ZETA FUNCTIONS OF INTEGRAL GROUP RINGS OF METACYCLIC GROUPS

By

Yumiko Hironaka

Recently, Solomon has introduced a zeta function which counts sublattices of a given lattice over an order ([5]). Let us recall the definition of this zeta function. Let Σ be a (finite dimensional) semisimple algebra over the rational field Q or over the p-adic field Q_p , and let Λ be an order in Σ . Λ is a Z-order when Σ is a Q-algebra, while Λ is a Z_p -order when Σ is a Q_p -algebra, where Q_p is the ring of p-adic integers. Throughout this paper, p stands for a rational prime and the subscript p indicates the p-adic completion.

Let V be a finitely generated left Σ -module, and let L be a full Λ -lattice in V. Solomon's zeta function is defined as

$$\zeta_A(L;s) = \sum_N (L:N)^{-s}$$
,

where the sum \sum_{N} extends over all full Λ -sublattices N in L, (L:N) denotes the index of N in L and s is a complex variable. We shall omit the subscript Λ and write $\zeta(L;s)$, unless there is danger of confusion. When Σ is a field K and L is the ring of integers in K, $\zeta_{K}(L;s)$ is the classical Dedekind zeta function, and we shall denote this by $\zeta_{L}(s)$.

We denote by C_n the cyclic group of order n. The explicite form of $\zeta(\mathbf{Z}G;s)$ has been given for each of the cases $G=C_p$ and C_{p^2} ([4],[5]).

Let q be a prime and let n be a square-free integer coprime to q. Let $C_n \cdot C_q$ be the semidirect product of C_n by C_q in which C_q acts faithfully on the subgroup C_p of C_n for every p|n. The aim of this paper is to give an explicit form of $\zeta(\mathbf{Z}(C_n \cdot C_q); s)$. We shall use the method introduced in [1].

§1. Let Λ be a **Z**-order in a semisimple **Q**-algebra Σ , and let \mathfrak{M} be a maximal **Z**-order containing Λ . Denote by S the set of primes p for which $\Lambda_p \neq \mathfrak{M}_p$. Since the zeta function satisfies the Euler product identity ([5]), we have

(1.1)
$$\zeta_{\mathcal{A}}(\Lambda; s) = \zeta_{\mathfrak{M}}(\mathfrak{M}; s) \times \prod_{p \in S} \frac{\zeta_{\Lambda_p}(\Lambda_p; s)}{\zeta_{\mathfrak{M}_p}(\mathfrak{M}_p; s)}.$$

Let \mathfrak{P} be a set of representatives of the isomorphism classes of full Λ_p -lattices in Σ_p for each $p \in S$. Then

$$\zeta_{\Lambda_p}(\Lambda_p; s) = \sum_{L \in \mathbb{R}} Z_{\Lambda_p}(\Lambda_p, L; s)$$
 and $Z_{\Lambda_p}(\Lambda_p, L; s) = \sum_{M} (\Lambda_p; M)^{-s}$,

where the sum extends over all full Λ_p -sublattices M in Λ_p isomorphic to L.

The following notation will be often used in this paper.

For a ring R, R^* the unit group of R.

For a \mathbb{Z}_p -order Λ in a semisimple \mathbb{Q}_p -algebra Σ , and for full lattices L, M in Σ ,

$$(L:M)=(L:L\cap M)/(M:L\cap M)$$
,

where the right hand side is defined by the usual index.

$$\{L:M\} = \{x \in \Sigma | Lx \subseteq M\}$$
.

$$||x||_{\Sigma} = (Lx : L)$$
 for $x \in \Sigma^*$.

this norm is independent of the choice of a full Λ -lattice L.

For a Q_p -algebra Σ , d^*x =the Haar measure on Σ^* such that the measure $\mu(\mathfrak{M}^*)$ = 1 for a maximal Z_p -order \mathfrak{M} in Σ . A Haar measure is decomposed canonically according to a decomposition of Σ as Q_p -algebras.

Then it is known that

(1.2)
$$Z_{\Lambda}(L, M; s) = \mu(\operatorname{Aut}_{\Lambda}(M))^{-1}(M : L)^{s} \int_{\{M : T\} \cap \Sigma^{s}} ||x||^{s} d^{*}x \quad ([1, (11)]).$$

§ 2. Let ε_d be a primitive d-th root of unity for every integer $d \ge 1$, and let $\varphi()$ be the Euler function. The next result has been given in [5]:

(2.1)
$$\zeta(\mathbf{Z}C_p; s) = \zeta_{\mathbf{Z}}(s)\zeta_{\mathbf{Z}[s_p]}(s)(1 - p^{-s} + p^{1-2s}).$$

(2.1) is also proved in [1]. Using the method there, we have immediately the following generalization.

Proposition 2.2. Let G be the cyclic group of square-free order n. Then

$$\zeta(\mathbf{Z}G; s) = \prod_{m|n} \zeta_{\mathbf{Z}[\varepsilon_m]}(s) \prod_{n|n} \prod_{n|n} (1-p^{-f}a^s + p^fa^{(1-2s)})^{g}d$$

where for each prime p|n and d|n/p, g_d is the number of distint prime ideals over (p) in $\mathbf{Z}[\varepsilon_d]$ and $f_d = \varphi(d)/g_d$.

For each p|n, there is a decomposition as \mathbb{Z}_{p} -orders

$$Z_pG = \bigoplus_{d \mid p/p} (Z_p[\varepsilon_d]C_p)^{q_d}$$
.

Since $\bigoplus_{m|n} \mathbf{Z}[\varepsilon_m]$ is a maximal order of $\mathbf{Q}G$ containing $\mathbf{Z}G$, we have, by virtue of (1.1),

$$\begin{split} \zeta(\boldsymbol{Z}G\,;\,s) &= \prod_{m|n} \zeta_{\boldsymbol{Z}[\varepsilon_m]}(s) \prod_{p|n} \prod_{d|n/p} \left(\frac{\zeta(\boldsymbol{Z}_p[\varepsilon_d]C_p\,;\,s)}{\zeta_{\boldsymbol{Z}_p[\varepsilon_d]}(s)\zeta_{\boldsymbol{Z}_p[\varepsilon_dp]}(s)} \right)^{g_d} \\ &= \prod_{m|n} \zeta_{\boldsymbol{Z}[\varepsilon_m]}(s) \prod_{p|n} \prod_{d|n/p} \left(\frac{\zeta(\boldsymbol{Z}_p[\varepsilon_d]C_p\,;\,s)}{(1-p^{-f_ds})^2} \right)^{g_d}. \end{split}$$

Hence (2.2) follows from the next lemma.

Lemma 2.3. Let K be a finite unramified extension of Q_p of degree f, and let R be the ring of integers in K. Then

$$\zeta(RC_p;s) = \frac{1 - p^{-fs} + p^{f(1-2s)}}{(1 - p^{-fs})^2} .$$

PROOF. There are two isomorphism classes of full RC_p -lattices in KC_p , which are represented by RC_p and $R \oplus R[\varepsilon_p]$. Along the same way as in [1, § 3.4], we have

$$\begin{split} &Z(RC_p, RC_p; s) = 1 + (p^f - 1) \left(\frac{1}{p^{fs}(1 - p^{-fs})}\right)^2 \quad \text{and} \\ &Z(RC_p, R \oplus R[\varepsilon_p]; s) = p^{fs} \left(\frac{1}{p^{fs}(1 - p^{-fs})}\right)^2. \end{split}$$

Thus it follows that

$$\zeta(RC_p; s) = \frac{1 - p^{-fs} + p^{f(1-2s)}}{(1 - p^{-fs})^2}.$$

§ 3. Let q be a prime and let n be a square-free integer coprime to q. Denote by G_n the semidirect product $C_n \cdot C_q$ of C_n by C_q in which $H = C_q$ acts faithfully on the subgroup C_p of C_n for each p|n. Write

$$G_n = \langle \sigma, \tau | \sigma^n = \tau^q = 1, \tau \sigma = \sigma^r \tau \rangle$$

where r is a primitive q-th root of unity modulo p for every p|n. Let ε_d be a primitive d-th root of unity. For each d|n, $d \neq 1$, H acts on $Q(\varepsilon_d)$ by $\tau \cdot \varepsilon_d = \varepsilon_d^r$. Denote by K_d the invariant subfield $Q(\varepsilon_d)^H$ and by R_d the ring of integers in K_d . We will calculate $\zeta(ZG_n; s)$.

