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ZETA FUNCTIONS OF INTEGRAL GROUP RINGS

OF METACYCLIC GROUPS

By

Yumiko Hironaka

Recently, Solomon has introduced a zeta function which counts sublattices of

a given lattice over an order ([5]). Let us recall the definition of this zeta func-

tion. Let I be a (finitedimensional) semisimple algebra over the rational fieldQ

or over the j!?-adicfieldQp, and let A be an order in I. A is a Z-order when I

is a Q-algebra, while A is a Zp-order when 2 is a Qp-algebra, where Zp is the

ring of p-adic integers. Throughout this paper, p stands for a rational prime and

the subscript p indicates the p-dAic completion.

Let V be a finitelygenerated left I'-module, and let L be a full//-latticein V.

Solomon's zeta function is defined as

UL;s) = Z(L:N)-',
N

where the sum 2 extends over all full /f-sublatticesN in L, (L: N) denotes the
N

index of N in L and s is a complex variable. We shall omit the subscript A and

write C(L; s), unless there is danger of confusion. When I1 is a field K and L

is the ring of integers in K, £K(L;s) is the classicalDedekind zeta function, and

we shall denote this by C,L(s).

We denote by Cn the cyclic group of order n. The explicite form of C(ZG; s)

has been given for each of the cases G―Cp and Cp2 ([4],[5]).

Let q be a prime and let n be a square-free integer coprime to q. Let Cn-Cq

be the semidirect product of Cn by Cg in which Cq acts faithfullyon the subgroup

Cp of Cn for every p＼n. The aim of this paper is to give an explicit form of

C(Z(Cn-C0); s). We shall use the method introduced in [11.

§1. Let A be a Z-order in a semisimple Q-algebra 2, and let Wl be a maximal Z-

order containing /I. Denote by S the set of primes p for which AP^WP. Since the

zeta function satisfiesthe Euler product identity (T51),we have

(1.1)
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Let $ be a set of representatives of the isomorphism classes of full Ap-latticesin

In for each #eS. Then

Zap(Ap;s)=Z Zap(Ap,L; s) and ZAp(Ap, L;s)=E (Ap: M)~s

where the sum extends over all full J^-sublattices M in Ap isomorphic to L.

The following notation will be often used in this paper.

For a ring R, R*= the unit group of R.

For a Zp-order A in a semisiraple Qp-algehra. 2, and for fulllatticesL, M in 2,

(L: M)=(L: LnM)/(M: LnM),

where the right hand side is defined by the usual index.

{L:M} = {xe2＼LxQM}.

＼＼,x＼U=(Lx:L)former*,

this norm is independent of the choice of a fullJ-latticeL.

For a Qp-algebra 2, d*x = the Haar measure on I* such that the measure (t(yjl*)=

1 for a maximal .Zp-order 9JIin I. A Haar measure is decomposed canonically

according to a decomposition of 2 as Q,,-algebras.

Thpn if is Irnnurn that

(1.2)
ZA{L, M; s)= /<Aut/((M)Y＼M:L)9

[
＼＼x＼＼'d*x([1,(11)])

§2. Let ed be a primitive d-th root of unity for every integer d^t, and let <p()

be the Euler function. The next result has been given in [5]:

(2.1) C(ZCP; s)=UsX^P,(s)(l-p-s+Pi-'s).

(2.1)is also proved in [1]. Using the method there, we have immediately the

following ffeneralization.

Proposition 2.2. Let G be the cyclicgroup of square-free order n. Then

azc,; S)= n c≪.w](s)n n a-p-f*+pf≪i-u>y*,
m＼n V＼nd＼n/P

where for each prime p＼n and d＼n/p,gd is the number of distint prime ideals over

(-b)in Z＼&A and f*―cd(Tila*.

For each p＼n,there is a decomposition as Zp-orders

d＼nlr>
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Since 0 Z[sm] is a maximal order of QG containing ZG, we have, by virtue of
m＼n

(1.1),

aZG; s)―11£z[£m](s;II II I 7-zz ^-r

-nr Mn n /WZ^jc,; s)y-

Hence (2.2)followsfrom the next lemma.

r

Lemma 2.3. Let K be a finite unramified extension of Qp of degree f, and let

R be the ring of integers in K. Then

%RC,;s)=

Proof. There are two isomorphism classes of fulli?Q,-latticesin KCP, which

are represented by RCP and i?0i?[ep]. Along the same way as in [1,§3.4], we

have

Z(RCr, RCV; s) = l+(^-l)(^,(1^_./,))8

Z(RCr, R c *[.,]; .,)=/,/■(
l-y)a.

