TSUKUBA J. MATH.
Vol. 5 No. 2 (1981). 299—317

ON THE CAUCHY PROBLEM FOR A SEMI-LINEAR
HYPERBOLIC SYSTEM AND ITS TRAVELING
WAVE-LIKE SOLUTIONS

By

Sy6z0 N1izex!

Introduction

We consider the Cauchy problem of the following system of semi-linear partial
differential equations for #(z,¢) and v(x,?#):

ou ou
3 H_'ax = —uv+g(u),
1 ; 5
v v
—_— —_— t
T +p e ww+h(), (z,H)eRXEK,,

with the initial data
w(z, 0)=¢(x),
2)
oz, 0)=¢(x), xeR,

where R=(—oc0, +o0) and R,=(0, +00); A, p(A# ) and ¢ are real constants; ¢ and
J are real-valued and real analytic functions at the origin with radii o, and p.

respectively, that is to say

gluw)= T2 axtd®,  ho)= X2 biv*;
R 1i§cn_,s°§1p «/W:—;—, liinésgp VW:%Z—_
Without loss of generality we may assume that 0<p;=p., and we suppose that
(4) ¢(z), H2)=0, zeR; $(x), Yx)eB'(R),

where by B!'(%) we mean the function space of all real-valued C'-functions which
are bounded on R together with their first derivatives. From now on by C(S)
we mean the function space of all real-valued continously differentiable functions
defined on S.

The system (1)~(2) has an ecological meaning when both ¢ and % are some
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polynomials of degree one, namely g¢(w)=au and A()=bw. If a,>0, b;<0 and
¢>0, then #» and » in (1) represent prey and predator respectively, and the system
(1)-(2) describes what is called prey-predator equations. The constants a.c and bye
represent the rate of natural multiplication of prey without predator and the rate
of natural extinction of predator without prey respectively (see Yamaguti and
Niizeki [9]).

In this paper we will investigate on the following three matters.
The first is to obtain the solutions, which belong to C!(@), of the Cauchy
problem (1)~(2) in the following form (see THEOREM 4.4):

(5) { H(JJ, t): ZL‘ZO ul(xr t)el ’
vz, )= 2, vz, e, (x,8)er,

where #, and »; will be introduced in §1, and Qr is defined by
(6) Qr=Rx[0,T], T>0.

The representation (5) shows that the solutions of the Cauchy problem (1)-(2) can
be described as analytic functions of e.

The second is as follows: The solutions of semi-linear hyperbolic system of
partial differential equations of two independent variables can be constructed by
the method of successive approximation (see Nagumo [4]). In this case, in general,
we need to take the absolute values of the initial data sufficiently small according
to 7. In this paper, however, it will be shown that if ¢ and % in (1) are entire
functions over R then we can take initial data independent of 7' (see REMARK 4.5).

And the third is to show that for some initial data ¢ and ¢ the Cauchy
problem (1)-(2) has traveling wave-like solutions for sufficiently small ¢ (see
THEOREM 5.3).

Now, in case that g(u)=a,+au+au® and h)=b,+bw+bw* and in case that
g(w)= Y% axut® and A(v)= Y, biw*, where n is an arbitrary positive integer, we
investigated in detail in Niizeki [5] and [6] respectively.

§1. Preliminaries and notations

w, and v, in (5) are, in truth, the solutions of the following semi-linear system
(1.1) (/=0) or the linear system (1.2) (/=1) of partial differential equations for
and »;: in case /=0
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Buo auo
o T4 %

= — U0 ,

1.1 a0y awy )
at +n oz - =uels, (x,H)eRXR..,

Mo(l’, 0):¢('7')y 1)0(.’13, 0)::(,[7(“0)v -I‘CGR ’
where ¢(x) and ¢(x) are the initial data in (2), and in case =1

0
el +Z——aul =— ot it 220 O UP\(x, 1),
ot ox

1.2 { o oo
ot "

=T ko o+ 2o b Vi 2, 1), (x, H)elr,
wlx,0)=0, vz, 0)=0, zeR,
where
Uz, )=V (z, )=1,
UP(z, )=V Mz, H)=0 (21),
UP(z, )= 3k wilz, DU P (=, ) (=1, [20),
Vs, )= 2L vi(x, BV EP (2, b) (k=1, 1=20), (z,)elr.

