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ON THE EXISTENCE OF WEIERSTRASS POINTS WITH A
CERTAIN SEMIGROUP GENERATED BY 4 ELEMENTS
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Introduction

Let X be a smooth, proper 1-dimensional algebraic variety (of genus=2) over
an algebraically closed field 2 of characteristic 0, and let P be a point of X.
Then a positive integer v is called a gap at P if hA°(X, Ox((v—1)P))=h"(X, Ox(vP)),
and Gp denotes the set of gaps at P. If we denote by N and Hp respectively
the additive semigroup of non-negative integers and the complement of Gpin N,
then Hp is a semigroup. A subsemigroup H of N whose complement is finite
is called a numerical semigroup. The following problem is fundamental and is
a long-standing problem.

Is there a pair (X, P) with X a smooth, proper 1-dimensional algebraic variety
over k and P its point, such that H=Hp?

Using the deformation theory on algebraic varieties with G r-action, Pinkham
constructed a moduli space H#y which classifies the set of isomorphic classes
of pairs (X, P) consisting of a smooth, proper l-dimensional algebraic variety X
together with its point P such that Hp=H. But he did not claim that My is
non-empty. Using the Pinkham’s construction of ‘M, some mathematicians
showed that for some H, My is non-empty. To state their results we prepare
some notation. Let M(H)={a,, -, a,} be the minimal set of generators for the
semigroup H, which is uniquely determined by H. Iy denotes the kernel of
the k-algebra homomorphism ¢ : k[ X]=k[ X, -, Xa]—k[1] defined by ¢(X;)=t%:
where k[ X] and k[t] are polynomial rings over %, and u(H) denotes the least
number of generators for the ideal I. When we set Cy=Spec k[ X]/Iy, we
denote by T} H::lg% Té&, (1) the k-vector space of first order deformations of Cy

with a natural graded structure. Moreover, g(H) and C(H) denote the cardinal
number of the set N—H and the least integer ¢ with ¢+ NE&H, respectively.
Then My is non-empty in the following cases:

1) H is a complete intersection, i.e., u(H)=n—1,

2) H is a special almost complete intersection (Waldi [107,
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3) H is negatively graded, i.e., T¢,())=0 for />0 (Pinkham [7], Rim-Vitulli
(31, ‘

4) H is generated by 4 elements and is symmetric, i.e., C(H)=2g(H)
(Buchweitz [2], Waldi [9]).

In this paper we shall give some examples of numerical semigroups H
generated by 4 elements with #y+0, because for any numerical semigroup H
generated by 2 or 3 elements, 1) and 2) imply My +0. Throughout the paper, we
are devoted to a numerical semigroup H of torus embedding type (see Definitionl
1.1), roughly speaking, Cy is the fibre of a torus embedding. For such an H,
we can prove that #y is non-empty. In Section 2 we show that numerical
semigroups H generated by 2 or 3 elements are of torus embedding type. When
H is a neat numerical semigroup (see Definition 3.1) generated by 4 elements,
we construct a torus embedding, any irreducible component of whose fibre over
the origin is isomorphic to Cy, in Section 4. Moreover, if H is l-neat (see
Definition 4.10), we can show that H is of torus embedding type. Using this
we can show that symmetric or almost symmetric numerical semigroups H
generated by 4 elements are of torus embedding type.

Notation

Throughout this paper we will use the following notation without further
warning. We denote by k an algebraically closed field and by IV the additive

semigroup of non-negative integers. For elements a,, -, a,, m and [ of N,
{ay, -+, ap> (resp. (ai, -, an), resp. [/, m]) denotes the subsemigroup of N
generated by ay, .-+, a, (resp. the greatest common measure of a,, -+, a,, resp.

the set of integers which is larger than or equal to /, and which is smaller than
or equal to m). For a weighted ring R and a homogeneous element f of R, d(f)
means the weight of f. Let H be a numerical semigroup, i.e., the subsemigroup
of N whose complement in XV is finite. Then My denotes the moduli space,
which is obtained by Pinkham, consisting of isomorphic classes of pairs (X, P)
with a smooth, proper 1-dimensional algebraic variety X over k and with its
point P whose gaps are IN—H. Moreover, we denote by g(H) the cardinal
number of the set N—H, by C(H) the least integer ¢ with ¢+NEZH and by
M(H)={a,, -+, a,} the minimal set of generators for the semigroup H. We set

a;=Min{acs N— {0} |aa:s<a,, -+, Qi-1, Qis1, ==, An)}
for all 7=1, --- n. For any non-zero element h of H let

Ly(H)={0=0,(1)< -+ <wa(h)}
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be the set of the least elements of H in respective congruence classes mod h.
¢y denotes the k-algebra homomorphism from B[ X, -, Xn] to k[t] defined by
sending X; to #%1, hence assigning 9(X;)=a; for 1=i<n and d(c)=0 for c€k”,
E[ X, -+, X,] is made into a weighted k-algebra. We denote by Iy the kernel
of ¢y, by u(H) the least number of generators for the ideal Iy and by Cy the
affine curve Spec k[ X, -+, Xp1/In.

1. Numerical semigroups of torus embedding type.

In this paper we are concerned with the following numerical semigroups:

DEFINITION 1.1. A numerical semigroup H with M(H)=/{ai, ---, an} is of
torus embedding type if there exist a positive integer m=n, homogeneous elements
g:(1=i<m) of k[X]=k[X,, ---, Xna] of weight >0, and a saturated subsemigroup
S of Z™*+-*» which is generated by b,, -, bm and which generates a subgroup
of rank m-+1—n of Z™*!-* as a group, such that the kernel of the k-algebra

homomorphism
m: k[YI=Rk[Yy, -, Y] —> E[S1=k[T Jses
defined by n(Y;)=T?, is generated by homogeneous elements F,(1=k=u) with

Iu=(Fi(gi, =+, gm)> ** » Fulgs, ---, gm)) Where the weight on kLY ] is defined by
oY )=0(g;) for 1=/=m and 0(c)=0 for cek™.

A sufficient condition that a numerical semigroup is of torus embedding type,
which we will use, is the following:

LEMMA 1.2. Let H be a numerical semigroup with M(H)=/{a,, -+, aa}.
Assume that there exist a positive integer m=n, non-constant monomials g;(1=i
<m)in [ X]=Ek[ Xy, -+, X,], and a saturated subsemigroup S of Z™*'~™ which
is generated by by, -+, bm and which generates a subgroup of rank m-+1—n of
Z™*1-" as a group, such that if we let

w: k[YI=R[Yy, =, Yul —> k[T*lies  (resp. n: R[Y1— kLX)

be the k-algebra homomorphism defined by n(Y;)=T" (resp. n(Y )=g:), then the
ideal Iy is generated by the elements of n(Ker rr). Then H is of torus embedding

type.

PROOF. When we define a weight on k[Y] in virtue of 9(Y;)=0(g,) for
1</=<m and 9(c)=0 for c= k¥, it suffices to show that there exists a set {Fi}icrsu
of homogeneous generators for the ideal Ker x, because the ideal I is generated
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by n(F:) (1=k=<u). Now by we may take generators F,(1<k=<u) of the
ideal Ker = as follows:

m m
Fy= TTYyei— TTY ¢
i=1 i=1
where v px;=0 for all 1=k<wu and all 1=:<m. If we put g,=Xjit..- Xlin for
all 1=:=<m, then we have

0=gu(y(F)=px( I1g:+— [Lgts)

i=1

m n m n
_tiflykijzlnjaj ti;i-‘l#kij;‘llnjaj
- - ’

m n m n
which implies v, 237:;6;,= 2 prs 271505 Therefore F,’s are homogeneous.
i=1 Jj=1 i=1 j=1

Q.E.D.

Here we give a few examples of numerical semigroups of torus embedding
type.

ExAMPLE 1.3. (1) H=<(3,7) is of torus embedding type. In fact, let a,=3
and a,=7. If we set n=m=2, g,=XI, g.=X3} and b,=b,=1, then these satisfy
the assumption of Lemma 1.2. In this case Ker = contains a homogeneous element
F,=Y,—Y,. See Lemma 2.3 for a generalization.

(2) H=<4,7,13) is of torus embedding type. In fact, let a,=4, a,=7 and
a;=13. If we set n=3, m=6, g:=X%, g.=X,, g:=X,, g.=X}, gs=X3%, ge=2Xi,
b=(1,0,0,0), b,=(,1,0,0), bs=(0,0,1,0), b,=(—1,1,1,0), by=(0,0,0,1) and b=
(—1,1,0,1), then these satisfy the assumption of Lemma 1.2. In this case we
can see that Ker = contains homogeneous elements F,;(1<k=<3) as follows:

F1:Y1Y4_Y2Y3 N F2:Y2Y5‘_‘Y1Y3 and F3:Y3Y3—Y4Y5 .

See Proposition 2.5 for a generalization.

(3) H=<4,9,14,15) is of torus embedding type. In fact, let a,=15, a,=9,
a;=4 and a,=14. If we set n=4, m=9, g,=X,, g:=X;, g:=X}, g2.=X,, gs=X,,
ge=X,, g1=Xs, 25=X0,80=Xs, bi=e; (1=7i=4), by=(—1, 0,1,1,0,0), be=e;, b,=es,
bs=(0,1,0,0,1, —1) and b,=(1,1, —1,0,0, —1) where for any i<[1,6] we denote
by e;=Z°® the vector whose i-th component equals to 1 and whose j-th com-
ponent equals to O if j+#7, then these satisfy the assumption of Lemma 1.2. In
this case we can see that Ker = contains homogeneous elements F,(1=k=6) as

follows:

F1=Y1Y5_Y3Y4 ’ F2=Y2Y6—-—Y.,Y8 ’ FaZYaY7Y9_Y1Y2 ’
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F4:Y4Y8"“Y5Y6Y9, F5:Y1Y8—"Y3YGY9 and F6:Y2Y4"‘Y5Y7Y9 .

See Theorem 4.11 for a generalization.

