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SPACES WITH A PROPERTY RELATED TO UNIFORMLY
LOCAL FINITENESS

By

Takao HosHINA

Throughout this paper a space always means a topological space.

A collection 4 of subsets of a space X is said to be wniformly locally finite
if there is a normal open cover ¢J of X such that each member of U intersects
only finitely many members of 4. If every locally finite collection of subsets of
X is uniformly locally finite, then X is said to have broperty (U). These notions
are defined in K. Morita and it is pointed out there that every M-space or
every strongly normal (=collectionwise normal and countably paracompact) space
is a space with property (U), and such a space is expandable in the sense of L. L.
Krajewski Hence for normal spaces property (), expandability and strong
normality all coincide with each other by a well-known theorem of M. Katétov [6],
and so a question was posed by Morita to find a condition which, together
with expandability, is equivalent to property (U).

The purpose of this paper is to investigate spaces with property (U/), mainly by
defining a new notion of U-embedding which is a generalization of P-embedding ;
a subspace A of a space X is said to be U-embedded in X if every uniformly locally
finite collection of subsets of A is uniformly locally finite also in X. In §1 we
treat spaces having a property that every discrete collection of subsets is uniformly
locally finite, which we call spaces with property (U)*. By C.H. Dowker
collectionwise normal spaces are precisely those spaces any of whose closed set is
P-embedded. Being motivated with this result we shall establish a theorem that
a space X has property (U)* iff any closed set of X is U-embedded in X, and
then it will be shown that a space has property (U) iff it has property (U)* and
is a cb-space in the sense of J. Mack [9]; the latter is a quite analogue to a
theorem of Krajewski that a space is expandable iff it is discretely expandable
and countably paracompact. In §2 we shall give another description of spaces with
property (U), which is an answer to the question of Morita above, by defining

spaces with weak property (U/) that include all M-spaces [5] and all extremally
disconnected spaces.
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§1. U™-embedding

Let .4 be a collection of subsets and ¢J an open cover of a space X. Then
we say, for convenience, that .7 is locally finite with respect to U in case every
member of ¢J intersects only a finite number of members of 7. The following
lemma, which is proved in will be useful.

LEMMA 1.1. For a collection A ={A.laeQ} of subsets of a space X the follow-
ing are equivalent.

(@) A is uniformly locally finite.

(b) There is a normal open cover <V of X with Card C=Card 2 such that A
is locally finite with respect to ).

(c) There are cozero-sets G, and zero-sets F.,aefQ of X such that A.CF.CG.,
for each aeR and (G.|laef} is locally finite.

The union of a locally finite collection /7 of zero-sets is not always a zero-
set. If .4 is uniformly locally finite, then the union is a zero-set. This fact was
proved earlier in and will be frequently used in the present paper.

Let m denote an infinite cardinal number. A subspace A of a space X is said
to be Pm™embedded in X if for any normal open cover ¢J of A with cardinality
<m there is a normal open cover €V of X such that CUNA={VNA|VeCV} refines
qJ. 1f Ais P"embedded in X for every m, A is said to be P-embedded in X [15].
It is known that P®-embedding coinsides with C-embedding [2]

DEFINITION 1.2. A subspace A of a space X is said to be U™-embedded in X
if every uniformly locally finite collection of subsets of A with cardinality =m is
uniformly locally finite in X. If A is U™embedded in X for every m, A is said
to be U-embedded in X.

In view of Lemma 1.1 P™- (rest. P-) embedding implies U™- (resp. U-) embed-
ding; in particular C-embedding implies U*-embedding. Clearly, in a space with
property (U) any closed set is U-embedded. Hence any non-normal M-space
contains a closed U-embedded, subspace which is not C-embedded, and so the
converse of the implications above does not hold in general.

The following theorem may be of interest in itself when compared with the
notion of P™-embedding.

THEOREM 1.3. A subspace A of a space X is U™-embedded in X iff for every
normal open cover U of A with cardinality =wm there exists a normal open cover
v of X such that for each Ve VNA is contained in a union of finitely many
members of U.
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Proor. To prove the “if” part, assume that the condition is satisfied. Let
A be a uniformly locally finite collection of subsets of A with Card . Z<m. Then
by [Lemma 1.1 . j is locally finite with respect to a normal open cover U of A
with Card U=m. By assumption take a normal open cover C) of X satisfying
the condition above. Then it is easy to see that .4 is locally finite with respect
to . Hence A is U™-embedded in X. Coversely suppose that A is U™embedded
in X, and let U ={U,|Ae4} be a normal open cover of A with Card A=m. Since
U is normal, there are a locally finite cozero-set cover {G;|ieA} and a zero-set
cover F={F;|]ieA} of A such that

F,cG,cU, i¢eA.