(1.3)

The properties of solutions of (1.1) are investigated in detail in Yoshikawa and
Yamaguti [10]. The convergency of the series appearing in (1.2)

(1 4) Z[:—:O deEk—)l(J?: t); Zkio bk Ek-)l.(‘r7 t), (.’L‘, t)e'QT

will be examined in (1.20) for /=1 and in REmMARK 2.4 for /=2. The system (1.1)
and (1.2) can be formally obtained by substituting (5) into (1) and collecting terms
with the same power in .

Now, in view of (4) there exist positive constants M and M such that

1.5) 0=4e), P=M; |- g(a) =§T. zeR.

@)

PROPOSITION 1.1. For amy T>0, the solutions wu, and v, of the Cauchy problem
(1.1) are nonnegative and bounded over Lr.

Proor. We remark here that the system (1.1) has real-valued global solutions
which belong to C(RXR,) (see Hashimoto [2] or Hirota [3]). Now, from (1.1) we
have ‘
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wnlz, )= gz — 22) exp(-—glvo(x—lt+ls, s)ds),
(1.6) .

¢
v, 1) =gz — p1t) exp( 8 wo(x — pl + ps, s)ds> .
J0

Hence #, and », are nonnegative since ¢ and ¢ are nonnegative. Next, from (1.5)
and (1.6) we have

1.7 oz, )=M, vo(z, ) = Me¥7, (z,1)efyr,

which shows that #, and », are bounded over Q. Q.E.D.

In connection with the above proposition, we define #, by
(1.8) ro=Me"T

Furthermore, for every solution # and », (/=0) of the Cauchy problem (1.1) and
(1.2) we put

e, )=, ), B, D=, 1),
1.9) '

_ i) _ ]
ul(x, t)=ﬁ ul(x, t), Ul(.’l’f, t)=_é? Ul(.CL', t) .

Now, we will give here Harr’s inequality (see Petrovski [7]), which will be
often used later in the following form.
Let us consider the system of linear partial differential equations

ad b,

—ai;i"*‘(:] —éz;—l=(lu($, z‘)ul+d12(.z', t)u2+b1(x, t) ,

auz 9

"a—t'—"‘Cg a -—alz(.Z' t)u1+ﬂgy(x t)u2+b (.Z', l‘), (x t)GQT,

with the initial data w,(z,0)=¢:(x) and us(z,0)=¢s(z) (xeR). Here, ¢, and ¢, are
real constants and a;(x,#) (1=4,j=2) and bi(z,t) (1=i<2) are continuous and
bounded over Qr, and ¢:(x) and ¢.(x) are continuous and bounded over R. Further
we put

A= max { sup |a;)(z,?)|},

154, j52 (2,060

B=max{ sup {b;(x,?)|},

1£452 (B0 p

C =max sup |pi(x)]},

12452 X€

then we have Haar’s inequality :
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(1.10) l24(x, 1)), |u2(x,t)|§Ce“T+%(e“"—l), (x, tyelr .
Under these preparations we prove the following propositions.
ProrosrtioN 1.2. For any 7>0, @, o, th, and @, are all bounded over Q.

Proor. Differentiating (1.1) with respect to x we obtain the following system
(1.11) of partial differential equations for @, and #, with the initial data (1.12):

0tk 3%____ o — ol
o oz = —~Vlho olo 4
(1.11)
ov v . .
%‘}'ﬂ—a}g—:vouo‘kuovo, (.’L‘,t)ERXR.p,
(1.12) io(, 0) =L §(), tu(, 0) == (), weR
. o, —dxgbx,vnx, —dxgbx,x .

Applying Haar’s inequality (1.10) to the Cauchy problem (1.11)-(1.12) and using
(1.5) and (1.7) we have

(1.13) i@, 1)), |0u(w, )| =M exp(@MTeMT), (z,t)efr .

