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ZETA FUNCTIONS OF INTEGRAL GROUP RINGS
OF METACYCLIC GROUPS

By

Yumiko HiroNAKA

Recently, Solomon has introduced a zeta function which counts sublattices of
a given lattice over an order ([5]). Let us recall the definition of this zeta func-
tion. Let 2 be a (finite dimensional) semisimple algebra over the rational field @
or over the p-adic field @,, and let 4 be an order in Y. A is a Z-order when Y
is a Q-algebra, while 4 is a Zy-order when 2 is a @Q,algebra, where Z, is the
ring of p-adic integers. Throughout this paper, p stands for a rational prime and
the subscript p indicates the p-adic completion.

Let V be a finitely generated left 3-module, and let L be a full A-lattice in V.
Solomon’s zeta function is defined as

CA(L;S)=}N3(L:N)‘3,

where the sum 3 extends over all full A-sublattices N in L, (L:N) denotes the
index of N in ngnd s is a complex variable. We shall omit the subscript 4 and
write {(L; s), unless there is danger of confusion. When 2 is a field K and L
is the ring of integers in K, Cx(L;s) is the classical Dedekind zeta function, and
we shall denote this by i(s).

We denote by C, the cyclic group of order #». The explicite form of {(ZG; s)
has been given for each of the cases G=C, and Cp. (4], [5]).

Let ¢ be a prime and let #» be a square-free integer coprime to ¢. Let C,-C,
be the semidirect product of C, by C, in which C, acts faithfully on the subgroup
Cp of C, for every pln. The aim of this paper is to give an explicit form of
UZ(Ch-Cyp)s s). We shall use the method introduced in [1].

§1. Let 4 be a Z-order in a semisimple @-algebra ¥, and let M be a maximal Z-
order containing 4. Denote by S the set of primes p for which 4,#M,. Since the
zeta function satisfies the Euler product identity ([5]), we have

LN . CAP(AP ;8)
(11) R
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Let % be a set of representatives of the isomorphism classes of full A,-lattices in
Yp for each peS. Then

Ca(dp; s)=L}€:$Z,,p(/1p, L;s) and ZafAp L; 5)= § (Ap: M)*,
where the sum extends over all full /4,sublattices M in 4, isomorphic to L.
The following notation will be often used in this paper.

For a ring R, R*= the unit group of R.
For a Z,-order / in a semisimple @,-algebra ¥, and for full lattices I, M in %,

(L:M)=(L:LNM)(M:LnM),
where the right hand side is defined by the usual index.
L:M}={zeX|LxSM}.
lzlls=(Lz: L) for xeZ*,

this norm is independent of the choice of a full A-lattice L.

For a @,-algebra 2, d*z=the Haar measure on 3* such that the measure p(*)=
1 for a maximal Z,-order M in ¥. A Haar measure is decomposed canonically
according to a decomposition of I as @,-algebras.

Then it is known that

(12) ZAL, M; $)=p(Auts (M)~ (M L)”g

Jnn

- llz|l'd*>  ((1,(A1)]).

§2. Let & be a primitive d-th root of unity for every integer d=1, and let ¢ )
be the Euler function. The next result has been given in [5]:

2.1) UZCp; $)=L2(sK zrep(SY L=~ + ).

(2.1) is also proved in [1]. Using the method there, we have immediately the
following generalization.

PRrROPOSITION 2.2. Let G be the cyclic group of square-free order n. Then

UZG ;5 $)=11 Lzrey($) TT T1 (L—pta* 4 plaCi=20)a
min Pln din/p

where for each prime pln and d\n[p, gq is the number of distint prime ideals over
(p) in Zleq] and fo=¢(d)|ga.

For each p|n, there is a decomposition as Z,-orders

Z,G=@ (Zp[ealCp)a.
ain/p
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Since @ Z[en] is a maximal order of QG containing ZG, we have, by virtue of
mln
1.1,

UZG; S)="[[TnCzwmn(S>m I

n dln/P

( {(ZlealCr; S) )gd
CZy[edJ(s)CZp[edp](s)
Ul 9 Y

= [18me 11T (S

in Pin din/p

Hence (2.2) follows from the next lemma.

