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APOSYNDESIS AND COHERENCE OF CONTINUA
UNISER REFINABLE MAPS

By

Hiroshi HOSOKAWA

1. Introduction. A continuous map $f:X\rightarrow Y$ between metric spaces is said
to be refinable if for each $\epsilon>0$ , there is an $\epsilon$ -map $g$ from $X$ onto $Y$ which is
$\epsilon$ -near to $f$ . Such a map $g$ is called an $\epsilon$ -refinement of $f$ . The main purpose
of this paper is to show that refinable maps preserve various aposyndetic and
coherent properties of continua.

In the last section, we shall consider the behavior of Wilson’s oscillatory sets.
In [5], J. Ford and J. W. Rogers proved that for a refinable map $f:X\rightarrow Y,$ $f^{-1}(y)$

is contained in a component of $f^{-1}(H)$ for every continuum neighborhood $H$ of $y$

in $Y$ . We show that the oscillatory set about $y$ has the same property as above
$H$. Applying this to irreducible continua, we give a partial answer to H. Kato’s
question [9].

Throughout this paper a continuum is a compact connected metric space and
a map is a continuous map. We shall fix one refinable map $f:X\rightarrow Y$ between
continua and a $(1/n)$-refinement $f_{n}$ of $f$ for each positive integer $n$ . For each
closed subset $B$ of $Y$ , we shall denote $B^{\prime}$ the limit of some convergent subsequenec
of $\{f_{n}^{-1}(B)\}$ . Note that $B^{\prime}$ is not uniquely determined, since it depends on a
choise of such a subsequence. If $B$ is degenerate, $B=\{y\}$ , we denote $y^{\prime}$ in
place of $\{y\}^{\prime}$ . Also we shall use freely the following theorem:

THEOREM (Ford and Rogers [5]). For each subcontinum $B$ of $Y,$ $B^{\prime}$ is a
subcontinuum of $X$ satisfying $f(B^{\prime})=B$ and $f^{-1}(int(B))\subset B^{\prime}$ .

2. Aposyndesis. In [7], F.B. Jones defined aposyndesis as a dual concept
of semi-locally connectedness.

DEFINITION. Let $x$ and $y$ be a pair of distinct points of a continuum $M$.
Then $M$ is said to be aposyndetic at $x$ with respect to $y$ if there is a continuum
neighborhood of $x$ in $M$ missing $y$ . Furthermore, $M$ is said to be aposyndetic at
$x$ if for each $y$ , distinct to $x$ , it is aposyndetic at $x$ with respect to $y$ , and is
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said to be aposyndetic if it is aposyndetic at each point of $M$. For each point $y$

of $M$, the set $L_{y}$ consists of all points $x$ of $M$ such that $x=y$ or $M$ is not
aposyndetic at $x$ with respect to $y$ .

THEOREM 1. (1) For each point $x$ in $X,$ $f(L_{x})\subset L_{f(x)}$ .
(2) For each point $y$ in $Y$ , there is a point $x\in f^{-1}(y)$ such that $f(L_{x})=L_{y}$ .

In fact we can choose $x$ to be $y^{\prime}$ .

PROOF. (1) Suppose, on the contrary, $f(z)\not\in L_{f(x)}$ for some $z\in L_{x}$ . There
is a continuum neighborhood $H$ of $f(z)$ in $Y$ missing $f(x)$ . Then $H^{\prime}$ is a sub-
continuum of $X$ satisfying $z\in int(H^{\prime})$ and $x\not\in H^{\prime}$ . This contradicts to $z\in L_{x}$ .

(2) Let $\{f_{n}i\}$ be a subsequence of $\{f_{n}\}$ such that $\lim f_{n}^{-1}i(y)=y^{\prime}$ exists.
Since $f(y^{\prime})=y$ , by (1) it is sufficient to show that $f(L_{y},)\supset L_{y}$ . Let $z\in L,-\{y\}$ .
We can choose a subsequence $\{f_{m_{j}}\}$ of $\{f_{n_{i}}\}$ such that $\lim f_{\overline{m}^{1}}j(z)=z^{\prime}$ exists. If
$z^{\prime}\not\in L_{y},$ , then there is a continuum neighborhood $K$ of $z^{\prime}$ such that $y^{\prime}\not\in K$. Since
$\lim f_{m}^{-1}j(y)=y^{\prime}\in X-K$ and $\lim f_{\overline{m}^{1}}J(z)=z^{\prime}\in int(K)$ , there exists an index $m_{j}$ such
that $f_{m}^{-1}j(y)\subset X-K$ and $f_{\overline{m}^{1}}j(z)\subset int(K)$ . Therefore $f_{m_{j}}(K)$ is a continuum neigh-
borhood of $z$ in $Y$ missing $y$ . This contradicts to $z\in L_{y}$ . Hence $z^{\prime}\in L_{y}$ , and
$z\in f(L_{v^{t}})$ .