Then by & is uniformly locally finite in A, and by the assumption,
so is also in X. Let ¢ be a normal open cover of X so that & is locally finite
with respect to ¢{7. Then for each VeCy there are i, -, 2,64 such that VNAC
FyU--UF,, since & covers A. Hence we have VNAcC U, U--U U.,. Thus, the
“only if” part is proved. This completes the proof.

In case m=%,, we have

COROLLARY 14. A subspace A of a space X is UPo-embedded in X iff for
any countable increasing normal open cover U of A therve exists a normal open
cover CU of X such that C)NA refines U.

In [4] T. Ishii and H. Ohta defined the notion of Ci-embedding ; a subspace A
of a space X is said to be Ci-embedded in X if any zero-set Z, of X and any
zero-set Z, of A disjoint from Z, are completely separated in X. It is proved

there that C-embedding implies C;-embedding. The following lemma contains this
result.

LEMMA 1.5. U®-embedding implies C,-embedding.

Proor. Assume that a subspace A of a space X is U%-embedded in X. Let
Z, be a zero-set of X and Z, a zero-set of A disjoint from Z,. Let f:X>Ibea
continuous map such that Z,={z|f(z)=0}, where I=[0, 1]. Let us put for neN
(=the set of natural numbers)

Grn={zeX|f(x)>1/n}, E.={zeX|f(x)=1/n}
and

Un=(ANGr)U(A—Z,).

Then U, is a cozero-set of A and we have
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Since A is U®-embedded, by (Corollary 1.4] there are a locally finite cozero-set
cover {Vy,|neN} and a zero-set cover {Fp|neN} of X such that V,NAcU, and
F,cV, for each neN. Let us set

Z:i: U {EnnFnl22nFn¢0, neN}.

Note that {E,N Fy|neN} is a uniformly locally finite collection of zero-sets of X.
Hence Z; is a zero-set of X, and we easily have

ZaDZz, Zs n Z] ———0.

Therefore Z, and Z, are completely separated in X. This completes the proof.

ReMARK. Let X=YU{p} be the one-point Lindelofication of an uncountable
set Y. Then Y is C,-embedded in X (4], Example 6.3), but not U®-embedded in
X. Hence the converse of does not hold in general.

It should be noted that the condition which describes U™-embedding in Theo-
rem 1.3 has already appeared in [11, Theorem 2.2], where it is shown that this
condition together with C*-embedding is equivalent to P™-embedding. Hence by
[Theorem 1.3, Lemma 1.5 and a result of [4] that C,- and z-embedding is equal to
C-embedding, we have the following proposition.

Recall that a subspace A of a space X is z-embedded in X if for any zero-set
Z of A there is a zero-set Z’ of X such that ZZNA=Z.

PROPOSITION 1.6. Pm™-embedding <> U™- and z-embedding.

As another characterization of U™-embedding, we prove the following theorem.

THEOREM 1.7. A subspace A of a space X is U"-embedded in X iff A is
U%-embedded in X and if F is a discrete and uniformly locally finite collection of
subsets in A with cardinality =m then F is uniformly locally finite in X.

Proor. We shall only prove the “if” part. Assume that the condition is
satisfied. Let ¢J be a normal open cover of A with Card U=m. Then there exist
a cozero-set cover 4 = U Y, a zero-set cover F=U F,, a cozero-set cover &=U G,
of A, where 9 .={Hu|ae2,}, Fn={Fn.la€s}, Gn={Gr.|ae,} with Card 2,=m for
neN such that

@) G refines J,
2) G, is discrete for n=1,2, .-,
3) H,.CFn.cGu, for aef,, n=1,2,---.

Let H,=U {Hi.|la€Qx, k=n}. Then {H,|neN} is an increasing cozero-set cover of
A. Hence, by assumption, there is a countable cozero-set cover {L,|neN} of X
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such that L,NACH, for neN. On the other hand, since & is discrete and uni-
. formly locally finite in A by (2), by assumption for \ & we can choose a locally

ksn

finite cozero-set cover C1V,={V.:|ie/A,} of X so that \U Fi is locally finite with

ksn

respect to ¢(/,. Let
Cv, ZW%CU’IZ” C(/n' :{ an m LnHG An}.

