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SOME RESULTS ON PSEUDO-VALUATION DOMAINS

By

Akira OKABE

Introduction. In [7], Hedstrom and Houston defined a pseudo-valuation

domain (for short, a $PVD$ ) to be an integral domain in which every prime ideal
$P$ has the property that whenever $x$ and $y$ are elements of the quotient field with
$xy\in P$, then either $x\in P$ or $y\in P$. As the terminology suggests, these domains
are closely related to valuation domains. In [7, Prop. 1.1], they showed that
every valuation domain is a pseudo-valuation domain. They also showed, in
[7, Theorem 2.10], that a $PVD$ which is not a valuation domain is characterized
as a quasilocal domain $(D, M)$ with the property that $M^{- 1}=D:_{K}M$ is a valuation
overring with maximal ideal $M$, where $K$ is the quotient field of $D$ .

If $I$ is an ideal of an integral domain $R$ with quotient field $K$, then $I:_{K}I=$

$\{x\in K|xI\subseteqq I\}$ is an overring of $R$ . We shall call $I:_{K}I$ the “conductor overring”
of $R$ with respect to $I$. In [12], we investigated conductor overrings of a valua-
tion domain. In that paper, we introduced the notion of ”recurrent closure” : If
$I$ is an ideal of an integral domain $R$ with quotient field $K$, then the ideal
$R:_{R}(I:_{K}I)$ is called the “recurrent closure” of $I$ and is denoted by $I_{r}$ . In [12,

Theorem 13], we proved that if $I$ is an ideal of a valuation domain $V$ with
quotient field $K$ such that $I:_{K}I\neq V$, then $I_{r}$ is a prime ideal of $V$ and $I:_{K}I=V_{I_{r}}$ .
An ideal $I$ of an integral domain $R$ is said to be “recurrent” in case $I=I_{r}$ . We
also showed, in [12, Theorem 13], that every nonmaximal prime ideal $P$ of a
valuation domain $V$ is recurrent. The main purpose of this paper is to study

conductor overrings of a pseudo-valuation domain and to extend some results
obtained in [12] to a pseudo-valuation domain.

Throughout this paper, $D$ will be a pseudo-valuation domain with maximal
ideal $M$, and $K$ will denote its quotient field. Any unexplained terminology is
standard, as in [5] and [10].

Let $R$ be an integral domain with quotient field $K$ and let $P\subset I$ be ideals of
$R$ with $P$ prime. Then we cannot in general expect that $P$ is also prime in
$I:_{K}I$, as showed in [12, Example 15]. But we showed in [12, Corollary 16]
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that if $P\subset I$ are ideals of a valuation domain $V$ with $P$ prime, then $P$ is also

prime in $I:_{K}I$, where $K$ is the quotient field of $V$ . We show here that this
result is also valid for a $PVD$ .

THEOREM 1. Let $P\subset I$ be ideals of D. If $P$ is prime in $D$ , then $P$ is also
prime in $I:_{K}I$.

PROOF. By [11, Corollary 1.5], it suffices to prove that $P=P:_{K}I$. Since
$P\subseteqq P:_{K}I$ is clear, we need only show that $P:_{K}I\subseteqq P$ . To see this, let $x\in P:_{K}I$.
If we choose an element $t\in I\backslash P$, then we have $xt\in P$. Then, since $P$ is strongly
prime (cf. [7, Definition, p. 138]), $xt\in P$ and $t\not\in P$ implies that $x\in P$, which shows
that $P:_{K}I\subseteqq P$.

COROLLARY 2. Let I be an ideal of $D$ and let $P$ be a prime ideal of $I:_{K}I$.
If $P\cap D\subset I$, then $P$ is also a prime ideal of $D$ .

PROOF. If we set $Q=P\cap D$ , then, by hypothesis, $Q$ is properly contained in
$I$ and so, by [11, Proposition 1.3 (3)], we have $P=Q:_{K}I$. But then, by Theorem
1, $Q=Q:_{K}I$ and consequently $P=Q$ , which implies that $P$ is also a prime ideal
of $D$ as required.

In [7, Theorem 2.10], Hedstrom and Houston showed that $M^{-1}=D:_{K}M$ is a
valuation overring with maximal ideal $M$. Since $M^{-1}=M:_{K}M$ by [9, Proposi-
tion 2.3], it then follows that $M$ is the unique maximal ideal of $M:_{K}M$. In this
paper it will be shown that if $P$ is a prime ideal of $D$ , then $P$ is the unique
maximal ideal of $P:{}_{K}P$.

We first establish the following lemma.