COROLLARY. If $X$ is aposyndetic, then so is $Y$.

PROOF. Let $y\in Y$ . Choose $x\in X$ such that $f(L_{x})=L_{y}$ . Since $X$ is apo-
syndetic, $L_{x}$ consists of only one point and hence so dose $L_{y}$ .

REMARK 1. In [4], H.S. Davis, D.P. Stadtlander and P.H. Swingle general-
ized the concept of $L_{y}$ as follows (see also [1]). Let $A$ be a closed subset of a
continuum $M$. Then the set $T(A)$ consists of all points of $M$ which have no
continuum neighborhood missing $A$ . Then we can generalize Theorem 1 as
follows:

THEOREM 1’. (1) For each closed subset $A$ of $X,$ $f(T(A))\subset T(f(A))$ .
(2) For each closed subset $B$ of $Y$, there is a closed subset $A$ of $X$ such that

$f(T(A))=T(B)$ . We may choose $A$ to be $B$ ‘.

REMARK 2. For a point $x$ of a continuum $M$, F.B. Jones deflned $K_{x}$ to be
the set consisting of $x$ and all points $y$ in $M-\{x\}$ such that $M$ is not aposyndetic
at $x$ with respect to $y$ . Similarly we can prove the following theorem:

THEOREM 1”. (1) For each point $x$ in $X,$ $f(K_{x})\subset K_{f(x)}$ .
(2) For each point $y$ in $Y$, there is a point $x\in f^{-1}(y)$ such that $f(K_{x})=K_{y}$ .
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In fact we can choose $x$ to be $y^{\prime}$.
DEFINITION. A continuum $M$ is said to be semi-aposyndetic if for each pair

of distinct points $x,$ $y$ of $M,$ $M$ is aposyndetic at (at least) one of $x$ and $y$ with
respect to the other.

THEOREM 2. If $X$ is semi-aposyndetic, then so is $Y$.

PROOF. Let $y_{1},$ $y_{2}$ be distinct points of $Y$ . There is a subsequence $\{f_{n_{i}}\}$

of $\{f_{n}\}$ such that both $\lim f_{\overline{n}^{1}}i(y_{1})=y_{1}^{\prime}$ and $\lim f_{\overline{n}^{1}}i(y_{2})=y_{2}^{\prime}$ exist. Since $X$ is

semi-aposyndetic and $y_{1}^{\prime}\neq y_{2}^{\prime}$ , we may assume $y_{1}^{\prime}\not\in L_{y_{2}^{\prime}}$ . Hence there are a con-
tinuum neighborhood $K$ of $y_{1}^{\prime}$ missing $y_{2}^{\prime}$ and an index $n_{i}$ such that $f_{\overline{n}^{1}}i(y_{1})\subset int(K)$

and $f_{\overline{n}^{1}}i(y_{2})\subset X-K$. Therefore $f_{n_{i}}(K)$ is a continuum neighborhood of $y_{1}$ missing
$y_{2}$ , and hence $y_{1}\not\in L_{y_{2}}$ .

DEFINITION. A continuum $M$ is said to be mutually aposyndetic if for each
pair of distinct points $x,$ $y$ of $M$, there exist continuum neighborhoods $H$ and $K$

of $x$ and $y$ respectively, such that $ H\cap K=\emptyset$ . A continuum $M$ is said to be

n-aposyndetic at $x$ if for each set of distinct $n$ points $\{x_{1}, \cdots, x_{n}\}$ of $M-\{x\}$ ,

there exists a continuum neighborhood $H$ of $x$ such that $ H\cap\{x_{1}, \cdots , x_{n}\}=\emptyset$ .
If $M$ is n-aposyndetic at each of its point, then it is said to be n-aposyndetic.

Note that n-aposyndetic implies m-aposyndetic for every $m\leqq n$ . There is an
n-aposyndetic continuum which is not $(n+1)$-aposyndetic for every $n$ . Also, there

is an aposyndetic (and hence semi-locally connected) continuum which is not

mutually aposyndetic.

EXAMPLE. Let $A_{k}$ be the continuum in $E^{3}$ (Euclidean 3-space) consisting of
the join of the closure of $\{(0, y, 1/i);0\leqq y\leqq 1, i=1,2, \cdots\}$ with the point $(1, k, 0)$ .
Then the continuum $M=\bigcup_{k=0}^{n}A_{k}$ is n-aposyndetic but not $(n+1)$-aposyndetic.