In this section, assume that n=p is a prime. Let us denote $G=G_p$, $K=K_p$ and $R=R_p$. Then $\mathfrak{M}=\mathbb{Z}\oplus\mathbb{Z}[\varepsilon_q]\oplus M_q(R)$ is a maximal \mathbb{Z} -order in $\mathbb{Q}G$. Denote by \widehat{K} (resp. \widehat{R}) the p-adic completion of K (resp. R). To begin with, $\zeta(\mathbb{Z}G;s)$ is reduced as follows.

LEMMA 3.1.

$$\begin{split} &\zeta(\mathbf{Z}G\,;\,s) = \zeta_{\mathbf{Z}}(s)\zeta_{\mathbf{Z}[s_q]}(s) \prod_{i=0}^{q-1} \zeta_R(qs-i) \times (1-q^{-s}+q^{1-2s}) \frac{\zeta(\mathbf{Z}_pG\,;\,s)}{\zeta(\mathfrak{M}_p\,;\,s)} \quad \text{and} \\ &\zeta(\mathfrak{M}_p\,;\,s)^{-1} = (1-p^{-s})^q \prod_{i=0}^{p-1} (1-p^{i-qs}) \;. \end{split}$$

PROOF. $\zeta(\mathfrak{M}; s) = \zeta_{\mathbf{Z}}(s)\zeta_{\mathbf{Z}[\epsilon_0]}(s)\zeta(M_q(R); s)$, and by Hey's formula [2, C.7 § 8],

$$\zeta(M_q(R); s) = \prod_{s=0}^{q-1} \zeta_R(qs-i)$$
.

Since q|p-1, we have

$$\zeta(\mathfrak{M}_p\,;\,s)\!=\!\zeta_{\mathbf{Z}_p}\!(s)^q\!\zeta(M_q(\hat{R})\,;\,s)\!=\!(1-p^{-s})^{-q}\prod_{i=0}^{q-1}(1-p^{i-qs})^{-1}\;.$$

Only primes l for which $\mathbf{Z}_l G \neq \mathfrak{M}_l$ are p and q. Since $\mathbf{Z}_q G$ is decomposed as $\mathbf{Z}_q H \oplus (\mathbf{Z}_q \bigotimes_{\mathbf{Z}} \mathbf{Z}[\varepsilon_p] \cdot H)$ and the latter is a maximal order, we have

$$\frac{\zeta(\boldsymbol{Z}_{q}G;s)}{\zeta(\mathfrak{M}_{q};s)} = \frac{\zeta(\boldsymbol{Z}_{q}H;s)}{\zeta_{\boldsymbol{Z}_{q}[s_{q}]}(s)} = 1 - q^{-s} + q^{1-2s}, \text{ by } (2.1)$$

Then the result follows from the formula (1.1).

By (3.1), it suffices to calculate $\zeta(\mathbf{Z}_pG;s)$. Hereafter we denote $A=\mathbf{Z}_pG$. Since q|p-1, there is a primitive q-th root ω of unity in \mathbf{Z}_p , and \mathbf{Z}_pH is decomposed as $\mathbf{Z}_pe_1 \oplus \cdots \oplus \mathbf{Z}_pe_q$ where e_i $(1 \leq i \leq q)$ is the idempotent for which $\tau e_i = \omega^{i-1}e_i$. Then we have

$$\Lambda = \Lambda e_1 \oplus \cdots \oplus \Lambda e_q
= \mathbf{Z}_p C_p e_1 \oplus \cdots \oplus \mathbf{Z}_p C_p e_q \text{ as } \Lambda\text{-lattices.}$$

Let $N_0e_1=\mathbf{Z}_pe_i\oplus\mathbf{Z}_p[\varepsilon_p]e_i$ and $N_1e_i=\mathbf{Z}_pC_pe_1$, these are Λ -lattices in a natural way. There are 2^q isomorphism classes of full Λ -lattices in $\mathbf{Q}_p\Lambda$, which are represented by

$$L_{(\delta_1,\cdots,\delta_q)} = N_{\delta_1}e_1 \oplus \cdots \oplus N_{\delta_q}e_q$$
, where $\delta_i = 0$ or 1.

There is a relation: $\Lambda = L_{(1,\dots,1)} \subseteq L_{(\delta_1,\dots,\delta_q)} \subseteq L_{(0,\dots,0)} = \mathfrak{H}$ (say). We have $\mathfrak{H} = \mathbb{Z}_p H \oplus \mathbb{Z}_p [\varepsilon_p] \circ H$. Since $\mathfrak{A} = \mathbb{Z}_p [\varepsilon_p] \circ H$ is a hereditary order in $M_q(\widehat{K})$,

$$\mathfrak{A} = \{(x_{ij}) \in M_q(\hat{R}) | x_{ij} \in \pi \hat{R} \text{ if } i < j\}$$
,

where π is a prime element of \hat{R} . Further, by force of the pullback diagram

$$Z_{p} \bigoplus Z_{p} = Z_{p}H \longrightarrow F_{p}H = F_{p} \bigoplus F_{p}$$

we may identify

under some rearrangement of e_i if necessary.

LEMMA 3.2. Let $L = L_{(\delta_1)}, \dots, \delta_{q_j}$ and let $r = \sum_{i=0}^q \delta_i$. Then

i) $(L:\Lambda)=p^{q-r}$.

$$\mathrm{ii)} \quad \mu(\mathrm{Aut}_{\mathit{A}}(L))^{-1} \! = \! \prod_{i=1}^q \left(\frac{p^i \! - \! 1}{p \! - \! 1} \right) \! \times \! (p \! - \! 1)^r \, .$$

PROOF. i) $(L:\Lambda)=(\boldsymbol{Z}_p \oplus \boldsymbol{Z}_p[\varepsilon_p]:\boldsymbol{Z}_pC_p)^{q-r}=p^{q-r}$.

ii) For every $i, j, 1 \le i, j \le q$, it is clear that

$$\operatorname{Hom}_{\Lambda}(\boldsymbol{Z}_{p}e_{i},\boldsymbol{Z}_{p}[\varepsilon_{p}]e_{j}) = \operatorname{Hom}_{\Lambda}(\boldsymbol{Z}_{p}[\varepsilon_{p}]e_{i},\boldsymbol{Z}_{p}e_{j}) = 0.$$

Let $i \neq j$. Then we have $\operatorname{Hom}_{A}(\boldsymbol{Z}_{p}e_{i},\boldsymbol{Z}_{p}e_{j}) = 0$. Further, for every f in $\operatorname{Hom}(\boldsymbol{Z}_{p}[\varepsilon_{p}]e_{i},\boldsymbol{Z}_{p}[\varepsilon_{p}]e_{j})$, we see that $f(e_{i})\in(\varepsilon_{p}-1)\boldsymbol{Z}_{p}[\varepsilon_{p}]e_{j}$. On the other hand, $f\longmapsto f(e_{i})$ induces $\operatorname{End}_{A}(\boldsymbol{Z}_{p}e_{i}) \cong \boldsymbol{Z}_{p}$, $\operatorname{End}_{A}(\boldsymbol{Z}_{p}[\varepsilon_{p}]e_{i}) \cong (\boldsymbol{Z}_{p}[\varepsilon_{p}])^{H}$ and $\operatorname{End}_{A}(\boldsymbol{Z}_{p}C_{p}e_{i}) \cong (\boldsymbol{Z}_{p}C_{p})^{H}$.