LEMMA 2.3. Let K be a finite unramified extension of @, of degree f, and let
R be the ring of integers in K. Then

1 _p—fs +pf(1 —28)

C(ch; s)= (1=p 7o)

Proor. There are two isomorphism classes of full RC,-lattices in KC,, which
are represented by RC, and R@® R[e,]. Along the same way as in [1, §34], we
have

| 1\
Z(RC,, RCy; s)=1+( pf—1)<m> and

$ l 2
Z(RCp, R ® Rlep]; s)=p' (Fm?ﬁj) .
Thus it follows that

1_p—fs+pj(l—2s)

C(RCP; S): (1 _p—fs)z

§3. Let ¢ be a prime and let » be a square-free integer coprime to g. Denote
by G, the semidirect product C,-C, of C, by C, in which H=C, acts faithfully on
the subgroup C, of C, for each pln. Write

G7L=<U: Tlanzfq:‘l, 70—_—0'TT> y

where 7 is a primitive g-th root of unity modulo p for every pjn. Let & be a
primitive d-th root of unity. For each dln, d=#1, H acts on Q(es) by t-ca=¢d’.
Denote by K, the invariant subfield @(es)¥ and by R4 the ring of integers in K.
We will calculate {(ZG,; s).

In this section, assume that #=p is a prime. Let us denote G=G,, K=K,
and R=R,. Then M=Z P Z[¢,] ® M,(R) is a maximal Z-order in @G. Denote by
R (resp. R) the p-adic completion of K (resp. R). To begin with, {(ZG;s) is
reduced as follows.
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LEMmma 3.1.
UZyG; s)

UZG ;5 $)=Ca(s)z100(S) ;t[:CR(CIS —)X(1—g°+4'"*) D)

(s 97 =(1=p) [T (1=pt-).

Proor. {(M; $)=LAsX zp (S)(M(R); s), and by Hey’s formula [2, C.7 §8],

q-

LMAR); s)=T] Calgs—i).

=0
Since g|p—1, we have

Ly 8) =Ly SYEMAR); 5)=(L—p~) T (L—pr=27)".

=0

Only primes / for which Z,G+M,; are p and ¢g. Since Z,G is decomposed as Z,H®
(Z,Q Z[ep)-H) and the latter is a maximal order, we have
zZ

UZGis) _  UZH; s)
C(mq ; 3) CZq(S)CZq[Eq](S)

Then the result follows from the formula (1.1).

=1—g~*+¢', by (21)

By (3.1), it suffices to calculate {(Z,G; s). Hereafter we denote 4=Z,G. Since
q|p—1, there is a primitive g-th root » of unity in Z,, and Z,H is decomposed as
Zye; D@ Zype, where e¢; (1=i=q) is the idempotent for which re;=w'"'e;, Then

we have
A=Ae, @@ Ae,

=Z,Cpe1 @@ Z,Creq as A-lattices.

Let Noer=2Zpe; ® Zy[eple; and Nie;=Z,Cpey, these are A-lattices in a natural way.
There are 27 isomorphism classes of full A-lattices in @,/, which are represented

by
L(al,...,aq):N,;lel (’B'“(’B queq , where §;=0 or 1.

There is a relation: A=La, .5E Ly spELa,...0 =9 (say). We have $=Z,HD
ZyleploH. Since A=Z,[¢p]oH is a hereditary order in MQ(K ),

U={(zi;)e My(R)|xi;exR if i<y},

where 7 is a prime element of B. Further, by force of the pullback diagram

21: (R‘\“ﬂé )
[

2D DZy=2Z,H F\H=F,®---®F, |
T ——”

q q
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we may identify

2 =y;; mod R

l=si=q

A= (@1, oy 205 (Vi) €Ly DD Z, DU

s

under some rearrangement of e¢; if necessary.

