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CLASS GROUPS OF GROUP RINGS WHOSE COEFFICIENTS
ARE ALGEBRAIC INTEGERS

By

Yumiko HIRONAKA-KOBAYASHI

Let R be the ring of integers of an algebraic number field k. Let 4 be an
R-order in a finite dimensional semisimple k-algebra A. We mean by the class
group of A the class group defined by using locally free left A-modules and
denote it by C(4). We define D(A) to be the kernel of the natural subjection
C(A)—C(R2), where £ is a maximal R-order in A containing 4, and denote by
d(A) the order of D(A). C(f) is isomorphic to a (narrow) ideal class group of
the center of A, which is a product of the ideal class groups of algebraic num-
ber fields with modulus some real infinite primes. Hence, in a sense, we may
concentrate on D(A).

Let G be a finite group and let RG be the group ring of G with coefficients
in R. Then RG can be regarded as an R-order in the semisimple k-algebra
EG. We define T(RG) to be the kernel of the natural surjection C(RG)—
G(RYPC(RG/(Xs), where Yz=3 geRG, and denote by t(RG) the order of

gEG

T(RG). Then T(RG)=Ker (D(RG)—D(RG/(X)). Throughout this paper, Cp
denotes the cyclic group of order n and p stands for a rational prime.

Much investigation has been done on D(ZG) and T(ZG) (cf. [8]), but the
results seem to depend on the speciality of Z.

The purpose of this paper is to study D(RG) for the case where R+ Z. In
§1 we give some basic results on D(RG) and T(RG). In §2~§4 we assume
that R is the ring of integers in a quadratic field. We first give some results
on D(RCpe), and next examine the structure of D(RC,).

The author wishes to express her gratitude to Prof. S. Endo for the generous
contribution of his time and advice, in fact, some part of this manuscript has
been collabolated by those persons.

§ 1.

For a ring S, U(S) denotes its unit group. For an abelian group A and a
positive integer g, A” denotes the g-part of A and A“”> denotes the maximal
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subgroup of A whose order is coprime to ¢. In the case where G=C,, we
denote Y, instead of Y. Let & be an algebraic number field and let R be the
ring of integers of k. Let @,(X) be the cyclotomic polynomial of degree n.
Write R[ X/ (@.(X)=R[,] (resp. k[ X1/(D.(X))=F[L,]) where {, denotes the
class of X in R[X]/(@.(X)) (resp. k[ X]/(D.(X))).

PROPOSITION 1.1. d(RCp,,):IT(RCI,)”"’I"-j)f“’»i:lg[1 d(R[E,:]) for some integer

f(e)=0.
PROOF. Let ¢e=1. From the pullback diagrams

RC e+1—=R[X1/(®P ,e+1(X))=R[{ je+1] RCp—=R[{,]

L l |

RCpe (R/PR)C,,e ’ R"_;R/pR:

we have an exact sequence
0 —> K —> D(RC ¢+1) —> D(RC D D(R[L je+1]) — 0
and a commutative diagram with exact rows

U(RC,)JQU(RLL e+ 1)) —=U((R/pR)C o) —=K—==0

’

¢ p
URYQU(RLL,))—=U(R/pR)—=T(RC,)—0,

where the vertical maps are induced by the norm maps. Since ¢ is bijective
on the p’-parts and Coker ¢’ is a p-group, we see that K ?”>=T(RC,)‘®". Hence,
by induction on e, we have the equality as desired.

COROLLARY 1.2. Suppose that p is unramified in R. Then
i) D(RC,) (=T(RC,) is a p’-group.
iiy If d(RC,)=1, then D(RP) is a p-group for every p-group P.

PROOF. i) Since p is unramified in R, U(R/pR) is a p’-group and R[C ;]
is a Dedekind domain for every 7=1. The assertion follows from these facts.
ii) If d(RCp)=1, then D(RC ) is a p-group by (1.1). Then, by the induction
theorem of Artin ([1, §1]), we see that D(RP) is a p-group for every p-group P.

ProOPOSITION 1.3. i) T(RC,)= E}?‘I (RCpep) where pr|\n for each p|n.
pin
ii) There is an exact sequence

0—> Pe — T(che) —_—> T(ch) —_— 0)



Class Groups of Group Rings Whose Coefficients 159

where P, is a p-group whose exponent divides pe=* (resp. p®) if p is unramified
in R (resp. ramified in R).

iiiy Let G be a finite group of order n. If p|t(RG), then pln or p|i(RCy)
for some prime factor q of n.