Thus, each $f \in \text{End } \Lambda(L)$ is given uniquely by

$$(a_1, \dots, a_q; (b_{ij})) \in \mathbb{Z}_p \oplus \dots \oplus \mathbb{Z}_p \oplus M_q(\mathbb{Z}_p[\varepsilon_p]),$$

where $b_{ii} \in \hat{R}$, $b_{ij} \in (\varepsilon_p - 1) \mathbf{Z}_p[\varepsilon_p]$ if $i \neq j$, and $a_i \equiv b_{ii} \mod \pi \hat{R}$ if $\delta_i = 1$. It can be shown that $f \in \operatorname{Aut}_A(L)$ if and only if $a_i \in \mathbf{Z}_p^*$ and $b_{ii} \in \hat{R}^*$ for every i, $1 \leq i \leq q$. Therefore we see that

$$(\operatorname{Aut}_{\Lambda}(\mathfrak{H}): \operatorname{Aut}_{\Lambda}(L)) = (p-1)^r$$
,

and so we have

$$\mu(\operatorname{Aut}_{\Lambda}(L)) = \mu(\operatorname{Aut}_{\Lambda}(\mathfrak{H})) \times (\mathfrak{H}-1)^{-r}$$
.

By the way

$$\mu(\operatorname{Aut}_{\boldsymbol{A}}(\boldsymbol{\mathfrak{H}})) \!=\! \mu(\boldsymbol{\mathfrak{H}}^*) \!=\! \mu(\boldsymbol{\mathfrak{A}}^*) \!=\! (GL_q(\hat{R}):\boldsymbol{\mathfrak{A}}^*)^{-1} \!=\! \prod\limits_{i=1}^q \left(\frac{p\!-\!1}{p^i\!-\!1}\right).$$

Thus we have

$$\mu(\text{Aut}_{A}(L))^{-1} = \prod_{i=1}^{q} \left(\frac{p^{i}-1}{p-1}\right) \times (p-1)^{r}.$$

Let $F = \mathbb{Z}_p / p \mathbb{Z}_p \cong R / \pi R$. For $a_i \in F$, $1 \leq i \leq q$, let us denote

$$\tilde{\mathcal{J}}(a_1, \dots, a_q) = \left\{ (x_1, \dots, x_q; (y_{ij})) \in \Lambda \middle| \begin{array}{c} x_i \bmod p \mathbf{Z}_p = y_{ii} \bmod \pi \hat{R} = a_i \\ 1 \le i \le q \end{array} \right\}$$

and

$$\Delta(a_1, \dots, a_q) = \{(y_{ij}) \in \mathfrak{A} | y_{ii} \mod \pi \hat{R} = a_i, 1 \leq i \leq q \}$$
.

LEMMA 3.3. i) Let $L = L_{(\delta_1, \dots, \delta_q)}$ and let $r = \sum_{i=1}^q \delta_i$. Then

$$\{L:A\} = \bigcup_{\substack{a_i \in F \text{ if } \delta_i = 1 \\ a_i \in 0 \text{ if } \delta_i = 0 \\ 1 \leq i \leq g \neq 0}} \tilde{\mathcal{A}}(a_1, \cdots, a_q) \quad (disjoint \ union).$$

Let $a_i \in F$, $1 \le i \le q$, and let k be the number of i such that $a_i \ne 0$. Then

$$\mathrm{ii)} \quad \int_{J(a_1,\cdots,a_Q)\cap GLq(\widehat{K})} \!\! ||x||_{Mq(\widehat{K})}^s d^*x = \int_{J(\underbrace{\cdots,1,0,\cdots,0})\cap GLq(\widehat{K})} \!\! ||x||_{Mp(\widehat{K})}^s d^*x$$

$$\text{iii)} \quad \int_{\widetilde{J}(a_1,\cdots,a_q)\cap \mathcal{Q}_{q^{|I|}}} ||x||^s_{\mathcal{Q}_{p^d}} d^*x = \frac{1}{(p^s-1)^{q-k}(p-1)^k} \int_{J(1,\cdots,1,0,\cdots,0)\cap GL_q(\widehat{K})} ||x||^s_{M_q(\widehat{K})} d^*x \; .$$

PROOF. i)
$$\{L:A\} = \{x \in A | Lx \subseteq A\}$$
, since $1 \in L$,
$$= \left\{x \in A \middle| e_i x \in A \text{ for every } i, \frac{\Phi_p(\sigma)}{p} e_j x \in A \text{ if } \hat{\sigma}_j = 0\right\}$$
$$= \left\{x \in A \middle| x \frac{\Phi_p(\sigma)}{p} e_j \in p \mathbb{Z}_p e_j, x \left(1 - \frac{\Phi_p(\sigma)}{p}\right) e_j \in (1 - \varepsilon_p) \mathbb{Z}_p [\varepsilon_p] e_j \text{ if } \hat{\sigma}_i = 0\right\}$$
$$= \bigcup_{\substack{a_i \in F \text{ if } \hat{\sigma}_i = 1 \\ a_i = 0, \text{ if } \hat{\sigma}_i = 1}} \tilde{\mathcal{A}}(a_1, \dots, a_q),$$

where $\Phi_p(\sigma)$ is the p-th cyclotomic polynomial.

ii) Since there exist $A, B \in GL_q(\hat{R})$ such that

$$A\Delta(a_1,\dots,a_q)B=\Delta(1,\dots,1,0,\dots,0)$$
,

the integral over $\Delta(a_1, \dots, a_q)$ is equal to that over $\Delta(1, \dots, 1, 0, \dots, 0)$.

iii) Let $Z(a_i) = \{z \in \mathbb{Z}_p | z \mod p \mathbb{Z}_p = a_i\}, 1 \leq i \leq q$. Then

$$\widetilde{\Delta}(a_1, \dots a_q) = \bigoplus_{i=1}^q Z(a_i) \oplus \Delta(a_1, \dots, a_q),$$

and we see that

$$\int_{Z(a_i) \cup Q_{p^s}} ||x||_{Q_p}^s d^*x = \begin{cases} \frac{1}{p-1} & \text{if } a_i \neq 0 \\ \\ \frac{1}{p^s-1} & \text{if } a_i = 0. \end{cases}$$

Thus we have, by force of ii),

$$\int_{\widetilde{I}(a_1,\cdots,a_q)\cap Q_0A^*} ||x||^s_{Q_qA} d^*x = \frac{\int_{J(\widehat{1},\cdots,\widehat{1},0,\cdots,0)\cap GLq(\widehat{K})} ||x||^s_{M_q(\widehat{K})} d^*x}{(p^s-1)^{q-k}(p-1)^k} \, .$$

We shall use the following notation: for an integer $n \ge 1$,

$$\begin{split} & \Sigma_n = M_n(\hat{K}); \\ & \Gamma_n = \{(x_{ij}) \in M_n(\hat{R}) | x_{ij} \in \pi \hat{R} \quad \text{for } 1 \leq i < j \leq n\}; \\ & E_n = \Gamma_n^* = \{(x_{ij}) \in \Gamma_n | x_{ii} \in \hat{R}^* \quad \text{for } 1 \leq i \leq n\}; \\ & d_n = \mu(E_n) = \prod_{i=1}^n \left(\frac{p-1}{p^i-1}\right); \end{split}$$

and for an integer k, $0 \le k \le n$,

$$\Delta_n(k) = \left\{ (x_{ij}) \in \Gamma_n \middle| \begin{array}{ll} x_{ii} \in \hat{R}^* & \text{for } 1 \leq i \leq k \\ x_{ii} \in \pi \hat{R} & \text{for } k+1 \leq i \leq n \end{array} \right\}.$$

We shall omit the subscript n, unless there is danger of confusion.