LemmaA 3.2. Let L=L,,,sp and let rzi 0i. Then
i=0
1) (L:A)=p*.

i) pAute (L)'= ]] (%i:—i) X(p—1y |

Proor. i) (L:A)=(Z,® Zlep): Z,Cp) m=p1".
ii) For every i,j,1=i,j=gq, it is clear that
Hom  (Zye:, Zyleples)=Hom (Z[eples, Zpe;)=0.

Let i#j. Then we have Hom,(Zyes, Zpe;)=0. Further, for every f in Hom (Z,[¢plei,
Zleples), we see that fle)e(sp—1)Zleple;. On the other hand, f—— f(e;) induces
End, (Zpei);:Zp, End, (Zp[sp]ei)z(Zp[s,,])” and End, (ZpCpei)E(ZpCp)H.
Thus, each feEnd A(L) is given uniquely by
(@10, aq; (big))eZy DD Zp D M Zylep))

where biueR, bije(ep—1)Z,e,] if ij, and @;=bi; mod xR if 3;=1. It can be shown
that feAut,(L) if and only if @;eZ,* and byeR* for every i, 1=i=q. Therefore
we see that

(Aut, (9): Auts (L)=(p—1)",
and so we have
w(Auty (L)=pm(Auts (D)X (p-1)"".
By the way

(Bt (9) =" =) =GLR) w0 =[] (23).

Thus we have

AutL) " =T (g{—%) X(p—1Y .

Let F=Z,/pZ,=R[zR. For a;eF, 1=i=gq, let us denote
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Jas, -, a)={(x1, =+ 20 (gi)ed | ™ mOdplllzsy;ianwd =
and

Har, -, a))={(y:s)eNlys mod zR=a;, 1=i=g}.
q
Lemma 3.3. i) Let L=L,. .., and let r=3 0. Then

{L:/A}= \J e, -, a,) (disjoint union).
aeF §f ;=1
;=0 if 8;=0
1159

Let a;eF, 1=i=q, and let k be the number of i such that a;+0. Then

i) | el = | ol pad*s
JaayanGLEE) (g0 01 G LalR)
k
i) | Ielfopd®e = et | ol
P d~(a1,~-,aq)an,1* ? (ps_l)q—k([)_l)k o Aflul.o.-~~,n)erLq(%) ¢
k
Proor. 1) {L:A}={zecA|LxS A}, since lel,
.9 .
= {xeA e;xed  for every i, ’;()U) ejreed if 6_,:0}
F) p I
={J;€/I{1: p;)”)»ejepzyej, x( —q—’;,()—a—))eje(l——e,,)ZpLapje,- if 5,-:0}
= U day - ap),
@ EF i 5;=1
a;=0 if =1

15159

where @ (o) is the p-th cyclotomic polynomial.
ii) Since there exist A,BEGL,,(I?) such that

Ad((ll, -~-,aq)B=Z’(1, Tty 1, O, "'9O)v
"l

k

the integral over 4d(a,,---,a,) is equal to that over A(l,\--_-/,l,O, e, 0).
k

iii) Let Z(a;)={zeZplzmod pZ,=a;}, 1=i=q. Then
Ay, ag)= é:)lZ(ai) @ May, -, ay),

and we see that
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T
2)—;—1‘: if (1?;;/—0

[ o=
zZwpu Qp‘ 1

-1

1f ai=0.
Thus we have, by force of ii),

|3y d ™

K
ol = Sd(@,o,---,o)ﬂGLq(?()
llzllpud*z=

ST(@X.-»,aq)anA* (=1 p—1)
We shall use the following notation :
for an integer n=1,
S.=MyK);
Iv={(zi;)e M(R)|wijexR  for 1=i<j=n};

Eo=T*={(zi,)ea|zue R* for 1=i=n};