(4) H=<5,8,9,11)> is of torus embedding type. In fact, let a,=5, a,=S8§,
a;=9 and a,=11. If we set n=4, m=9, g,=X;, (1=5i=4), gs:=X3}, guri=X;
(2=1=4), go=X,, bi=e; (1=1=56), b,=(0,1,—1,0,1,0), by=(—1,1,0,0,0,1) and
by,=(—1,0,1,1, —1,0) where e;’s are as in (3), then these satisfy the assumption
of Lemma 1.2. In this case, Ker = contains homogeneous elements F,(1<k<5)
as follows:

F1:Y1Y5Y9—Y3Y4 ’ Fzzyzye—ylys ’ Fs:Y3Y7—Y2Y5 ’
F4:Y4Y8_Y6Y7Y9 and F5:Y1Y7Y9_Y2Y4 .

See Theorem 4.11 for a generalization. Now we get g(H)=7 and C(H)=13,
which imply C(H)=2g(H)—1, i.e.,, H is almost symmetric (see Theorem 6.4).

In the remains of this section we assume that % is of characteristic 0. If H
is of torus embedding type, then we can show Hy+0. For this purpose we
show the following :

ProposiTION 1.4. Let a,, -+, a, be positive integers and let k[ X]=
k[X,, -+, X,] be a polynomial ring on which the weight is defined by 0(X,)=a;
for 1=i<n and 9(c)=0 for cek*. Let k[Y]1=k[Y,: -, Ynl and R[Y,W]l=
RLY., o, Yo, Wy, -, Wi be two polynomial rings. Let r be a non-negative
integer with n—I[=vr, let | be an ideal in k(Y] such that R=Fk[Y]/] is a Cohen-
Macaulay domain of dimension m—+I[-+r—n and that the singular locus of Spec R
has codimension larger than v, and let R[X]=R[X,, -+, Xn]. Assume that there
exist homogeneous elements g;(1=i<m) and h;(1=;=<10) of k[ X] of weight >0
such that we have the fibre product:

¢~ (the origin)——==Spec R[X]

L |

Spec £ =Spec k[Y, W]

with dim ¢~'(the origin)=r, where ¢ is the morphism which is induced by the
k-algebra homomorphism ¢*: k[Y, W]—R[X] defined by ¢*(YV;)=g;—Y: mod J
and ¢*(W)=h;, and such that the ideal ] is homogeneous where the weight on
kLY] is defined by o(Y)=0(g;) for 1=<i<m and 0(c)=0 for cek*. Then ¢ is
flat and there exists a non-empty open subset V of Spec k[Y, W] such that the
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restriction ¢~ (V)—V is smooth.

PROOF. We define a weight on k2[Y, W] as follows:
oY)=0d(gy), oWj;=0a(h;) and 0(c)=0 for cek™.

Since the ideal J in %2[Y] is homogeneous, ¢ is a Gn-equivariant morphism.
For any s Z, the closed subset

Fy={x&Spec R[X]|dim; ¢~} (¢(x))=s}

contains the origin if F,#0, because ¢ is Gn-equivariant and the weights of
Y, X, are positive. ¢ is dominating in virtue of

dim Spec R[X]—dim Spec k[[Y, Wl=m+I+r—(m+)=r
and

dim ¢~*(the origin)=r,
which implies dim, ¢~ (¢(x))=r for all xSpec R[LX]. Moreover, in virtue of
o(Y)>0 and 9(W,;)>0 the map ¢ send the origin in Spec R[LX] to the one in
Spec £[Y, W]. Assume that F,,,#{. Since the origin belongs to F.,;, we get

r+1=dim ¢~*(¢(the origin))=dim ¢~!(the origin)
the origin the origin

<dim ¢-*(the origin)=r,

a contradiction, which implies F,,;=0. Therefore we get dim, ¢ (¢(x))=r for
all xeSpec R[X], i.e, ¢ is equidimensional. Since R is a Cohen-Macaulay
domain, ¢ is flat ([3]). Let Z;(I) be the irreducible components in the singular
locus Sing(Spec R[X]) of Spec R[X] and let % be the generic point of Spec
kLY, W]. Assume that ¢ '(»)N\Sing(Spec R[LX])#0, i.e., there exists ;=] such
that ¢~'(y)NZ;#0. Since the restriction Z;CSpec R[ X]—Spec £[Y, W] is dom-

inating, we have
0=dim Z;—dim Spec £[Y, W]=dim Sing (Spec R[ X])—dim Spec £[Y, W]
<dim Spec R[ X]—r—dim Spec k[Y, W]=0,

a contradiction. Hence we get ¢~'()N\Sing(Spec R[X])=0, which implies that
the set

{y =Spec k[Y, W]l¢~(y)NSing (Spec R[X])=0}
contains a non-empty open subset UU. Then we have

¢~ (U)=Spec R[X]—Sing(Spec R[X])

Hence there is a non-empty open subset V in Spec £[Y, W] such that the restric-
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tion ¢ X(V)—V is smooth, because the restriction ¢~*(U)—Spec k[Y, W] is a
morphism of varieties with smooth ¢~*(U) over the algebraically closed field %
of charcteristic 0 ([4]). Q.E.D.

Pinkham showed the following:

REMARK 1.5. Let H be a numerical semigroup with M(H)={a,, -+, a.}.
Then we have My+0 if and only if there exists a flat homogeneous homomo-
rphism ¢*: AziéleBZ Ar—»B:iEGBZ B; of affine graded k-algebras with A,2% and
B,2F such that 1) C, is the fibre of the morphism ¢ : Spec B—Spec A associated
to ¢* over a homogeneous k-rational point on Spec 4, 2) A is a domain and the
generic fibre of ¢ is smooth, and 3) A;=0 for all :<0.

Combining Proposition 1.4 with Remark 1.5, we get the following:

COROLLARY 1.6. Let H be a numerical semigroup with M(H)={a,, ---, an}
and let k[ X], k(Y] and kY, W3] be polynomial rings as in Proposition 1.4. Let
J be an ideal in k[Y] such that R=FE[Y1/] is a normal Cohen-Macaulay domain
of dimension m+-1l+1—n. Assume that there exist homogeneous elements g,(1=<
i=m) and h;(1=7=1) of k[ X] of weight >0 such that we have the fibre product:

Cy—=Spec R[X]
¢
Spec k——Spec k[Y, W]

[(0)]————>~the origin

whe ¢ is the morphism induced by the k-algebra homomorphism *: k[Y, W]—
R[X] defined by ¢*(Y)=g—Y; mod J and ¢*(W;)=h;, and such that the ideal
J is homogeneous where the weight on R[Y] is defined by oY ;)=0(g;) for 1<i<m
and 0(c)=0 for cek*. Then we have HMy+0.

If we apply Corollary 1.6 to numerical semigroups of torus embedding type,
we see:

THEOREM 1.7. For any numerical semigroup H of torus embedding type, we
have My+0.

Proor. We use the notation in Definition 1.1. Since S is a saturated sub-
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semigroup of Z™*!-* which is finitely generated and which generates a subgroup
of rank m+1—n of Z™*'"* as a group, by Spec k[T*]scs is a normal affine
equivariant embedding of (G,)™*'"" and is a Cohen-Macaulay scheme. Hence
R=Fk[Y]/Ker r is a normal Cohen-Macaulay domain of dimension m+1—n and
the ideal j=Ker = is generated by homogeneous elements F,(1=k=u). Since
the ideal I, is generated by the F.(gi, -, gn)’s, we have a fibre product:

Cn—>Spec R[X]

b

Spec k—=Spec k[Y ]
[(0)]+——==the origin

where ¢ is the morphism induced by the k-algebra homomorphism ¢*: k[Y]—
R[X] defined by ¢*(Y;)=g:—Y: mod J. If we apply Corollary 1.6 to the case
(=0, we obtain My +0. Q.E.D.

2. Numerical semigroups generated by 2 or 3 elements.

In this section we will show that numerical semigroups generated by 2 or 3
elements are of torus embedding type. First we consider the following numerical

semigroups :

DEFINITION 2.1. A numerical semigroup H with M(H)={a,, -+, a.} is called
a strictly complete intersection if renumbering a;, ---, a, the least common mul-
tiple of (a,, -+, a;-;) and a; belongs to <ay, -+, a;-;> for 2=i=n. In this case

by [5] a set of generators for the ideal [, is well-known.

REMARK 2.2. For a numerical semigroup H as in Definition 2.1 we have
a;=(ay, -+, a;-1)/(a,, -, a;) for 2=i=n. If we set
i-1

a,-aizza,-,-a,- with ai,-e‘N
Jj=1

for 2</<n, then the ideal I, is generated by f,, -+, fn where we set f;=
Xat— Xgi1 ... Xgii-1,

LEMMA 2.3. A numerical semigroup H which is a strictly complete intersec-
tion, is of torus embedding type.

PrROOF. We use the notation in Remark 2.2. The set
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U={(G, )eN?*|2<i<n and 1=<;<i—1}

is a totally ordered set, where we define (7, /)=<(’/, j/) if i<¢’ or if /=4 and j<7'.
If we set P={(, /)eU|a;;#0} and /[=*P, then we have the isomorphism &: P—
[1, /] of ordered sets. Let

n: kLY )G, NEP); Z2=k=n)] —> k[ty, -, t:]

be the k-algebra homomorphism of polynomial rings, defined by z(Y:;)=tftsu.»
and E(Zk):jegk)tf(k,j) where P(B)={j[1, k—1]|(k, )=P}. We set

gea, p=2X3t4 for (7, )P and g1 =Xf* for 2=k=n.

Let n: k[Yi;; Zx]—k[X1=Fk[X,, -+, X,] (resp. {: k[ty, .-+, t;]—k[t]) be the k-
algebra homomorphism defined by (Y :)=ge«.» and 9(Z)=gu+r-1 (resp. {tec, )
=t215%5), In virtue of @zep={L-mx, we get p(Ker m)SKer op=1I,. If we set
F":Zk_jelp;!uykj for 2<k=<n, then F,=Kern and #5(F,)=f:. Therefore by
Remark 2.2 the ideal Iy is generated by the elements of n(Ker ). By Lemma
1.2 H is of torus embedding type. Q.E.D.