Hence 4, and #, are bounded over 7.
Next, by considering (1.9) for /=0 the first and the second expressions in
(1.1) can be rewritten by

Wy + Ao = —too, Do+ pdo="tols .
Hence, from (1.7) and (1.13) we have
lio(z, )] = |tho] 00| + | 4] o] = M?eT +| 2| M exp@MTeMT), (z,t)elr .
Similarly we have
Doz, )| = M2e"? + || M exp(2MTeXT), (z,t)er .
Therefore when p=max{l, |2, |¢|} we have
(1.14) lao(w, 8)], |Bo(x, )] < M2 +-7M exp2MTe"T), (z,t)elr .

Hence the proposition now follows at once. Q.E.D.

In connection with (1.13) and (1.14) we will define #, by

(1.15) Fo=M?e"T +yM exp(2MTe"T) .

ProprOSITION 1.3. For any positive number p, there exists a positive number or
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such that if M=dy then the inequality
(1.16) ro=p
holds. Heve or depends on T, and for example we may take ir as

5T=—1—logﬁ“/1+4pT ’

T 2

then we vemark that if p-—»-+oo then dr— + oo,
Proor. The proof is easily performed, so we omit it. Q.E.D.

Now, for all integers £2=0 we will define gx by
1.17) gr=max{|axl|, |bsl},

where a; and by (k=0) are given in (3). Then we have the following proposition.

ProrosITION 1.4, The radius of convergence of Y2, qr2® is equal to p,, where
o1 is defined in (3).

Proor. The proof is obvious, so we omit it. Q.E.D.

Now, by ProposiTiON 1.3 we can choose M, which is introduced in (1.5), so
small that the inequality

(1.18) ng%
holds, where 7, is defined in (1.8). We remark here that if M is chosen so that

the inequality

(1.19) Mg%k,g M,lztzﬂ@

holds, then (1.18) holds. From now on we suppose that M is chosen so that (1.18)
holds. Then in view of ProposiTION 1.4 we have
(1.20) P Grtot < 400,
Hence, for /=1 both of the series in (1.4) converge uniformly over fr.
Here, we define a constant L, by

(1.21) LT=~2—1’— {exp2roT)—1}, T>0,
0

which will be used in the definition of 7, in (2.1).
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§2. The estimates of u;(x,¢) and v, (x, 1)
For every integer £=0 and /=0, we will define », and K inductively by
means of the following relations:
ni=(R rear) L+ 2o ¢ KB, ((21),
2.1 KP=1, KP=0 ({=1),
KFEo=3L,nKP, (k=0, [20),
where we put Xizlr, =0 for /=1 and the validity of definition of #, follows

immediately from (1.20) since K{®=r,*, and the convergency of .2, ¢:K{®, in the
definition of 7, will be shown in the proof of ProprosiTION 2.1.

ProrosITION 2.1. The implicit function w(z), which satisfies w(0)=r,, determined
by the equation
(2.2) F(z,w)=232 gt + L(w —7e)* —(w—7,)=0,
(z, w)el(z, w)| |2| < +oo, [w|<pi},
has the expression
(2.3) w(2)= 3,212, |2 <po,

where the sequence {r},2, is given in (1.8) and (2.1), and po is some positive conslant.

Proor. Since by ProposiTioN 1.4 the right-hand side of F(z,w) converges on
the domain {(z, w)| |2| < + o0, |w—7,| < p:—7o} and since F(0,7,)=0 and %g 0,70)=—1,

by the existence theorem for implicit function (see Tsuji [8]), w(z) has the follow-
ing expansion with the radius of convergence p:

(2.4) w(z)= 2.2 ¢, 12|<p,

where ¢,=7, and p is some positive constant. Now, by using the Weierstrass’
double series theorem we will define £® for every pair (%,/) of integers £=0 and
=0 by
(2.5) w(z)o= (520 2 = X2 B2, J2] <.
Hence we have
EP=1, EP=0 ({=1),

(2.6)

EF =%t c;EP,; (=0, (=0).