5 [ p—1
du,:/l(En)zﬂl <~§T;“i‘> )

and for an integer k, 0=k=n,

J;iieé* for 1=i<k 1

-’-/"u,(k) = (J"a'j)e 1111,

Y etammn

.:b‘uGﬂR for k+1§zén] )
We shall omit the subscript #, unless there is danger of confusion.
E,. acts on [',N2,* by left multiplication. As a full set of representatives of
ENN2X,*, we can take the set T,=\ g Tn., where S, is the symmetric group
a€Sy,
on n symbols, and each 7T, ., is the set of matrices (x;;)¢2,* such that
i) for 1=j=n, z.» j=r™, where m;=0 if o(j)=j and m;=1 if o(j)</,
ll) fOI" ]+1§z§n, x,,(i),J:O
iii) for 1=i=j—1, x,u).; ranges over all representatives of
aRjzmim R if o(@)<j and o(i)<o(j)
Rz R if j=e(i)<o())
aRzmiR if o(f)<a(@)<j
RlzmiR if o())=j and o(i)>e(j),
where mj;, 1=j=un, are as in 1i).

fmj
We note here that, for the matrix (x;;) as above, det(x;;)=xp=' .

LemMA 34. Let n=1 be an integer. Then
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i) There exists a polinomial Gu(x) over Z with p» " V2X"™ as the highest term
and X as the lowest term such that

’ _ duGa(p™™
|l dre= A,
SNy,

H (1-p* ”)
ii) For every integer k, 0=k=n,

o Ay ()NZ,* n ( pz M)
i=k

Proor. i) We see that £, acts on 4,(0)N2,*, and that T, N 4,0) form a full
set of representatives of E,\4,(0)n2%,*. Thus we have

Sd ons, 'HpHS d¥z= #(An) Z Z Hde[M”I/—}m .

n MET 44,0

Let 0€S,. Foreachj, 1=j=u,let m;=0 if ¢(j)>j and let m;=1 if 6(j)=j. Further,

let t;=4{i|1=i<j—1 and j<o(i)<o(j)} and let v;=#{i|1=i=j—1 and o(j)<e())=7j}.

Then 0=¢;, v;=j—1 and {»;,=0. There are pY~Vmipts~% ways of the choice of the

j-th column among {(zi;)€ To.. N 4a(0)| 2,5, ;=n™i for 1=j=<n}. Thus we have
MET"}EM (O)HdetMH’”s myso ; .y (ﬁlp‘j"”.ij)‘j“’”"J'P"""‘ﬂ)

mJ;l if a(fHSjF
1£55n

1 ,
- 71—1_——_ s]_IS ptj <]—I< (p]_l_"’jpans)
T A=p)\GSs 55

_ Dy
:t_[: (1 _pi—ns)

where ¢,=#{j|1=j=n and ¢(j)=j} and c¢,= J; t;+ Z§ (j—1-v;). If o=id, then
1s7sn 1sjsn
a(N>F a(Hsj

e,=n and {;=v;=0 for 1=j7=u, and hence c,=n(n—1)/2. If 6=(12---n), then ¢,=1,

t;=0 for 1=j=mn, v;=0 for 1=j=n-1, and v,=xn—1, and hence ¢,=0. It is easy

to see that 2=e,=n—1 if o+#id, 6£(12---n). Let G,(X)=7] p°X*, then the highest
€Sy

term prv-D2X" comes from oc=id and the lowest term X comes from o=(12---n).

Finally we have

dnG (p7™)

\ o leligde=
40N E,* ” (1 p1 m)

ii) We see that F, acts on 4,(k)NZ2.*%, and that 7T,N4,(k) form a full set of
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representatives of E,\4.(k)n2,*. They are of the form

k n—~k
TN T
1. 90
‘\1‘ B , where AeTh_xNd._(0),
ray
U
| 4

and for each A of detA= +p™, there are p*™ ways of the choice of B. Let/=n—Fk
and let @. be the cardinary of the set

{Ae TN 4(0)|det A= +p™} .