EXAMPLE. Let $A$ be the plane continuum consisting of the join of the closure

of $\{(0,1/i);i=1,2, \cdots\}$ with the point $(1, 0)$ and let $B$ be the plane continuum
consisting of the join of the closure of $\{(1, -1/i);i=1,2, \cdots\}$ with the point
$(0,0)$ . Then the product $(A\cup B)\times[0,1]$ is aposyndetic but is not mutually

aposyndetic.
As the proof of Theorem 2, we can prove the following theorem.

THEOREM 3. (1) If $X$ is mutually aposyndetic, then so is $Y$.
(2) If $X$ is n-aposyndetic, then so is $Y$.
QUESTION. Does a refinable map preserve strongly aposyndetic.$\rho$ Here a
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continuum $M$ is strongly aposyndetic if it is decomposable and whenever $H$ and
$K$ are proper subcontinua such that $M=H\cup K$, then $H$ and $K$ are aposyndetic.

3. Unicoherence. If a continuum $M$ is the union of two proper subcontinua
$A$ and $B$ , then we denote it by $M=A\oplus B$ , and say that $A\oplus B$ is a decomposition
of $M$. In [2], D.E. Bennett generalized the concept of unicoherence.

DEFINITION. A decomposable continuum $M$ is said to be k-coherent provided

that for each decomposition $M=A\oplus B$ , the number of components of $A\cap B$ is at
most $k$ . A l-coherent continuum is called unicoherent. A unicoherent continuum
$M$ is said to be strongly unicoherent if for each decomposition $M=A\oplus B$ , both $A$

and $B$ are unicoherent. A hereditarily unicoherent continuum is a continuum each
subcontinuum of which is unicoherent.

Note that a k-coherent continuum is also l-coherent for every [ $\geqq k$ . The
suspention of a discrete space consisting of $k$ points is k-coherent but not $(k-1)-$

coherent.
These concepts are all preserved by refinable maps. First we prove two

lemmas.

LEMMA 1. Let $Y_{1},$ $\cdots$ , $Y_{k}$ be closed subsets of Y. Then there is a subsequence
$\{f_{n_{i}}\}$ of $\{f_{n}\}$ such that $\lim f_{n}^{-I}i(Y_{j})$ exists for each $j=1,$ $\cdots$ . $k$ .

PROOF. We can easily prove this by induction on $k$ .

LEMMA 2. Let $Y_{1},$ $Y_{2}$ be subcontinua of $Y$ and let $X_{i}=\lim f_{\overline{n}^{1}}(Y_{i}),$ $i=1,2$ .
Then the number of components of $X_{1}\cap X_{2}$ is not less than that of $Y_{1}\cap Y_{2}$ .

PROOF. It is sufficient to show that $f(X_{1}\cap X_{2})=Y_{1}\cap Y_{2}$ . Since $f(X_{i})=Y_{i}$ ,
$f(X_{1}\cap X_{2})\subset Y_{1}\cap Y_{2}$ . On the other hand, let $y\in Y_{1}\cap Y_{2}$ . Then $\lim\sup f_{\overline{n}^{1}}(y)$ is
nonempty and is contained in both $X_{1}$ and $X_{2}$ . But this set is mapped onto $\{y\}$

by $f$ . This completes the proof.

THEOREM 4. If $X$ is k-coherent, then so is $Y$.

PROOF. In [5], Ford and Rogers proved that $X$ is decomposable if and only

if $Y$ is decomposable. Therefore Theorem 4 is a direct consequence of Lemma’s
1 and 2.

THEOREM 5. If $X$ is strongly unicoherent, then so is $Y$.

PROOF. Let $Y=Y_{0}\oplus Y_{1}$ be a decomposition of $Y$ . It is sufficient to prove
that $Y_{0}$ is unicoherent. Let $Y_{0}=Y_{2}\oplus Y_{3}$ be a decomposition of $Y_{0}$ . We must
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show that $Y_{2}\cap Y_{3}$ is connected. By Lemma 1, we may assume that $\{f_{n}^{-1}(Y_{i})\}$

converges to $Y_{i}^{\prime}$ for each $i=0,$ $\cdots,$
$3$ . Clearly $Y_{0}^{\prime}$ and $Y_{1}^{\prime}$ are proper subcontinua

of $X$ and $X=Y_{0}^{\prime}\cup Y_{1}^{\prime}$ . Hence $Y_{0}^{\prime}$ is unicoherent. It is easy to show that
$Y_{0}^{\prime}=Y_{2}^{\prime}\cup Y_{3}^{\prime}$ . Therefore $Y_{2}^{\prime}\cap Y_{3}^{\prime}$ is connected, and so is $Y_{2}\cap Y_{3}$ by Lemma 2.
This completes the proof, because $Y$ is unicoherent by Theorem 4.

Similarly we can prove the following theorem.