 E_n acts on $\Gamma_n \cap \Sigma_n^*$ by left multiplication. As a full set of representatives of $E_n \setminus \Gamma_n \cap \Sigma_n^*$, we can take the set $T_n = \bigcup_{\sigma \in S_n} T_{n,\sigma}$, where S_n is the symmetric group on n symbols, and each $T_{n,\sigma}$ is the set of matrices $(x_{ij}) \in \Sigma_n^*$ such that

- i) for $1 \le j \le n$, $x_{\sigma(j),j} = \pi^{m_j}$, where $m_j \ge 0$ if $\sigma(j) \ge j$ and $m_j \ge 1$ if $\sigma(j) < j$,
- ii) for $j+1 \le i \le n$, $x_{\sigma(i),j} = 0$
- iii) for $1 \le i \le j-1$, $x_{\sigma(i),j}$ ranges over all representatives of

$$\begin{cases} \pi \hat{R}/\pi^{m_j+1}\hat{R} & \text{if } \sigma(i) < j \text{ and } \sigma(i) < \sigma(j) \\ \hat{R}/\pi^{m_j+1}\hat{R} & \text{if } j \leq \sigma(i) < \sigma(j) \\ \pi \hat{R}/\pi^{m_j}\hat{R} & \text{if } \sigma(j) < \sigma(i) < j \\ \hat{R}/\pi^{m_j}\hat{R} & \text{if } \sigma(i) \geq j \text{ and } \sigma(i) > \sigma(j), \end{cases}$$

where m_j , $1 \le j \le n$, are as in i).

We note here that, for the matrix (x_{ij}) as above, $det(x_{ij}) = \pm p^{\sum_{i=1}^{n} mj}$.

Lemma 3.4. Let $n \ge 1$ be an integer. Then

i) There exists a polinomial $G_n(x)$ over \mathbb{Z} with $p^{n(n-1)/2}X^n$ as the highest term and X as the lowest term such that

$$\int_{A_n(0)\cap \Sigma_n^*} ||x||_{\Sigma_n}^s d^*x = \frac{d_n G_n(p^{-ns})}{\prod\limits_{i=0}^{n-1} (1-p^{i-ns})}.$$

ii) For every integer k, $0 \le k \le n$,

$$\int_{J_{n(k)}\cap\Sigma_{n}^{*}} ||x||_{\Sigma_{n}}^{s} d^{*}x = \frac{d_{n}G_{n-k}(p^{k-ns})}{\prod\limits_{i=1}^{n-1} (1-p^{i-ns})}.$$

PROOF. i) We see that E_n acts on $\mathcal{L}_n(0) \cap \Sigma_n^*$, and that $T_n \cap \mathcal{L}_n(0)$ form a full set of representatives of $E_n \setminus \mathcal{L}_n(0) \cap \Sigma_n^*$. Thus we have

$$\int_{J_n(0)\cap\Sigma_n^*} ||x||_{\Sigma_n}^s d^*x = \mu(E_n) \sum_{\sigma\in S_n} \sum_{M\in T_n,\sigma\cap J_n(0)} ||det M||_{\widehat{K}}^{-ns}.$$

Let $\sigma \in S_n$. For each j, $1 \le j \le n$, let $m_j \ge 0$ if $\sigma(j) > j$ and let $m_j \ge 1$ if $\sigma(j) \le j$. Further, let $t_j = \#\{i | 1 \le i \le j-1 \text{ and } j < \sigma(i) < \sigma(j)\}$ and let $v_j = \#\{i | 1 \le i \le j-1 \text{ and } \sigma(j) < \sigma(i) \le j\}$. Then $0 \le t_j$, $v_j \le j-1$ and $t_j v_j = 0$. There are $p^{(j-1)m_j} p^{t_j - v_j}$ ways of the choice of the j-th column among $\{(x_{i,j}) \in T_{n,\sigma} \cap A_n(0) | x_{\sigma(j),j} = \pi^{m_j} \text{ for } 1 \le j \le n\}$. Thus we have

$$\begin{split} \sum_{\substack{M \in T_{n,\sigma} \cap I_{n}(0)}} & || \det M ||_{\widehat{K}}^{-ns} = \sum_{\substack{m_{j} \geq 0 \\ m_{j} \geq 1 \text{ if } \sigma(j) > j \\ 1 \leq j \leq n}} \left(\prod_{j=1}^{n} p^{t_{j} - v_{j}} p^{(j-1)m_{j}} p^{-nm_{j}s} \right) \\ &= \frac{1}{\prod_{i=0}^{n-1} (1 - p^{i-ns})} \left(\prod_{\substack{s \leq j \leq n \\ \sigma(j) > j}} p^{t_{j}} \prod_{\substack{s \leq j \leq n \\ \sigma(j) \leq j}} (p^{j-1 - v_{j}} p^{-ns}) \right) \\ &= \frac{p^{c_{\sigma}} (p^{-ns})^{e_{\sigma}}}{\prod_{s \geq n}}, \end{split}$$

where $e_{\sigma}=\sharp\{j|1\leq j\leq n \text{ and } \sigma(j)\leq j\}$ and $c_{\sigma}=\sum\limits_{\substack{1\leq j\leq n\\ \sigma(j)>j}}t_{j}+\sum\limits_{\substack{1\leq j\leq n\\ \sigma(j)\geq j}}(j-1-v_{j}).$ If $\sigma=id$, then $e_{\sigma}=n$ and $t_{j}=v_{j}=0$ for $1\leq j\leq n$, and hence $c_{\sigma}=n(n-1)/2$. If $\sigma=(12\cdots n)$, then $e_{\sigma}=1$, $t_{j}=0$ for $1\leq j\leq n$, $v_{j}=0$ for $1\leq j\leq n-1$, and $v_{n}=n-1$, and hence $c_{\sigma}=0$. It is easy to see that $2\leq e_{\sigma}\leq n-1$ if $\sigma\neq id$, $\sigma\neq(12\cdots n)$. Let $G_{n}(X)=\sum\limits_{\sigma\in S_{n}}p^{c_{\sigma}}X^{e_{\sigma}}$, then the highest term $p^{n(n-1)/2}X^{n}$ comes from $\sigma=id$ and the lowest term X comes from $\sigma=(12\cdots n)$. Finally we have

$$\int_{J_n(0)\cap \Sigma_n^*} ||x||_{\Sigma_n}^s d^*x = \frac{d_n G_n(p^{-ns})}{\prod\limits_{i=0}^{n-1} (1-p^{i-ns})} \ .$$

ii) We see that E_n acts on $\Delta_n(k) \cap \Sigma_n^*$, and that $T_n \cap \Delta_n(k)$ form a full set of

representatives of $E_n \setminus \Delta_n(k) \cap \Sigma_n^*$. They are of the form

$$\begin{pmatrix}
1 & 0 & B \\
0 & 1 & A
\end{pmatrix}, \text{ where } A \in T_{n-k} \cap A_{n-k}(0),$$

and for each A of $det A = \pm p^m$, there are p^{km} ways of the choice of B. Let l = n - k and let a_m be the cardinary of the set

$$\{A \in T_l \cap \Delta_l(0) | det A = \pm p^m \}$$
.

