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1. Introduction.

In what follows, £ is a nXn matrix whose entries are non-negative integers,
and 2 satisfies:

(0) The characteristic polynomial of £ is irreducible over @, the field of rational
numbers, and 2 has the eigenvalues p,, ps, -+, pn such that p,>1 and
01> p:| = - = pal.

Let (A;;) be the classical adjoint (the transpose of the matrix of cofactors)
of matrix £2—p,E, where E is the nXn identity matrix. For a non-negative
integer k2, we put 2%=(o{®), and for a n-tuple of independent variables
z=(zy, --+, 2,), we define

(k)
J— k) 4
Tk z=(z{®, -+, 2$), z{¥ =TI}-12,°0 .

Let F be a finite algebraic number field and f(z)=Xn,208n,-n, 21" - 22" be a
power series with coefficients in F. By @ we denote the algebraic closure of @
in C, the field of complex numbers. Mabhler proved :

THEOREM (Mahler). Let f(z) be not algebraic over Q(zy, -+, zn) and satisfy
the functional equation

f(Tz2)=21 a(2)f(2)t/ 2o bi(2)f (=)},

where the coefficients a(z) and by(z) are polynomials with algebraic coefficients and
m< py. A(z) denotes the resultant of X7,a(z)u* and >mobi(2)ut as polynomials
in u. If a=(ay, -, a,)EQ" satisfies that a,--a,+0, the real part of
S| Ayjllog @ is negative, f(z) converges at z=a and AT *a)+0 for all k=0,
then f(a) is transcendental.

For example, f(z)=35-,2%" satisfies the functional equation f@)=f(z)—=z.
~ Then for an algebraic number such that 0<|al<1, f(a) is transcendental. Refer
" to Loxton and van der Poorten [2], [3] for other examples. Mahler [5], [6]
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treated matrices of the form pF and algebraic independency of values of several
functions satisfying a certain type of functional equation. In Mahler gave a
summary of his earlier work and proposed three problems connected with it. Two
of the three problems have been studied by Kubota, Loxton, van der Poorten and
Masser. The present investigation is concerned with the remaining problem :

RROBLEM. Assume that f(z) satisfies an algebraic functional equation of the
form

P(z, f(2), f(Tz))=0,

where P(z, u, v)#0 is a polynomial in u, v, z,, ---, z, with algebraic coefficients.
To investigate the transcendency of function values f(a) where a is an algebraic
point satisfying suitable further restrictions.

Our earlier paper considered this problem in the case n=1. Now we
consider the general case n=1, and treat more generalized power series and
transformations. In [9], the coefficients of power series must satisfy some con-
ditions but in this paper we shall show that the conditions are deduced from the
functional equation.

2. Preliminaries, theorems and lemmas.

As usual, if « is an algebraic number, we denote by [a| the maximum of
absolute values of the conjugates of @ and by d(a) the least positive integer such
that d(a)a is an algebraic integer, and we set size(a)=max{log[a], log d(a)}.
Assume that 2 satisfies (0), ¢ is a positive integer, and p,/t>1. For a n-tuple
of independent variables z=(z;, ---, z,) and a non-negative integer %k, we put

&) 1 k
Trz=(z{®, -, ziP), 2P =TI}z, "%

Let f(2)=2 a@n,.n,z:"* --- 2, be a formal power series with powers being non-
negative rational numbers and coefficients in . We may assume a,..,=0 without
loss of generality. We consider the following four properties on f(z).

(1) There are constants ¢;>0 and 0=7<1/n such that for any A>0 there
exists a positive integer 0,=c,h? with d,h;=Z (1=:=<n) if h;,=h (1=Zi<n)
and an,..,#0.

By the property (1), for a non-negative number h, the cardinality of terms

AnynygZi™ - 2, With @p,.n,#0 and h;=h (1=i=<n) is not greater than

(c,A™741)",

(2) f(2) is not algebraic over Q(z,, ---, z,).
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(3) f(2) satisfies an algebraic functional equation of the form:
2.1) Qulz, F@Nf(T2)'+Qi(z, f(@)f(T2)} '+ - +Quz, f(2))=0,
where Qi(z, u)€Q[z;, -+, zn, u] and Q.(z, f(2))#0.