COROLLARY 24. 1) Numerical semigroups with M(H)={a,, a.} are of torus
embedding type.

2) Symmetric numerical semigroups, i.e., C(H)=2g(H), with M(H)={a,, a,, as}
are of torus embedding type.

ProoF. It is trivial that numerical semigroups with M(H)=/{a,, a,} are
are strictly complete intersections. Herzog [5] proved that numerical semigroups
H with M(H)=/{a,, a,, a;} are strictly complete intersections if and only if they
are symmetric. Q.E.D.

In the non-symmetric case H with M(H)={a,, a., a;}, H is also of torus
embedding type in the following way: by [b] there exist positive integers
a;;<a; such that

0101 = Q1202+ 1303, Qe =00;1F U303 aNd X33 =03:01 5205,
in this case
A= +a3, G=apta; and a;=a;+as;.
Moreover, Herzog showed that the ideal I, is generated by
fi=Xpi—XguXgn, fe=Xp—XguXgn and fi=Xgo—XuXge.

Let S be the subsemigroup of Z* generated by
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ble(ly O) 0: 0) ’ b12:(0y 1’ Ol 0) ’ b13:(0; O, ]-) 0) ’ bslz(—ly 1’ 1’ O) »
bgg—_-(O, 0, 0, 1) and bgs:(—l, 1, 0, 1) .

Then it can be easily seen that S=YR.b;;NZ* where R, is the set of non-
negative real numbers. Hence S is saturated. When we let

2 RLY id1stwsss —> B[T*Jses  (resp. 2 k(Y ] — kLX), X, Xs)

be the k-algebra homomorphism defined by =(Y)=T%Ji (resp. p(Y;)=X§i),
there exists a k-algebra homomorphism {: k[ T*]scs—k[t] such that pgen=Cer,
which implies np(Ker z)SIy. Since

Fi=Y,Yu—Y 1Y 15, F;=Y ;Y 4—Y Y, and F3=Y 1Y 35—Y 1Y 3

belong to Ker = and we have »(F;)=f; for 1=/=3, the ideal I, is generated by
the elements of n(Ker x), hence H is of torus embedding type. Therefore com-
bining this with Corollary 2.4 2), we obtain the following:

PROPOSITION 2.5. Numerical semigroups with M(H)={a,, a., as} are of torus
embedding type.

3. Neat numerical semigroups.

Hereafter we are concerned with the following numerical semigroups:

DEFINITION 3.1. For a numerical semigroup H with M(H)={a,, --, aa.},

a,-a,-:Z)ta“a,- with 0=a;;<a;j, for 1<i=n,
FE3

R:
Da;=ay for 1=5=n
i~j

is called a neat system of relations with respect to H and {a,, ---, ay}. When H
has a neat system of relations, it is called to be neat.

ExXAMPLE 3.2. (1) H=<4,7,13) is neat. In fact, let a,=4, a,=7 and a,=13.
Then

R: 501:(12-|-a3 N 3(12=2a1+03 N 203=3a1+202

is a neat system of relations.
(2) H=4,9,14,15> is neat. In fact, let a,=15, @,=9, a;=4 and a,=14.
Then

R:2a,=4a,+a,, 2a,=as+a,, 6as;=a,+a;, 2a,=a,+a,+as;

is a neat system of relations.
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(3) H=<0,1]1,13,14> is neat. In fact, let a,=10, a,=11, ¢,=14 and a,=13.
Then
R:4a,=as+2a,, 3a,=2a,+‘a,, 3a;=2a,+2a,, 3a,=a.+2a;

is a neat system of relations.
4) H=<5,7,9,11,13) is neat. In fact, let a,=5, a,=7, a;=9, a,=11 and
a;=13. Then

R:4a,=a,+as, 2a,=a,+ta;, 2a;=a.+a,, 2a,=as+as, 2a;=3a,+a,
is a neat system of relations.

In this section, let H be a neat numerical semigroup with M(H)={a,, -:-, a.},
and let ® be a neat system of relations with respect to H and {ai, ---, a.}.
We can see easily:

REMARK 3.3. We put

P=Pa={(, )€1, nI*li#j, a;;#0}, P'={j€ll, nliG NEP}

for 1</=<n and P;=|i[1, n]|, )P} for 1=/=n.
Then #P‘>2 and #P;=2. Hence we have *P=2n, for

P= \J {G, NijeP}= U {G NlieP;}.
1sisn 1sjsn
Moreover, we make P into a totally ordered set by defining an order on it as
follows: for a fixed j[1, n] and any 1<k=*P; we define inductively
ij(ky=Min{i[1, n]lie P;—{i,(1), ---, i;(k—D}}.

For any (i, ) and (i, j/)€ P with /=¢,(k) and ’=i;(k’), we define (¢, ))=(’, ;")

if b<k’ or if b=k’ and j<J".

DEFINITION 3.4. An element (7, ;) of P has a v-relation (resp. an h-relation)
if we have

i=Max{i’[1, nl|i’eP;} and P, j)=0
where Pi(i, ))={;’eP|(j, j)>0, N}

(resp. (7, j)=Max{(Z, j)|;’€P’} and P(, j)=0
where P;(i, )=1{i"eP;|({’, >3, N}).

v-relations and h-relations have the following properties:

LEMMA 3.5. 1) (G, jo)=Max P has a v-relation and an h-relation.
2) For any 1=ZI=<n, there exists i€[1, n] such that (i, [) has a v-relation or
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7€, n] such that (I, j) has an h-relation.
3) We have *Q<=n—1 where

Q=1{@E, /)= P|({, j) has either a v-relation or an h-relation} .

PROOF. 1) is trivial. We set
i=Max P, and (/, j)=Max{({(, j/)|;'ePY}.

Assume that (7, /) does not have a v-relation and that (/, j) does not have an A-
relation. Then there exist ;'€ P'(z, ) and /= P,(l, j), which imply

@ D=0, D>, HN=U, 7)>0, D),

a contradiction. This proves 2). Let /=[1, n]. If (¢, ) has a v-relation, then
we define {())=(7, {). If (I, j) has an h-relation, then we define {(/)=(/, 7). Then
the map {:[1, n]—Q is well-defined. In fact, if (7, /) (resp. (¢/, !)) has a v-
relation, then ;=Max P,=¢". If (I, ;) (resp. (/, j')) has an h-relation, then (/, j)=
Max{(l, k)| ke P} =(, '), hence j=j’. If (i, ) (resp. ([, 7)) has a wv-relation
(resp. an h-relation), then we have (z, )=(/, j)=(, ), hence /=7, a contradiction.
To prove 3) it suffices to show that { is surjective, because we have {(i,)=
(Zo, J0)=C(Jo). If (7, /)=@Q has a v-relation (resp. an A-relation), then {(7)=(s, ;)
(resp., £@)=(, 7)). Hence { is surjective. Q.E.D.

Finally we define the subset Py of S,={(, j)e[l, n]?|i+ s} associated to a
neat numerical semigroup H with M(H)={a,, -+, a,} as follows:

DEFINITION 3.6. We define an order on the set of subsets of S, in the
following way:

1) for any (7, j) and (¢, j')=S,, we define (7, /))=(’, j) if i<¢ or if =/’
and =7,

2) for two subsets P and P’ of S, with #P=#¥P'=%S,—r, we define P<P’
if there exists 0=¢=r such that

(2'1, ].1):(1.;; ].;), Tty (iqr ].q):(l.l’p ].zlz) and (iq+1; jq+1><(ié+1’ ].z;+1)
where
'Sn_P: {(Z.ly ]1)< <(ir, ]'r)} and 'Sn_Pl: {(Z.;; ];)< <(l1,‘, ];')} ’

3) for two subsets P and P’ of S, we define PSP’ if #*P<*P’ or if ¥ P=*P’
and P<P'.
Then the set of subsets of S, becomes a totally ordered set. Using this order,
we define the subset Py of S,: '
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Py=Min{Ppg,ay¢y. ageyn | 0 TUNS OVer the set of permutations of [1, nJ}

where
Py tay, e apy=Min{Pg| R runs over the set of neat systems of relations

with respect to H and {a,, -, a,}}.

4. Neat numerical semigroups generated by 4 elements.

In this section, we are devoted to neat numerical semigroups H with M(H)=
{ai, as, as, a;}. In the case *M(H)=4 we can explain v-relations and h-relations
in detail.

LEMMA 4.1. Let R be a neat system of relations with respect to H and
{ay, a,, as, a}. Then

1) (@, j)€Pa has a v-relation and an h-relation if and only if (i, j)=Max Pqg,

2) we have ¥*Q=3 where

Q={(, ))ePa|{, j) has either a v-relation or an h-relation)} .

PROOF. To check 1), by Lemma 3.5 1) it suffices to show the “only if” part.
For brevity, we put P=Pgq. Let us take (7, /))& P which has a wv-relation and
an h-relation. Then for any ke[1, 4] the following hold:

a) if (7, k)EP, then (4, k)=, j), b) if (j, k)EP, then (j, k)<, 7), c) if
(k, 7)€ P, then (k, 1)<(i, ), d) if (k, j)EP, then (B, )=, ).

From now on we will see that for (k, [)e P with &, [e[1, 4]— {3, 7}, (B, D<
@z, 7). The case i=1 does not occur, because (i, j) has a v-relation. Moreover,
since for k=1 we have (&, )<(, /), we may assume ;=1 or [=1.

(A) j=1. Then =3 or 4, because /=7,(2)=3.

1) 7=3. Then (73(2), 3)<(@3, 1)=(7,(2), 1), a contradiction.

2) i=4. Then (k, )=(2, 3) or (3, 2). If (&, )=(2, 3), then

(B, D=(1(2), 3)<(@(2), H<E, D=C, 7).
If (&, )=(3, 2), then
(k, N=(ix(2), 2)<(1,(2), H<E, D=0, j).