Then we have

$$\begin{split} \int_{I_n(k)\cap\Sigma_n^*} &||x||_{\Sigma_n}^s d^*x = d_n \bigg(\sum_{M\in T_n\cap I_n(k)} ||\det M||_{\widehat{K}}^{-ns} \bigg) \\ &= d_n \sum_{m\geq 0} p^{km} a_m (p^{-ns})^m = d_n \sum_{m\geq 0} a_m (p^{k-ns})^m \;. \end{split}$$

Since
$$\sum_{m\geq 0} a_m (p^{-ls})^m = \frac{G_l(p^{-ls})}{\prod_{i=0}^{l-1} (1-p^{i-ls})}$$
, we have

$$\sum_{m\geq 0} a_m (p^{k-ns})^m = \frac{G_l(p^{k-ns})}{\prod\limits_{i=0}^{l-1} (1-p^{i+k-ns})}.$$

Therefore we have

$$\int_{J_n(k)\cap \Sigma_n^*} ||x||_{\Sigma_n}^s d^*x = \frac{d_n G_{n-k}(p^{k-ns})}{\prod\limits_{i=k}^{n-1} (1-p^{i-ns})} \ .$$

EXAMPLE 3.5. If n is given, then $G_n(X)$ can be written explicitly. It is easy to see that $G_1(X)=X$ and $G_2(X)=pX^2+X$. For the case that n=3, we have the following table

σ	$(T)_{3,\sigma}$	e_{σ}	C_{σ}
id	$ \left\{ \begin{pmatrix} \pi^l & a & b \\ 0 & \pi^m & c \\ 0 & 0 & \pi^n \end{pmatrix} \middle \begin{array}{l} l, m, n \ge 1 \\ a \in \pi \hat{R} / \pi^{m+1} \hat{R}, & b, c \in \pi \hat{R} / \pi^{n+1} \hat{R} \end{array} \right\} $	3	3
(23)	$ \left\{ \begin{pmatrix} \pi^{l} & a & b \\ 0 & 0 & \pi^{n} \\ 0 & \pi^{m} & c \end{pmatrix} \middle \begin{array}{l} l, n \geq 1, & m \geq 0 \\ a \in \pi \hat{R} / \pi^{m+1} \hat{R}, & b \in \pi \hat{R} / \pi^{n+1} \hat{R}, & c \in \pi \hat{R} / \pi^{n} \hat{R} \end{array} \right\} $	2	1

(12)	$\begin{cases} \begin{pmatrix} 0 & \pi^m & b \\ \pi^l & a & c \\ 0 & 0 & \pi^n \end{pmatrix} \middle \begin{array}{l} l \geq 0 \;, & m, n \geq 1 \\ a \in \pi \widehat{R} / \pi^m \widehat{R} \;, & b, c \in \pi \widehat{R} / \pi^{n+1} \widehat{R} \end{cases}$	2	2
(123)	$ \left\{ \begin{pmatrix} 0 & 0 & \pi^n \\ \pi^l & a & b \\ 0 & \pi^m & c \end{pmatrix} \middle \begin{array}{l} l, m \geq 0, & n \geq 1 \\ a \in \pi \hat{R} / \pi^{m+1} \hat{R}, & b, c \in \pi \hat{R} / \pi^n \hat{R} \end{array} \right\} $	1	0
(132)	$\begin{cases} \begin{pmatrix} 0 & \pi^m & b \\ 0 & 0 & \pi^n \\ \pi^l & a & c \end{pmatrix} \middle \begin{array}{l} l \geq 0 \;, m, n \geq 1 \\ a \in \hat{R}/\pi^m \hat{R} \;, b \in \pi \hat{R}/\pi^{n+1} \hat{R} \;, c \in \pi \hat{R}/\pi^n \hat{R} \end{cases}$	2	2
(13)	$ \left\{ \begin{pmatrix} 0 & 0 & \pi^n \\ 0 & \pi^m & b \\ \pi^l & a & c \end{pmatrix} \middle \begin{array}{l} l \ge 0 \;, m, n \ge 1 \\ a \in \widehat{R}/\pi^m \widehat{R} \;, b, c \in \pi \widehat{R}/\pi^n \widehat{R} \end{array} \right\} $	2	1

Thus we see that

$$G_3(X) = p^3 X^3 + 2(p^2 + p)X^2 + X$$
.

Now we have prepared to show

PROPOSITION 3.6.

$$\zeta(\mathbf{Z}_pG;s) = \sum_{k=0}^{q} \frac{{}_{q}C_k(1+(p-1)p^{-s})^{q-k}G_{q-k}(p^{k-qs})}{\prod\limits_{i=k}^{q-1}((1-p^{-s})(1-p^{i-qs}))} \; ,$$

where ${}_{q}C_{k}$ is the binomial coefficient, and we define $G_{0}(X)=1$ and $\prod_{i=q}^{q-1}((1-p^{-s})(1-p^{i-qs}))=1$.

PROOF. Let $L=L_{(\delta_1,\dots,\delta_q)}$ and let $r=\sum_{i=1}^q \delta_i$. Then, by force of (1.2), (3.2) and (3.3),

$$\begin{split} Z(\varLambda,L\,;\,s) &= d_q^{-1}(\rlap/p-1)^r \rlap/p^{(q-r)s} \bigg[\sum_{k=0}^r (\rlap/p-1)^k {}_r C_k \int_{\widetilde{J}(1,\cdots,1,0,\cdots,0)\cap Q p_{J^*}} ||x||_{Qp_J}^s d^*x \bigg] \\ &= d_q^{-1}(\rlap/p-1)^r \rlap/p^{(q-r)s} \bigg[\sum_{k=0}^r \frac{{}_r C_k}{(\rlap/p^s-1)^{q-k}} \int_{J(1,\cdots,1,0,\cdots,0)\cap \mathbb{T}^*} ||x||_{\mathbb{S}}^s d^*x \bigg] \\ &= d_q^{-1}(\rlap/p-1)^r \rlap/p^{(q-r)s} \bigg[\sum_{k=0}^r \frac{{}_r C_k}{(\rlap/p-1)^k (\rlap/p^s-1)^{q-k}} \int_{J(k)\cap \mathbb{T}^*} ||x||_{\mathbb{S}}^s d^*x \bigg] \\ &= \sum_{k=0}^r \bigg[\frac{{}_r C_k ((\rlap/p-1)\rlap/p^{-s})^{r-k}}{(1-\rlap/p^{-s})^{q-k}} \cdot \frac{G_{q-k}(\rlap/p^{k-qs})}{\prod_{l=k}^{q-1} (1-\rlap/p^{l-qs})} \bigg], \quad \text{by (3.4 ii)}. \end{split}$$

Thus we have

$$\begin{split} \zeta(\varLambda\,;\,s) &= \sum_{\stackrel{L=L_{(\bar{e}_1,\cdots,\bar{e}_q)}}{\bar{e}_{\bar{e}}=0,1}} Z(\varLambda,L\,;\,s) \\ &= \sum_{r=0}^q {}_q C_r Z(\varLambda,L_{(\underbrace{1\cdots_1,0,\cdots,0})}\,;\,s) \\ &= \sum_{r=0}^q \sum_{k=0}^r {}_q \frac{{}_q C_r \cdot {}_r C_k ((\rlap/p-1)\rlap/p^{-s})^{r-k} G_{q-k} (\rlap/p^{k-qs})}{(1-\rlap/p^{-s})^{q-k} \prod\limits_{i=k}^{q-1} (1-\rlap/p^{i-qs})} \,. \end{split}$$

Since ${}_{q}C_{r} \cdot {}_{r}C_{k} = {}_{q}C_{k} \cdot {}_{q-k}C_{r-k}$, we have

$$\begin{split} \zeta(\varLambda\,;\,s) &= \sum_{k=0}^{q} \sum_{r=k}^{q} \frac{{}_{q}C_{k} \cdot {}_{q-k}C_{r-k} \cdot ((\not{p}-1)\not{p}^{-s})^{r-k}G_{q-k}(\not{p}^{k-qs})}{(1-\not{p}^{-s})^{q-k} \prod\limits_{i=k}^{q-1} (1-\not{p}^{i-qs})} \\ &= \sum_{k=0}^{q} \frac{{}_{q}C_{k}(1+(\not{p}-1)\not{p}^{-s})^{q-k}G_{q-k}(\not{p}^{k-qs})}{\prod\limits_{i=k}^{q-1} ((1-\not{p}^{-s})(1-\not{p}^{i-qs}))} \,. \end{split}$$

Combining (3.1) with (3.6), we have

THEOREM 3.7.