PrOOF. i) Let H=RPM be a maximal R-order in kC,=kPkC,/(2,) con-
taining RC,. By ([2, Theorem 1]), we have
LU (A p)
D(RC,)= —2= ,
U(H) ynU(Ran)

where J,=Z, R M and R,=Z,® R. Since R, can be embedded in H,, the
z z
map U(,)=U(Rp)XU(Mp)—U(M,); (x, y)—yx~*, induces an isomorphism

I1 U(SHp)

~ pln
D(RCn)= U(M) pﬂn u(R,Cr) ’

where u(R,C,)={x|(1, x)eU(Ran)QU(Rp)XU(Ran/(Z'n))}. On the other hand,
we have

IL U(SHp)

DARCA/(E )= g 5 T UR,Cal( S

Hence we get
U(JH)H U(R,Cn/(20))

For each p|n, let e, be the integer such that p°r[n. Since R,C./(2 )=

RoCoeal Z B, B, RoCoeslCsD and R,Ca=R,C,e®B( %epfepcpep[cd]x we
see that
o UCHONU(R ,C hep/(Z ep)
TkRCo=11 UHpIn(R,Coep)

where M(p) is a maximal R-order in ka/(Z’pep) containing RCpep/(Z’pep). This
shows that T(RC,)= &P T(chep).
yan

ii) Let ©; be the maximal R-order in k[Cpi] containing R[C ;], 1=i=e.
Then ﬂ:ié_Bl O, is a maximal R-order in kae/(Z’pe) containing RCpe/(Z'pe), and

we have

U U(R[E,D)
U©9)u(RyCp)

U(IU(R,C,e/(Z o)

TRC) = anu(R,C,)

and T(RC,)=
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The natural surjection Cp,—>Cpe/Cpe_,§Cp induces the surjection T(RCpe)—>
T(RC,); (x, y)—x where (x, y)eU(@l,p@(i@oi,p». Set P,=Ker (T(RC,)—
T(RC,)). Each a=P, is represented by an element (x, y)eU(RpCpe/(Z'pe)) such
that x=uv for some ucU(O, and (1, v)eU(R,C,). Let f(6)=p;:‘_-,,:bi&‘:(x, )
eU(RpCM/(Z pe)), where b;€ R, and ¢ denotes the image of a generator o of

) pe-2 pe-2

C,e in RpCpe/(Z'pe), and let f(a)-—-t_;obia‘ERpCp,. Then x=f({,)= ;20 b;=uv
pe-2

=u (mod ({,—1)0,,,), and so we see that f(1)= % b;cU(R,). Hence f(o)=

U(R,C,). Then a=(x, 3)=0D, 7)), because (x-'f(1), y-'f()€u(R,C,.).
Thus we know that

PegN:{pI:(x’ x)eT(RCpe) xEU(Rp); X=Uu (mOd (Cp_1>01,p)}.

for some ue U((O,)
It is easily verified that

*) RO C—DRICIDP*Cp—DRIE 20D - BCp,—DRIC IS RC,. .

Let p.€N and x=u (mod ({,—1)0,,,), u€U(©,). If p is unramified in R, then
0;=R[C,:] and u"'x€1+({,—1)01,,, and hence (ux)P e 1+ —1)pe 01 5
By force of (*), we know that p£°":l inT (RCpe). Thus we see that exp (P,)| p*L.
Even if p is ramified in R, (u~'x)?€1+(,—1)R,[{,], and so we have exp(P,)| p°.

iii) By the induction theorem of Artin ([1, §17), we have that T(RG)™"
E%}T(RC)“‘”, where C ranges over all cyclic subgroups of G. The result

follows from i) and ii).

REMARK 1.4. By force of (*) above, if p is unramified in R, we can see
that the exponent of D(RC,)® divides p°'. Further assume that R is the
ring of integers of a real algebraic number field 2 and p=5. Then
exp(D(RCpe)@’):p“".

In fact, let 7z denote the endomorphism of RC . induced by o—o0~!, where
Cpe=<o->. Then D(RCpe) can be regarded as a {z)>-module. For every <{z)-
module M, we put M\—={meM|m*=m"'}. Let V be the kernel of the natural
surjection D(RCPHI)‘P’—»D(RCPC)“”. Then, along the almost same line as in

([4)), we can show that V-= G:BI(Z/zb“Z)"“, where v,=(1/2)[k: Q1(p—1)*pe-*~*
for a<e and v.=(1/2)[k: Q1(p—1)—g, g is the number of prime ideals in R

over p.

PROPOSITION 1.5. Suppose that p is unramified in R. Then



Class Groups of Group Rings Whose Coefficients 161
D(RCpe)“”’:—’:D(RCp)e (direct sum).

[
Proor. Let ©;=R[{,:;], 1=i<e. Then O, is a Dedekind domain and @ O:

is a maximal R-order in kae/(Z’ pe) containing RCpe/(Z' 2o and the product p;
of all prime ideals over p in ©; equals (1-C,0), 1=7/<e. Hence we get

D(RC,)=TLU©:.5) / TLU©)u(R,C,0

[ _U(R/pR)]Xl I (+pi0i.,) ]

“ L= @i(Uzézj)v i[lUl(O,-)u(RpCpe)

where ¢; is induced by the natural surjection 0;—0;/p;=R/pR and UY(O;)=
Ker ¢;=U©)N(1+p:0;:,). Then it is easily seen that the former factor is iso-
morphic to D(RC ). On the other hand, | D(RC o)®”|=d(RC;)* by (1.1) and
(1.2), and so we have

UR/pR)/¢:U0:))=D(RCp), 1=i=ze.