LEMMA 3. Let $P$ be a prime ideal of D. Then

(1) $P$ is also a prime ideal of $P:{}_{K}P$.
(2) Any proper ideal I of $P:{}_{K}P$ is also an ideal of $D$ .

PROOF. (1) First, it is well known that $P$ is an ideal of $P:{}_{K}P$. Then it
is easily seen that $P$ is also a prime ideal of $P:{}_{K}P$, since $P$ is strongly prime.

(2) Let $I$ be any proper ideal of $P:{}_{K}P$. It then suffices to show that $I\subseteqq D$ .
Assume the converse and choose an element $x\in I\backslash D$ . Then, by [7, Proposition
1.2], $x^{-1}\in P:{}_{K}P$. Hence $1=xx^{-1}\in I(P:{}_{K}P)=I$, which implies that $I=P:{}_{K}P$.
But this contradicts our assumption, and consequently $I\subseteqq D$ as we wanted.

THEOREM 4. If $P$ is a prime ideal of $D$ , then $P$ is the unique maximal ideal

of $P:{}_{K}P$.
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PROOF. Let $I$ be any proper ideal of $P:{}_{K}P$ . Then it is sufficient to show

that $I$ is contained in $P$. First, by Lemma 3, $I$ is contained in $D$ . Suppose that
$I\not\leqq P$ and choose an element $s\in I\backslash P$ . Then $s/p\in K\backslash D$ for each nonzero $p\in P$.
Therefore, by [7, Proposition 1.2], $p/s\in P:{}_{K}P$. Then, since $P$ is strongly prime,
$s(p/s)\in P$ and $s\not\in P$ implies $p/s\in P$ and therefore $p\in sP$. Thus we have $P\subseteqq sP\subseteqq P$,

and consequently $P=sP$. But then, by [12, Lemma 18], $s$ is a unit of $P:{}_{K}P$

and so $I=P:{}_{K}P$, a contradiction. This completes the proof.

In [12, Theorem 13], we showed that every nonmaximal prime ideal $P$ of
a valuation domain $V$ is a recurrent ideal, as stated in Introduction. We can
now prove, as an easy consequence of Theorem 4, that this result is also valid
for any nonmaximal prime ideal of a $PVD$ .

COROLLARY 5. If $P$ is a nonmaximal prime ideal of $D$ , then $P$ is a recurrent
ideal.

PROOF. First, by [11, Lemma 1.1], $P_{r}=D:_{D}(P:{}_{K}P)$ is an ideal of $P:{}_{K}P$.
Then, by Theorem 4, $P_{r}$ is contained in $P$. But, by definition, the converse
inclusion $P\subseteqq P_{r}$ is always valid and thus $P=P_{r}$ as we wanted.

$t$ In [12, Theorem 1], we showed that if $P$ is a proper prime ideal of a valua-
tion domain $V$, then $P:{}_{K}P=V_{P}$ where $K$ is the quotient field of $V$. We shall

next show that this fact is also true for any nonmaximal prime ideal $P$ of a
$PVD$ .

We begin by proving the following lemma.

LEMMA 6. Let $R$ be an integral domain with quotient field K. If $P$ is a
prime ideal of $R$ such that $R_{P}$ is a valuation domain and $PR_{P}=P$, then we have
$P:{}_{K}P=R_{P}$ .

PROOF. First, if we take any element $x\in R\backslash P$, then $p/x\in PR_{p}=P$ for any
$p\in P$, and consequently $p\in xP$. Thus $P\subseteqq xP\subseteqq P$, and therefore $P=xP$. Then,

by [12, Lemma 18], $x$ is a unit of $P:{}_{K}P$. Hence $X^{-1}\in P:{}_{K}P$ for any $x\in R\backslash P$.
Now take any element $r/s$ of $R_{P}$ with $r\in R$ and $s\in R\backslash P$. Then, by the result
shown above, $s^{-1}\in P:{}_{K}P$ and accordingly $r/s\in P:{}_{K}P$. Therefore we have $ R_{P}\subseteqq$

$P:{}_{K}P$. Next, we shall show that $P:{}_{K}P\subseteqq R_{P}$ . Suppose not. Then we can
choose an element $t\in P:{}_{K}P\backslash R_{P}$ . Since $R_{P}$ is a valuation domain, $t\not\in R_{P}$ implies
that $t^{-1}\in PR_{p}=P$ . Then we get $1=tt^{-1}\in(P:{}_{K}P)P\subseteqq P$, a contradiction, whence
we must have $P:{}_{K}P\subseteqq R_{P}$ . Thus our proof is complete.