(B) I=1. Then k=2 or 3 or 4.
k=2. Then (k, )= (1), 1)<, /).
2) k=3. Then (&, D=(:(2), D<KE,2), NG, 7).
k=4. Then (7, )=(2, 3) or (3, 2). If i=i,3), then

(k, D=4, D=@:(3), D<E(3), H=0, J).
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Assume :=7,(2). Then
(@, N=042), )<G(2), H<G, j),

because 7,(2)=2 or 3. This is a contradiction. Hence we have (7, j)=Max P.
By the proof of Lemma 3.5 3), we can define a surjective map {: [1, 4]—Q
by sending ! to (7;, {) (resp. ([, #;)) if (7, /) has a v-relation (resp. if (/, 7;) has an
h-relation). Let / and !’ be two distinct elements of [1, 4] such that {())={(").
Then {(/)=C(") has a v-relation and an h-relation. Hence if we set (7, j))=Max P,
by 1) we get {/,!’}={i, j}. So {(k), {(k’) and ((;) are distinct where we set
[1, 41={7, 5, k, k’}. Therefore we obtain *Q=3, because { is surjective.
Q.E.D.

From now on, we will construct a torus embedding Ty X A}, any irreducible
component of whose fibre over the origin of Spec k[Y;;]u.pep, is isomorphic
to Cy. First let R be a neat system of relations with respect to H and
{ay, a,, as, a,}, i.e., aiaizjéa”aj for 1=/=<4 and a,:igj a;; for 1=7=<4, with
0=a;;<aj, and let Yy, (7, )= Pgq, (resp. t,, ---, tn-s) be independent variables
over k& where we put m=*%Pg. Q denotes the set of (7, ;)& Pg which has either
a v-relation or an h-relation. For brevity, we put P=Pgq, and let the order on
Q (resp. P—(@) be induced by that on P defined in Definition 3.3. Then by
Lemma 4.1 2) the set Q consists of three elements

@, 1)<E", 7)<, jo),

and there exists a unique isomorphism &: P—Q—[1, m—3] of ordered sets. Now
we will define a k-algebra homomorphism

7w kLY i;]a per —> R, -, this]

inductively as follows:
1) 7mi: RTY i), pep<cin, so— kLT, -+, tils] is defined by

. (Yip=teap if G, )N, 1),

iepn(i,]te?‘u')jel_lﬁ, tei» if (@7, /) has a v-relation,
e
nl(Yilj‘): -1 : o .

_ Ptl,—[ , te“'niII;I tecisy if (77, j') has an h-relation,
JEPY ~(j') Py

and
oY) =teupn if (&, j)<C, N<LE, 77,
2) 7o kY i pep<cip sp—k[tTY, -+, tils] is defined by
. (Yip)=m(Ysy) if G, N<@E”, 77),
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II nl(Y,-j.)‘ljgj.m(Yy,-) if (7, j7) has a v-relation,

TEP jo— (1%}
71'2(Y1:'j) . woocm H
I 7)™t I 7Y if (@7, j7) has an h-relation,
JjeP-(jn iEPir

and
(Y i)=teuy if (", j")<(E, 1)<, Jo),
3) m: kLY pep—k[tE!, -+, til,s] is defined by

a(Yi)=mYs;) if (&, 7)<o, Jo)
and
(Y= 1l ﬂz(Yijo)—ljgjo oY j,3) -

1€Pj - (i)
We note that
ieml';[-(io) M(Yijo)_ljel:'lﬂ'o M(Yj"j):jem‘lguo» nz(Yi(’j)—lielz’[ionZ(Y“O) .

DEFINITION 4.2. If we canonically identify k[#i?, -+, til,] with the semigroup
k-algebra k[T"]scz™-%, in the above situation for any ¢, ;)P there exists a
unique b;;€Z™-* such that n(Y;;)=T?%J. Then the subsemigroup S of Z™~?
generated by b:;((Z, /) P) is called the semigroup associated to P and the sur-
jective k-algebra homomorphism x: kLY i, pep— k[ T*]ses is called the homo-
morphism associated to P.

LEMMA 43. Let 7: ELY i pep— k[ X]1=k[X,, X, X, X.] be the k-algebra
homomorphism defined by sending Y ; to X§ii. Then we have Iy27nKer 7).

PrROOF. The k-algebra homomorphism {': £[T?%¥]¢, pep-q—k[t"Iney defined
by {/(Ttij)=t*ii%; extends uniquely to the k-algebra homomorphism {: A[T*]secs
—k[t"Jren. Moreover,

eu (Y i)=pn(X§i)=t"11%
and
Con(Y ) =L(Tt15)=1%ii%,

hence ¢gen={-x, which implies Iy=Ker oy 279(Ker x). Q.E.D.

Let us recall the definition of Py in Definition 3.6 which is determined by
a neat numerical semigroup H. In our case M(H)= {ai, a., as, a,}, elementary
computations show the following:

PROPOSITION 4.4. Py is one of the following:
(1) the case *Py=12, then Py=8,={G, Nell, 4 li#},
(2) the case *Py=11, then Py=38,—{{1, 2)},
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(3) the case *Pyg=10, then Py=38,—{(1, 2)}\JG) where G is one of the fol-
lowing : '

a) {(2, D}, b) {2, 3)}, ¢ {3, b},

(4) the case *Py=9, then Py=8,—({{1, 2)}\UG) where G is one of the fol-
lowing :

a) {2, 1), G, 4}, b) {2, 3), 3, 1}, ¢) {2, 3), 3, 4},

(5) the case *Py=8, then Py=38,—({(1, 2)}\VG) where G is one of the fol-
lowing :

a) {2, 1), (3, 4), 4, 3)} and b) {2, 3), (3, 4), (4, 1)}.

DEFINITION-PROPOSITION 4.5. Let Sy be the semigroup associated to Py.
Then the subsemigroup Sy of Z™-* is saturated and generates Z™"*® as a group.
Therefore T y=Spec k[Y :5]u. pery/Ker x, which is isomorphic to Spec RLT*scsy
is called the torus embedding associated to the neat numerical semigroup H with
M(H)={a,, a,, as, a,}.

PROOF. By the construction of Sy, Sy generates Z™~® as a group. For any
i€[l, m—3] we denote by ¢;=Z™"® the vector whose i-th component equals to
1 and whose j-th component equals to 0 if j+#i. Let

0:[1, m]—> Py={G, j)ell, 41*|i#], ai;#0}

be the isomorphism of ordered sets, and for brevity we set b;=b,¢, for all
ie[1, m]. Let the situation be as in Proposition 4.4. Then

(1) bi=e; (1=:=8), by=(—1,1,1,1,—1,0,0,0,0), b,,=(1,—1,0,0,0, —1,1,1,0),
bii=e,, b,=(0,0,1,0,—1,—1,1,0,1),

(2) bi=e; 1=i=7), bs=(—1,1,0,0,0,1, —1,0), by=(—1,0,1,1, —1,0,0, 0),
by=es, bu=0,—1,1,0,—1,0,1, 1),
‘ 3) a) bi=e; 1=:=4), b;=(—1,0,1,1,0,0,0), bg=e;, b;=e,,
b,=(0,1,0,0,1, —1,0), by=e,, by o=(—1,—1,1,0,0, 1,1),

b) bi=e; (1=:57), bs=(—1,1,0,0,0,1,0), by=(—1,0,1,1, —1,0,0),
b,=(0,-—1,1,0,—1,0, 1),

¢) bi=e; 1=i<7), by=(—1,1,0,0,0,1, —1), by=(—1,0,1,1, —1, 0, 0),
b,,=(0,1,—1,0,1,0, —1),

4) a) bi=e; (1=i=4), by=(—1,0,1,1,0,0), bg=e;5, b;=e,,
bs=(0,1,0,0,1, —1), by=(1,1,—1,0,0, —1),

b) bi=e; (1=i=4), b;=(—1,0,1,1,0,0), be=e;, b,=e, bs=(—1,1,0,0,1,0),
b,=(0,—1,1,0,0,1),

¢) bi=e; 1=5i<6), b,=(0,1,—1,0,1,0), by=(—1,1,0,0,0, 1),
b,=(—1,0,1,1,—1,0),
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(5) a) bi=e; (1=1=4), b;=(—1,0,1,1,0), bs=e;, b,=(1,1,—1,0,0),
bs=(—1,90,1,0,1),

b) bi=e; (1=:iZ54), by=(—1,0,1,1,0), bg=e; b,=(—1,1,0,1,0),
be=(—1,1,0,0, 1).

By computation the subsemigroups Sy of Z™® generated by b,, -+, b, are
saturated. For example, we check the case (4) c). It suffices to show that

_291R+bimZ"gSH where R, is the set of non-negative real numbers. Let us
= 9
take z= igllibiezs with ;;€R,, and set 4;=m;+8; with m;eN and 0=j;<1

9
for 1<:/<9. Hence it suffices to show that yzglﬂibies,,. Now we get

y=(B1—Bs—Bs, PetBrtBo, Bo— P17t Bo, Bit o BstBi—fo Bt Pe)EZE,
hence

Bi—Bs—Bs=—1 or 0, B+ B:+B:=0or 1 or 2, Bs—B,+8,=0 or 1,

But+pBs=0or 1, Bs+p:—Bs=0 or 1, and Be+B:=0 or L

First assume fB;—fBs—pB,=0. Since e¢;€Sy for all 1=/<6, we get yeSy.
Secondly assume §,—f8;—B,=—1. Then we have 8,>0 and §,>0, which imply
Be+ B+ Bs=1or 2, B,+B,=1and B+ ps=1. Then y =Sy, because (—1,1,0,1,0, 1)
=b,+bseSy. Therefore Sy is saturated. The other cases work similarly.
Q.E.D.

For our purposes it is necessary to investigate generators of the ideal Ij.
When H is a neat numerical semigroup with M(H)={a,, a., as, a,}, the follow-
ing Lemma gives us a set of generators for [.