Thus we complete the proof.

§2.

Hereafter, let 2 denote Q(+/m), a quadratic field, where m is a square-free
integer, and R be the ring of integers of . We write w,=+/m (resp. ~v/m +1/2)
if m=£=1 (mod 4) (resp. m=1 (mod 4)).

Let ©; be the maximal R-order in k[ il and p; be the product of all the
prime ideals over p in ©;, 1=/=<e. Then

D(RC, )= [LU®:.,) / TLU©)u(R,C,)

=1 edU©OD) 37 | frureauRr,C,.)

i=1

[ Lol 1] oo ]
where ¢;: U(©,)—U(0;/p;) is the natural map and UYO;,)=Ker ¢;, 1=i<e. It is
easily seen that the latter factor is isomorphic to D(RCpe)“’).

PROPOSITION 2.1. Let p be unramified in R, i.e. pYm if p=x2 and m=l
(mod 4) if p=2. Then

exp(D(RC o)P)|p*~! and D(RC,)®?=D(RCp)°.

PRrROOF. This is a special case of (1.4) and (1.5).
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We write p*=(—1)P"1/2p,

PROPOSITION 2.2. Let p|m, and m=p* if p+2, and let m=1 (mod 4) and
mx—1, +2 if p=2. Then

i) The exponent of D(RCpe)“” divides

2e+1 if p=2, m=2 (mod4) and e>1, or
{p" otherwise.

ii) For the case p+#2 and m=np*,
D(RC )P =D(R'Cp)*  where R'=2Z[w.].

iii)y For the case p=2 and m=—n where n=1 (mod 4),
D(RC,)*>=D(R'Cy)*? where R'=Z[w,].

iv) For the case p=2 and m=2n or —2n where n=1 (mod 4),

0 if e=1,2
D(RC, ) =
D(R'Cy**  if e=3,

where R'=Z[w,].

Proop. If p+#2 and m=np* then we see that O;=Z[w,, Cp,-], pi=(1—Cp¢)
and pO;S R[{,:], 1=i<e. Hence we get that exp(D(RCpe)‘p’)lpe and D(RCpe)“"’
=D(R'C_)??=D(R'Cp)®, where R'=Z[w,].

If p=2, m=—n and n=1 (mod 4), then we see that ©,=R and 0;=Z[wn, {,:]
for ;=2. Then, it is easy to see that exp(D(RC,)®)|2¢ and D(RC,)=0. For
e=2, we have

D(RC,)* @®D(R'C)=D(R'C,)*”,

where R'=Z[w,], and so, by (2.1),
D(RC,)®’>=D(R'C,)**.

If p=2, m=2n or —2n and n=1 (mod 4), then 0,=R, O, =Z[v/m, ~/—1,
Vm++/=1/2] and O;=Z[wa,, {,;] for i=3. The assertion can be shown simi-
larly for this case.

PROPOSITION 2.3. Let m=p* if p+2 and let m=—1, £2 if p=2. Then
the exponent of D(RCpe) divides p¢. Especially, it divides p*~'if p=3, 5 or p=2
and m=—1.

PROOF. Put 0,=Z[(,, 1=i<e. If p+2, then R® D @:BO)) is a maximal

R-order in kC . containing RC_, and so we have
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1 U(©:, ,B0:. )
D(RC,0) = —*
i—l:I1 U(Oi@ai)u(Rpcpe)

i_I_eIl {14704, p) X (14704, )}

= ’

{TLUO)XUHON u(R,C,e)
where 7;={—1 is a prime element of O, and UYO)=U@)NA+7:0s, p)-
Hence D(RC,) is a p-group. It is easy to see that u(R,C,.) contains
_IiII{(1—|~7r‘i0,-,p)><(1+7r‘i0i,p)}, where n=mn; and t;=1+(p—1/2)+(p—1)(e—1).

The assertion follows from the facts that U'(0:)={,=1+n; for each p* and
U©:)>3+( i+, —2) unless p=3 and that (14704, )Pt P S 1 gP-Dmtkg,
for every 1<=k<p—1, m=1 and /=1. The assertion for p=2 can be similarly

shown.

§3.

Let R be the ring of integers of k=Q(+/m). In the case m>0, we denote
a fundamental unit of R by em.. &, can be written as a+b+/m, a, bEZ or
(a+b/m)/2, a, besZ, 2 ) ab.

Here we investigate D(RC,) more precisely.

There is an exact sequence

0 — D(RC,;) —> C(RC,) —> C(R)®C(R) —> 0

and T(RC,)=D(RC,). Further we have easily

PROPOSITION 3.1.