Since we may assume that Q.(z, u), ---, @;(z, u) have no common divisor as
polynomials in u, there are elements go(z, u), -+, gi(z, u) of Q[zy, *++, Zn, uJ
such that

g(2) (say)=2t-0g:(z, u)Q4(z, u)

is independent of » and not zero. We set

m=maX deg,Q.(z, u).
0sisl!

(4) If d, is the least positive integer such that d,as,..», is an algebraic integer
for all (hy, -+, h,) with h,<h (1=/<n), then there are constants ¢, and
L=1 such that

log|an,.n,| Scsmax{hy, -, ha})%, log dp=c.h".

Let a=(a;, -, a,)eC™, a; - a,#0, and fix a branch of log a; (1=:=n).
For a non-negative integer k2, we put

log af®=37,(0{? /t")log «a; .
For a power series f(z) with the property (1), we define
[(T*a)=2 anyn gt1log afP +tnploga®
if it absolutely converges.
THEOREM 1. Let f(z) have the properties (1)~(4). Let a=(a,, -, a,)EQ",
ay - a,#0, and suppose the real part of 27-,| Ay;llog a; is negative. Assume that

f(T*a) is defined and g(T*a)+0 for any non-negative integer k. By n, we
denote the rank of the multiplicative group generated by a,, -+, a,. If

2.2) (p1/)X min {(p,/H3P/EHRA+DD (g,/] gy |)d-rpinatn)
>(trol)"* X max{p./t, m},
then f(a) is transcendental.

THEOREM 2. If f(z) satisfies (1) and (3), then f(z) satisfies (4) with L=
max{l+2n+-¢, (2+39)(n—1)}, where ¢ is any positive number.

In the previous paper [9], we considered the transformation Tz=t,z?+ - +
tp+n2?*¥ where t,, ---, t,,y are algebraic numbers, p and N are integers with
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p=2and N=0, and ¢,t,+~#0. In this case, we also have the following theorem.

THEOREM 3. Let f(z)=%-carz"” be a formal power series with powers being
non-negative integers, the coefficients in F and a,=0. If f(2) satisfies 3), then
f(2) satisfies (4) with L=1+c¢, where ¢ is an arbitrary positive number.

REMARK. Mabhler considered the case t=1, »=0 and /=1, and the condition
m< p, is needed. In this case, by [Theorem 1 and [Theorem 2, we only need

m<p; X min {plll(LH‘—D, (Pl/lpzl)l/"}-

Note that the part of the minimum in the above inequality is greater than 1.

EXAMPLE 1. Let a be an integer greater than 1, Q:(clz é), and t=1. 2

satisfies (0) and p,>a, |p.|<1l. The power series
flz, z)=TI(1—2{P 2P} (=1)

satisfies the functional equation: f(T2)Y(1—zz,)=f(2y, 25). If a;=a,=1 and
Qr=0Qa 51+ a4 then z{Pz{P =z %k+1z,% It is shown that f(z,, z;) is trans-
cendental over Q(z,, z:), and f(z;, z,) satisfies (4) with L=1. By if
I’<a, a;=Q and 0< |a;| <1, then f(a,, a,) is transcendental.

EXAMPLE 2. Let p be a positive integer, t=2, p and ¢ be coprime and
p/t>1. Assume that

Az, X)=ay2)+a,(2) X+ - +a,(2)X'€Q[z, x]

satisfies @,(0)=0, a,(2)#0, a,(0)*0, and the coefficients of a(z) (0=:=/) are
positive. Put
wo(2)=0, wn(2)=A(z, wp-4(z7'))  (n21).