LEMMA 4.6. Let H be a numerical semigroup with M(H)={a,, as, as, a4},
such that for any 1=i=4

aia,—=a,-ja,-+aikak+a“a; with 0!1;_;>0, 0(1:1;>0 and augO

where i, §, k and | are distinct. For any 1=5i=4 we denote X%i— X§iiXgik Xfil
by fi. Set

A= {1, for foo fi}, A= {XP1X§e— XPXET,]0< fi<ai},
o= { X0 X8 XBe XBic T4 |0< Bi<as}, A={XH1Xf—XbeXbsel,|0<B:<as}.
Moreover, for any 2<i<4 we put
A¥= (X1 X8i— XBiXBre A;| for any X1 X}i— XXk € A;, different
from XB1X8i—XBiXEk v,<PB, and 1:=p: do not hold}.
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Then 1) the ideal Iy is generated by the elements of the set A,\JA¥JAYJAY,
2) if aa;+aja; for i#j, then u(H) is equal to 4+*A¥+*A¥+* A%

PROOF. 1) Let (A’) (resp. (A), resp. (A*)) be the ideal generated by the set
A=A XX — X Xelylre, 175 7e 7:>0 and @, 7, &, )
is a permutation of [1, 41}
(resp. the set A=A,\JA,\JA\JA,, resp. the set A*=A,J AU A¥UAY).
First we show: Iy=(A’), thatis, g=X¥— Xy X3 Xytely, with 2;=a; and a
permutation (i, j, k, 1) of [1, 4], belongs to (A4), i.e., g=f—|—(‘1:[1X',‘a)h with
fe(A’) and 0h<dg if h+0. If we set ;=aig+r with ¢>0 and 0=r<a;, then
G=g— X[(X9i19— Xqt/ Xgirt Xgi10)= X7 X§i/2 X110 — X3 X3k Xyt .

Then we can write G=f+(1f[1X§8)h with fe(A’) and oh<dg if h+0.

Secondly we see: Ip=(A), thatis, g=XiiXi— X Xtely, with 74,7578 71
>0 and a permutation (7, 7, k, /) of [1, 4], belongs to (A). We may assume
that 7;=a;g+r with ¢>0 and 0=r<a;. Hence we have

G:g_X;ng(Xgiq_X?iqugMXguq):X§X§j+aiqugiWXguq_X£k X,

Then we can write G=(IIXi*)h with 9h<dg if h+#0.

Lastly we check: Ip=(A*). Let us take g=X71X}i— X}iX}* < A; such that
there exists g,=X51X8:i— X8i X8t A with ., =8, 7:=6: and (71, 79)#(B1, Bo)-
Then

G:g——X{l‘ﬁlX’lfi"ﬁigi:Xil‘ﬂlxzi‘ﬁngjX.%k-—ngXik—_—_-X;szk ‘h
with dh<adg.

2) It suffices to show that the images of elements of A,\JA¥UJA¥UA%¥ in
I,/(X,, Xs, Xs, X)Iy are linearly independent over k. By the assumptions
a;a;#a;a; and the minimality of a;, the weights of elements of A4,\JA,JA;UA,
are distinct. For brevity, the ideal (X;, X,, X, X.) (resp. X1 X8i— X8iXBr = A%)
is denoted by (X) (resp. g§s,). Let

4
et efs, g8t 2 cilpgBis 2 cHip 815, S (X u

with ¢i, ¢Pp, ¢§ps cflp, k. First assume that ¢;#0. Since the ideal (X)Iy is
homogeneous, we get ¢;f;=(X)I 4, which has an expression:

4
cifi= n§1 hnfm+2 hl(szl)ﬁzglgzl)ﬂz_FE hg)ﬁsgl%?ﬁs_kz h 41)194g 41)194
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with hm, hs, h§s, hils,e(X). If we substitute 0 for X, all j different from
i, then we get ¢; X%i=cX§*% with cek and 8>0, a contradiction. Hence ¢;=0
for all ;=1, ---, 4. Secondly assume that c{)s,#0. Then c§s,25%,E(X)n,

1 1
which has an expression:

55,808, = hs,8 08, h§s,88)8,+2 hEls.8808,

because of g§’s,€A; and the minimality of «; Substituting 0 for X; and X,
where (1, 7, 7, k) is a permutation of [1, 4], we obtain

cPp X Xbi= 3 (X, 0, X;, 00X XY,

aLrd*B1 B
hence there exists (1, ;)€ N2, #(0, 0) such that
,31a1+,8iGi=(71+11)a1+(7’i+1i)ai .

If By=7:+2, in virtue of a;> B, we have B:=7r1+4 and B;=7;+24; which con-
tradict g§)s,€A%. If B:<ri+4, we have

(ﬂi“?‘z‘—Zi)ai'—‘(7’1+11—‘ﬁ1)01 »

which contradicts the minimality of «;. Hence we get c{s,=0. Q.E.D.

For a neat system R : a;a;=3 a;;a; for 1=i/<4 and a;=3 a;; for 1=7=4,
of relations with respect to H with M(H)={a,, a., as, a.}, the following holds:

LEMMA 4.7. We have
ay —Q1y Qg
D: — 2 (22} — a3 >0.

—Q3 s (24

PROOF. Since we have a;= X a;; for 1=;7=4, we obtain
i#j

a, —yy U3
—«1y Qi (241 — Q3
D=|—ay (24 —0Og3| =y — Qe
(24 —Ug3 —Qp g
(2931 Uyo A3
a; —Qpe
+ay,
2431 (24

:a41(a12a23+a20‘13)+a42(a1azs+a21a13)+a43 {ax(asa+a42)+<a31+a41)a12}

If a,>0, then D>0 because of aysa(asst+a,)>0. If a,=0, then a,>0 and
a13>0, hence we get D>0. Q.E.D.
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Hereafter we are in the following situation, which is similar to that in
Corollary 1.6: let P=Py be as in and let T y=Spec 2[Y ], per/
Ker 7 be the torus embedding associated to the neat numerical semigroup H with
M(H)={a,, a., as, a,}. Let us consider the fibre product:

$=40) Ty X Ag=Spec (k[Y i,/ N[ Xy, Xo, X5, X]

l 1

Spec h— Spec k[Yij](i,j)eP

where O and [ are respectively the origin of Spec k[Y;;] and the ideal Ker =,
and ¢ is the morphism corresponding to the k-algebra homomorphism ¢*: £[Y ;]
— (kLY 1/ DXy, Xe, X,, X.J by sending Y45 to X§ti—Y;; mod J. If J, is the
ideal in [ X]=Fk[X;, X,, X,;, X,] generated by the set »(J) where »: k[Y ,;]—
k[X] is the k-algebra homomorphism defined by 7(Yi)=Xgt, then ¢-%(0) is
isomorphic to Spec k[ X1/ /.

PROPOSITION 4.8. Cj is an irreducible component in ¢~ (O)=Spec k[ X]/],.

PROOF. We use the notation in Lemma 4.6. Since

F=IIY;—II Yie]
jept

jEP;
for all 7 implies (fy, fo, fs, f)E ), and by Lemma 4.3 we have [,2], we will
check that the ideal I, is minimal prime over (f,, fa, fs, fo). Let p be any prime
ideal in R[X] with (fy, fs, fs, f)SPSTH. Let us take
g=Xbi X8 XBs Xbic 4, hence fBia,+B:a:—Bsas=p.a,.

By Lemma 4.7, there exists a positive integer ¢ such that

#(.31, 192, —,33)’-—'—‘1)1(&1, —Qyz, — Q) TV — g, Az, —Qa3)+vy(—ag,, — g3, A)

with y;€Z, which implies pf,=via1+v.az+vsas. Since B:>0 for 1<;<4, this
case is divided into the following:
1) v»,>0, v.>0, v;=0, 2) v;>0, v,>0, v;<0,
3) »,>0, v,<0, v;<0, 4) v,=0, v,>0, v;<0.
If v,>0, v,>0 and »,=0, then
Xypaatvsas Xniaig+vaase Xysas( Xuby Xube— X#Bs Xuba)
:X;zangsas(erax_X;me;wlsX:xau)
+X;xalngl“13*”3“8){:1“14(){;%2_Xll'zalegsast:wu)
+Xliz“21X;1a12X;1011s+P2023X:1au+V2424(Xgsas_—X‘;aamX;s"azX:sau)
E(f1, for [)EPETY .
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Since
X'{za21+”sa31X;1ﬂ12+%“32X§3“3(X1<#‘1)51X2(#~1>/92+ +X§”'1)53X,§”'1)ﬁ4)6513 ,

we get g=X#1X§2— X8 X8s+ep. The other cases work similarly. For g A,V A,,
the proof of ge&p is similar. By Lemma 4.6 p coincides with /4, hence we get
our desired result. Q.E.D.

If ¢~%(0) and Cy are respectively regarded as the algebraic subsets V(J,)
and V(I5) of the affine space A}, we see:

PROPOSITION 4.9. 1) For any x=(x1, x5, x3, x0)E¢~0), different from the
origin, we have x;#0 for any 1=i=4.

2) For any x=(x1, xs, X3, x4)E¢~YO0), different from the origin, we have
x7'=(x7Y x3%, x3%, x37)€E¢7H0).

3) Any irreducible component in ¢~ (0) is isomorphic to Cy.

PRrROOF. In the proof we use the notation in Lemma 4.6.
1) If x;=0 for some 7, x must be the origin of A}, because J, contains the

ideal (fi, fe f3) fa)-

2) We may take generators F,(1=k=u) of the ideal J as follows:

Fi= TL Yi— IL Vi

T, HEP ¢ (i, J))EP
with v;;p;;=0. In virtue of x€¢ 0)=V(/Jo)=V(n(])), we have
TT xyii%ii—TT x#15%1i=0,
which implies
TT(x7'p020— T (x5 is15=0.
This means x~'€¢ Y 0).