Then <’ is a o-locally finite cozero-set cover of X, and hence a normal open
cover of X, and it is easy to see that for each V,.:NL.eCV,/, VaiNL.,NA is con-
tained in a finite union of members of \J %% and so, by (1), (3) it is also in a

ksn

union of finitely many members of 97. Thus, by A is U ™-embedded
in X. This completes the proof.
Let us now proceed to prove our results mentioned in the introduction.

DEFINITION 1.8. A space X is said to have property (U™)* (resp. (U™)) if every
discrete (resp. locally finite) collection of subsets of X with cardinality =m is
uniformly locally finite in X. If X has property (U™* for any m, X is said to
have property (U)*.

Obviously, a space has property (U) iff it has property (U™) for any m.

THEOREM 1.9. For a space X the following are equivalent.

(@) X has property (U)*.

(b) Every locally finite collection of closed sets of X of finite order is uniformliy
locally finite.

(c) FEvery closed set of X is U-embedded in X.

directly follows from the following.

THEOREM 1.10. For a space X the following are equivalent.

(@) X has property (U™)*.

(b) Every locally finite collection of closed sets of X of finite order with
cardinality =m is uniformly locally finite.

(c) Every closed set of X is U™-embedded in X.

Proor. (a)—(b). The method is similar to that of Kat&tov [6]. Suppose (a),
and let F={F.|ae®2} be a locally finite collection of closed sets of X of finite order
and with Card 2=m. We shall prove (b) by induction on the order # of <. (b)
is evidently valid in case #=1. Assume that (b) is true for 2=, and that & has
order n+1. Let I' be the set of all finite subsets of 2, and let us put

I'*={y|Card y=n+1, rel’},

Qf*={f'€\ F.lrel™}.
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Then &* is a discrete collection of closed sets with cardinality <m. Hence by
(a) and there are a cozero-set L,, a zero-set K, and cozero-set M, of
X such that for yel™

NF.cL,cK,cM,

a€y

and {M,|rel"*} is locally finite. Let
L,—’:Ly“‘ U{Fa|a¢r}’
for yel'*, and
L=U{L,|yel*).
Then {F,—L|ae®} is a locally finite closed collection of order =n with cardinality

=m. Therefore by induction hypothesis and there are a cozero-set H,
and zero-set D, for aef? such that

F.—LcD,cH,,
and {H.|we®} is locally finite. Let us set for ae®
E.=D.,U U{K,|rel*, acy}
G.=H.U U{M,|rel'*, aey).

Then E, is a zero-set and G, a cozero-set since {K,} is uniformly locally finite
and {M,} locally finite. We shall prove that F,cE, and {Ga|lae} is locally finite.
Let zeF.. If z¢L, then xeF,—LcD,. Hence zekE,. If xeL, then xzeL,” for some
rel™. Hence F.NL,’+0, and so aey. Since zeL,’NK, and acy, we have zekFE,.
Thus F,cCE.. To show that {G,} is locally finite, let ze X and U be a neighborhood
of x such that for some y,e/’ and a finite subset {yi, ---, 7st of I'* we have

UNH,=0 if agy, and

UNM,=0 if iy, -, 7.
Then we see that if ady, and UNG,+#0, then

a€y;U---Uys.

Hence {G.|lae®} is locally finite. Thus, by & is uniformly locally
finite, and (b) holds.

(b)—(c). Suppose (b), and let A be a closed set of X. To apply Theorem 1.7,
first we shall prove that A is U%-embedded in X. Let U={U,|neN} be an in-
creasing cozero-set cover of A. Then there are a cozero-set V, and a zero-set F,
of A such that

F.cU,, V,cF,C V..., neN,

A=U{Va|lneN}.
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Let us set
g:{Fn’_ Vn—llneN},

where V,=0. Then & is a locally finite closed collection in X since A is closed,
and we have the order of #=2. Hence by (b) there are a cozero-set G, and a

zero-set [, of X such that

Fo—V...CcE,cGy neN, and
{Gn|lneN} is locally finite.

Let
H=X—-\UE,; H.=G:U--UGr,— y E; n=1)

Then 9 ={H,, H,\ne N} is a countable cozero-set cover of X. Hence it is normal

and we have
ANH,=0; AnH,cF,cU,, neN.

Hence A is U®-embedded in X by Now again by (b) we see that
A satisfies the condition in Thus, A is U™-embedded in X.

(c)—(a). Suppose (c), and let {A,} be a discrete collection of subsets in X with
cardinality =m. Then the collection {Cl A,} is discrete and uniformly locally finite
in the closed set UCl A,. Hence by (c), it is uniformly locally finite in X, which
shows (a). This completes the proof of the theorem.