Then ord,(wn+1(2)—wn(2)=o0rd, (Wal2?') —wn-1(27'4))=(p/t)ord, (w(2) —wn-1(2)).
Since ord,(w,(z)—w,(z))>0, there exists a formal power series f(2)=2%-0az2"
with the powers being non-negative rational numbers such that lim w,(z)=71(2).

We have f(z)=A(z, f(z?'t). If a,#0, then h=n,+n,(p/O)+ - +np/t)* for
some non-negative integers mn,, ---, n;. Therefore f(z) satisfies (1) with =
log t/(log p—log t). If ord,aq(z)=io then a;yp/i#0 for any 7=0. Hence f(2)
is not a Puiseux series, and f(z) is not algebraic over @(z). There is a constant
¢>1 computable from the coefficients of A(z, X) such that

[an|Sc?, dnZc*  (h>0).

By Mheorem 1, if (p/6)*-7/"+7 >y, ac@, 0<|a|<1/c and a,(a??*)#0 for
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any k=0, then f(«) is transcendental. Especially, if A(z, X)=z+X and p >,
then f(z2)=3%_,z®'®" and f(a) is transcendental for any algebraic number such
that 0<|a|<1. In the case n>1, we can also construct examples similarly.

We need some lemmas for the proof of theorems. Mahler proved that if
Q2 satisfies (0), then Ay, -+, A, and also Ay, ---, A, are linearly independent
over @, having the same sign, and 2*=32,p,*]; (#=0) where I is independent
of k, the entries of I} are positive, and I7=A,(A;;A;;) for some nonzero number
A,, these lead the following two lemmas.

LEMMA 1. Let a=(a,, -+, a)€C", a, a,#0, and A=X7%,|A,;|log a;.
We denote the veal part of A by Re A. Then for any h,, -, h,€Q,
log [(af®)r1 .- (afP)tn]|
=(01/t)*| A1|(Re A) i hsl Al +d(hy, o, by, k),
where |g(hy, -+, hp, B)| Zco(Zral hil )| p2| /D)* and cs depends only on 2 and «a.
LEMMA 2. Let a=(ay, -+, a,)€Q" a, - a,#0. Then there is a constant c,
depending only on 2 and a such that logla{®|=Zc.p,/t)* 1=i<n, £=0), and

there is a positive integer d depending only on 2 and a such that dtteid*gg®
(1=:i=n, k=0) are algebraic integers.

LEMMA 3. Let f(z2)=2X anyn,z: - 2,"" have the property (1). Assume that
Anytg F0, Qnypny, F0, (hy, -+, hp)#(hi, -+, hy) and h;, hi<h (1=i<n). Then
there is a positive constant c; depending only on 2 and c, such that

[ 2P 1(hi—hD) | Ayl | = csh PP+,
PROOF. Since A, '+, A, are linearly independent real numbers over @,
| Aul, ---, | Ani| are also linearly independent over Q. Since p, is an algebraic
integer, A;; (1=/=n) are algebraic integers and [Q(A;;, --+, An1): Q1=[Q(p)): Q]

=n. By the property (1), there is a positive integer 6,=<c,;h” such that
onlh;—hi)eZ (1=i<n). Therefore

Ngpp10n(Zi=i(hi—hi) | Anl)=1
so we have

LEMMA 4. Suppose that B,#0, B,, ---, B, are algebraic numbers and
BO‘BZ"!“Blﬁl—l_’_ e +Bl:O. The?’l

[BoBl <[Bol+[B:i|+ -+ +[B.l.
Futher, if D is a positive integer such that DB,, DB,, ---, DB, are algebraic
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integers, then so is DB,p.

3. Proof of Theorem 1.

Let the power series f(z) and the number a satisfy all the requirement of
and suppose, in addition, that f(«) is algebraic. Under these assump-
tions, we shall derive a contradiction, which proves the theorem. We set

A=37,1A4,;|log a;, and M=max{p,/t, m}.

In the following, cs, ¢, -+ denote constants greater than 1 depending on 2, f, a

and the functional equation in (3), whose coefficients we may assume algebraic
integers.