3) For any x=(xy, x3, x5, xs) ¢~ }0), different from the origin, let ¢, : k[ X]
—k[X7]//], be the k-algebra homomorphism defined by ¢.(X;)=x;X;+J,. Then
Ker ¢, contains the ideal /,, because

@o(p(F)) =TI (x; X% =TI (x;X;)*25#43+ ]
=11 x §1#4(TL (X ;)24 —TL(Xy)*t#19)+ ],
=T x5 iin(Fa)+Jo=/o.
Therefore ¢, induces the homomorphism &,: 2[X1//o—k[X]//Js, which is an

isomorphism by 2). Since J, is homogeneous, ¢~}(0) has a natural Gnr-action.
Then we see that for any x<=¢~(0), different from the origin, we have
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¢ ,-1(the closure of Gn-x)=Cy

where ¢__, is the automorphism of ¢~'(0) corresponding to ¢,-1. Using Pro-
position 4.8 any irreducible component in ¢~%(0) is isomorphic to Cy. Q. E. D.

Lastly, for our purpose we classify neat numerical semigroups H with
M(H)={a,, a,, a;, a,} as follows:

DEFINITION 4.10. In virtue of (ai, a., as, a)=1 and Lemma 4.7, there ex-
ists a unique positive integer v such that

«a, —Qye —j3
Va,=|—s (42} — Mg :D.
—Q3; s Qas

Then the numerical semigroup H is called to be v-neat.

Our main result in this section is the following:

THEOREM 4.11. 1-neat numerical semigroups H are of torus embedding type,
hence if the characteristic of k is 0, then we get My+0.

PROOF. Let the situation be as in Proposition 4.4. Since a,=D, by com-
putation we get:

(1) Lo (H)={B.a,+B:a:+B.a,| ;=N and (B,, B, B.) satisfies one of the
following: 1) Bi< az+ay,, B:<ass, Bi<lay, 2) Bi<as, ag = Be< a, Bi<ay+as,,
3) a21+a3,§/91<a1, ,32<a32, ﬂA<a24+a34, 4) a31§,31<a1, a32§192<a32+a42, ,34<
as;, ) ,31<a31, a32§ﬂ2<am+a92, a,4+a34§‘84<a4, 6) asl§ﬁ1<as1+a41, A3ty
§ﬁ2<(12, ,34<as4},

(2) Lo (H)={B:a,+Bsa:+p.a.| i N and (B, B., Bs) satisfies one of the
following: 1) Bi<as+as, Be<ss, Ba<las, 2) Bi<as, au<pB:<as, Bi<a+as,,
3) a’21+0'31§,31<a1, /32<asz, ,B4<a24+as4, 4) a31§ﬁ1<a1, a32§ﬁ2<a2, ,34<a34};

(3) a) Lo (H)={B.a,+B:a,+BsaslB:=N and (B,, B:, B.) satisfies one of the
following: 1) fi<ay, B:<as, Bi<as, 2) Bi<as, Ba<ap, au=f.<a, 3) ay=
,31<a1, ﬂ2<asz, a34§ﬁ4<a24+a34, 4) ,31<asx, asz§ﬁ2<az, a34§.34<a’14+a34},

b) L. (H)={B:a:+Bsas+psa, ;N and (B, Bs, B.) satisfies one of the
following: 1) B.<a,, Bs<as, Bi<ay, 2) f:<as Bs<ays, an<pf.<ay+ay, 3)
,82<a32, 193<a13, a14+as4§}94<a4}:

¢) Lo (H)={Bia:+B:a,+p.a,p:=N and (B, B: B.) satisfies one of the
following: 1) /91<a’21+0»’31, ﬁz<a32, 194<a4, 2) ﬁ1<a31, a32§192<a2, /34<a14, 3)
0«’21‘}‘“31§191<a1; ,82<a’sz, /34<a24},
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(4) a) L, (H)={B:a:+p:a:+B.a,| B:€N and (8;, Bs, B.) satisfies one of the
following: 1) 8;<asi, Ba<ass, Ba<as 2) Bi<as, asn=pfe<as, fi<aiy, 3) au=
,81<a1, ,82<a32, ,84<az4}:

b) L., (H)={B1a:+p:a:+Bsas| BN and (Bi, B2 Bs) satisfies one of the
following: 1) B;<ay, Be<as, Bs<au, 2) fri<ay, Be<aus, @u=fs<as 3) fi<ay,
a4z§,82<a2, a4s§ﬁs<as},

¢) Lo, (H)=1{B:a:+Bsas+psas|f:€N and (B, Bs, Bs) satisfies one of the
following: 1) B.<as, Bs<as, Bi<ays, 2) Be<as, Bs<ais, au=pfi<ad,

(5) a) Lg,(H)={Bsa:+Bsas+p.aslB:€N and (8., Bs, B.) satisfies one of the
following: 1) B;<as, Bs<ais, Bi<ar, 2) Be<ats, ais=Ps<as, fi<ayn, 3) f.<
U3, ,Bs<a1s, a14§ﬁ4<a4}s

b) Lo,(H)={B:a:+Bsas+p.a:|f:EN and (B, Bs, B.) satisfies one of the
following: 1) B.<as, Bs<as, Bi<au, 2) Ba<as, Bi<aus, auspi<al.

Using the above and Lemma 4.6 we get J,=Iy. For example, in the case (4)
¢) we will show that J,=I4, It suffices to show that J,2/5. We use the nota-
tion in Lemma 4.6. Assume that A.#0, i.e., take

X581 XE2— XEs Xbrc A, , hence f.a;+ B:a.=Bsas+ Bia,.
Then 1) implies 8,=a,,, hence by 2) we get S:=a,s. Therefore we have
Bia;+ B2a,=(Bs—a13)as+(Bi— 1)@+ 1305+ a1,
=(Bs—ams)as+(Bfi—a)ataiay,
which implies
Beas=(a;— B1)a,+(Bs—as)as+(Bi—ai)a,.

Since 0< B:<as this contradicts the minimality of «, hence A,=0, which
implies A¥=0. Now we have

g3=X‘{'21+“41X§43——X‘532X€;14eAs .
Take X81X8s— XB:XB8:< A,, different from g,. Then 1) implies B,=a,, hence
by 2) we get B;=a;,. Therefore we get

A= {g,= Xqu+ea Xges— Xg32 X514} ,
Lastly 1) implies A,=@. Hence by Lemma 4.6 the ideal I, is generated by
f1, fo, fs, fo and g,. Since we have

W(Y21Y41Y43"‘Yszyu):tlﬁltgltst‘ttgltstz“‘tztr—;o
and
77(Y21Y41Y43—Y32Y14): X‘f“*““X‘a’.‘“—X‘é”Xi'“:gs ’
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we get IS J,. The other cases work similarly. Using Lemma 1.2, H is of
torus embedding type. Q.E.D.

REMARK 4.12. 1) By calculation, any neat numerical semigroup with M(H)
={a,, a,, as, a,} and g(H)=<8 is l-neat.

2) For a y-neat numerical semigroup H with v=2, ¢~*(O)=Spec k[ X]//,
does not necessarily coincide with Cy=Spec k[ X]/I,. For example, let H be
the numerical semigroup with M(H)={10,11, 14,13}. Then g(H)=16 and H is
2-neat. Using Lemma 4.6, I is generated by

flzX}—XSXE; f2:Xg—XfX47 fS':Xg_X?ng f4:X§—X2X§,
f5=X?X2—X§X4, f6:X1X3“‘X2X4 and f7=X1Xf—X§X3,
hence pu(H)=7. But J, is generated by f,, f., fs, f4 and X2X3— X2X2 More ex-

plicitly, as an algebraic subset of A} we have V(/J,)2V (), because (—1,1,1, 1)
V(Jo)—VUx).

5. Symmetric numerical semigroups generated by 4 elements.

In this section, we always assume that H is a numerical semigroup with
M(H)={a,, a,, as;, a,}. Then using Bresinsky’s result we will show that
any symmetric H is of torus embedding type, in this case if H is not a com-
plete intersection then it is l-neat. In the symmetric case, a set of generators
for the ideal I is given by the following, which is due to Bresinsky:

REMARK 5.1. Let H be symmetric, i.e.,, 2g(H)=C(H).

(1) When H is a complete intersection, renumbering a,, a,, a;, a;, we may
assume that X¢1— X%2e1y.

a) The case X$3—X%+l,. Then (a4, a.)(a,, a)E<a,, a,>N\{as, a.>, hence
we put

(ai, az)(as, a)=p1a1+Bea.=Psas+Pay.

In this case,
Ip=(f1=X11— X352, fo=XP3—Xq1, fi=XP1XE2— XBs XE4),

b) The case X§3—X$¢&ly. Then H is a strictly complete intersection.
(2) If H is not a complete intersection, renumbering a,, a., as, a, we have

Ip=(fi=X{1—XguX{1e, fi=X§2— X711 X7, fo=X§3— Xfe1Xgs,
fi=X54— Xge2 X943, fr= X921 Xg43— Xg32 X914)

where
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O<ay<aj;, @1 =0n+as, Q=0pta;, Q=i+, o=ty
In this case,

‘ Q1 =030 4+ A3all130ay , Q2= Q21030+ 031X y30lzy Rt 20 2700 e ol 23 TV SV
and

A4=0000 3+ 01 0413,

hence H is l-neat.
PROPOSITION 5.2. Any symmetric H is of torus embedding type.

PROOF. In virtue of Lemma 2.3 and Theorem 4.11, it suffices to show that
in the case of Remark 5.1 (1) a) H is of torus embedding type. Renumbering
a, and a, (resp. a, and a,), we may assume that B,#0 and B;#0, hence the

following four cases occur:

and
4) B,=0 and B,=0.