THEOREM 7. If $P$ is a nonmaximal prime ideal of $D$ , then $P;{}_{K}P=D_{P}$.
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PROOF. By [7, Proposition 2.6], $D_{P}$ is a valuation domain. Next, any $PVD$

is a divided ring, as noted in [3, p. 560], and consequently $PD_{P}=P$. Thus any

nonmaximal prime ideal $P$ of $D$ satisfies the two conditions descrived in Lemma
6, and therefore our assertion follows from Lemma 6.

REMARK 8. Following [6], a prime ideal $P$ of an integral domain $R$ is called
an “F-ideal” if $R_{P}$ is a valuation domain and $PR_{P}=P$ . Using this terminology,

Lemma 6 says that if $P$ is an F-ideal of an integral domain $R$ with quotient
field $K$, then $P:{}_{K}P=R_{P}$ . Furthermore, the proof of Theorem 7 is based on the
fact that any nonmaximal prime ideal $P$ of a $PVD$ is an F-ideal.

In [11, Corollary 2.5], we showed that if $P$ is a prime ideal of an integral

domain $R$ with quotient field $K$, then $\dim(P:{}_{K}P)\geqq rankP$. The following

corollary is an immediate consequence of Theorem 7.

COROLLARY 9. If $P$ is a nonmaximal prime ideal of $D$ , then we have
$\dim(P:{}_{K}P)=rankP$ .

It is well known that if $I$ is an ideal of a valuation domain $V$, then $\bigcap_{n=1}^{\infty}I^{n}$

is a prime ideal of $V$ (cf. [5, Theorem (17.1) (3)]) and furthermore if $P$ is a

prime ideal of $V$ properly contained in $I$, then $P\subseteqq\bigcap_{n=1}^{\infty}I^{n}$ (cf. [5, Theorem (17.1)

(4)]). In [7, Proposition 2.4], Hedstrom and Houston showed that if $I$ is an ideal

of a $PVD$ , then $\bigcap_{n=1}^{\infty}I^{n}$ is a prime ideal. By virtue of [7, Theorem 1.4], it is

easily proved that [5, Theorem (17.1) (4)] is also valid for a $PVD$ .

PROPOSITION 10. Let I be a proper ideal of D. If a prime ideal $P$ of $D$ is

properly contained in $I$, then $P\subseteqq\bigcap_{n=1}^{\infty}I^{n}$ .

PROOF. If not, then $P\subsetneqq I^{m}$ for some integer $m>0$ . Then, by [7, Theorem
1.4], $\lrcorner MI^{m}\subseteqq P$. Now, since $P\subset I\subseteqq M$, there is an element $t\in M\backslash P$. Then $tI^{m}\subseteqq P$

and $t\not\in P$ implies that $I^{m}\subseteqq P$, and accordingly $I\subseteqq P$, a contradiction. This com-
pletes our proof.

In [11, Lemma 1.1 (5)], we showed that if $I$ is an ideal of an integral

domain $R$ and $R^{\prime}$ is a proper overring of $R$, then $I:_{R}R^{\prime}$ is an ideal of $R$ and is
contained in $I$. It is natural to ask that if $P$ is a prime ideal of $R$, does this
imply that $P:_{R}R^{\prime}$ is a prime ideal of $R$ ? In general, $P:_{R}R^{\prime}$ need not be a prime

ideal of $R$ (Example 12), but in the case $R$ is a $PVD$ , the answer is yes.

THEOREM 11. Let $D^{\prime}$ be a proper overring of $D$ and let $P$ be a prime ideal
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of D. Then

(1) $P:_{D}D^{\prime}$ is also a prime ideal of $D$ and is contained in $P$ .
(2) If $D^{\prime}\subseteqq P:{}_{K}P$, then we have $P:_{D}D^{\prime}=P$ .
(3) If $P:{}_{K}P$ is properly contained in $D^{\prime}$ , then $P:_{D}D^{\prime}$ is properly contained

in P. Moreover, $D^{\prime}\rightarrow P:_{D}D^{\prime}$ gives $a$ one-one correspondence between the set of all

prime ideals $P^{\prime}$ properly contained in $P$ and the set of all overrings $D^{f}$ of $D$

properly containing $P:{}_{K}P$ .