D(RC,) m<0 m>0

Z/3Z m=5 (mod 8) and m=5 (mod 8) and en€Z[Vm]
m<—3

Z/27Z m=2 or 3 (mod 4) m=2 or 3 (mod 4) and 2|b
and m<—1

0 m=1 (mod 8), m=1 (mod 8), m=5 (mod 8) and
m=—1 or —3 em&EZ[Vm] or m=2 or 3 (mod 4)
and 2} b

From now on, p is assumed to be an odd prime. From the pullback diagram
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RC,———=R

R[61=RC,/(3,)——=R/pR=F,[~vm], where Cp=(0?,
¢

we have exact sequences

g
U(RESD) > UF, /D) —> T(RC,) —> 0
0 — T(RC,) —> D(RC,) —> D(R[6])) — 0.

Here ¢ is the restriction of the canonical surjection ¢: R[6]—R[3]1/(6—1),
&(J(x))=the class of the ideal (x, 2,) and

F,DF,
Fplvm]=
F

p

m
it ()=

m
if (7)
where (%—) is the quadratic residue symbol.

Let p Y m and let » be an element of R[6]=R[{,] such that

i) if (%):1, then ¢(r)=(a, 1)eU(F,)PU(F,), where a is a generator of
U(F ),

ii) if (%):—1, then ¢(r) is a generator of U(sz).
Noticing that H(U(Z[L,1)=U(Fp), we have

LEMMA 3.2. In the case p f m, D(RC,) (=T(RC,)) is a cyclic group gener-
ated by the class of (r, 2,), where r is given as above. Its order divides p—1

(resp. p+1) if (%):1 (resp. (g—)z—l)

For an imaginary abelian field K, let K, be the maximal real subfield of K.
Denote by U (resp. U,) the group of units in the ring of integers of K (resp.
K,) and denote by W the group of roots of unity contained in K. Then the
unit index Qg of K is defined by the index [U: WU,]. It is known that Qx=1
or 2. (cf. [3, §20-26])

Assume that p Y m and m<0. Let K=Q(,, ~/m) and K;=Q(,+,™"). Let
Gal (K/Q)={ag, t|0? '=22=1, ogr=710), Gal (K/K,)=<o? '?r) and Gal(K/K,) =
{o?~Y2% ). The characters of K are given as follows:

i) the characters of K/K,;
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{ g—>Cho1

c—>1, 1<i<p—1 and 2/}i.

{ G —> C%—l/z

o1, 1sj=27h

ii) the characters of K,;
{ 0'!———)C§,_1
T—> —1, 1=/<p—1and 2/:.

{ g—> C%—l/z

r—1, 1=j< 1’;1 .

Then we see that K/K, is unramified at p. Since we can compute the absolute
discriminants of K, and K, we see that the discriminant dg, x,=(x*m*), where

m if m=1 (mod 4) . . .
r={,—{,™* and m*= Thus, (p) is totally ramified in
4m otherwise

K,/Q, and so there is a unique prime ideal < over (p) in K, It is easy to see
that P=(z%, m/m).

PROPOSITION 3.3. Assume that p Y m and m<0. Let K=Q((,, ~/m) and let
O be the ring of integers of K. Then the following conditions are equivalent.
i) Qx=2.
ii) <@ is a principal ideal in K,.
iii) There exists a unit of © of the form (wx++/my)/2, where x, yE
ZIC,+E, 1.

PROOF. It is easy to see that i) is equivalent to
i)y K=K,(+/¢) for some unit ¢ of the ring O, of integers of K,.

On the other hand, we have

(&p—Cp ) =2" as ideals in O,.

Thus we get the equivalence between i) and ii). Let K,=Q(,+C,™") and O, be
the ring of integers of K;. Then K,=K,(r+/m*), and so O, has an integral
basis with respected to O,, since dg,x,=(x*m*) ([6]). As the discriminant of
/7 with respected to K,/K, is equals to 4z*m, we see that [O,: O\[zv/m ]]1=1
or 2. Thus every element of ©, can be written uniquely with the form
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(x+7ma/my)/2, x, yE0,. Assume the condition ii). Let a=(x'+r+v/my)/2, x’,
Yy €0, be a generator of ?. Since PO=r0, = must divide x’, and so we have
2| x’. Thus a can be writtn as (r2x+rx+/my)/2. Then it is clear that (xx++/my)/2
is a unit of ©, hence we have iii). Conversely, if there exists such a unit ¢ in
O, then rze is an element of K, and generates ®. This completes the proof.

THEOREM 3.4. Assume that p Y m and m<0. Let K=Q({p, ~/m). Then
i) The case where m+—1, —3:

p—1  if (%):1 and Qx=1

%1- if (%):1 and Q=2
d(RC,)=

p+1l  if (1’;—)—_——1 and Qx=1

p+1 e(my_ _

= (?)_—1 and Qx=2.

ii) The case where m=—1:

1’;1 if p=1 (mod 4)
d(RC,)=

—flj—l— if p=3 (mod 4).

iii) The case where m=—3:

2=l i 5=1 (mod3)

dRC=1

5 if p=—1 (mod 3).