A space X is called a (weak) cb-space if for any decreasing sequence {Fa} of
(regular) closed sets of X with (\F =@, there is a sequence {Z,} of zero-sets of

X with K\Zn 0 such that Z,OF, for each neN (8], [9). It is known that every

normal and countably paracompact space is ¢b, and a space is cb iff it is weak cb
and countably paracompact. Weak cb-spaces are known to include all Tychonoff
pseudocompact spaces, more generally all Tychonoff M’-spaces and all extre-
mally disconnected spaces. Recall that a space is extremally disconnected if the

closure of every open set is open.
LeMMA 1.11. A space satisfies property (U®) iff it is cb.

PrOOF. We shall only prove the “if” part. Suppose that a space X is ¢b
and F={F,|neN} a locally finite collection of closed sets in X. Let E,=\U F%.
Then {E.} is a decreasing sequence of closed sets with f\ E,=0. Hence thgz is
a sequence {Z,} of zero-sets of X with (\Z =@ such that Z.,DOFE, for each neN.
Then U={X—Z,|neN} is a countable cozero-set cover of X. Hence 9J is normal,
and & is locally finite with respect to U as is easily seen. This completes the

proof.
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THEOREM 1.12. A space has property (U) iff it satisfies broperty (U)* and is
a cb-space.

(Theorem 1.12) follows directly from the following.

THeOREM 1.13. A space has property (U™) iff it satisfies property (U™* and
is a cb-space.

Proor. By the “only if” part is obvious. Let a space X be a
cb-space ;with property (U™*. Let F={F.,lac?} be a locally finite collection of
subsets of X with Card 2=m. We may assume that each F, is closed. Let us
put

Urn={zreX|ord.F <n)},
where ord.F denotes the order of & at . Then U, is an open set and we have

UnCUpyy, neN; X=\U U,.

Since X is cb, one can readily choose a cozero-set V, of X so that V.c U, for
neN and X =Lnj Va Then {V,} is normal, and hence, we may assume that {Va}
is locally finite and admits a zero-set cover {Z,} with Z,cV, for each neN. Let
En={ZnNF,Jae}. Then we have order of £,<n. Hence, by assumption and
(Lheorem 1.10, there are a cozero-set G,, and a zero-set Z,, such that

Z’nnFaCZnaCGna, (I'E-Q.
Let us put for ae®

E.=U{Zn.NZy|neN}.
H,=U{Gn.NV,|neN}.

Then, since {V,} is locally finite, £, is a zero-set and H, a cozero-set of X, and
F.,cE.cH, Moreover, it is easy to see that {H.|ae®} is locally finite. Thus, by
& is uniformly locally finite, and the proof is completed.

A space X is called m-expandable (resp. discretely m-expandable) if for any
locally finite (resp. discrete) collection {F,|aef2} of closed sets in X with Card 2=m
there is a locally finite collection of {G,.|aef2} of open sets of X such that F.cG,
for each aef. Expandable (resp. discretely expandable) spaces are defined to be
an m-expandable (resp. a discretely m-expandable) space for any m. It is known
that a space is (m-) expandable iff it is discretely (m-) expandable and countably
paracompact, and ‘X.-expandability coincides with countably paracompactness.
These notions and facts are obtained by Krajewski [7] and Smith and Krajewski
Our [Theorem 1.12] as well as may be compared with these

results.
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In [Theorem 1.12] it is unknown whether cb-property can be replaced by
countably paracompactness, or equivalently, any countably paracompact space with
property (U®0* is cb.

In [3] Hardy and Juhasz defined the notion of nd-spaces; a space X is called
nd if for any decreasing sequence {F,} of nowhere dense closed sets with NF,=0
there is a sequence {Z,} of zero-sets with NZ,=0 such that Z,>F, for each #eN.
The following lemma can be proved similarly as Lemma 1.11. Note that the union

of a locally finite collection of nowhere dense closed sets is nowhere dense and
closed.

LEmMMA 1.14. A space X is nd iff every countable locally finite collection of
nowhere dense closed sets is uniformly locally finite.

In [3] it is obtained that cb-property implies nd-property, and nd-property
implies countably paracompactness (its proof seems to contain a gap, but the fact
still remains true), and an example of countably paracompact but not an nd-space.
It is also conjectured that an nd-space need not be cb.

Relating to our question above or this conjecture, we shall prove the following
proposition.

ProposiTION 1.15. A space is cb iff it has property (U%)* and is nd.