Thus it follows that

C(#C.;s)=

and

§3. Let q be a prime and let n be a square-free integer coprime to q. Denote

by Gn the semidirect product Cn-Cq of Cn by Cq in which H=Cq acts faithfullyon

the subgroup Cp of Cn for each p＼n. Write

GB = <ff,r|aB= r9= l,r<r= <7rr>,

where r is a primitive g-th root of unity modulo p for every />|w. Let sa be a

primitive d-th root of unity. For each d＼n,di=l, H acts on Q(sd) by T-£d= e/.

Denote by Kd the invariant subfield Q(ed)H and by i?d the ring of integers in Kd.

We will calculate C,(ZGn;s).

In this section,assume that n―p is a prime. Let us denote G = GP, K=KP

and R=RP. Then 9JJ=Zc Z[eff]c Mq(R) is a maximal Z-order in QG. Denote by

K (resp. ^) the /≫-adiccompletion of K (resp. i?). To begin with, C,(ZG; s) is

reduced as follows.
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Lemma 3.1
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t.=0

Proof. CC&t; s)

qZpG;s)

C(9KP;s)
and

=UsXztUs)aMq(R);sl and by Hey's formula [2, C.7§8],

i-0

Since q＼p―l,we have

com,; S)=t:Zp(syaMq(R); s)=a-p-s)-"qf＼ a-p*-9')-

Only primes / for which ZiG^Wi are p and q. Since ZqG is decomposed as ZqHR

(Zq<2)Ziep]-H) and the latteris a maximal order,we have

qZqG;s)

C(3≫(,;s)

qZgH; s)
= l-q-*+ql-u, by (2.1)

Then the result follows from the formula (1.1).

By (3.1),it sufficesto calculateC(ZPG; s). Hereafter we denote A―ZPG. Since

q＼p―1,there is a primitive q-th.root <o of unity in Zp, and Zp/7 is decomposed as

^/ic-c^/? where <?,;(l^i^kq) is the idempotent for which Tei=(i)i~lei.Then

we have

A=Ae% c■■■<&Aeq

=ZpCpe1(&--'RZpCpeq as ^-lattices.

Let Noei=Zpei @ Zp{sp]eiand Nxei=ZpCpei, these are ^-latticesin a natural way.

There are 2q isomorphism classes of full/1-latticesin QPA, which are represented

by

L≫1,...,iqi= N,1e1 @―R Nt^eq, where 8i= 0 or 1.

There is a relation: i=L(,,.,1)gL(il,..,＼gL(O|..,o)=C>(say). We have §=ZPH@

Zp[sp]°H. Since 5I=Zp[£j,]°iJis a hereditary order in Mq{K),

%^{{xi^Mq{R)＼xi^7:R if i<;},

where n is a prime element of R. Further, by force of the pullback diagram

I

= j&j}/l

1

I

./

FPH=FPR-RFP
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we may identify

under some rearrangement of e*if necessary.

Lemma 3.2. Let L―

i) (L:A)=p≪-r

Xi = iju mod nR |

q
L(.bV ･･･,&,■> and let r=Tidi. Then

1 = 0

ii) /XAut, (£))->=jj
(tzt)

x(^-Dr
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Proof, i) (L: A)=(ZPR Zp[ep}:ZpCpy-^p'l-＼

ii) For every i,j,l^=i,j^q, it is clear that

Horru (Zpei,Zp{s,p＼e})-HornA(Zp[£p]ei,Zpej)-0 .

Let ii=j. Then we have Hom^ (Zpet,Zpej)=Q. Further, for every / in Horn (Zplspjet,

Zp[ep]ej),we see that f(ei)(sp―l)Zp[ep]ej. On the other hand, /i―> f{ei)induces

EadA(Zpei)^Zp, End^(Zp[ep>Os(Zp[ep])≪ and EndA(ZpCpei)^(ZpCp)H.