$$\begin{split} \zeta(\mathbf{Z}G;s) &= \zeta_{\mathbf{Z}}(s)\zeta_{\mathbf{Z}[\iota_{q}]}(s) \prod_{i=0}^{q-1} \zeta_{R}(qs-i) \times (1-q^{-s}+q^{1-2s}) \\ &\times \left[\sum_{k=0}^{q} \left\{ {}_{q}C_{k}(1+(p-1)p^{-s})^{q-k}G_{q-k}(p^{k-qs}) \prod_{i=0}^{k-1} ((1-p^{-s})(1-p^{i-qs})) \right\} \right]. \end{split}$$

Example 3.8. We note here for the case that q=2 (dihedral group) and q=3.

$$\zeta(\mathbf{Z}D_p; s) = \zeta_{\mathbf{Z}}(s)^2 \zeta_R(2s) \zeta_R(2s-1) \times (1 - 2^{-s} + 2^{1-2s}) \times (1 - 2p^{-s} + (p+1)p^{-2s} + 2p^{2-3s} - (p^2 + p)p^{-4s} + p^{3-6s}),$$

where $R = \mathbf{Z}[\varepsilon_p + \varepsilon_p^{-1}]$, and

$$\zeta(\boldsymbol{Z}(C_p \cdot C_3); s) = \zeta_{\boldsymbol{Z}(s)} \zeta_{\boldsymbol{Z}(\epsilon_3]}(s) \zeta_{\boldsymbol{R}}(3s) \zeta_{\boldsymbol{R}}(3s-1) \zeta_{\boldsymbol{R}}(3s-2) \times (1-3^{-s}+3^{1-2s})$$

$$\times \begin{pmatrix} (1-y)^4 (1-y^3) (1-py^3) (1-p^2y^3) \\ +3 (1-y)^2 (1-y^3) (1-py^3) (1+(p-1)y) p^2 y^3 \\ +3 (1-y) (1-y^3) (1+(p-1)y)^2 (py^3+p^3y^6) \\ +(1+(p-1)y)^3 (y^3+2(p^2+p)y^6+p^3y^9) \end{pmatrix},$$

where $y=p^{-s}$ and R is the ring of integers in $Q(\varepsilon_p)^{C_3}$.

§ 4. Let G_n and H be the groups defined at the beginning of § 3:

$$G_n = \langle \sigma, \tau | \sigma^n = \tau^q = 1, \tau \sigma = \sigma^r \tau \rangle$$
 and $H = \langle \tau \rangle$.

Then we have $QG_n = QH \bigoplus_{\substack{d \mid n/p \\ d \neq 1}} M_q(K_d)$ as algebras. For each $p \mid n$, there is a decomposition as \mathbb{Z}_p -orders

$$Z_pG_n = Z_pG_p \bigoplus_{\substack{d \mid n/p \\ d \mid -1}} (Z_p[\xi_d] \circ G_p)^{q_d}$$
.

Here g_d is the number of distinct prime ideals over (p) in R_d , and $\mathbf{Z}_p[\xi_d] = \mathbf{Z}_p[X]/(\Psi_d(X))$, where $\Psi_d(X)$ is the minimal monic polynomial over \mathbf{Z}_p such that $\Psi_d(\varepsilon_d r^i) = 0$, $0 \le i \le q - 1$. On the other hand, there is a decomposition as \mathbf{Z}_q -orders

$$Z_qG_n=Z_qH\bigoplus (\bigoplus_{\substack{d\mid n\\d\neq 1}}Z_q\bigotimes_{\pmb{Z}}Z[\varepsilon_d]\circ H)$$
,

where the latter factor is a maximal Z_q -order.

Let $\mathfrak{M}=\mathbf{Z}\oplus\mathbf{Z}[\varepsilon_q]\oplus\bigoplus_{\stackrel{d|n}{d}\neq 1}M_q(R_d)$. Then \mathfrak{M} is a maximal \mathbf{Z} -order in $\mathbf{Q}G_n$. Then, by virtue of (1.1) and Hey's formula, we have

LEMMA 4.1.

$$\begin{split} &\zeta(\mathbf{Z}G_{n}\,;\,s)\!=\!\zeta(\mathfrak{M}\,;\,s)\!\times\!(1\!-\!q^{-s}\!+q^{1-2s})\prod_{p\mid n}\!\frac{\zeta(\mathbf{Z}_{p}G_{p}\,;\,s)\prod_{d\mid n/p,d+1}\!(\zeta(\mathbf{Z}_{p}[\xi_{d}]\!\circ\!G_{p}\,;\,s))^{q_{d}}}{\zeta(\mathfrak{M}_{p}\,;\,s)}\,,\\ &\zeta(\mathfrak{M}\,;\,s)\!=\!\zeta_{\mathbf{Z}[\varepsilon_{q}]}\!(s)\prod_{\substack{d\mid n\\d+1}}\!\prod_{i=0}^{q-1}\!\zeta_{R_{d}}\!(qs\!-\!i)\,,\quad and\ for\ each\ p\mid n,\\ &\zeta(\mathfrak{M}_{p}\,;\,s)^{-1}\!=\!(1\!-\!p^{-s})^{q}\prod_{\substack{i=0\\d+1}}^{q-1}\!(1\!-\!p^{i-qs})\!\prod_{\substack{d\mid n/p\\d+1}}\!\prod_{i=0}^{q-1}\!(1\!-\!p_{d}^{i-qs})^{2q_{d}}\,, \end{split}$$

where $p_d = p^{\varphi(d)/qg_d}$.

Let $\Lambda = \mathbb{Z}_p[\xi_d] \circ G_p$, where d|n/p and d = 1, be a factor of \mathbb{Z}_pG_n as above. To determine $\zeta(\mathbb{Z}G_n; s)$, we have only to treat $\zeta(\Lambda; s)$, because $\zeta(\mathbb{Z}_pG_p; s)$ has been determined in § 3.

Denote by \hat{K}_d , \hat{K}_{dp} , \hat{R}_d and \hat{R}_{dp} the p-adic completion of K_d , K_{dp} , R_d and R_{dp} , respectively. As in § 3, we write $\mathbf{Z}_p[\xi_d] \circ H = \mathbf{Z}_p[\xi_d] e_1 \oplus \cdots \oplus \mathbf{Z}_p[\xi_d] e_q$ and let $N_0 e_i = \mathbf{Z}_p[\xi_d] e_i \oplus \mathbf{Z}_p[\xi_d, \varepsilon_p] e_i$ and $N_1 e_i = \mathbf{Z}_p[\xi_d] C_p e_i$, $1 \le i \le q$. These are Λ -lattices in a natural way. There are 2^q isomorphism classes of full Λ -lattices in $\mathbf{Q}_p \Lambda$, which are represented by

$$L_{{}^{(\delta_1, \, \cdots, \, \delta_q)}} \!=\! N_{\delta_1} e_1 \oplus \cdots \oplus N_{\delta_1} e_q \,, \quad \text{where } \delta_i \!=\! 0 \text{ or } 1.$$

There is a relation: $A = L_{(1,\dots,1)} \subseteq L_{(\delta_1,\dots,\delta_q)} \subseteq L_{(0,\dots,0)}$. We have $L_{(0,\dots,0)} = \mathfrak{A} \oplus \mathfrak{B}$ as \mathbb{Z}_p -orders, where $\mathfrak{A} = \mathbb{Z}_p[\xi_d] \circ H$ and $\mathfrak{B} = \mathbb{Z}_p[\xi_d,\varepsilon_p] \circ H$. Since the extensions $\mathbb{Q}(\varepsilon_d)/K_d$ and $\mathbb{Q}(\varepsilon_{dp})/K_{dp}$ are unramified at p, \mathfrak{A} and \mathfrak{B} are maximal \mathbb{Z}_p -orders (cf. [3, § 40]), and hence we may identify \mathfrak{A} with $M_q(\hat{R}_d)$ and \mathfrak{B} with $M_q(\hat{R}_{dp})$. Let π be a prime

element of \hat{R}_{dp} . Then $\hat{R}_d/p\hat{R}_d \cong \hat{R}_{dp}/\pi\hat{R}_{dp} = F$ (say), and $|F| = p_d = p^{\varphi(d)/qq_d}$. Let us denote $P = p_d$.