Then we have

HxH%nd*x:dn(M 3 ||detM||§ns>

€Ty N4y (k)

:dn Z pkmdm(p~ns)m:dnngzoam(pk—ns)m .

mz0

S 2, INZ

—1s
Since 2, an(p™)"= i:TG—LQ;)‘ , we have
mzo i]';[o (1 _pi-—ls)
—ns\m Gl(pk—ns)
mzzgdm(pk ) = L—-x—d“::;:‘ )
A=)
Therefore we have
; Hk—ns
lonie Ta—p

ExampLE 3.5. If = is given, then G,(X) can be written explicitly. It is easy
to see that G(X)=X and Gy(X)=pX?+X. For the case that =3, we have the
following table

g (T)s.0 e, c,

w @ O\lf =1
id 0 =™ ¢ . . R R 3 3
0 0 z* aerR[x™'R, b,ceaR[n"*'R

w @ O\ljy=1, m=0
(23) 0 0 = R . . N L 2 1
0 =™ ¢ aexR[r™*' R, benR[z""'R, cexR[z"R
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0 am b [=z0, m,n=1

12)  a ¢ o R R 2 2
0 0 aexR[z™R, b,cexR[z"*'K
00 2\ |7 m=0, n=1

(123) t a b R R L 1 0
0 7 ¢ acxR[z™'R, b,cexR[z"R
0 =™ b =0, m,nzl

(132) 0 0 =" o R R L 2 2
4 oa c aeR[z™R, berR[z""'R, cenR[x"R
00 7\ /=0, m,nz1

(13) 0 =™ b . L 2 1
4 oa ¢ a€R[z™R, b,cexR|z"R

Thus we see that

Gy X)=pX*+2(p*+ P X2+ X.
Now we have prepared to show

ProposiTiOoN 3.6.

7 Ck<1+(p Dp=)* Gy p* )
k=0 n (1= p5)(1—pt-o2))

UZyG 5 9)=

where Ci is the binomial coefficient, and we define Go(X)=1 and (f[:];((l——p““)(l——
=1

Proor. Let L=Lg,...sp and let 7:‘2‘,: d;. Then, by force of (1.2), (3.2) and
%=1
3.3),

g d*w]
4(1,++,1,0,,0) N Q@ pA* a@pi -

Ny

k

24, Ls 9=d,~(p-1yp9| S o116
z

” er ’ N
__1 -1 lr(qr)[ _—S U,sl*,J
‘ (1) )p k=0 ps_l)q—k 4(1{31.0,~,0)n£'”] H):( v

'rClr i
— ] -1 7 HQ-T)8 k sd*
=d,\(p—1ypa- [go T T Smnza”x“‘d xJ

ClP=1p* Gk ") - )
[ A—pry* qﬁ, (g J, by (3.4 ii).
i=k

&

M-

k

i

[
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Thus we have

;8= 2. ZA,L;s)
L~‘—L(51,.. Jo)
b3=0,1

q
=2, CrZA, Ly a,0,m00 5 S)
T:o p—

r

> Z qu-er((p—l)p:z)"’ch_k(p""“)'
=0 k=0 (1 __p—.y)q—k il‘:[k(l_pi—qs)

q

Since oCr-,Cr=¢Ck*¢-Cr-k, We have
G s)= Zq: é qu‘q—/ccr-k'((p—%l{rs)r_k.Gq—k(Pk‘qs)
(A=pop [T A=)
_ 2 LD G )
q-1 ) :
S A=)

Combining (3.1) with (3.6), we have
THEOREM 3.7.
o
UZG ; 8)=LalsWoampls) T], Llas =) X (L =g+ %)

x| £ |t +o-vp 96,0 fla-sa-p) |.

k=0

ExaMpLE 3.8. We note here for the case that ¢=2 (dihedral group) and ¢=3.