Proor. We shall only prove the “if” part. Let X be an nd-space with
property (U®)*, and let {F,} be a decreasing sequence of closed sets of X with
NF,=0. Then {Bd F,|neN} is a locally finite collection of nowhere dense closed
sets, where Bd F,,=the boundary of F,. Hence by there are cozero-
sets Cy, An and a zero-set B, such that {A,|neN} is locally finite and

Bd F,cC,cB,cA,, neN.

Let En=F,—Cu:1UFy.i. Then {E,} is a discrete closed collection. Since X has
(U®)*, there is a locally finite cozero-set collection {G,} and a zero-set collection
{Dy} such that E,cD,cG, for each neN. Let

Zn=U{Bilk>n, ke NYU U{Di|k=n, keN}.

Then it is easily checked that {Z,} is a decreasing sequence of zero-sets of X with
NZ,=0 such that Z,DF, for each neN. Thus, X is c¢b and that completes the
proof.

COROLLARY 1.16. A space has property (U) iff it has property (U)* and is nd.

ReEMARK. By the result above of or [Proposition 1.15| we see that for nd-
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spaces property (U®0)* or weak cb-property is equivalent to c)-property. However,
in general, property (U®)* or weak cb-property does not imply the other. Indeed,
there exists a normal space which is not weak c¢b (3] [13]), and every normal
space has (U®)*. On the other hand, the Tychonoff plank is weak cb but not
has property (U%®o)*.

§2. Property (U)

DerINITION 2.1. A space X is said to have property (U)’ if every locally finite
collection & of regular closed sets in X is uniformly locally finite.

Obviously by definition, every extremally disconnected space has property (U)’.
By a modified proof of a theorem of Isiwata [5] that every Tychonoff M’-space is
weak cb, we see also that every Tychonoff M’-space has property (U)'.

If < is further assumed to be countable, similarly as Lemma 1.11 the above
definition is shown to be equivalent to weak cb-property. Thus analogous to the
result of [8] mentioned in §1, we have the following theorem, which is an answer
to the question of Morita in the introduction.

Tueorem 2.2. A space has property (U) iff it has property (U) and is ex-
pandable.

Proor. Let F={F,} be a locally finite collection of subsets of an expandable
space X with property (U). Then there is a locally finite collection {G.} of open
sets such that F,cG. for each a. By property (U)’ {ClG,} is uniformly locally
finite, and so is also &. This completes the proof.

QuesTioN. In Theorem 2.2 can property (U)’ be weakened to weak ch-pro-
perty ?

§3. Products and U*c-embedding
Finally we shall -give an application of

THEOREM 3.1. For a subset A of a space X the followiug are equivalent.
(@ A is U®-embedded in X.

(b) AXY is Ur-embedded in XX Y for any compact space Y.

(¢) AXI is Ci-embedded in XX1.

Proor. (a)—(b). Assume that A is U®-embedded in X and let U ={U,|neN}
be a countable increasing cozero-set cover of AX Y. Let p: XxY—X be the pro-
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jection. Then each V,=A—p(AxX Y—U,) is a cozero-set of A, and
Vnc Vn+1, nGN; U V :A.
n

Hence by there exists a normal open cover 9¥ of X such that 9N A
refines {V,}. Then ¢’'={Wx Y|Wegy} is a normal open cover of XXx Y, and
W N(AXY) refines ¢J. Thus, by AXY is U%e-embedded in XX Y,
which shows (b).

(b)—>(c). This follows from

(c)—>(@). Assume (c). Let U={U,|neN} be a countable increasing cozero-set
cover of A. Then there exist a zero-set E, and a cozero-set V., such that

VnCEnC Un, Vnc Vn+1, EnCEn+], nGN; U VnzA.
n

Then Z=U{(A—U,)x{1/n}|neN} is a zero-set of Ax I and we have ZN(Xx{0})=0.
By (c) there exist a zero-set Z’ of X x I such that

zZcz, Z N(Xx{0})=0.
Let us put for each neN

Gn={zxeX|(x, 1/n)¢Z"}.
Then G, is a cozero-set of X and we have

U G?'L:Xs GnnAC Un, nelN.

Thus, by A is U™-embedded in X. This proves the theorem.
In [11], it is proved that for a subset A of a space X A is P"-embedded
in X iff AXY is C*-embedded in Xx Y for a compact Hausdorff space Y with

weight m. If we replace P™ and C* by U™ and C, respectively,
shows that the analogue is valid or not valid according as m=%, or m> R,.
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