], $P_r = D : {}_D(P : {}_K P)$ is an ideal of $P : {}_K P$. Then, by Theorem 4, P_r is contained in P. But, by definition, the converse inclusion $P \subseteq P_r$ is always valid and thus $P = P_r$ as we wanted.

In [12, Theorem 1], we showed that if P is a proper prime ideal of a valuation domain V, then $P:_{K}P=V_{P}$ where K is the quotient field of V. We shall next show that this fact is also true for any nonmaximal prime ideal P of a PVD.

We begin by proving the following lemma.

LEMMA 6. Let R be an integral domain with quotient field K. If P is a prime ideal of R such that R_P is a valuation domain and $PR_P=P$, then we have $P: {}_{\kappa}P=R_P$.

PROOF. First, if we take any element $x \in R \setminus P$, then $p/x \in PR_P = P$ for any $p \in P$, and consequently $p \in xP$. Thus $P \subseteq xP \subseteq P$, and therefore P = xP. Then, by [12, Lemma 18], x is a unit of $P: {}_{K}P$. Hence $x^{-1} \in P: {}_{K}P$ for any $x \in R \setminus P$. Now take any element r/s of R_P with $r \in R$ and $s \in R \setminus P$. Then, by the result shown above, $s^{-1} \in P: {}_{K}P$ and accordingly $r/s \in P: {}_{K}P$. Therefore we have $R_P \subseteq P: {}_{K}P$. Next, we shall show that $P: {}_{K}P \subseteq R_P$. Suppose not. Then we can choose an element $t \in P: {}_{K}P \setminus R_P$. Since R_P is a valuation domain, $t \notin R_P$ implies that $t^{-1} \in PR_P = P$. Then we get $1 = tt^{-1} \in (P: {}_{K}P)P \subseteq P$, a contradiction, whence we must have $P: {}_{K}P \subseteq R_P$. Thus our proof is complete.

THEOREM 7. If P is a nonmaximal prime ideal of D, then $P: {}_{\kappa}P = D_{P}$.

PROOF. By [7, Proposition 2.6], D_P is a valuation domain. Next, any PVD is a divided ring, as noted in [3, p. 560], and consequently $PD_P=P$. Thus any nonmaximal prime ideal P of D satisfies the two conditions descrived in Lemma 6, and therefore our assertion follows from Lemma 6.

REMARK 8. Following [6], a prime ideal P of an integral domain R is called an "*F-ideal*" if R_P is a valuation domain and $PR_P=P$. Using this terminology, Lemma 6 says that if P is an *F*-ideal of an integral domain R with quotient field K, then $P: {}_{K}P=R_{P}$. Furthermore, the proof of Theorem 7 is based on the fact that any nonmaximal prime ideal P of a PVD is an *F*-ideal.

In [11, Corollary 2.5], we showed that if P is a prime ideal of an integral domain R with quotient field K, then dim $(P: {}_{\kappa}P) \ge \operatorname{rank} P$. The following corollary is an immediate consequence of Theorem 7.

COROLLARY 9. If P is a nonmaximal prime ideal of D, then we have $\dim(P: {}_{K}P) = \operatorname{rank} P$.

It is well known that if I is an ideal of a valuation domain V, then $\bigcap_{n=1}^{\infty} I^n$ is a prime ideal of V (cf. [5, Theorem (17.1) (3)]) and furthermore if P is a prime ideal of V properly contained in I, then $P \subseteq \bigcap_{n=1}^{\infty} I^n$ (cf. [5, Theorem (17.1) (4)]). In [7, Proposition 2.4], Hedstrom and Houston showed that if I is an ideal of a PVD, then $\bigcap_{n=1}^{\infty} I^n$ is a prime ideal. By virtue of [7, Theorem 1.4], it is easily proved that [5, Theorem (17.1) (4)] is also valid for a PVD.

PROPOSITION 10. Let I be a proper ideal of D. If a prime ideal P of D is properly contained in I, then $P \subseteq \bigcap_{n=1}^{\infty} I^n$.

PROOF. If not, then $P \not\subseteq I^m$ for some integer m > 0. Then, by [7, Theorem 1.4], $MI^m \subseteq P$. Now, since $P \subset I \subseteq M$, there is an element $t \in M \setminus P$. Then $tI^m \subseteq P$ and $t \notin P$ implies that $I^m \subseteq P$, and accordingly $I \subseteq P$, a contradiction. This completes our proof.

In [11, Lemma 1.1 (5)], we showed that if I is an ideal of an integral domain R and R' is a proper overring of R, then $I:_{R}R'$ is an ideal of R and is contained in I. It is natural to ask that if P is a prime ideal of R, does this imply that $P:_{R}R'$ is a prime ideal of R? In general, $P:_{R}R'$ need not be a prime ideal of R (Example 12), but in the case R is a PVD, the answer is yes.

THEOREM 11. Let D' be a proper overring of D and let P be a prime ideal

of D. Then

(1) $P: {}_{D}D'$ is also a prime ideal of D and is contained in P.

(2) If $D' \subseteq P : {}_{\kappa}P$, then we have $P : {}_{D}D' = P$.

(3) If $P: {}_{\kappa}P$ is properly contained in D', then $P: {}_{D}D'$ is properly contained in P. Moreover, $D' \rightarrow P: {}_{D}D'$ gives a one-one correspondence between the set of all prime ideals P' properly contained in P and the set of all overrings D' of D properly containing $P: {}_{\kappa}P$.