For any =0, f(T"a) and f(T™"'a) are defined. Then by the property (3),

3.1 QuT™a, f(TTa)f(T™a)'+Q(T e, f(TTa) (T a)' "

+ - +Qu(T7a, f(TTa))=0.
Since g(T7"a)+0 by hypothesis, at least one of

QT7a, [(T'@)), -+, Qu-+«(T"a, f(T7a))
is nonzero. We set
Jr=min{j: QT a, (T a))+0},
and define Y, (r=0) inductively, as follows:
Yo=1, Y,=Qj, (T, f(T"a)Y,.,"  (rZ1).

Thus Y,#0 for all »=0. The next lemma gives estimates for these quantities.

LEMMA 5. For r=1,

[F(ay, -+, g, -, a”, -, aP, fla), -, f(T7a): QI=cy(lt"),

and

size(Y,), size(Y.f(TTa))<c,ovM".

PROOF. The first part of the lemma follows by induction using (3.1). Let
deg,,Qi(z, u) be not greater than s, the hause of f(@) and the coefficients of
Q,(z, u) be not greater than ¢; with ¢,"*<c,, and D be a common multiple of
d(f(a)) and d™* (¢, and d are in Lemma 2). Then for any integer »=1, we can
prove

[ V2L, [V (T7a) | S U+ D+ 1Mt Deg) 1440 i,

l DUMTTM+MTY and DUMT-+MTIY £(TTa) are algebraic integers,

(%)
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by induction. If »=1, then Y,=0Q,(a, f(a)),
Yif(Ta)' =0+ - +Qula, f(a)=0,
[Qsla, fla)| =(s+DMm+1esx ™™ (0=/ZD),
D" Q e, fla)) (0=;j=/) are algebraic integers.
This implies (*) by If »>1, then
Y f(TTa) 914+ Y QT e, f(T7'a))=0.
By the induction hypothesis and we obtain
Y mQ(T e, f(T )|
S(s+1)"m+1)cgcs 0207
XAWUAD(s 1) (mA-1)cg) e+ M7= 2 r-DMT=2eMT =Ty m
Dttey/DT=R(DLer-DMT=EMTEINmY . mQ (T e, [(T™  a))

(0=;7=!) are algebraic integers.

This implies () by
By [2.2), we have
(3.2) min {(Pl/t)””‘*"(”’?)‘“, (P1/| ‘Ozl)lln(l-l-rj)}
> 1m0l {(¢/ p ) (0l T+ M} 1/ AEm A=np
X {(t/ p)Arolyr+ ) M} At A=np)

Then there exists ¢, such that

(3.3) g2 > {(t/ p )@ ol)» AH D M}/ G mn ) (=1)
and
(3-4) min {(p, /O EFRAID D, (0] ] pp )RV} > 17000y,
By [3.3),
(3.5) g2> (t/ p )t M(tm0lg, ") 3+ ™ -1,
By and [3.5), there is ¢; such that

(3.6) g1 >1™0lg,”,

3.7 g2>(t/ o)™l Mg,™ 1+ -1,

(3.8) min {(p,/1) EPA+D-D (g /| p,| )PV} > q1q, .

By (3.7), t™<q,q9, so that by (3.8),
(39) tnol(01Q2)L<(P1/t)Ch(h .

271
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The next lemma is one in relation to the construction of the auxiliary function.

LEMMA 6. Let k be a positive integer and set 7,=2(c,+1)"q,"**P* and 7,=
g:“*M*  Then there are [y, ]+1 polynomials P{2)=ocn;strabfn, 2.t -+ 25"n
with degrees at most [y.] whose coefficients are algebraic integers in F with sizes
at most c1,k(q1q.)" ¥, such that the power series

E(2)=28P{2) f(2) =20 bnyn,zi™t -+ 22"

is not zero, but all the coefficients by,..n, with h;<(g:g.)* (1=i=n) vanish. Further,
size(bn,..n, ) =cik(max{h,, -, ha})%,

and
log |bn,..ny | Sc15k(q1g2)"*+c1a max{hy, -, hyg}.