Substituting (2.4) into (2.2) and using (2.5), we have
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2.7 (DR @B R )2 L T2 25 coc)2 =12, a2ty |21<p.
2.9) = TuZ B + Le( R4 cics) (121),

where the right-hand side of (2.8) is well-defined. Therefore we have
2.9) a=r (120), EP=K{® (k=0, [=0)

comparing (2.1) with (2.6) and (2.8). Hence we have

(2.10) Lo P < 400 (120),

and we see that 7, (/=1) defined in (2.1) are well-defined. Q.E.D.
We are now in a position to prove the main proposition of this section.

ProPOSITION 2.2. For UP(x,t) and V¥ (x,t) defined in (1.3) we have the fol-
lowing estimates :

(2.11) \UP@, DI, [Vi(e, ) =KPLrt (120, k20), (z,H)elr.

Proor. Let us prove this through the following four steps.

(i) From (1.3), (1.7), (1.8) and (2.1) it is obvious that the estimates (2.11) hold
for k=0 and /=0 and for £=1 and /=0.

(ii) We suppose that (2.11) hold for 1=k=s and 0=/=#n. Then from (1.3)
and (2.1) we have

(U] = 3 L] [US2] S(D ko K2 Lt = K$ Lyt (0=1=m),
where by (1.3) and (2.1) we have U{P=u; and K{’=r;. Similarly we have
|V(ls“)’§K§s+”LT" (0§l§n) .
Therefore by an induction process on % the estimates (2.11) hold for 2=0 and
0=/=n.
(iii) From (1.17), (2.10) and (ii), we see that the system (1.2) has meaning for

!=n+1. Therefore applying Haar’s inequality (1.10) to (1.2) for /==n+1 and using
(ii) and (2.1) we have

(UL = thnsr| S Lo P 0 Vner-i?s + Le™ (2620 g ICP)
=Lr" M Lr Y Tavr-iti+ Do G P} =101 Le™ = K Le™ '

Similarly we have V), =K%, Lr"*'. Hence the estimates (2.11) hold for =1 and
I=n+1.

(iv) From (i), (ii) and (iii) we easily see that (2.11) hold for all integers 2=0
and /=0. Q.E.D.

ReMaARrRk 2.3. From (1.3) we see that U{’=u, and V{®=p, and from (2.1) we
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see that K{=7, Therefore putting £=1 in (2.11) we have

2.12) luz, 1)), o, Dl =nlat, (x,80)elr,

which will be used in proving ProrosiTioN 3.6, LEMMA 5.1 and 5.2.

REMARK 24. In view of (2.10) and (2.11) we see that both 3,2 aU.(x,t)
and X2, ViP(x,t) ({=1) appearing in (1.2) converge uniformly over Q7.

§3. The estimates of &, ¥, u;, and ©

The purpose of this section is to estimate #, 9, # and #, (/=1), which are
defined in (1.9), in the same manner as in ProposITION 2.2.

For any pair (k,{) of integers k=0 and /=0 we will inductively define
U®(z,t) and @ on Qr by means of the following relations :

Oe=Vp=0 (=0,
3.1 Op=kitaisUt (k21 120),
Vp=knloVED (k=1, [20),

where U®, V{® are defined in (1.3).

ProposiTiON 3.1. For every pair (k1) of integers k=0 and [=0, we have

(3.2 L UP =000, Vi 0=T0,1).

Proor. Let us prove this by an induction process on k.. From (1.3) and (3.1)
we see that (3.2) hold for /=0 if 2=0. Next, we suppose that (3.2) hold for /=0
when 2=m. Then from (1.3) and (3.1) we have

0 .
57 U= Dk 0wt DL Ui

=ML teo Dsmo sl UL w s} + Do U™

=m o Bl N5 U Vuos- g} + Db 4 U™,

=mY b U+ Db U =(m+1) 3 L it U, =0
Similarily we have

0 Ymen = ng +1)
ox )

Therefore by an induction process the proposition now follows at once.  Q.E.D.
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Now, differentiating (1.2) and using (3.1) and (3.2) we obtain the following
system of partial differential equations for #; and #;, (/=1):
oil, oty

T +2 7;;‘=( — o)t (—so)iy— L 2 dsvs s — s sap o+ o2y U,

. av a7, N . . - .
3-3) "a—;“ +ﬂ—a%=b‘ouz+ Ul + D4V + b Dt + Y2, BV 2, (2, D)efp

ﬁ;(x, 0)=0, ﬁL(.??,O)=0, zeR.