For the case 1), let
T kEZ’ Y:I:k[Zh R Z4, Yl} Tty Y4] _—> k[:tfly Tt ti5:1.—.|
(resp. n: k[Z, Y] —> k[ X]=Pk[X;, -+, X,])

be the k-algebra homomorphism defined by =#(Z;)=t, for i=1, 2, n(Z;)=t, for
7=3, 4, n(Y )=tss, for k=1, 2, 3 and =(Y ,)=tt.t5' (resp. p(Z;)=X%t and 9(Y;)
=X#t for 1<7/=<4). Then we see easily that Iy27n(Kerz). Moreover, since
F\=Z,—-27, Fy=Z,—Z, and F;=Y,Y,—Y,Y,=Ker z, we have I z=(n(F,), p(Fs),
y(Fy)), which is generated by the set n(Ker z). Using Lemma 1.2, H is of torus
embedding type. The other cases 2), 3), 4) work similarly. Q.E.D.

6. Almost symmetric numerical semigroups generated by 4 elements.

In the last section we will give another examples of 1l-neat numerical semi-
groups, which are called to be almost symmetric, i.e., C(H)=2g(H)—1. In this
section we are devoted to proving that any almost symmetric numerical semi-
group H with M(H)={a,, a., a;, a,} is 1-neat. First we investigate the pro-
perties of almost symmetric H with M(H)={a,, -+, axz}.

LEMMA 6.1. Let H be a numerical semigroup with M(H)={a,, :--, a,} and
h be its element.
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0) For any 1=<i=<h there exists a unique 1=h;=<h such that w,(h)—w,()=
wy(h;) mod h.

1) H is almost symmetric if and only if there exists a unique 1,&[2, h—1]
such that 2wn(i)=wnr(h)+h and that w,(@)+wr(h)=ws(h) for all i+i,.

PrROOF. The definition of L,(H)={w,(1)< :-- <ws(h)} means 0). We see
easily :

g(H)=2 [wa()/h] and C(H)—g(H)= 3 [@nh)—wa@)/h]

where [ ] is the Gauss symbol. For any 1=<:/<h there exists a unique n;eN
such that w,(h)—w,(@)=w,(h;)—n;h. Hence H is almost symmetric if and only

if é}lnizl. This implies 1). ' Q.E.D.

PROPOSITION 6.2. Let H be an almost symmetric numerical semigroup with
MH)={a,, ---, a,}, and let j, b be two distinct element of [1, n] such that
aja,-zl%aﬂa, with ijk;l.

1) If a,k;Z, then a)ak(a,,)—(aj—l)aJELak(H)-

2) We have

P Bia+(a;—a; if wak(ak)_(aj—l)ajELak(H)-

lerl, nl-(k, j)
Wgq k(a k)::

ana;+(a;—2)a; otherwise.
lerl, n)-1k, j)

PrROOF. 1) Since (a;—1)aje L, ,(H), by Lemma 6.1 it suffices to show that
(a;—1)a;#wq (o)  Where 2w,,(i0)=w,, (ar)+ax.
Assume (a;—1)a;=w, (7). Then
W (@)t a,=2a;—1a;=(a;—2)a;+ E}ja,-;a, .
Hence we have
a)ak(a,,)——a,,=(a,-—2)a,-+(ajk~—2)ak—{—lem,E_(Lk)a,;a;.

This contradicts w, (ar)—ar€EH.
2) In view of a;z=1, if @, (ar)—(a;—1)a;€ L, (H), then

Wq ,(ar)= > Bia+(a;j—1)a;.

ler1, nl-{k, Ji
If wq,(ar)—(a;—1)a;& Ly (H), we have

2<a.i— l)aj:'—zwa k(io)‘:‘wa k(a k)+ ay,
hence
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we (ar)=a;a;+(a;—2)a;—ar= > anpat+(a;—2a;+(a;p—1)a,
lerl, ni-j, k)
- 2 ) a,-;a;—{—(aj——-Z)a,-. Q E.D.
le1, nl-1j, k}

For the remainder of this section we assume that H is a numerical semi-
group with M(H)={a,, a,, as, as}.

PROPOSITION 6.3. Let H be almost symmetric and let k<[1, 4] such that for
any j&[1, 4], different from k, we have aja,:lz_ aja; with aj,=1.
%]

1) For any je[1, 4], different from k, the following are egivalent:
a) wak(ak): > ,),Bzat‘i‘(aj—z)aj,

lE[1, 43 (%, j
b) wa,(ar)—(a;—1)a;& Ly, (H).
In this case, a;,=1 and B,=aj for l€[1, 41— {k&, j}.
2) We have
Wq (ar)=(a;—1)a;+(a;—1)a,+(a;—2)a;

and

L, (H)y={B:a;+pia;+B;a;|0=p:<a;, 0=, <a;, 0= 8;<a;—1} U a;—1)aj}

for some permutation (k, i, !, j) of [1, 4].

PROOF. 1) Proposition 6.2 2) implies b)=>a). By the assumption we have
Bi<a, for [[l, 41— {k, j}, which induces B,=a;;. Assume that w,,(a;)—
(a¢j—1)a;e L, (H). Then we have

/Slal‘l_(aj—z)aj: > ﬁfaz‘i‘(aj_l)aj-

lerl,4]-(k, J ler1,4]-(k, j)
This is a contradiction.

2) Renumbering a,, -+, a,, we may assume k=1. Now assume Wq,(a1)—
(aj—1)a;e L, (H) for all j=[2,4]. Then by Proposition 6.2 and the assump-
tion, we get

wal(a1):(a2—l)az+<a3_1)as+(a4“‘1)(14,
which implies
La1<H): {‘3202—{—‘3303+‘B4a4|0§‘3i<ai} .
This contradicts Lemma 6.1 1). Hence there exists a unique j=[2, 4] such that

2(a;—1)a;=wq,(a;)+a;, which implies

wq (a)= 2 Bia+(a;—2)a;.

lere, 41-15)
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Therefore we get
wq,(a)=(a;—1)a;+(a;,—1)a;+(a;—2)a;
for some permutation (7, /, j) or (2, 3, 4). Hence we have
L. (H)2{Bia;+pia,+;a;|0=8:<ai, 0=8:<a;, 0=8;<a;—1}\J{(a;—Da,} .

Assume z=7;a;+7:0;+(a;—1)a;€ Lo (H) with (75, r)#(0, 0). Since wq,(a,)—z<
L. (H), we put

we,(a)—2z=v;a;+via,+v;a;
where v;<a;, v,<a; and y;<aj;, hence
(ai—1—ria;i+(ai—1—r)a,—a;=via;+via,+v;a;,
which implies v;+1=0, a contradiction. Q.E.D.

By tedious computations using Proposition 6.3 we can give generators of the
ideal Iy in the case of almost symmetric H.

THEOREM 6.4. Let H be almost symmetric. Then renumbering a,, a,, a,, a,
the ideal Iy is generated by

fi=Xa—XguXqu, fy=Xp—XmXiu, fi=Xp—XmXge,
f4:Xf{4—X741X‘2“2X‘§43 and g=X‘1’21+"41X‘§43—-—X‘532X§14
where 0<aij<aj, Q=01+ A1+, Ae=Qgo s, Q=013+ A5 and o, =a;+ Az,
which imply p(H)=5. More explicitly we obtain a;s=1, aj,=a,—1, a=1, as;=

a1 —ag—1, ap=1, a,=1, aj,=a,—1 and a,=a;—1. Hence using Proposition
6.3 2). We can show that H is 1-neat.

PROOF. For any 7€[1, 4], let f;=Iy be a polynomial of the type X%i—

Xgis. First, assume that there exist two distinct 7, j=[1, 4] with X%¢—
JEr1,43-14}

Xgiely. Then renumbering a,, -+, a, we may assume =1 and j=2. They
are divided into the four cases:

1) Xgi—X9iely for all {7, j{#{l1, 2},
2) Xp1—Xgsely and X —Xyaly,
3) Xgs—Xyeely and X{1—X§sely,
4) Xn—X¢sely and Xp—Xpeely.

The case 1). Then f;=X§3— X¢31.Xg32X¢3¢ and f,= X§+— X4 Xg42X%4s, These
are divided into the following :
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a) a5;>0, a$>0, iy >0, >0, b) a3 >0, a,>0, af >0, a,,=0,
¢) @3>0, a,=0, a, >0, a;,,=0, d) @3>0, a.=0, a,;=0, a;,>0.
a) Then we have
wq (a)=(a,—1)a;+(as—1)as+(a,—2)a,=apa,+aua;+(a—2)a,,
Wa,(a2)=(a;—1)a;+(as—1)a;+(a,—2)a,=aua:+aua;+(a,—2)a,,

which imply a;=a,=2, hence a;=a,, a contradiction.
b) Similarly, we get a;=a,, a contradiction.
¢) We have

g (a)=(az—1)a,+(a;—1)a;+(a;—2)a;

with {7, j}=1{3, 4}. This is a contradiction.
d) We get

wal((h):(az_1)02+(a3_1)as+‘84a4, wag(az):(al_l)a1+(a4“—1)a4+!9303,
which implies 8,=a,—1. Hence we have
Lal(H)z {,82(12+/9303+ﬂ404|0§/3i<a1;} ’

which implies C(H)=2g(H), a contradiction.

The case 2). Then f,=X$t—X¢1X¢42X¢4s, where we may assume a,,>0.
In the similar manner to 1) a), we get a,=a,, a contradiction.

The case 3). We have wa,(a,)=7:a:+72a0:+(a;—1)a,. Set d=(a,, a,) and
H'=d{d, a,, a;>. Then Ld(H,)gLas(H)- If V1(11+V202+V4a4:‘u1(11+,11202+ﬂ4a4
with v, <a, and p,<a, then y,=p, Using this, for any o’<<a,, a,> with
wa(as)—w' €Ly (H) we have

waa(as)“w’:ﬂla1+ﬂzaz+(a4—1)04

with p,, g.€N. Hence if o’'eL(H') with w.,(as)—w’ € L,,(H), then for any
v,€[0, a,—1] we get o' +va,& L, (H). Therefore we can see:

Lo (H)y={o'+via,|0' € L(H), 0=v,<a,} and weas)=wa(d)+(a;—1)a,.