PROOF. Set f(2)/=3X aff).n, z,"t - z,"», for j=0. By the properties (1) and
(4), we have for j=1,

(a7 np| S(er(max{hy, -, ha})H7H1) X gfatnxmaxihy, = koD E
<(max{h,, -, hn})n(1+7))J'Clej+(max(h1.--~hn}))L_

By the assumption that f(a) converges, log|an,..,| =c;;max{h,, ---, h,}. Then
for 7=1,

laf?.n, | S(max{hy, -, hp})"OFP g frmaxiiein),

The polynomials P;(z) have ([7,]1+1)({r.1+1)" coefficients bf).,, in all. We can
achieve the property required of the auxiliary power series E,(z) by choosing
b)), so as to satisfy the linear equations

(3'10) Z a;zj'l)—hl,n-,h;l—hnbf(;jl)...hn::'o (0§h2<(q1‘]2)k>»

where the sum is taken over all Ay, -+, h,, 7 satisfying 0=;=[7,] and 0=h,=
min {[7.], hi} (1=:=<n). For any bf).»,, Ei(z) has the property (1) with the
same ¢; and 7 for f(z). Therefore the number of linear equations is not greater
than (cy(g:¢.)**”*+1)". The integer D=(TT/4{d (g,q, /)" Will serve as a common
denominator for all the af?.., appering in those equations. The property (4)
gives log D=c,k(q:g,)**. By a standard version of Siegel’s lemma, as given, for
example, in Lang [1], page 4, the equations (3.10) have a non-trivial solution in
which the bf).,, are algebraic integers in F and

Size(bﬁjl)mhn)éCzokfhn(Hﬂ) Ftcark(g1g)"*
Scnklgg)™  O=7=0rd 0=h:=071.D)

by (3.7). By the construction of E.(2),
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b(j)

—hy Ryhy

(3.11) I

n

(&2}
hi=hy oy,

where the sum is taken over all hy, -+, h,, j satisfying 0<;=[7,] and 0=h;=<
min {[7,], i} 1=/=<n). In estimating bpy..n;, We can suppose that max{hj, -+, hn}
=(¢192)%, since otherwise bn;..n; =0. We have

log |bay..ny, | =log (7, 1+ 1([7:1+ D"+ dn(1+7) log max{hj, -+, Az}
+([ri]+(max{hi, ---, ha}))log cietciik(g:g) ™"
Scgek(max{hy, -+, hah)™
When hA’=max{hj, :--, h;}, the integer D, ={1V1{d . ,»)™ will serve as a common
denominator for all the a;j,l’_hyw’ non, appearing in so that
log d(bpy.n:)=10g Dy Zcoskh'™.
Finally, again using
1081030, | =1og (L7 ]+ 1)([721+1)"+n(l+7)[r.] log max{hy; -, hy}
+(Lr J+max{hi, -+, hz}) log cis+c11k(g1ga) ™"
=c1k(q1ga) ¥+ cra max{hl, -, hp}.

This completes the proof of lemma.
Let E.(2) be the function constructed in We set

H=min {3 h;| Au] : bhr"hnio}’

and H=272,H;|A;;|. Let K be the integer such that (¢,¢.)* =max{H,, :--, Hy}
<(g1g2)¥**. By we have max{H,, -, H,} =(g1¢z)%, so that K=k.

LEMMA 7. For k=1, we have
LQY x"IE (T*a)) : Q1= cau(t™)X,
size(Y xTIE W(T*a)) = c2sK(q192) " + C26((01/1)2* ) ¥ + €01 K" O+ M)K.
ProOOF. The first assertion follows at once from For the second,
we use the representation
Y (7OE (T a)= STP(TXa)(Y x f(TEQ)YY 7137,
From 5 and the estimate for the size of coefficients of the polynomials
Pi(z) in we find
size(Y "PE o(T*a))=log [y, I+ D([72]+ D"+ ek (qag) "
+eosnly21(o1 /0  + 01 dec KME.
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This yields the assertion of the lemma.