PROOF. (1) By [11, Lemma 1.1 (5)], $P:_{D}D^{\prime}$ is an ideal of $D$ and is con-
tained in $P$. Hence we need only show that $P:_{D}D^{\prime}$ is a prime ideal of $D$ .
Suppose that $rs\in P:_{D}D^{\prime},$ $s\not\in P:_{D}D^{\prime}$ with $r,$ $s\in D$ . Since $s\not\in P:_{D}D^{\prime},$ $st\not\in P$ for

some $t\in D^{\prime}$ . But then, we have $(rs)(tD^{\prime})\subseteqq rsD^{\prime}\subseteqq P$, since $tD^{\prime}\subseteqq D^{\prime}$ . Then $(st)(rD^{\prime})$

$\subseteqq P$ and $st\not\in P$ implies that $rD^{\prime}\subseteqq P$, whence $r\in P:_{D}D^{\prime}$ . Thus $P:_{D}D^{\prime}$ is a prime

ideal of $D$ , and our proof is over.
(2) By [11, Lemma 1.1 (6)], we always have $P=P:_{D}(P:{}_{K}P)$ . Hence, if

$D^{\prime}\subseteqq P:{}_{K}P$, then $P=P:_{D}(P:{}_{K}P)\subseteqq P:_{D}D^{\prime}\subseteqq P$, whence $P=P:_{D}D^{\prime}$ .
(3) If $P:{}_{K}P\subset D^{\prime}$ , then there exists an element $x\in D^{\prime}\backslash P:{}_{K}P$ . Since $ x\not\in$

$P:{}_{K}P$, we can find an element $p\in P$ such that $xp\not\in P$ . Then $xp\not\in P$ and $x\in D^{\prime}$

implies that $p\not\in P:_{D}D^{\prime}$ , whence $p\in P\backslash P:_{D}D^{\prime}$ . Thus $P:_{D}D^{\prime}\neq P$ as we wanted.
Next, we shall show that if $D^{\prime}$ is any overring of $D$ properly containing $P:{}_{K}P$,

then $D^{\prime}$ is of the form $P$ ‘ : ${}_{K}P^{\prime}$ with some prime ideal $P^{\prime}$ properly contained in
$P$ . First, we note that $P:{}_{K}P$ is a valuation domain by [7, Proposition 1.2].

Moreover, by Theorem 7, we have $P:{}_{K}P=D_{P}$. Hence, we get $D^{\prime}=(D_{P})_{P^{\prime}D_{P}}=D_{P^{\prime}}$

with some prime ideal $P^{\prime}$ properly contained in $P$ . Using Theorem 7 again, we
have $D^{\prime}=D_{P^{\prime}}=P^{\prime}$ : ${}_{K}P^{\prime}$ , as we required. Next, we shall show that if $D^{\prime}=P^{\prime}$ : ${}_{K}P^{\prime}$

with $P^{\prime}\subset P$, then $P:_{D}D^{\prime}=P^{\prime}$ . By [11, Lemma 1.1 (6)], $P^{\prime}=P^{\prime}$ : $D(P^{\prime} : {}_{K}P^{\prime})$ and
moreover, by Corollary 5, $D$ : $(P^{\prime} : {}_{K}P^{\prime})=P^{\prime}$ . Hence it follows that $P^{\prime}=$

$P^{\prime}:_{D}(P^{\prime} : {}_{K}P^{\prime})=P^{\prime}:_{D}D^{\prime}\subseteqq P:_{D}D^{\prime}\subseteqq D:_{D}(P^{\prime} : {}_{K}P^{\prime})=P^{\prime}$ , whence $P:_{D}D^{\prime}=P^{\prime}$ . Con-
versely, if $P^{\prime}$ is a prime ideal of $D$ properly contained in $P$, then, by Theorem
7, $P^{\prime}$ : ${}_{K}P^{\prime}=D_{P^{\prime}}$ is an overring of $D$ properly containing $P:{}_{K}P=D_{P}$, and fur-

thermore we have $P^{\prime}=P$ : $(P^{\prime} : {}_{K}P^{\prime})$ , as shown above. This completes our proof.

EXAMPLE 12. Let $R=k[X^{3}, X^{4}]\subset R^{\prime}=k[X^{2}, X^{3}]$ , where $k$ is a field and $X$

is an indeterminate over $k$ . Then the quotient field of $R$ is the field $k(X)$ and
so $R^{\prime}$ is an overring of $R$ . Set $P=RX^{3}+RX^{4}$ , and note that $P$ is a prime ideal

of $R$ since $R/P=k$ . We claim that $P:_{R}R^{\prime}$ is not a prime ideal of $R$ . To see
this, first observe that $X^{3}\not\in P:_{R}R^{\prime}$ . In fact, $X^{3}X^{2}=X^{\text{\’{o}}}\not\in P$. But $X^{6}\in P:_{R}R^{\prime}$ since
$X^{6}X^{2}=(X^{4})^{2}\in P$ and $X^{6}X^{3}=(X^{3})^{3}\in P$ . Thus we have $X^{3}\not\in P:_{R}R^{\prime}$ and $(X^{3})^{2}\in$
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$P:_{R}R^{\prime}$ , and our claim is established.
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