Proor. There is an exact sequence

U) —Eb—> U(Fp[+/m]) —> D(RC,) —> 0.

Since (p) is totally ramified in K,/Q, we see that ¢(U(0,))SU(F,). On the other
hand, we have HU©,)=U{F,). Let m#¥—1, —3. If Qx=1, then U©)=
&ppU(©,). Thus we have

p—1  if (%):1
d(RC,)=
p+1 if (%):—1.
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If Qx=2, then U©)=<L,, e=(nx+my)/2>U(O,), for some ecU(O) by (3.3). ¢(e)
eU((F,) and e*=<{,>U(0,), hence we see that

2

% if (%):—1.

Let m=—1. Then K=Q(,, {,) and U(O)=<Lp, v/ —1, e=1—+/=1LpU0y). ¢(e)
is of order 4 in U(F,[+/—1])/U(Fp). Thus we see that

d(RC,)=

% if p=1 (mod 4)

d(RCp)=
(RCp) b1

4
Let m=—3. Then K=Q(,, &) and U©)=<,, Lo, e=1—ClppU(Os). ¢(e) is of

order 6 in U(F,[~/—=3])/U(F,). Since (?):(%

if p=3 (mod4).

), we see that

=1 if p=1 (mod 3)
e if p=—1 (mod 3).

REMARK 3.5. 1) Assume that p=3 (mod4) and m#-—1, —3. Let M=
Q(~/—p, ~/m) and let ¢>0 be a fundamental unit of M,=Q(+/—mp). Then the
following conditions are equivalent. '

i) Qr=2 ii) Qx=2 iii) «/—eeM.
2) Assume that p=1 (mod4) and m=-—q, where ¢ is a prime and ¢=3
(mod 4). Then Qx=2.

Proor. 1) The equivalence between ii) and iii) is clear. By [3, Satz 29],
ii) implies i). Let p be the unique prime ideal over (p) in M,. Then it is easy
to see that ii) is equivalent to the condition that p is principal. If Qx=2, then
we can take a generator a of @. Since Nk u,(P)=p, We see that Nk  u(a)
generates p. This establishes 1). 2) We may assume that ¢g+#3. Let b be a

primitive root modulo ¢, and let s:q;_ﬁ/z(l—cq”“cp). Then e<U(©) and ¢(e)=
~ 378/ i ~ — N
¢<qi1=‘°’102(1—cqb2 N=@(+/—g) € UF,). Hence s&{l,5U(Oy), and so Qx=2.

The next result is a special case of [3, Satz 22]. We give a direct proof
based on the idea of T. Miyata ([7, (2.6)]).
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LEMMA 3.6. Suppose that m>0 and wn<Z[{,]. Then U(Z[wn, ,1)=
LU ZTwm, £p+87D.

PROOF. Let r be the complex conjugation. For every ucU(Z[wn, {p]),
(u/u)(u’/u)=1. So we see that u"/u is a root of unity in U(Z[wn, {,]). Since
u’/u is mapped to 1 by the map ¢: U(Z[wm, ) —UFLwn]), u’/u=C{,* for
some 7. Then there is an integer j such that ({,’u)*={,’u. Hence we see that
U(ZLwmn, Cp D)=L U(Z[wm, Lo+Ep71D).

Let pfm, m>0, Nocwmyelemn)=—1 and p=1 (mod4). Then a system of
fundamental units of Z[w,, wn.] is given as one of the following three types
([5, Satz 117):

(@) €p, em and epm,

(b) €5, em and +/e,, (in this case, Noc piirre(epm)=1), or

(€) €p, em and +/epemepm (in this case, Ngc zmrie(€pm)=—1).

THEOREM 3.7. Suppose that p Y m and m>0. Then
i) If Nocwnie(em)=1, then D(RC,)® #0.
ii) If p=3 (mod4) and Ngc/m>ie(em)=—1, then D(RC,)*®=0.
iii) If p=1 (mod4) and Nqcymrie{em)=—1, then D(RC,)*® +#0
when the type of fundamental units of Z[wp, wn] is (@) or (b), and D(RC,)®»
=0 when the type of fundamental units of Z[wp, wm] is (¢) and p=5 (mod 8).