THEOREM 6. If $X$ is hereditarily unicoherent, then so is $Y$.

4. Wilson’s oscillatory sets. In [10], W. A. Wilson defined the oscillatory
set of a continuum about $x$ as follows.

DEFINITION. Let $\{V_{i}\}$ be a sequence of neighborhoods of $x$ in a continuum
$M$ such that $ V_{1}\supset V_{2}\supset\cdots$ , and $\cap V_{i}=\{x\}$ . There is a subcontinuum $B_{i}$ of $M$

containing $V_{i}$ such that every proper subcontinuum of $B_{i}$ does not contain $V_{i}$ .
Inductively we can choose $\{B_{i}\}$ so that $ B_{1}\supset B_{2}\supset\cdots$ . The set $M[x]=\cap B_{i}$ is
said to be an oscillatory set of $M$ about $x$ .

Note that the oscillatory set is not uniquely determined. Wilson proved that
if $M$ is irreducible, then $M[x]$ is uniquely determined [11].

THEOREM 7. For each point $y$ of $Y$ and each oscillatory set $Y[y]$ , there is
a subcontinuum $H$ of $X$ such that $f^{-1}(y)\subset H\subset f^{-1}(Y[y])$ .

PROOF. Let $\{V_{i}\}$ and $\{B_{i}\}$ be defining sequences of neighborhoods and
continua respectively, for the oscillatory set $Y[y]$ . For each $i$ , there is a sub-
sequence $\{f_{ij}\}_{j\Rightarrow 1}^{\infty}$ of $\{f_{n}\}$ such that

(1) $\{f_{i+1,j}\}_{j=1}^{\infty}$ is a subsequence of $\{f_{ij}\}_{j=1}^{\infty}$ .
(2) $\lim f_{ij}^{-1}(B_{i})=B_{i}^{\prime}$ exists.

Then $\{B_{i}^{\prime}\}$ is a descending sequence of continua satisfying $f(B_{i}^{\prime})=B_{i}$ and
$f^{-1}(V_{i})\subset B_{i}^{\prime}$ . Put $H=\cap B_{i}^{\prime}$ . Then $H$ is a continuum and $f(H)=f(\cap B_{i}^{\prime})\subset\cap f(B_{i}^{\prime})$

$=\cap B_{i}=Y[y]$ . Hence $H\subset f^{-1}(Y[y])$ . On the other hand, since $ f^{-1}(V_{i})\subset$

$f^{-1}(int(B_{i}))\subset B_{i}^{\prime}$ , we have $f^{-1}(y)\subset H$. This completes the proof.
In [9], H. Kato proved that $X$ is irreducible if and only if $Y$ is irreducible.

Let $X$ be an irreducible continuum between $a$ and $b$ . He asked the following
question: Is $Y$ irreducible between $f(a)$ and $f(b)$ ? The following theorem is a
partial answer to this question.

THEOREM 8. Let $X$ be an irreducible continuum between $a$ and $b$ . If there
is a dense subset $F$ of $Y$ such that $Y$ is semi-locally connected at each point of $F$,
then $Y$ is irreducible between $f(a)$ and $f(b)$ .
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To prove this, we need the following lemma.

LEMMA 3. If $M$ is irreducible, then $M[x]=K_{x}$ .

PROOF. Recall that $y\in K_{x}$ if and only if every continuum neighborhood of

$x$ contains $y$ . It is clear that $K_{x}\subset M[x]$ . Let $y\in M-K_{x}$ . Then there is a

continuum neighborhood $H$ of $x$ in $M$ such that $y\not\in H$. Note that the oscillatory

set $H[x]$ is also an oscillatory set of $M$ about $x$ . Since $M$ is irreducible, the

oscillatory set of $M$ is uniquely determined. Hence $H[x]=M[x]$ and $y\not\in M[x]$ .

PROOF OF THEOREM 8. Put $A=Y[f(a)]$ and $B=Y[f(b)]$ . Suppose, on the

contrary, that $Y$ is not irreducible between $f(a)$ and $f(b)$ . Then there is a

proper subcontinuum $I$ of $Y$ containing $f(a)$ and $f(b)$ . Since $F$ is dense, there

is a point $y\in F-I$ . By the above Lemma, $y\not\in A\cup I\cup B$ . By Theorem 7, there

are continua $H,$ $K$ in $f^{-1}(A)$ and in $f^{-1}(B)$ containing $a$ and $b$ respectively. Thus
$H\cup I^{\prime}\cup K$ is a continuum containing $a$ and $b$ , and hence equal to $X$. Hence
$A\cup I\cup B\supset f(H\cup I^{\prime}\cup K)=Y$ , which contradicts to $y\not\in A\cup I\cup B$ .
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