Thus, each /e End A{L) is given uniquely by

(or,,-, a,;(fiij))eZp0-c Zp 0 M^Zpisp]),

where &≪ /?, bij£(ep―l)Zp[ep]if ^;, and ai=&≪mod7r^ if 5i= l. It can be shown

that / Autyi(L) if and only if cii Zp* and buzR* for every i, l^i^q. Therefore

we see that

(AutA(fQ):AutA(L))=(p~-l)r,

and so we have

//(Aut,(L))=fKAuU ( >))x(/>-l)-r.

By the way

Thus we have

jucauud)-1^(jzrjxip-w

Let F=ZJpZp^RlnR. For ateF, l^i^q, let us denote

p-1
)

pi-l
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and

J(au ･･-,≪,)=

Yumiko Hironaka

(xi, ･■･,xq; (yij))zA
Xi mod pZp = iju mod kR = iu,,

J(fli, ･･･,aq) = {(yij)e%＼yu mod kR ―a%, l^i^g}.

q
Lemma 3.3. i) Let L=LiSl.....Sq-)and let r=Yldi, Then

{L:A} = u

atZF if
a^o if 4=0

liiSQ

≪,) {disjoint union).

Let ≪t F, l^i^g, and let k be the number of i such that an^Q. Then

JJla1,-,aq)r)GLqlK

f

Jj(l,-,l,o,"-,o)n6'A(|(X)

Proof, i) {L: A} = {x£A＼LxQA}, since l. L,

＼x£/l

xsA

w
a{eF if

a.,;=o if

ISiS?

eix^A. for every i

X

'I-

where 0p(a) is the p-th cyclotomic polynomial,

ii) Since there exist A, BeGLq(R) such that

AJ(al,-,aq)B=J(l,-,l,0

k

and we see that

i(≪i,
･■･≪≪)=

k

<l>v(o)

WxWuJhfTx

e,x e A if dj=0

jej^il-sp)Zp[ep]ej if di-Ol

p

i

-,0)

the integral over //(≪,,■･･,a</)is equal to that over J(l, ･･･,1,0, ･･･,()).

fe

iii) Let Z(ai) = {zeZp＼zmodpZp~at}, l^ki^q. Then

i = l
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(
＼＼x＼＼sQpd*x= -

Thus we have, by force of ii),

L,.,^,

n / p ― ＼＼

and for an integer k, Q^k^n,

where mj, l^j^n, are as in i).

1

if di^O

if ax = 0
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1

p-

_!

ps- 1

i
Ir II-yIIs ^ ft*v

11 1is t^c
Ji(l,-,l,o,-,Q)fiG£ii(jn

＼＼x＼＼Qq*a
x-

(p*-l)<i-＼p-lf

We shall use the following notation:

for an integer n^l,

Sn=Mn(K);

rn = {(xij)£Mn(R)＼xij£nR for l^Kj^n}

En=TV={(x-ij) e rn Ixu ^* for 1 ^ i^≫};

xugR*

XuSnR

for l^i^k |

for k + l^i^n＼

We shall omit the subscript n, unless there is danger of confusion.

En acts on rnr＼2n* by left multiplication. As a full set of representatives of

En＼rnr＼2n*, we can take the set Tn― ＼JTn a, where Sn is the symmetric group

on n symbols, and each Tn , is the set of matrices {xij)£ln* such that

i) for l^j^n, xa(fi,j=7tm-f,where mj^O if o(j)^j and w/^1 if o(j)<j,

ii) for j + l^i^n, xaCi)j=0

iii) for l^i^j―1, xaa>.j ranges over all representatives of

lTcRjnmJ+lR if a(i)<j and a(i)<o(j)

Rlnmi+iR if j^a(i)<a(j)

izRJTimjR if aU)<a(i)<j

MlnmJR if a{i)2ij and a{i)>a{j),

We note here that, for the matrix (xij) as above, det(xij)=±p1"1

Lemma 3.4. Let n'^1 be an integer. Then
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i) There exists a polinomial Gn(x) over Z with p^^-^^X"' as the highest term

and Y as the lowest term such that

u l|,r||s
//*-._

dyGrlP U>>)

ii) For every integer k, O^k^n,

I ll-r.|ls,1*v―

hnuc)nln*

n (i~#-ms)

1=0

dnGn-k(pk'nS)

rf(i-^-"s)

Proof, i) We see that En acts on J≪(0)n Zn*, and that Tn n 4≫(0) form a full

set of representatives of En＼dn(0) n 21 *. Thus we have

LM,
＼＼x＼＼ind*x= ttEn)E Z 2 ＼＼detM＼＼g'.