LEMMA 8. If k is sufficiently large, then Y xU1IE (TXa) is not zero and

log | Y «E (T a)| <(Re 4/2)| A, |(min | Au|)p:/) (109"

PROOF. We can write
E@)=bu,.u,z"1 - 22" {1+ 2 Onyny/bbym )27 HL 0 2P M},

where the sum is taken over all (A, -+, hy) such that 232, H;| A | <21 hi| Al
By using the fundamental inequality of transcendence theory (If 8 is a nonzero
algebraic number, then log|8]=—2[Q(B): @]size(B).), and

(3.12) log [bnn,/buyn,]
=cisk(g1g) ¥ +cismax{hy, -+, hal+cok(max{H;, ---, H})E
=c30K(q1g2) "X+ a1 1 hi| Aul.
For any nonnegative integer y, we set
By =3 (bnpny/brrpm,)e 0108 afP vt hn-tiptog af,

where the sum is taken over all (h,, :--, h,) satisfying

(x%) T i Aal +y+12 201 hi A | > 20 Hi | Aul+y.
Then
<3. 13) Ek(TKa):le---HneH‘l log afk) e+ Hyp, log “5»k)(1+22;’=03y) )

Using the fact that E.(z) has the property (1) with the same ¢, and % for f(z),
and (3.12), we have

log| B, | =log cas((g1go)* 1+ y+1)n+m
+¢50K(g1g2) EE +¢oy max {7y hi| Ai |}
+(p./)¥ 1 A;|(Re A) min {7, (h;—H;) | A}
+esmax{Xi | hi—H [} po| /D)5,

where max and min are taken over all (hy, ---, h,) satisfying (x*). If y=1,
then min {Z7,(h,—H;)| Ain|l} >y=1. By (3.8), if k£ is sufficiently large, then

(3.14) log|B,|=(Re 4/2)| A;|(p./)¥y
for any y=1. If y=0, then by Lemma 3, for any (h,, ---, h,) satisfying (xx),
2(hi—Hy)| Aul 2633—1(C]1C]1)(_n<1+7])+1) X,

By this inequality and (3.8),
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(3.15) log|B,| =<(Re A/2>IA1|(Px/t)KCss'l(qlqz)(_”(1“7)+1)K,
if % is sufficiently large. By [3.14) and [3.15), we have
| E?=OB:VI <1 ’

if £ is sufficiently large. Therefore, by [3.13), E«(T*«a) is not zero, if & is
sufficiently large. By Lemma 1|, 5, 6, (3.7) and (3.8), we have

log |Y x"HE (T *a))

§2(C1+1)n(]1n(1+”)kC1oKMK+C13k(Q1C]2)Lk+Cla max{H,, -+, Hy}
+(P1/t)K | A;|(Re 4) 37 Hi| Aun | + (X i)(lpz|/l‘)K+IOg 2.
=(Re 4/2)| A, [(min | s )01/ (019",

if & is sufficiently large.

To complete the proof of [Theorem 1, we apply the fundamental inequality
of transcendence theory to the number Y x"11E ,(T¥«). By [Lemma 7 and Lemma 8,
we obtain

(Re 4/2)| A, (xrsnzlsr:zl Al )(Pl/t)K(fh‘]z)K

= —2¢o, (™% {Cst((]lf]z)LK+Czs((P1/t)42l+v)K+Cz'rK(%n (1+77)M)K} ’

providing % is sufficiently large. Since Re 4<0 and K =#, this contradicts (3.6),
(3.7) and [3.9).