Lemma 4.2. Let $L = L_{(\tilde{s}_1, \dots, \tilde{s}_q)}$ and let $r = \sum_{i=1}^q \delta_i$. Then

i) $(L:\Lambda)=P^{q(q-r)}$

ii)
$$\mu(\mathrm{Aut}_{A}(L))^{-1} = \prod_{i=0}^{r-1} \frac{(P^{q} - P^{i})^{2}}{P^{r} - P^{i}}$$
.

Proof. i)
$$(L:\Lambda)=(\mathbf{Z}_p[\xi_d] \oplus \mathbf{Z}_p[\xi_d, \varepsilon_p] : \mathbf{Z}_p[\xi_d]C_p)^{q-r}$$

= $|\mathbf{Z}_p[\xi_d]/p\mathbf{Z}_p[\xi_d]|^{q-r} = P^{q(q-r)}$.

ii) Let ω be the primitive q-th root of unity in \mathbb{Z}_p for which $\tau e_i = \omega^{i-1} e_i$. Let $Y_k = \sum\limits_{i=0}^{q-1} \omega^{-ki} \xi_d^{ri}$, where $k \in \mathbb{Z}$, then $\tau Y_k = \omega^k Y_k \tau$. Since d is square-free and coprime to p, ε_d is a generator of a normal basis for $\mathbb{F}_p(\varepsilon_d)/\mathbb{F}_p$, and so $\sum\limits_{i=0}^{q-1} \overline{\omega}^{-ki} \varepsilon_d^{ri} \neq 0$ in $\mathbb{F}_p(\varepsilon_d)$. Thus we see that Y_k is a unit in $\mathbb{Z}_p[\xi_d]$. Then there is an isomorphism between

$$\left\{ ((a_{ij}),(b_{ij})) \in M_q(\hat{R}_d) \oplus M_q(\hat{R}_{dp}) \middle| \begin{array}{l} a_{ij} \equiv b_{ij} \bmod \pi \hat{R}_{dp} & \text{if} \quad \delta_j = 1 \text{, in particular,} \\ a_{ij},b_{ij} \in \pi \hat{R}_{dp} & \text{if} \quad \delta_i = 0 \text{ and } \delta_j = 1 \end{array} \right\}$$

and $\operatorname{End}_{A}(L)$, induced by

$$((a_{ij}),(b_{ij})) \longmapsto f: f(e_i) = \left(\sum_{j=1}^q Y_{i-j}a_{ij}e_j, \sum_{j=1}^q Y_{i-j}b_{ij}e_j\right) \in \mathfrak{A} \oplus \mathfrak{B}, \quad 1 \leq j \leq q.$$

Hence we see that

$$\begin{split} \mu(\operatorname{Aut}_{A}(L))^{-1} &= \mu(\operatorname{Aut}_{A}(\mathfrak{A} \oplus \mathfrak{B}))^{-1}(\operatorname{Aut}_{A}(\mathfrak{A} \oplus \mathfrak{B}) : \operatorname{Aut}_{A}(L)) \\ &= \frac{|GL_{q}(F)|^{2}}{|GL_{r}(F)||GL_{q-r}(F)|^{2}P^{2r(q-r)}} \\ &= \prod_{i=0}^{r-1} \frac{(P^{q} - P^{i})^{2}}{P^{r} - P^{i}} \; . \end{split}$$

Let $\mathfrak{X}=M_q(F)$ and, for each $X\in\mathfrak{X}$, let $\varDelta(X)=\{A\in M_q(\hat{R}_d)|A \mod pM_q(\hat{R}_d)=X\}$. To simplify the notation, denote by $\int_{\varDelta(X)}$ the integral $\int_{\varDelta(X)\cap GL_q(\hat{R}_d)} ||x||_{M_q(\hat{R}_d)}^s d^*x$. Then we have

LEMMA 4.3. Let $L = L_{(\delta_1, \dots, \delta_q)}$ and let $r = \sum_{i=1}^q \delta_i$. Then

$$\int_{\{L\,:\, A\!\}\,\cap\, Q_{Q}A^{\bullet}} ||x||_{Qpd}^{s} d^{*}x = \sum_{X\in\mathfrak{X}_{T}} \left(\int_{J(X)}\right)^{2},$$

where $\mathfrak{X}_r = \{(x_{ij}) \in \mathfrak{X} | x_{ij} = 0 \text{ for } r+1 \leq i \leq q, 1 \leq j \leq q\}$.

PROOF. $\{L: \Lambda\} = \{x \in \Lambda | Lx \subseteq \Lambda\}$, since $1 \in L$,

$$= \left\{ x \in A \left| \frac{\varPhi_p(\sigma)}{\rlap/p} e_j x \in \rlap/p \mathfrak{A} \quad \text{and} \quad \left(1 - \frac{\varPhi_p(\sigma)}{\rlap/p} \right) e_j x \in (1 - \varepsilon_p) \mathfrak{B} \quad \text{if} \quad \delta_j = 0 \right\}.$$

Every element of Λ can be written as

$$\begin{split} &\sum_{1 \leq i,j \leq q} e_i \xi_d{}^j \sigma^j z_{ij}(\sigma) \,, \quad z_{ij}(\sigma) \in (\mathbf{Z}_p[\xi_d] C_p)^H \\ &= (\sum_{i,j} e_i \xi_d{}^j z_{ij}(1) \,, \quad \sum_{i,j} e_i \xi_d{}^j \varepsilon_p{}^j z_{ij}(\varepsilon_p)) \in \mathfrak{A} \oplus \mathfrak{B} \end{split}$$

Hence $\{L: \Lambda\}$ may be identified with

$$\begin{cases} ((x_{ij}), (y_{ij})) \in M_q(\hat{R}_d) \oplus M_q(\hat{R}_{dp}) \middle| \begin{aligned} x_{ij} &\equiv y_{ij} \bmod \pi \hat{R}_{dp} & \text{for } 1 \leq i, j \leq q \\ x_{kj}, y_{kj} \in \pi \hat{R}_{dp} & \text{for } r+1 \leq k \leq q \end{aligned} \end{cases}$$

$$= \bigcup_{X \in X_r} \Delta(X) \oplus \Delta'(X),$$

where $\Delta'(X) = \{B \in M_q(\hat{R}_{dp}) | B \mod \pi M_q(\hat{R}_{dp}) = X\}$. Thus we see that

$$\begin{split} & \int_{(L:A)\cap \mathbf{Q}p^{A^*}} ||x||_{\mathbf{Q}p^A}^s d^*x \\ & = \sum_{X \in \mathfrak{X}_T} \left[\int_{A(X)\cap GL_q(\widehat{K}_d)} ||x||_{M_q(\widehat{K}_d)}^s d^*x \int_{A'(X)\cap GL_q(\widehat{K}_dp)} ||x||_{M_q(\widehat{K}_dp)}^s d^*x \right]. \end{split}$$

Since $\hat{R}_d/p\hat{R}_d \cong \hat{R}_{dp}/\pi\hat{R}_{dp}$, we have

$$\int_{\{L:A\}\cap Q_{pA^*}} ||x||_{Q_{pA}}^s d^*x = \sum_{X\in\mathfrak{X}_r} \left(\int_{A(X)}\right)^2.$$

Each $X \in \mathfrak{X}$ becomes the standard form $X_h = \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix}$, for some $0 \le h \le h$

q, by elementary transformations. Therefore there exist $A, B \in GL_q(F)$ such that $AXB = X_h$. Let $\widetilde{A}, \widetilde{B} \in GL_q(\widehat{R}_d)$ such that $\widetilde{A} \mod pM_q(\widehat{R}_d) = A$ and $\widetilde{B} \mod pM_q(\widehat{R}_d) = B$. Then we have $\widetilde{A} \mathcal{A}(X)\widetilde{B} = \mathcal{A}(X_h)$. From this it follows that $\int_{\mathcal{A}(X)} = \int_{\mathcal{A}(X_h)} .$