Let a Sn- For each./,l^j^n, let m/i^O if a(j)> j and let m^l if a(j)^j. Further,

let //=#{i|l^f^;-l and j<a(i)<a(j)} and let ≫y= #{i|l^*^7-l and a{j)<a{i)^j}.

Then O^fy, vj^j-1 and tjVj=O. There are pu-*imJpPj-vJ ways of the choice of the

/-th column among {(^i/)G71?t,onira(0)|a;<,O;,,= 7rmJfor l^;^w}. Thus we have

2 ＼＼detM＼＼~n'= S
(f＼
ptj-'Jpv-^jp-nnA

MGTniar＼Jn(.O)
K mjio if

<7(j)>j＼j=i /
mygl if <7(j)£j

1

rf(i-/>*-≫≪)

PHp-nsy°

/ n
&* n {pj-i-vip-ns)＼

"new―)'

i=a

where eo―#{j＼l^j^n and a(j)^j] and ca tj+ 2 (J ―l ―Vj). If a~id, then

ea ―n and tj―Vj―O for l^j^n, and hence ca= n{n ―l)j2. If a = (12---n), then ea = l,

tj=Q for l^j^n, Vj=0 for l^j^n―1, and vn~n―1, and hence cff=0. It is easy

to see that 2^ea^n-l if a^id, <7=£(12―≫).Let Gn(X)=Z pc"Xe≪,then the highest

term pw-wxn comes from a = id and the lowest term X comes from a-(12---n).

Finallywe have

JV≪nV jj (l-/>*-ns)

?:=o

ii) We see that En acts on Jn(k)r＼Zn*,and that Tn(＼An(k) form a full set of
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representatives of En＼dn(k)n2n*- They are of the form

k n ―k

( CT
B

)

where ,4e7V-fcn^-&(0),

275

and for each A of detA―±pm, there are pkm ways of the choice of B. Let l―n―k

and let am be the cardinary of the set

{AeTlr＼Ai(O)＼detA=±pm}.

Then we have

L
Bc≪nv

＼＼x＼＼l
Hd*x
= dJ S WdetMWf)

71 ＼MZTnnJn<,k) K I

= dn £ Pkmam(p-nT=dn E am(pk-nT ■

Since S am(p-lT=
^^'^

mio n ii-p1-18)
i=0

Therefore we have

, we have

Gi( frk-ns)

Li Um＼P J ― j_!
ao Y＼(l-pi+k'ns)

＼
＼＼x＼＼ind*x=

J47,(fc)ni"*

dnGn-k(Pk-ns)

Example 3.5. If n is given, then Gn{X) can be written explicitly.It is easy

to see that &(X)=X and G2(X)=pX2+X. For the case that ≪=3, we have the

following table

a en... ea Cn

id

/** a b＼ l,tn,n^l ]

0 7T C]

＼0 0
if)
as*Rlxn+lR> b,cenRlrcn+1Rj

3 3

(23)

'[* a b＼l,n^l, m^O }

0 0 nn＼

＼n ,* r a£nRlr:m+1R, h£nRlxn+1R, csuRj^R]
＼＼Jn C I I

2 1
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(12) K a c＼ , ,

＼0 0
nnj
aG7:RlKmR> b,C 7:Rlnn+}R＼

2 2

(123) Un1 a b＼

＼n
Tm r

a£KRIr:m+1R, b,c£nRJKnR
1 0

(132)

f/° *m b＼l^, m,n*l 1

0 0 nn＼

＼＼, azRlnmR, b£KRInn+]R, c£nRJKnR

2 2

(13)

f/° ° ff"＼ /*0, m,n*l

2 1

Thus we see that

G3(X)=p*X:i+2(p*+p)X*+X.