PrROOF. Let ¢: U(Z[wnm, {p+L, ])—~UF ,[+/m]) be the restriction of ¥ to
UZ[wm, £+C,7"]). Then, by force of (3.5), D(RC,)=Coker ¢. There is a
commutative diagram with surjective vertical maps

U(ZTwn, Cpt G )b UGF,Tv/])

A ” |Vt
U(Z[wn])2Im N, > U(F p[+/7])?-Y®
N | o lNz
U(Z)2Im N, = U(F,)?-2,

where Ni=Nom.cprtp-vietumr, Ne=Nqcym>ie, Ni(x)=xP"12, Nz:=Nr cmur, and
¢’ and ¢” are the restrictions of ¢ to Im N, and Im N, respectively. If Ny(en)
=1, then Im N;°N,={1}, and so 2||Coker ¢|. For the case where N,(en)=—1,

»=3 (mod 4) and (3;—):1, ¢’ Ny(em)=(1, =1) or (=1, 1) in UF,[vm])=UF,)
XU(F,). Since |UWF[/m])®|=4, this shows that (Coker ¢)*®=0. For the
case where Ny(en)=—1, p=3 (mod 4) and (%):~1, UF L/ m)® =<0(en)>®,
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because eZt'=—1 (mod p), and therefore we see that (Coker ¢)® =0.
To prove iii), we form the following commutative diagram with surjective
vertical maps:
U(Z LW, Cpt G5 ——— s U(F [/
NIi

U(Z[wn, wp])2Im N, e (F, /)P
sz‘
U(Z[wpm])2Im N, = [J(F )P~ 314
N,,Jl ’
U(Z)2Im N, P UF,)P-ve,

where N;, i=1, 2 and 3, are the norm maps and the other maps are natural.
For the case of type (a), Im N,S<{—1, ¢,>, and for the case of type (b), Im N,
S<{—1, epny and Ny(e,m)=1. Hence, for either case, Im ¢’ N3Ny N,= {1}, and
so 2| |Coker ¢|. If p=5 (mod8), UF [/ m)®P=UEF [~/ m]?~1*)®. Now con-

sider the case of type (¢). If (%)—-—1, UF [vm])P=Z/AZPZ/4AZ. Since
@' * N3 Nyo Ni(v/€pemepm) =" * Nyo No(2/€pempm®? H4) = @" o Ny(epn? 1) = @' (—1)=
=1, o(v/epemepm? MY is of type (EL, ¢) or (¢, 1) in U(F,)XU(F,), where ¢
is of order 4 in U(F,). Hence (Coker ¢)®* =0, because Im 2 {(a, a)lacU(F,)}.
If (%):—1, UF,[m])P-V=Z/4p+1)Z. We see that the order of
(v EpEmEpmP*i/®) is 8, because eh*=-—1 (mod p). This shows that (Coker ¢)®

=0, and thus the proof is completed.

REMARK 3.8. For the case where the type of fundamental units of Z[w,, wn]
is (¢) and p=1 (mod 8), we do not know whether D(RC,)®=0 or not.

PROPOSITION 3.9. Suppose that p|m and write m=np*. Then
i) D(RCp)=T(RCp)DD(RC,/(2 ).
Z/pZ if m<—3 or m>0 and p|b
0 otherwise.
iii) D(RC,/(Z )P is an elementary p-group of rank=(p—3)/2. Especially,
if n=1, then D(RC,/(Z,)) is an elementary p-group of rank=max (0, (p—7)/2).

i) T(ch)g{

ProOF. ii) There is a commutative diagram
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U(RC5 )L UF T/ 2.2/ p(p—1) Z—=T(RC,p)—=0
Nl, ’ lN’
U(R)2Im N— L UF, [yl 22/ 02,

where N(f(&))—-—inf(&") for every f(&)eU(R[&]),-.N’(x)=x1’" for every xe

U(F,[+/m]) and ¢’ is the restriction of ¢ to Im N .Then Coker ¢=Z/pZ or 0,
and Coker ¢=Z/pZ if and only if Coker¢'=Z/pZ. If m>0, then ¢’<N(ep,)=
¢’'(ef)=1 if and only if p|b. If m<—3, then U(R)={=x1}, and hence Coker ¢’
=Z/pZ. For m=-—3, we can compute directly that ¢ is surjective.
i) The conclusion follows from ii) and (2.2 i).
iii) Let n+1. Then we can write as

. 14+pS,
D(RC,/ (X)) = UG A+ pSy
where S=Z[wnp, {,], S=Z[w,, Lp], p is the unique prime ideal over pin S
and p=pS. Then the conclusion follows from (2.2 i) and the fact that
1+pS,
1+pS,
that p=7. Then

=pP~%%  Next assume that n=1. By force of (2.3), we may assume

e (1470,) X (1+70,)
PET AU o)X U O) {URpCp/(Z NIN(14+70,) X 1+ 70,)}

where 7={,—1 and ©=Z[{,]. The map U(RpCp/(Z'p))f\((1+7rO,,)><(1+7r0,,))

D(RC,/(Z

S (1+70,) X (14+70,) _9_0_> (14+70,) is surjective where ¢(x, y)==x. Since U o)
contains 14+ and 14z2—x%(,", each element of D(RC,/(¥},)) has a representa-
tive of the form (1, 1+7*x)e(1+70,) X (1+70,), x&0O,. The conclusion follows
from this, because u(R,C,/(3,)2 {1} X 1+=P-120,).

REMARK 3.10. If p=5 and n>1, then D(RC;/(2)®=Z/5Z. In fact, since
US)=<LsoU(Z[wa, ws]), it is easy to see that U‘(§)=U1(S)gl+p8p. On the»
other hand, there are examples of n for which D(RC;/(X)® =0, e.g. n=—1,
—3, —7 or —11,

§4.