LEMMA 4.4.

$$\int_{J(X_h)} = \frac{P^{-q(q-h)\,8}}{\prod\limits_{i=0}^{h-1} \left(P^q - P^i\right) \prod\limits_{i=h}^{q-1} \left(1 - P^{i-qs}\right)} \; .$$

Then E acts on $\Delta(X_h) \cap GL_q(\hat{K}_d)$ by left multiplication. As a full set of representatives of $E \setminus \Delta(X_h) \cap GL_q(\hat{K}_d)$, we can choose the set of matrices $(x_{ij}) \in GL_q(\hat{K}_d)$ such that

- i) for $1 \leq j \leq h$, $x_{ij} = 1$
- ii) for $h+1 \le j \le q$, $x_{jj} = p^{m_j}$, where $m_j \ge 1$
- iii) for $1 \le j \le h$ and $i \ne j$, and for $h+1 \le j \le q$ and i > j, $x_{ij} = 0$
- iv) for $h+1 \le j \le q$ and i < j, x_{ij} ranges over all representatives of $pR_d/p^{m_j}R_d$, where m_j , $h+1 \le j \le q$, are as in ii). If m_j , $h+1 \le j \le q$, are given, there are $\prod_{j=h+1}^q P^{(m_{j-1})(j-1)}$ matrices of the form

among the above $\{(x_{ij})\}$. Thus we have

$$\begin{split} \int_{d(\mathcal{X}_h)} &= \mu(E) \sum_{\substack{m_1 \geq 1 \\ h+1 \leq i \leq q}} \prod_{i=h+1}^q \left[\left(\frac{P^{m_i}}{P} \right)^{i-1} P^{-qm_i s} \right] \\ &= \frac{P^{-q(q-h)\, s}}{\prod\limits_{i=0}^{h-1} (P^q - P^i) \prod\limits_{i=h}^{q-1} (1 - P^{i-q\, s})} \,. \end{split}$$

Proposition 4.5.

$$\zeta(\pmb{Z}_p[\xi_d] \circ G_p\,;\, s) = \sum_{r=0}^q \sum_{h=0}^r \left[{}_qC_r \prod_{i=h}^{r-1} \frac{(P^q - P^i)^2}{P^r - P^i} \times \left(\prod_{i=0}^{h-1} \frac{P^q - P^i}{P^h - P^i} \right) \times \frac{P^{-q(q+r-2h)s}}{\prod\limits_{i=h}^{q-1} (1 - P^{i-qs})^2} \right].$$

PROOF. Let $r \ge h$ be integers. Then there are $n_{r,h} = \prod_{i=0}^{h-1} \frac{P^r - P^i}{P^h - P^i}$ distinct F-subspaces of dimension h contained in an F-space of dimension r, and there are $m_h = \prod_{i=0}^{h-1} (P^q - P^i)$ ways of permutations of q vectors in an F-space V of dimension h which span V. Then, in \mathfrak{X}_r , there are $n_{r,h}m_h$ matrices with standard form X_h for each $0 \le h \le r$. Let $L = L_{(\delta_1, \dots, \delta_q)}$ and let $r = \sum_{i=1}^q \delta_i$. Then, by force of (1.2), (4.2) and (4.3), we have

$$Z(\Lambda, L; s) = \prod_{i=0}^{r-1} \frac{(P^{q} - P^{i})^{2}}{P^{r} - P^{i}} P^{q(q-r)s} \left[\sum_{h=0}^{r} \left\{ n_{r,h} m_{h} \left(\int_{J(X_{h})} \right)^{2} \right\} \right]$$

$$= \sum_{h=0}^{r} \left[\prod_{i=h}^{r-1} \frac{(P^{q} - P^{i})^{2}}{P^{h} - P^{i}} \times \left(\prod_{i=0}^{h-1} \frac{P^{p} - P^{i}}{P^{h} - P^{i}} \right) \times \frac{P^{-q(q+r-2h)s}}{\prod_{i=1}^{q-1} (1 - P^{i-qs})^{2}} \right], \text{ by (4.4)}.$$

Thus we have

$$\begin{split} \zeta(\varLambda\,;\,s) &= \sum_{r=0}^q {}_q C_r Z(\varLambda, L_{\underbrace{(1,\cdots 1,0\cdots 0)}_r}\,;\,s) \\ &= \sum_{r=0}^q \sum_{h=0}^r \left[{}_q C_r \prod_{i=h}^{r-1} \frac{(P^q - P^i)^2}{P^r - P^i} \times \left(\prod_{i=0}^{h-1} \frac{P^q - P^i}{P^h - P^i} \right) \times \frac{P^{-q(q+r-2h)s}}{\prod\limits_{i=h}^{q-1} (1 - P^{i-qs})^2} \right]. \end{split}$$

Let us recall the polynomial $G_n(X)$ defined in (3.4). By the proof of (3.4), we may view $G_n(X) = \sum_{\sigma \in S_n} p^{c_\sigma} X^{e_\sigma}$ as a polynomial both in p and X. From this point of view, we will write $G_n(p, X)$ instead of $G_n(X)$. Put $G_0(p, X) = 1$. Then, combining (4.1), (3.7) and (4.5), we have

THEOREM 4.6. Let q be a prime and let n be a square-free integer coprime to q. Let $C_n \cdot C_q$ be the semidirect product of C_n by C_q in which C_q acts faithfully on the subgroup C_p of C_n for every p|n. Then

$$\zeta(\mathbf{Z}(C_n \cdot C_q); s) = \zeta_{\mathbf{Z}}(s)\zeta_{\mathbf{Z}[\epsilon_q]}(s) \left(\prod_{\substack{d \mid n \\ d \neq 1}} \prod_{i=0}^{q-1} \zeta_{R_d}(qs-i) \right) (1 - q^{-s} + q^{1-2s})
\times \prod_{\substack{p \mid n \\ d \neq 1}} \left(F_{p, 1}(s) \prod_{\substack{d \mid n/p \\ d \neq 1}} (F_{p, d}(s))^{g_d} \right),$$

$$F_{p,1}(s) = \sum_{k=0}^{q} \left[{}_{q}C_{k}(1+(p-1)p^{-s})^{q-k}G_{q-k}(p,p^{k-qs}) \prod_{i=0}^{k-1} ((1-p^{-s})(1-p^{i-qs})) \right],$$

and for $d \neq 1$,

$$F_{p,d}(s) = \sum_{r=0}^{q} \sum_{h=0}^{r} \left[{}_{q}C_{r} \prod_{i=h}^{r-1} \frac{(p_{d}^{q} - p_{d}^{i})^{2}}{p_{d}^{r} - p_{d}^{i}} \prod_{i=0}^{h-1} \left(\frac{p_{d}^{q} - p_{d}^{i}}{p_{d}^{h} - p_{d}^{i}} (1 - p_{d}^{i-qs})^{2} \right) \times p_{d}^{-q(q+r-2h)s} \right],$$

where for each p|n and $1 \neq d|n/p$, g_d is the number of distinct prime ideals over (p) in R_d and $p_d = p^{\varphi(d)/qg_d}$.

References

- [1] Bushnell, C. J. and Reiner, I., Zeta functions of arithmetic orders and Solomon's conjectures, Math. Zeit. 173 (1980), 135-161.
- [2] Deuring, M., Algebren, Springer, 1935.
- [3] Reiner, I., Maximal orders, Academic Press, 1975.
- [4] Reiner, I., Zeta functions of integral representations, Comm. algebra 8 (10) (1980), 911-925.
- [5] Solomon, L., Zeta functions and integral representation theory, Advances in Math. 26 (1977), 306-326.
- [6] Weil, A., Basic number theory, Springer, 1967.

University of Tsukuba