PROOF. (1) By [11, Lemma 1.1 (5)], $P:{}_{D}D'$ is an ideal of D and is contained in P. Hence we need only show that $P:{}_{D}D'$ is a prime ideal of D. Suppose that $rs \in P:{}_{D}D'$, $s \notin P:{}_{D}D'$ with $r, s \in D$. Since $s \notin P:{}_{D}D'$, $st \notin P$ for some $t \in D'$. But then, we have $(rs)(tD') \subseteq rsD' \subseteq P$, since $tD' \subseteq D'$. Then (st)(rD') $\subseteq P$ and $st \notin P$ implies that $rD' \subseteq P$, whence $r \in P:{}_{D}D'$. Thus $P:{}_{D}D'$ is a prime ideal of D, and our proof is over.

(2) By [11, Lemma 1.1 (6)], we always have $P=P:_D(P:_KP)$. Hence, if $D'\subseteq P:_KP$, then $P=P:_D(P:_KP)\subseteq P:_DD'\subseteq P$, whence $P=P:_DD'$.

(3) If $P: {}_{\kappa}P \subset D'$, then there exists an element $x \in D' \setminus P: {}_{\kappa}P$. Since $x \notin$ $P: {}_{\kappa}P$, we can find an element $p \in P$ such that $xp \notin P$. Then $xp \notin P$ and $x \in D'$ implies that $p \notin P : {}_{D}D'$, whence $p \in P \setminus P : {}_{D}D'$. Thus $P : {}_{D}D' \neq P$ as we wanted. Next, we shall show that if D' is any overring of D properly containing $P: {}_{\kappa}P$, then D' is of the form $P': {}_{K}P'$ with some prime ideal P' properly contained in P. First, we note that $P:_{\kappa}P$ is a valuation domain by [7, Proposition 1.2]. Moreover, by Theorem 7, we have $P: {}_{K}P = D_{P}$. Hence, we get $D' = (D_{P})_{P'D_{P}} = D_{P'}$ with some prime ideal P' properly contained in P. Using Theorem 7 again, we have $D'=D_{P'}=P': {}_{\kappa}P'$, as we required. Next, we shall show that if $D'=P': {}_{\kappa}P'$ with $P' \subset P$, then $P: {}_{D}D' = P'$. By [11, Lemma 1.1 (6)], $P' = P': {}_{D}(P': {}_{K}P')$ and moreover, by Corollary 5, $D:_{D}(P':_{K}P')=P'$. Hence it follows that P'= $P': {}_{D}(P': {}_{K}P') = P': {}_{D}D' \subseteq P: {}_{D}D' \subseteq D: {}_{D}(P': {}_{K}P') = P', \text{ whence } P: {}_{D}D' = P'. \text{ Con$ versely, if P' is a prime ideal of D properly contained in P, then, by Theorem 7, $P': {}_{\kappa}P'=D_{P'}$ is an overring of D properly containing $P: {}_{\kappa}P=D_{P'}$, and furthermore we have $P' = P : {}_{D}(P' : {}_{K}P')$, as shown above. This completes our proof.

EXAMPLE 12. Let $R = k[X^3, X^4] \subset R' = k[X^2, X^3]$, where k is a field and X is an indeterminate over k. Then the quotient field of R is the field k(X) and so R' is an overring of R. Set $P = RX^3 + RX^4$, and note that P is a prime ideal of R since R/P = k. We claim that $P:_RR'$ is not a prime ideal of R. To see this, first observe that $X^3 \notin P:_RR'$. In fact, $X^3X^2 = X^6 \notin P$. But $X^6 \in P:_RR'$ since $X^6X^2 = (X^4)^2 \in P$ and $X^6X^3 = (X^3)^3 \in P$. Thus we have $X^3 \notin P:_RR'$ and $(X^3)^2 \in$ $P:_{R}R'$, and our claim is established.

References

- [1] Akiba, T., A note on AV-domains, Bulletin of Kyoto Univ. of Education, Ser. B., 31 (1967), 1-3.
- [2] Dobbs, D.E., Divided rings and going-down, Pac. J. Math., 67 (1976), 353-363.
- [3] ——, Coherence, ascent of going-down and pseudo-valuation domains, Houston J. Math., 4 (1978), 551-567.
- [4] ——, On the weak global dimension of pseudo-valuation domains, Canad. Math. Bull., 21 (1978), 159-164.
- [5] Gilmer, R., Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [6] Greenberg, B. V., Global dimension of Cartesian squares, J. Algebra, 32 (1974), 31-43.
- [7] Hedstrom, J. R. and Houston, E. G., Pseudo-valuation domains, Pacific J. Math., 75 (1978), 137-147.
- [8] and , Pseudo-valuation domains (II), Houston J. Math., 4 (1978), 199-207.
- [9] Huckaba, J.A. and Papick, I.J., When the dual of an ideal is a ring, Manus. Math., 37 (1982), 67-85.
- [10] Kaplansky, I., Commutative Rings, Allyn and Bacon, Boston, 1970.
- [11] Okabe, A., On conductor overrings of an integral domain, Tsukuba J. Math., to appear.
- [12] ——, On conductor overrings of a valuation domain, Tsukuba J. Math., to appear.

Gunma Technical College Toriba, Maebashi, Gunma, 371 Japan