4. Proof of Theorem 2.

At the first, we prove the theorem in the case where f(z) is a power series
with powers being non-negative integers and t=1. Adopting 27 for £, if neces-
sary, we may assume that the entries of £ are greater than 1. Let

S= {(21’ Tty Zn)- 0§RIEZ},

and we define (A;, -+, 2,)<(A}, -+, 4%) if and only if A+ - +2, <A+ - +23 or
At e L= o 2 and A,=A], -+, 2;=A}, 2;+1<Al+;. Then S is a totally
ordered set. For A=(4,, -+, A,)<S and z=(zy, -+, 2,), we set |A]|=2;+ =+ + 2y,

A 2 An
i, 2 :ai:l”' ai,ﬁn' Then f(z)=Scsa:2. By
the property (3), there is a polynomial P(z, u, v)€Q[zi, -+, 2x, u, v] with coeffi-
cients being algebraic integers such that

P(z, f(2), f[(Tz)=0,
Pu(ZJ f(Z), f(TZ)):(DUt) ZIESAlzzio ’

AN=412,0, 2h=z%1 2,
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where P,(z, u, v) is the partial derivative of P(z, u, v) in u. We denote by 2,
the least 4 with A;+0, and put |2,|=m, Let {y;}cs be variables, and we set

f(y, 2)=iesy12?,
Pu(zy f(y’ Z), f(y: Tz)):E]ESAZ(y)ZZ:
P(z, f(3, 2), f(y, T2)=3esB(»)z%.

If 2AeZ™ and &S, then we put A;(y)=B;(y)=0. Hence A;(y) and B;(y) are
polynomials in {y;}.cs with coefficients being algebraic integers. Substituting
a; to y; in A,(y) and B,(y), we obtain A, and 0 respectively.

LEMMA 9. Let v, €S, and 2|v|>|p|. Then deg,, B.(y)=1 and the coeffi-
cient of y, in B,(y) is Ay ().

PROOF. Since 2|v|>|p|, deg,,B,=<1. The coeficient of y, in B,(y) is
equal to

0 1 o
0y, p! 0z¢

_ 0 1 o
0y, p! 0z

@D PGz, f(3,2), [0, TD)|

P(z, Zispyaiz?, Zaespyz? )l

Since 2{v| > |p|, v, does not appear in X ;< «Y22*? and therefore (4.1) is equal to

1 o* .
'W{Pu(z; Dasp¥azt, Daospy 2t 9z} s

Pl
1
‘ul azl‘ { "'(Z f(y) Z) f(y, TZ))Z”}
=Au(9).

Let P(z, u, v)=3ics 302K obissz'u’v®, where b,;, are algebraic integers.
We set
M=max{2ieSE'j’=02kK=olbijkl’ 1}.

Let a constant c¢,,=1 and a positive integer D satisfy
{ (A2l =mo), [a7](|12]Smo), [T/A2,| S,
DA (121=m,), Dai(|2]|=m,), D(1/A,,) are algebraic integers.

4.2)

Then we can prove and (4.4) in the case n=1 and n>1 respectively. for
any p<S with |g|=m,+m (m=1) by induction in m.

4.3) { [@p] = {Mcu(mo+1)7+K}2m=1(m 1)7+K ¢ (memotn)

Dm-ipm@me-Dg , is an algebraic integer.
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1 ma+2)N-1m2(n-1) ’1[ ] n +K m— n(J+K m(2mog+
( { Ia;zl__._——<—( 6402>( 0t { (7”01 ) « )}2 1(7” ') ¢ )640 2mo 1);
DZ( 0+2) M im2(¢ 1).D (2mo 1’a iS anal ebraic inte er.
u

In the case where f(z) is a power series with powers being non-negative integers,
(4.3) and (4.4) lead the theorem. Since the proof of is easier than the proof
of (4.4), we only prove (4.4). We give a number to each element of
{p: lpl=m-+me} as: pi<p<--<pymy. Note that

Im) S (m+me+1)" 1= (me+2)" " 'm™ 1
By we have
(4.5) Byt (M) =2eme+mz1 nizmerm A gt ps- 2(3)Y 1T Cag4,()
where Cig4,,() is the coefficient of z*o*#i in
Sies Dico Dobijsz (Siaicmern 122V (i ticmor md 22 9)%

If 2>p; then A+pi—A€S or A+pi—A<Z,. In any case, Aagip;-2=0. Sub-
stituting a; to y; in (4.4), we have