Here, from (1.7), (1.8), (1.17) and (1.20) we see that both 3,2, kawu,*' and 3,2,
kbivt~' converge uniformly over @r. Therefore both Y2, a:J® and 3.2 b V¥
converge uniformly over £2r. Hence for /=1 the right-hand sides of (3.3) are
well-defined. In order to show that the right-hand sides of (3.3) are well-defined
for /=2, we must show that both of the series

(3.4) i el Py, ), L bV e, ) (122)
converge uniformly over £7, which will be mentioned in REMARK 3.5.

Now, we define #, (/=1) and K /=0, £=0) inductively by means of the
following relations:

Fi= N2 K @20 (T Fars) (121),
(3.5) Rp=0 (=0),
Rp=k3 L #:KEP (20, k=1),
where #,, #, are defined in (1.8) and (1.15) respectively and », and K® are defined
in (21). The validity of the definition of 7; follows from (1.20) since # =);2,
kqure®~'%,, where from (2.1) and (3.5) we see that K{¥=*kr,*"'7,. The convergency
of Y2, q: K, (I=2) will be examined in (3.15).
ProprosITION 3.2. The implicit funclion W(z), delermined by
(3.6) F(z, ) =21 52, kquaw(2)*=" +2Lo(w(2) —1o)ib — (i — o) =0,
has the expansion
3.7 W)= 2072l |21 <5,
where § is some positive number independent of 7., and w(z) is given in (2.3).
Proor. By ProposiTioON 2.1 if |z|< g then |w(2)]<p,. Hence by PROPOSITION

14 we see that X,2, kauw(z)*~' converges for |z{<p,. Therefore the right-hand
side of (3.6) is well-defined on {(z, )| |z| <pe, || < 400}
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Now, since F(z,%) is linear for % and since F(0,#)=0, the function #(z)
determined by (3.6) has the expansion of the form
(3.8) W(z)= a2 Ea2", [2|< @,
where ¢=7%, and g is some positive number. We define g, by
(3.9) po=min{p,, o},

where p, is defined in (2.3). Then, by the Weierstrass’ double series theorem we
define E® (kz1, [=0) by means of the following relations:

(3.10) k(2062 (N S rzty =3 2, EPzt, |2 < jo .
In view of (2.1) we have

(3.11) (ZiZorz)o =202 KiP2t, 2| < po .
Therefore from (2.1), (3.9) and (3.10) we have

(8.12) EPp=ky b, 6 K&EP (k=1, 120),

where we define £=0 (/=0). Substituting (3.8) into (3.6) and considering (3.9)
we have

(3.13) Lo qe B )24+ 2Lr ¥ 2 (B G )at = T2, 62, (2] <o
Comparing each coefficient of 2! of (3.13) we obtain
(3.14) G=Y o G B R 20 5 e (I21).
Therefore, from (3.5), (3.12) and (3.14) we easily see that
ci=7, (120), EP=K® (=0, k=0).
Hence the proposition foillows at once. Furthermore we have
(3.15) LR P < +oo (120). Q.E.D.
Under these preparations we will prove the main proposition of this section.
PROPOSITION 3.3. For U¥(z,t) and V{¥(x,t) (120, k=0) defined in (3.1) we
have
(3.16) 0@, O, |V, ) <KL, (2, )elr .
Proor. In the same manner of the proof of ProposITION 2.2, we will prove
this through four steps.
(i) It is obvious from (3.1) and (3.5) that (3.16) hold for £#=0 and /=0. From

(2.1), (3.1) and (3.5) we see that U=, V®=45, and K®=7, hold. Hence we see
from (1.13) and (1.15) that (3.16) hold for 2=1 and [=0.