Now we have prepared to show

Proposition 3.6.

C(ZPG; s)
% qCk{lHP-l)p-s)q-kGq-k{Pk-qs)

fc=o
rf((w-xw-≪f))

where qCk is the binomial coefficient,and we define GO(X)=1 and ＼＼((1―p~s)(l―

/>*-≪s))=l.

Proof. Let L=L(5j...,sg)and let r=Ttdi. Then, by force of (1.2), (3.2) and

(3.3),

Z(A,L;s)=
Lfc=O Jj(i,---,i,o,---,o)nQp/(* J

k.

^,-'U>-lrp'""[i(r^
o) n x*

＼＼x＼＼'sd*x

1

_ f r rCk{{P~i)P-°y-k G9-4?-≪) i

i~k
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Thus we have

C(/l;s)= £ Z(A,L;s)

Qyi
gCr^(/l, /^(l ..1,0,―,0)j S)

r

f> y> &jrCjMj>-ty>-'y-*Gq-i£p*-≪*)

r = 0 * = 0

Since qCr-rCk=qCk-q-kCr-k, we have

r(A.
<a-
v v <£K-≪-KCr-k-{(p-l)p-s)r-kGq-k(pk~v)

L,＼/i, S)― /_j Zj q-i

= v
^(l+(J>-l)/>"s)g~fc^^(/>fc'gs)

ri'ca-^-xi-^-8'))

i=k

Combining (3.1) with (3.6),we have

Theorem 3.7.

Lfc=ol *=≫ JJ
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Example 3.8. We note here for the case that q=2 (dihedral group) and q=3.

aZDp;s)=UsTU2s)WZs-l)X{l-2-s+2l-≫°)

X(l-2p-s +(p+l)p-2s+2p2-3s-(p2+p)p-4s+p3~6s),

where R=Z[ep+ep-i~＼,and

aZ(Cp ■C3);s)- UsXzUs)U3s)Cr(3s - l)U3s -2) x (1 - 3~s+31-2s)

/(i_?7)xi-^)(l-^/)(l-/>V)

+3(l-y)(l-y3)a+(P-l)y)XPvs+P3y6)

, +a+(P-l)y)＼y*+2'(P2+P)ye+P3y≫)

where y=p~~sand R is the ring of integers in Q(ep)G3.

§ 4. Let Gn and // be the groups defined at the beginning of § 3:

GB=<tf,rkB = r≪= l,r<7 = <7rr> and //=<r>.
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Then we have QGn―QHR c Mq{Kd) as algebras. For each/>|≪, there is a decom-

d＼n/p
d*i

position as Zp-orders

ZpGn=ZpGpRR
d＼n/p
(zp[^oGpyi

Here gd is the number of distinct prime ideals over (p) in Rd, and Zp[gd]=Zp[X]l

(＼d(X)), where WA(X) is the minimal monic polynomial over Zv such that ＼d(sdri)=

0, O^i^g― 1. On the other hand, there is a decomposition as Zg-orders

ZqGn=ZqH<&{
e

d*i

ZqRZ[ed]oH)
z

where the latter factor is a maximal i^-order.

Let m=ZR Z[eq] 0 c Mq{RA). Then W is a maximal Z-order in QGn. Then,

d＼n
d*l

by virtue of (1.1) and Hey's formula, we have

Lemma 4.1.

aZGn; s)=cm; s)X(l-q-s+ ql-2s) U

Pin

aZPGp;s) n mPm°GP; s))°≪

d＼nlP,d*＼

C(5Kp;s)

9-1
C(3tt;s)= Czt≪,](s)FI n ZnAqs-i), and for each p＼n,

com,;s)-'=(i-/>-)≪ n'a-^-**) n n'a-^1-9')8"-.

i=o d|n/Pi=o

where pd=pf^/i0d.

Let A=Zp[$dl°Gp, where d＼n＼pand d^l, be a factor of ZpGn as above. To

determine Z(ZGn', s), we have only to treat £(/f;s), because C,(ZPGP; s) has been

determined in §3.