In this section, we shall determine completely the structure of D(RC,).

LEMMA 4.1. Let m>0 and 3 ) m. Put em=(a+b/m)/2. Then



Class Groups of Group Rings Whose Coefficients 171

i) 3fa or 3)b.
ii) If m=1 (mod 3), then 3|ab.
iii) Niolem)=1 if and only if m=1 (mod3) and 3)a or m=—1 (mod 3)
and 3|ab.

PrOOF. The results follow from the facts that N, e(en)=a*—b* (mod 3) if
m=1 (mod 3) and that N e(em)=a’+b* (mod3) if m=—1 (mod 3).

We can refine (3.4) and (3.7) as follows.

THEOREM 4.2. Suppose that 3fm. Then (v/m, Ya) (resp. (—1++/m, X)) is
a Representative of a generator of D(RCy) if (m/p)=1 (resp. (m/p)=—1), and

D(RCs,) m<0 m>0
0 m=1 (mod 3) and (A), or Nielen)=—1
m=—1
or Tiay L et D mETL | or m=—1 (mod 3), 3[a
Z/AZ m=—1 (mod 3) and not (A) m=—1 (mod 3) and 3|b

where, for m<0, (A) means the property that =t smEUZ[wn, C:l).

PrOOF. For the case m<0, the result follows from (3.4), since the condition
(A) is equivalent to the condition Qx=2, where K=Q(;, ~/m). For the case
m>0, we see that D(RC)=UF[v/m])/p(U(Z[wx])) by (3.6), and so D(RC,) is
a 2-qroup. Therefore the result follows from (3.7 ii) and (4.1).

For the case m=—3n, we have, by (3.9) and (2.2),
D(RCy)=T(RC3;)®D(RCs/(25)) and
0 if n=1
D(RC,/(Z5))= ,
D(R’Cy) if n#1, where R'=Z[wn].

Hence we have

THEOREM 4.3. Suppose that 3|m and wrie m=—3n. Then
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D(RCy) n<0 n>0
0 n=1 (mod 3), (A) and 3} d,| n=1
or n=—1
Z/2Z n=1 (mod 3), not (A) and |

3fd, or n=—1 (mod 3), T
nx—1, (A) and 3} d \\

Z/3Z n=1 (mod 3), (A) and 3|d n#1 and N(e,)=—1

Z/4Z n=—1 (mod 3), not (A) and
3ld
Z/2ZDZ/3Z n=1 (mod 3), not (A) and n=1 (mod 3), n#*1 and
3ld, or n=—1 (mod 3), 3|b, or n=—1 (mod 3),
n#*—1, not (A) and 3|d and 3|a

Z/|3ZDZ/AZ gIEd—l (mod 3), not (A) and | n=—1 (mod 3), 3|b

where e,=(a-+bs/n)/2 if n>1, en=(c+d/m)/2 if m>0, (A) means the property
that /—en€U(Z[wa4, §]) if m>0, and N=Ng 70

Next we want to know representatives of generators of D(RC,) in the case
of 3|m. Since T(RC,) is generated by the class of (14-+/m, 3,), we have only
to consider D(RC,/(Xs)). Write m=—3n assume that n#+1. Let R=Z[w_g,],
S=R[{,] and S=Z[w,, {s]. Then we see that S is the integral closure of S.
Put p=(+/=3, +/=3n) (resp. (~/ =3, 14+(1++/=3n)/2)) if n=£1 (mod 4) (resp. n=1
(mod 4)). Then we see that p is a unique prime ideal of S which contains pi=
(v/=3)p and pS=(+/=3). First we note

LEMMA 44. An invertible ideal C of S such that CS is principal in S is
isomorphic to some p-primary invertible ideal of S not contained in p*.

PROOF. Let ¢’ be an invertible ideal of S such that ¢’=¢-!. Since pisa
unique non-invertible prime ideal of S, we have S[1/3]=S[1/3]. Hence, there
is ¢’eC’ such that ¢’S[1/3]=(c¢’) in S[1/3], and so there is a p-primary inver-
tible ideal g of S such that (¢/)=C’g in S. Since p*=(+/—3)p, g is isomorphic
to a p-primary invertible not contained in p%. Since C=C’'"'=gq, this completes
the proof.

Put a=(3, /=3n) (resp. 3, 1+(14++/—31)/2)) if nz1l (mod 4) (resp. n=1
(mod 4)). Then aS=(4/=3) and a?=(3).



Class Groups of Group Rings Whose Coeflicients 173

LEMMA 4.5. The following statements are equivalent:

i) a is non-principal in S.

i) In the case where n<0, U(Z[wy, {s))=<—1, (s, €-3a>, and in the case
where n>0, e,=(a+bs/n)/2, 3} a, 3|b.