310 Sy6z6 Niizex1

(i) We suppose that (3.16) hold for 1=k=s and 0=/<#»n. Then from (3.1),
(35) and (2.11) we have

O =(s+ D D kolital UL S(s+ DD ka K2 Lat =KLyt (0=1=1).
Similarly we have
Wﬁs“)i éf?f“’lzrl O=l=n).

Hence by an induction process on k%, the estimates (3.16) hold for £=0 and 0=/=<n.

(iii) From (1.17), (3.15) and (ii) we see that the system (3.3) has meaning for
{=n+1. Therefore applying Haar’s inequality (1.10) to (3.3) for /=n+1 and using
(ii) and (3.5) we have

08l = ldtnss| S Lol B Pt ) La™ 4 (242 uK ©)Le")
:{Zk(:l qkkg")‘i"ZLTZ i’z—_o 77i7'n+1~i}LTn+l =7n+1LTn+‘ IK;}LLT"“ .

Similarly we have [VQ,|<=K®,Ly"+. Therefore (3.16) hold for =1 and /=n+1.

(iv) From (i), (i) and (iii) we easily see that (3.16) hold for 2=0 and /=0.

Q.E.D.

Remark 3.4. From (1.3) and (3.1) we see that (7;”:11,, and 17'?’:17[, and from
(2.1) and (3.5) we see that K{®=7,. Therefore putting £=1 in (3.16) we have

3.17) @z, D, |0z, OI=#L1t, (x,8)elr,
which will be used in proving ProposiTioN 3.6 and LEmMMA 4.3.

REMARK 3.5. In view of (3.15) and (3.16) we easily see that both Y& al/$,
(z, 1) and D20V ®y(x, £) (I=1) appearing in (3.3) converge uniformly over 2r.

PropPoSITION 3.6. For @ and o, which are introduced in (1.9), we have

(3.18) |z, 8], |0z, O =p# L+ (21’0+LL>1’;LTZ, (z,D)ellr,
T

where 7 is defined in (1.14).

Proor. In view of (1.9) the first expression in (1.2) can be rewritten by
=~ — Yot i+ D2 U
From (2.1), (2.11), (2.12) and (3.17) we have
] = 12] 1] + 2ol ttr-a] 03] + XZolax| |UE,

ZgpilLrt+2ron Lt (L rimer) Lo+ 320 e K2 L™
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=pFiLst + (27’0 +—L)71Lrl .
Lr

Similarly we have

J Zjll = ﬂ‘flLTl + (270_'_11'7) TLLTl . Q E.D.

§4. The proof of main theorem

First, we will define ¢, by

4.1) =t

where g, is defined in (3.9).

LemMmA 41. For any T>0, if le|<ez them both of the series in (5) converge
uniformly over Q.

Proor. In view of (212) we have
(4.2) !Zf:ouzell, IZL‘ZODI“:”gz;ﬁoﬁ(LTiel)L, (z,0)efr.
If |e]<ep, then from (3.9) and (4.1) we have Lrle|<p,. Therefore, from (2.3) we

have X,2,#(Lrle|)}< +oo. Hence the lemma now follows at once. Q.E.D.

We remark here that for any 70 we can define ¢r as both of the relations

’
ET§6T )

4.3)
o n(LTIeTDlé—gL :

are satisfied. Then, from (1.18) we have

(4.4) 2o Lrle] )< pu, e] <er.

Hence we have the following lemma.

LEMMA 42. For any T>0, if |e|<er then we have

(4.5) | 220w, D), | ZiZovia, )| <py, (2, ey .
Proor. It is obvious from (2.12) and (4.4). Q.E.D.

LEMMA 43. For any T>0, if |e|<er then the sevies D0z, B, 3120 iz, D,
2o iz, 1)t and T2, 0z, et converge uniformly over Q.
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Proor. In view of (3.17) and (3.18) we have

I 220 tlist], | D2 it = 20 P Lrlel)t
_ _ 1
| 520 ], | 20020 Dt 920020 Ful(Lrlel 4 (21’o+z;> Do Lrle)t.