Denote by Kd, KaP, Rd and Rdp the />-adic completion of Ka, Kdp, Ra and Rdp,

respectively. As in §3, we write Zp[^d]°H=Zp[$d]eiR--'R Zp[^d^eq and let Noei=

Zp[gd]ei 0 Zp[£d,ep~]eiand Nlei=Zp[£;d]Cpei, l^i^q. These are /1-latticesin a natural

way. There are 2q isomorphism classes of full /(-lattices in QPA, which are re-

presented by

Lcsv .■,sq)=NSlel(£)---(BNg1eq, where <3j=0 or 1.

There is a relation: yl=L(i,...,0£L(a1,...,ag)£L(o,...,o).We have Lco, ..,o)―?CcS as

Zp-orders, where %=Zp＼^d~＼°Hand 58=Zp[fd, ep]°i7. Since the extensions Q(sd)IKd

and Q(edp)/Kdp are unramified at j&,?l and 55 are maximal Zp-orders (cf. [3, § 40]),

and hence we may identify 31 with Mq(Rd) and 33 with Mq(Rdp). Let x be a prime
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element of Rdp. Then RdjpRd^RdPl7:Rdp=F (say), and ＼F＼=pa=p'id>'qe*. Let us

denote P=pd.

q
Lemma 4.2. Let L = LiS,...3a-> and let r=tlSi. Then

i) (L:/J)=P≪(≪-r)

i=o r ―r

Proof, i) (L:A)=(Zp[^d] 0 Zp[$d,Sp]:Z^alC,?-'

= ＼Zp[£d]lpZp[t;<i]＼≪-r= P^-r> .

ii) Let (d be the primitive #-th root of unity in Zv for which rei=o)i~lei.Let

9-1
Yk=Yi a)~kif-d＼where kzZ, then rYk―o)kYkv. Since d is square-free and coprime
4=n

to p, sd is a generator of a normal basis for Fp(ed)IFp, and so

Fp(sd). Thus we see that Yk is a unit in Zp[$d]- Then there is

between

j

(faj), {hi))zMq{Rd) 0 Mq(Rdp)

and EndA(L), induced by

dij=bij mod rrRdp if 8j=l

aij,bij£nRdp if &=0 and

9-1
L

an

aj-ki£dri^O in

isomorphism

in particular,]

8j=l
I

V=i i=i /

Hence we see that

li(AutA (L))-l=fi(AutA (10 S))-1(Aut^ (510 SB): Aut. (L))

＼GUFr

＼GLr(F)＼＼GLq-r(F)＼*P^W

=
n- ―
11 pr_pi

Let X=Mq(F) and, foreach X£%,letA(X) = {AeMq(Rd)＼AmodpMq(Rd)=X}. To

simplify the notation, denote by ＼ the integral 1
^
IMIk,^)^*^- Then we

JiUT) JJCX)r＼GLq(.Kd)* a
have

q
Lemma 4.3. Let L=LiS. ...ao) and let r=Tl 8i. Then

i
llrlis ･/*<!･― Y1

(＼
I＼ ＼＼x＼＼qp/*X― Lj [＼ } ≫

where %r―{(xij) %＼xij―Ofor r+l^i^q, l^j^g}.
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Proof. {L: A}= {xgA＼LxQA], since leL,

=1 X£A
y^ejxep*

and
(l-^)ejXz(l-eP)R

if ≪,=o|
P ＼ P I ＼

Every element of A can be written as

s e^oizUo), zMziZ^ACr,)"

Hence {L: A} may be identified with

＼((xij),
(yij))eMq(Rd) c Mq(Rdp)

= ＼JA(X)RJ>(X),
x<=xr

Xij=yij mod rcRdp for l^ij^g)

Xkj,ykjG7cRdP for r+l^k^q
J

where A'(X)= {Be Mq(Rdp)＼Bmod 7:Mq(Rdp)=X}. Thus we see that

1
llrll8 d*T＼ W^QjJ1 X

J[LlA＼nQpA* p

= t＼＼
. ＼＼A＼W*<i>d*A .

＼＼x＼＼sMqa^x＼

Since RalpRd=RdPlnRdv, we have

I llrlls d*r― V I

Each Xs% becomes the standard form Xh ―

(

･

for some 0</z<

q, by elementary transformations. Therefore there exist A, BeGLq(F) such that

AXB=Xh. Let A, BeGURa) such that A modpMJRa)=A and B modpMq(Rd) = B.