Adgrpi-mOpyt Argrpg-p@ppt - +A204,=—Clprpy s

where Cj,:,; denotes the values of C; .;,(») at y;=a; (A€S). Therefore

Alo Qpy —C10+#1
(4.6) Az, 0 Quy || —Ciaores ,
* _
Az Ny Cagrprim

where the entries in * consist of A, (]2]=m,). Hence by (4.2) we have

(4.7) [@ps] S aot ™ Um)24™ ¢ 4" ™ M(mo+m)™ T+

Xmax|ay, - @z,0y, " Gy,

<max(4c ) Mo+ P TIm I Vi 4 1)RTHE) gy (T +ED

X[az, G180, - y,|,
where max is taken over all (4;, -+, 4, v5, --+, v,s) such that
4.8 { i, v;ES, || =mo+m,; with 1=5m;<m, |v;|Zm,,

(mo+my)+ - +(mo+me)+ vy |+ -+ +|vs| Sm+2m, .

If d is a common multiple of all d(az, - @1, -+ ay,) With (44, ==+, A, vy, ==, Vs)
satisfying [4.8), then D*™d q,, is an algebraic integer. If m=1, then »=0, and

lay, - ay| Scu®™0t,

D2motlg, ... a, is an algebraic integer.

8
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This implies (4.4). If m>1, then by the induction hypothesis,

lazl @, Ay, a%l §(46402)”"°+2’"'1<m12("‘”+"'+mr2(n-1>)
X {‘]M(mo_*_1)n(J+K)}2(m1+--.-s-m,-)--r(m1 !... m, !)n(J+K)
X € MITHMY) (Mot D o m+2mg = (Mot e (Mot
If »=0, then m|§cwm+2mo and
(46402)(mo+2)n—lmn—1M<m0+1>n(J+K)mn(J+K) ]ml
< (4, g?) Mo IMAMD Ay L )BT M=y [T 4K ¢ TR
If »=1, then
(46402)(m0+2)n-1mn—JM(m0+1)n(J+K)mn(J+K) lm
§(4C402)(m°+2)"'l(m"‘1+(m"1)2("‘1)){M(m0+1)"(J+K)}2(m‘1)
X (m X (m—1) Hr+E) ¢ mEmo+D
§(4c402)‘m°+2’"‘1m2<"‘1’ {M(m0+1)n(J+K)}2m—1(m DR +HE) o m2motD)

by the inequality m”» '+(m—12*-"PZ(m+m—D)"'=m**-v. If r=2, then
my+ - +m,<m by [4.8), and

- -1
(4 4o2) (Mot Imn {M(m0+1)n(J+K)}mn(J+K) laz, - aa,a, - ay

o\ (Mma+2) B=1(m2(R=1) fogym 2(R=-1) ymn—-1)
§(4C40 )( o+®) (m1 T

X {M(m0+1)n(J+K)}2m_l(m><m1 Veeem, !)n(J+K)C40m(2m0+1)
§(4C402)(mo+2)""1m2("-1) {M(m0+1)n(J+K)}2m—1(m !>n(J+K)c40m(2m0+1),
by the inequalities mXm,! - m,!=m! and
m 24 . +m, 2D gyt
Z(mP+ oo +mlAtm) T E=mA Uy,

The denominator of a,, is also estimated in the same way. These imply (4.4).
In general case, there is a polynomial P(z, u, v), Q[zi, -+, Zn, U, v] such that

Pu(zy f(Z), f(TZ)):Z Ahln-hnzlhl tte Znhnio .

m} is the least number in all A;+ --- +h, with Az ., #0. Let a;,.2,#0 and
A=<h (1=i<n). Substituting z,-“’""*""o to z;, we can treat {Gny.n,: At - +ha
<nh} in the same way as above with nzo———ténh+m6m3 (Zcuh?) and me+m=
(At =+ +2An)t0nn+m) (Zch'*?). Thus we have the theorem.

Similarly we can prove and we omit the proof.
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