If |¢|<er then from (4.1) and (4.3) we have Lrle|<p,. Therefore from (3.7) and
(3.9) we see that 3=, 7(Lrle|))< +oo. We already saw in the proof of LEmmA 4.1
that 32 7i(Lr|e|)*< +oco. Hence the lemma now follows at once. Q.E.D.

Under these preparations we obtain the following theorem.

THEOREM 4.4. For any T>0, if ¢,¢eBY(R), 0=¢(z), ¢(z)=Mr and |¢|<er then
the Cauchy problem (1)-(2) has solutions u and v which are unique and belong to
CYQr). The solutions u and v are analytic with respect to ¢ and are expressed in
the form of (5). The vight-hand sides of (5) converge uniformly over Q. Here

My is arbitrary positive constant such that Mrg%logli“/l;—z‘o‘z: (see (1.19)), and

er is arbitrary positive constant which satisfy (4.3), wheve r; (1z0), Lr and po, are
defined when we put M= My in (1.8) and in (1.15).

Proor. In view of LEMMA 4.3, both of the series in (5) are diffentiable term by
term with respect to x and ¢ on £2,. And from the manner of the constructions
of #, and », (/=0) and from LeEMmA 41 and 4.2, if |¢|<er then # and v given in
(5) are solutions of the Cauchy problem (1)-(2). The uniform convergency follows
from LEMMA 41 and the first inequality in (4.3) at once. The uniqueness of
solutions is obvious from the general theory (see Nagumo [4]). Q.E.D.

REMARK 4.5. If ¢ and /4 appearing in (1) are entire functions (i.e. pi=+00),
then THEOREM 4.4 can be rewrited as follows.

For any positive constants 7" and M, if 0=¢(z), ¢(x)=M and |¢[|<e(T, M) then
the Cauchy problem (1)-(2) has solutions # and » which are unique and belong to
C(927). Here we put «7,M)=py/Lr, and g, and Lr are defined when we put
ro=Me¥T by using M given above.

In this case, of course, the analyticity with respect to ¢ and the uniform
convergency over 27 of solutions hold also.

§5. The existence of traveling wave-like solutions

In this section, as an application of THEOREM 4.4 we shall show that the
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Cauchy problem (1) with some initial conditions has traveling wave-like solutions.
For this purpose we need THEOREM 5.1 which states the existence of traveling
wave solutions uo(x, f)=usx—&t) and wvo(z, H)=vo(x—£&) (for the traveling wave
solution, see Aronson and Weinberger [1]).

THEOREM 5.1. The Cauchy problem

0tto 0wy

ot Ay = Tt
(5.1)

o v,

—679.-1-/,47:uwo, (z,)eRX R, ,

with initial dala

a{a(2—&)+b(u—£)}
A(A—E)+b(p—€)e’™
bla(A—&)+b(n—8))

aQ—8)e " +b(n—¢€) ’

has traveling wave solutions of the form

ala(i—€)+b(—¢)
W= TH =)=

blai—8)+b(u—8)
A8 TE D+ Hp—8)

us(x, 0)=¢(x) =
(5.2)
vo(x, 0)=¢x) =

oz, )=z —E&t) =
(5.3)
vo(x, £) =vo(x —&t) =

a b

where a>0, b>0, 1= (1=8)>0 and y=——s+-—7.

Proor. Putting s=x—&¢, wix, t)=us(s) and vz, f)=v,(s) in (5.1) and putting
2=0 in (5.2), then the Cauchy problem (5.1)-(5.2) will be reduced to the Cauchy
problem of ordinary differential equations for #, and »,:

duy
ds

(2-¢6)

= Ul

(5.4) (ﬂ_é)%:uoyo,

#(0)=a, v,0)=0b.
Adding the first expression to the second one in (5.4) we have
d
a5 {(A—E)sto+(pr—Ewo} =0 .
Solving this equation with initial data in (5.4) we obtain