Since we have wy(d)—wo’ € Ls(H’) for any o’ € Ly(H'), we get wq,(a)—owc L. (H)
for any we Lo (H), i.e., C(H)=2g(H), a contradiction.

The case 4). Then H is a complete intersection ([1]), which implies C(H)=
2g(H), a contradiction.

Secondly, assume: each f; contains st least three variables and there ex-
ists je[1, 4] such that the variable X; appears only in the f;,, Then we may
assume that
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fi=Xp—XpeXgXqn, fy=Xgi—XguXn, fo=Xp—XguXqn,
and

f4—_—X';4_X¢542X§43
with a;3>0, a;,>0. Hence we get

was(aa)z(az—1)02+(a4—1)a4+(a1_2)al,
wa4(a4):(az—1)02‘*‘(“3"‘1)03‘*‘(“1_‘2)01:
which imply a,a,=azas=asa.+as.a,, a contradiction.
Thirdly, assume: each f; contains at least three variables and there exists

J€[1, 4] such that the variable X, appears twice in the f;s. Then we may
assume that

fi= X — X312 X313 X314 | fo= X$2— X1 X8 X924 fa=Xgs— Xgs2 X934
and
f4:X¢I4-—X62'42X§43 .
The case a;,>0. Then we have
waz(az):(aa—l)as‘l”(a’A_1)a4+(a1—2)01;
wo(as)=(a;—1)a,+(a;—1)a;+(a;—2)ay,
wa4(a4):(aa“l)as+(aj_l>aj+(ai_z)ai ,
with {7, j}={1, 2}. If j=1 (resp. 2), then (a,—as)a,=a,+(as;—1)a, (resp. (a;—
ag)as=a;+(a,—1)a,), a contradiction. The case a;;=0. We have
was(as):(a1_1)a1+(a4“"1)‘14+(a2‘_2)(12;
wq (a)=(a;—1)a,+(as—1)a;+(a—2)a,,

which implies a,a,=asa;, a contradiction.

Lastly, assume: each f; contains at least three variables and all the variables
X; appear at least three times in the f;’s. Renumbering a,, ---, a,, these are
divided into the 10 cases in Proposition 4.4.

The case (1). Then we may assume:

wq,(@)=(az—1)a,+(as—1)as+(a,—2)a,,
we,(a)=(a;—a;+(a;—1)a;+(ar—2)a,.

Using w,,(a,)—a,=w,,(a)—a,, this is a contradiction.
The case (2). We have

wey(as)=(ay—1)a;+(a;—1)a;+(a;—2)ay,
we (a)=(ar—1Da,r+(a;—a,+(an—2)an.

This is a contradiction.
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The case (3) a). We have
was(aa):(al—1)a1+(a2*1>az+(a4'—2)a4;
wa4(a4):(a1—'1)a1+(a2_1)az+(a3_2>as-

Then (a,—1)a,=(as—1)as, a contradiction.
The case (3) b). We have

Q)a4(a4):(a1"‘1)a1+(a2_l)az+(aa’_2)a3 »
wa,(a))=(az—1)as+(a;—1)as+(a;—2)a,.

Moreover,

a)as(aa)z(al"1)01‘|‘Tzaz+74a4 or (a;—2)a,+aud,.

Using e, (@) —a:=wa,(as)—a3=wqe,(a,)—ay, this is a contradiction.

The case (3) c). We have
wa,(a)=(as—1)as+(a;—Da;+(a;—2)a;,
way(as)=(a,—1)a,+(a;—Da;+(ai—2)a;

This is a contradiction.
The case (4) a). We have

was(as):(ar"1)a1+(a2_1)02+(6¥4_2)a4
and
wal(al):(ag—l)ag+rgaz+74a4 or (a'3'_2)(13+a32a2 .

This is a contradiction.
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The case (4) b). wa4(a4)=(ai—l)a,-—%—(aj—l)aj—i—(a;—-2)a,, a contradiction.

The case (6) a). We have
wo,(a)=(as—1)as+728:+74a: Or (as—2)as+ a0
Moreover,
wo,(a)=(a,—1)a,+ B:a:+Bsas or (as—2)a,tayza,

This is a contradiction.
The case (5) b). We have

g, (a)=(az—1)a,+(as—1)as+r.a, or (az—1)as+(as—2)as,
Way(@2)=(as—1)as+(a,—1)a,+7:a, or (as—Das+(ai—2)ay,
wag(as)=(a4"‘1)a4+(a1—1)01+7202' or (a,—l)a,+(a;—2)a,

and

wa4(a4):(a1'—1)al+(0‘2—1)az+7303 or (a;—1)a,+(a:—2)a,.
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If we renumber a,, ---, a,, each latter case is reduced to the case (4) c¢). For
example, let wq (a)=(a:—1)as+(as—2)as. If wg,(a:;)=(as—1)as+(ai—1)a,+11a,,
then a,a,=(r1+1)a,+a;+(a,—1)a,, whose case is reduced to (4) ¢). If w,s,(as)=
(as—1)as+(a,—2)a,, then aza,=a;+as+(a,—2)a,. If a,=2, we replace f, by
Xi—X,X,, which is reduced to the third case, a contradiction. Hence we have
a,=3, whose case is reduced to (4) ¢). Therefore for any 7i€[l, 4], wa,(a;) is
equal to the former case. Then we see:

Ao+ a3 =a;, Aptap=da,, aztasz;=a; and aputa=a,.

Using wq,(a;)—a1=wq,(a,)—a, We obtain

we,(a))=(a:—1)a,+(as—1)as+(ai—1)a,
=(ag—1)as+(a;s—1)as+(a;+a,—1)a,,
which implies
L. (H)2{B:a:+Bsas+Bia. ;€N and (B, Bs, B.) satisfies one of the following:

1) Be<as, Bs<as, Ba<lay, 2) Be<ass, Bi<ays, au=p.<ai}.

Since there exists a positive integer v such that

a1=v (@314t Ag21354) ,

the above inclusion becomes the equality, hence for any we L,,(H) we have
wq,(a))—wE Ly (H), i.e, C(H)=2g(H), a contradiction.
Therefore, if H is almost symmetric, renumbering a,, -+, a, it is reduced
to the case (4) ¢), i.e,
fi=Xp—XguXgn, f=Xp—XnXge, fe=Xgp—XiuXge

and
f4_—_—_ X¢14 — Xcl'qunng .

Moreover,
Wo,(a)=(a,—1)a,+(as—1)as+(a,—2)a,=ana,+ausas+(a—2)a,,
which implies a,=1, ap=a,—1 and a,=a;—1. Now
0o (a)=(as—1)a,+(as—1—ay)as+(ai—2—a)a+asa,,
which implies a;,=a,—1. Moreover, we get
cz),,4((14)=((x1—1)a1—}—(cz,z——.l)az—i—(afs,—l—ozw)as
=(a;—1l—ay—ag—an)a;+H(a—1—au+a—ag)a,

+(as—ayg)ast+(a,—az)a, .
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If ay=ay,, then a;<as+as+au. If as<as,, then we have
W (a)=(ar—1)a;+(az—1)a,+(as—2)as
=(Qg+Qs1) Q1+ (Xse—Az) a2+ (as—2)as,
which implies az+as;=a;—1, hence a;=as+as+aq. Since
A0+ 00,0305+ a,a,= (s g1+ @) a1+ (g +age) @,

F(aystags)as+(autasdas,
we have

A=+ A+, Q=0+ A, Cg=ap+a, and a,=ay+ds,
which imply |
an=1, apn=a,—a,—1, ap=1, ap=a,—1,
ap=1, ag=a;—1, ay=a,—1, au=1.
Since we have
Lo, (H)={B:as+Bsas+ B1a:| 0= fo<as, 0= fs< s, 0= 8,<a,—1} Y {(a,—Dad},
H is 1l-neat. Q.E.D.

Conversely, by simple calculations we get the following:

THEOREM 6.5. Let a;>1 for 1=<i<4 and let 0<au<a;—1. If a,=a.as(a,
—1)+1, az=a210‘sa4+(a1—a21"1)(“3—'1)+as, as=a1a4+(a1_az1_1)(“2—'1)(“4—1)
—a,+1, a,=ayas(ag—1)Fag(a—1)+as and (ay, a,, as, a)=1, then H=[<a,, a,, as,
as> is an almost symmetric numerical semigroup with M(H)= {a,, a,, as, a,} and
the ideal Iy is generated by

fisXn—X, X3, fi=X5—XiuX,, fi=X3—X{1aumlX,,
fi=Xp— X, X5 X307 and  g= X X3 l— X, X300t

PROOF. By the assumption, we have
aa,=az+(a,—1)a,, a,a,;=aza,+a, and asas=(a;—an—1)a;+a,,
which imply aja,=a,+(@;—1)a,+(a;—1)a,. Using the relations, we get

Lal(H)': {ﬁzaz+ﬁsas+ﬁ4a4 0= ﬁz<a2, 0= ﬁs<a’s, 0§ﬁ4<a4—1} U{(a,—Day}
and
a)al(al)z(az—l)a2+(as——1)a8+(a4—2)a4 )

which show that H is almost symmetric. Moreover, since we have
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L%(H): {,3101+,3202+ﬁsas|0§51<a1, 0§,32<az, 0§ﬂs<a3_1}

\ {ﬂxal‘l‘ﬁzaz‘*‘(as—l)as|O§ﬂ1§a21, 0§ﬁz<az_1}
Ul(@z—Das+(as—1as},

we get a,€<as, as, Ay, 8:Eay, s, Ay, A3 E<a,, Az, Ay, 6,%<ay, Ay, as). Using
the above relations, we get

La2(H)= {,Blax+[gsas+,34a4|O§ﬂ1<azn 0§.33<a'a, 0§ﬁ4<a4}
U{,Bxa1+[gsaalaz1§ﬁx<a1; 0§ﬁ3<a3—1}u {azia,+(as—1)as} .

The complete descriptions of L. (H), L., (H) and L,,(H) show that the above
relations are minimal. Q.E.D.
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