PrROOF. Let nz*l (mod4). If a is principal, then we can write as a=
(3x+y+/=3n) for some x, ye Z[{;]. Further we see that +/—3/}y and (x, y)
=(1). Since 3=a,

W' +2z4/=3n)Bx+y+/—3n)=3 for some v’, zeZ[{,:].

Hence we have that 3xz+yv’=0, and so v'=3v for some vEZ[{;]. Then the
equality xz-+yz=0 implies that v=wux and z=—uy for some ucZ[{s]. Thus
uBx—y4/=3n)Bx+y+/—=3n)=3, and s0 u(xyv/=3+y+/n)xv—=3—yv/n)=—1
in 5. Hence there is a unit of type xo/—3+y+/n (x, y€Z[{]) in S. Con-
versely, if there is a unit in S of the above type, we see that a=3x+y+/—3n).
If n<0, then there is a unit of the above type when and only when the unit
index of Q&s, wy) is 2, i.e. US)=<{—1, s, v/—¢-gny. If n>0, then US)=<—1,
Cs, €2> by (3.6), en=a-+b+/7, and there is a unit in S of the above when and
only when 3|e¢ and 3fb. We can similarly prove the assertion for the case

where n=1 (mod 4).

LEMMA 4.6. Assume that n=—1 (mod 3). Put ¢g=(3, v/—3n++/—3) (resp.
(3, v/—=3+@B++/=3n)) if n¥*l (mod4) (resp. n=1 (mod4)). Then g is a p-
primary invertible ideal in S such that g?=(+~/=3)a and g&p*. Further, g 1s
principal in S if and only if n>0 and 3 ) ab, where en=(a+ba/n)/2.

PROOF. Let nzl (mod4). The first statement is obvious, so we have only
to show the second one. If g is principal in S, then g=0B(x+y+/=3n)+
(z4v4/=3n)(W/=3++/=3n)) for some x,y,z,vE Z[{,;], and so g=(s4/ =3+t —=3n),
where s=—+/"3x+2z++/—3nv and t=3y+z++/—3v. Since g&p? we have
~/~3 1z and hence ~/—3/ st and (s, t)=(1). Since 3€g, 3=u(s+/—3+t+/—=3n)
(so/=3—t+/—37n) for some ucZ[{,]. Hence u(s+t/n)x(s—t+/n)=—1 in S
and so

(*) s+ta/nel(Z[/n, {s]) where s, teZ[{;] and /=3 /) st.

If n<0, then U(Z[+/7, {s])=<—1, Ls, €-3n> OF {—1, {3, ~/—€-sa>, Where —¢€_sn
=x+/=3+y+/7 for some x, y#0. Therefore (*) is impossible, and hence g is
non-principal. If n>0, then U(Z[+/n, {:)=<—1, L, ea> where en=a+b/1.
This shows that (*) is possible if and only if 3}fab. We can similarly prove
the assertion for the case where n=1 (mod 4).
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Combining (4.3), (4.5) and (4.6), we have

THEOREM 4.7. Suppose that 3|m and m+ +3. Let

(3, v/m) if m=%1 (mod 4)
a= (3, 1+%) if m=1 (mod 4),
and
(3, v/ =3++/m) if m=*=1 (mod 4)
9‘{ (3, v+ 3+‘/’") if m=1 (mod 4).

Then D(RCs/(25)) is generated by the class of a (resp. q) if m/3=—1 (mod 3)
(resp. m/3=1 (mod 3)).

REMARK 4.8. We can also determine the structure of D(RC;) for the case
that & is a real quadratic field. Let R=Z[wn], S=Z[wn, ws], where 5} m>0,

and en=(a+b+/m/2). Then a system of fundamental units of S is given as one
of the following:

(@) €5 €m, Esm,
- . . m
(b) €5, €m, VEsm (in this case N(esm)=1 and (§->=l),
(¢) €5, €m» v/ €sEmEsm (in this case N(en)=N(esm)=—1, or N(em)=1, (Ts.):
—1 and 5/} b), or
(d) &5, €m, v/emEsm (in this case N(em)=N(esm)=1, (%):—1 and 5 b),

where, for a sequare-free positive integer d, N(eq)=Ngwarq(€q)-
We have a following table:

D(RC) ‘ (—’g-)zl (ﬂ)z_
0 ! N(em)=—1 and (c) &E;m;———l (c) and 5} b
Z/2Z | (a) and 54tb, or (b) (a) and 5t b, or Nien)=1 and
| (¢) or (d)
zp3z | T——— | Mew=—1(c) and 5|b
Z/4Z | (a) and 5b ) T
z/6z | T—— | (&) and 5|b

where (@) means that the type of fundamental units of S is (a).
Further, let R"=Z[ws»] and esm=(c+d~/5m)/2. Then



and

J1]
[2]
£3]
[4]
(5]

L6]
[7]

[8]
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D(R'Cy)=D(RC)DZ/5ZDT(R'Cy)

0 if 5fYd
T(R'Cy=

Z/57Z if 5|d.
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