(5.5) (A—8Esto+(p—Ewy=a(A—E)+b(u—¢) .
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Eliminating v, from (5.5) and the first expression in (5.4) we have

duo_( 1 v _ b )u
ds \p—§& ' p—€& a-€)"

Solving this equation with #,(0)=«, we have

ala(A—§)+b(p—§)}
a(A—§)+b(p—Ee™

Substituting (5.6) into (5.5) we have

bla(2—€)+b(p—8)}
a(A—8e " +b(p—¢§)

(5.6) uo(S)=

(5.7) o(s)=

Therefore, putting s=x—&¢ in (5.6) and (5.7) we obtain the traveling wave solu-
tions (5.3). Q.E.D.

REMARK 5.2. It is easily seen from (5.3) that if y<0 we have
#o(—00,0)=0, w#(+o0,0)=p,
vo(—00,0)=g, vy(+00,0)=0,
and if y>0 we have
uo(—00,0)=p, to(+00,0)=0,
vo(—00,0)=0, vy(+00,0)=g,

where p=a+b g:g and g=a i:g +b. Hence we have the relations
b4 q _»—q Ap—pq
= b y = =3 = s = .
pg=aq+bp, v —E A—f =1 3 —q

Here, we will sketch the graphs of the solutions #,(s) and ».(s) according to
the case of y<0 or y>0. Since 2=y, without loss of generality we may assume
that 2<p.

In case of <0 (0<p<q)
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in case of y>0 (0<g<p)

We call the solutions # and v of the Cauchy problem (1)-(2) traveling wave-
like solution when # and » are written by means of some functions fo, fi, g0 and
¢g: in the following form

{ w(x, £)=Ffolz—&t)+ef iz, 1),
v, t)=go(x—ED)+eg(x, 1),

(5.8)

where & is some constant, f, and ¢, are bounded over 2, and the absolute value
of ¢ is sufficiently small.

Now, the initial data (5.2) satisfy the conditions in (4) since @>0, b>0 and
(2—€) (p—8&>0. If put

_ p—§ 1—€
M(a, b)=max a+b————-2_5 , a——#_s +bt,
then we have
0=¢(z), Hx)=M(a,b).

Thus, in view of THEOREM 4.4 and 5.1 we establish the main theorem of this
section.

TaEOREM 5.3. For any T>0, let us take positive numbers a and b so that the
inequality M(a, b)< p:/2 holds (see (1.18)) and take e such that the inequality |e|<er
is satisfied, where er is defined in (4.3). Then the Cauchy problem (1) and (5.2)
has traveling wave-like solutions. Here, e¢r is defined in (4.3), and r (I=0) are
defined when we put M=Ma,b) in (1.8) and in (1.15).

Proor. In view of THEOREM 4.4, the solutions of the Cauchy problem (1) and
(5.2) can be expressed by
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W, )y =uo(z— &)+ 3.2, ux, £)et
(5.9) {

vz, t)=vo(x—EO+ T2 v, D, (z, Defr,
where #, and v, are traveling wave solutions (5.3) of the Cauchy problem (5.1)
and (5.2). In view of LEmMA 4.1, if we take |¢| sufficiently small then we can
make the absolute value of the second term of the right-hand sides in (5.9) as
small as possible over Q7. Therefore, the solutions (5.9) certainly have the form
of (5.8). Hence the Cauchy problem (1) and (5.2) has traveling wave-like solutions.
Q.E.D.

Remark 5.4. In THeorREM 5.3, if g and % are entire functions (i.e. p1=+cc)
then we can arbitrarily take positive numbers e and b independent of T (cf.
RemARK 4.5).

In conclusion, the author is deeply indebted to Prof. M. Yamaguti, of Kyoto
University, who contributed many significant suggestions and much invaluable
advaices, and he wishes to thank heartily Prof. M. Mimura, of Hiroshima Uni-
versity, who gave several significant suggestions in completing §5. He also wishes
to thank heartily Prof. S. Mizohata, of Kyoto University, who contributed many
times much invaluable encouragement and advaices. Further he wishes to thank
heartily to the referee for his many useful and invaluable advaices.
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