Then we have Ad(X)B=A(Xh). From this it follows that ＼ = ＼

Jj(X) JJ(.Xh)

Lemma 4.4.

[ p-q(q-~h)s

*ff(p≪-p≪)*ff(l-i"-≪≪)

4=0 i=fc.
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Proof. Let E=

J

A~-^＼

1+pR

^^pR

1+pR

PR

(xij)£GLq(Rd)

R

GLq.h(R)

(1 (R=Rd)

xu=lmodpRci for l^i^h

XijZpRa for l^j^h and i±?j
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Then E acts on A(Xh) n GLq(Ka) by left multiplication. As a full set of represent-

atives of E＼A(Xh)nGLq(Kd), we can choose the set of matrices (xij) GLq(Kd) such

that

i) for l^j^h, Xjj=l

ii) for h + l^j^q, Xjj=pmj, where mf^X

iii) for l^j^h and ii=j, and for h+l^j^g and i>j, Xij=0

iv) for k+l^j^q and ?</, x^ ranges over all representatives of pRdlpmjRd,

where mj, h + l^j^q, are as in ii). If nij, h + 1 Sj ^ q, are given, there are

f[ pc^-iHi-n
matrices of the form

among the above {(xtj)}.

Proposition 4.5.

J4crft)

1

0

1

Thus we have

= u{E)

pmh+l

0

*

pviq

＼

/

q
r/Pmi＼i-l -i

z n (^-) p-≪""

p-qlq-h)s

i-0 i=h

<Z r r r-l (pq_pi＼2 ih-＼ pq__pi
ccz^i-g, ;

S)=
£ £

La n i4~^-x
n ^r-4 )x

p-q(q+r-2tOs

9-1
n

i=h

n ―pt-Qsy
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fc-1pr__pi
Proof. Let r^h be integers. Then there are wr,ft= f]

i=0
ph. pi

distinct F

subspaces of dimension h contained in an F-space of dimension r, and there are

h-i
rnu― fl{Pq ―Pi) ways of permutations of q vectors in an F-space V of dimension

i=0
h which span V. Then, in 36r,there are nr<hmh matrices with standard form Xh

for each O^h^r. Let L=L(tl,...,,->and let r=
f]
ft. Then, by force of (1.2),(4.2)

and (4.3),we have

Z(A,L;s)=l＼pr p HE

r rr-l
s n

Thus we have

C(A;s)=
qs

r=0

q
= s

r=0

(F≪-i≫*)8

ph_pi

//i-l pv

＼i=0 -t

qL>rZ＼A, -L(l,...l,o--.O)＼S)

■r

r-l
n

i=h

(pa-pif
Pr-Pl

-p*

^
, by (4.4).

1 /I ni-os＼2J
9-1
n (l-pt-vy

(A-l

n

i = 0

p

p

q-p*＼ p-qiq+r-2h-)s -j
_

1 (l-P<-ff≪)2-≪

i=h

Let us recall the polynomial GJX) defined in (3.4). By the proof of (3.4),we

may view Gn(X)= Yipe°Xe°as a polynomial both in p and X. From this point of
o£Sn

view, we will write Gn(p,X) instead of GJX). Put G0(p,X)=l. Then, combining

(4.1),(3.7) and (4.5),we have

Theorem 4.6. Let q be a prime and let n he a square-free integer coprime to

q. Let Cn-Cq be the semidirect product of Cn by Cq in which Cq acts faithfully on

the subgroup Cp of Cn for every p＼n. Then

＼d＼ni=0 I

p＼n＼ d＼n/p I
d*＼

FpAs)=
i ＼qck{i+{p-v>p-sTkGq-k(p,pk-≪*) n1

(a-p-^i-p^))]

and for d^=t,

q r f r-1 (fy.Q ― hJY h-1 I ■hA ― toJ-

(X-Pa*-"')1) xArff(≪+r-8'°'l
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where for each p＼n and l^d＼njp, go,is the number of distinctprime ideals over (p)

in Rd and p^p^^'Wd.
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