LUZDy; 5)=Las)Cr(2s),r(2s —1) X (1 =27 4272)
X(L=2p7+(+ 1P 2" =P+ D)5 +17),

where R=Z[ep+ep '], and
HZ(Cp-Cs); 8)=LASN 21e51(S)CR(3)C (35 — L)L a(3s —2) X (1 =375 43! %)
(I—9)'Ad -9 )X1—py*)X1—1")
+3(1— 9Pl -y’ X1 —py* )1 +(p— D) p*y°
+3A—y)A -y X1+ (p— D) by’ +1°4°)
+(1+(p—-D)(v* +2( P+ P+ %)

where y=p"* and R is the ring of integers in @(e,)%.

§4. Let G, and H be the groups defined at the beginning of §3:

G,={o,tlo"=71=1,r9=6¢"7) and H=<{r).
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Then we have QG,=QH @d@qu(Kd) as algebras. For each p|n, there is a decom-

d#1
position as Zp-orders

Zon= 20y @ (B (FalEal- Gyt
ax1

Here gq is the number of distinct prime ideals over (p) in Ry, and Z,[&,]=2Z,[X]/
(To(X)), where ¥y(X) is the minimal monic polynomial over Z, such that ¥ (e =
0, 0=i=g—1. On the other hand, there is a decomposition as Z,-orders

Z2,Grn=ZH®D ( g}n Z, (? ZleqleH),

dax1

where the latter factor is a maximal Z,-order.
Let M=Z P Z[e, ] P dEIi—) My(Rz). Then M is a maximal Z-order in @G,. Then,

d*1
by virtue of (1.1) and Hey’s formula, we have

LemMma 4.1.
LZyGp;s) T1 (L Z)Ea]-Gp; 5))a
din/D,d*1
EMy; s) ’
EEM; 5)=La(s) ﬂ" jj:cn (gs—1i), and for each pln,

d¥1

UZGn; 5)=CM; s)X(1—g*+¢'*) I

Ey; ) ==~y [T (L=p=) [T T (1—pat-oeyoe,

i=0 din/p
a=1

where pg=p" P 19q,

Let A=Z,[£4]°Gp, where d|n/p and d=1, be a factor of Z,G, as above. To
determine {(ZG,;s), we have only to treat {(A;s), because {(Z,G,; s) has been
determined in § 3.

Denote by K, Kap, Ry and Ry, the p-adic completion of Ky, Kip, Ra and Rap,
respectively. As in §3, we write Z[&slo-H=2Z,{8q)e; ®--D Zy[Eqleq and let Noey=
Zo[Eqles D Zy[Ea, eples and Niey=Z,[£4]Cpes, L=<i=q. These are A-lattices in a natural
way. There are 27 isomorphism classes of full A-lattices in @4, which are re-
presented by

L(al, ..,5q)=N3181 @"'@Nsleq, where ;=0 or 1.

There is a relation: A=Lq,.. €L, 00 ELco,.r- We have Lo, ..o=UDB as
Zyorders, where A=Z,[¢s]-H and B=Z,[£4,¢p]°H. Since the extensions Q(ea)/Ka
and Q(eap)/Kap are unramified at p, A and B are maximal Z,-orders (cf. [3, §40]),
and hence we may identify % with MR,) and B with M Rap). Let = be a prime
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element of Ryp. Then Ru/pRi=Raup/rRiy=F (say), and |F|=ps=p"®"%. Let us
denote P=p,.

LemMa 4.2. Let L=La,..., and let r=3, 5. Then
i=1

i) (L:A4)=Pian

.. r— _Pi 2

i) p(Aut, (L)'= 11;[: L%L_ﬁ)_ .

PROOF. i) (L . A):(Zp[éd] (‘B ZP[Ed, Sp] : ZP[Sd]Cp)q—T
=|ZEd)[pZEa)|4 "= PIa"

ii) Let o be the primitive ¢-th root of unity in Z, for which re;=w’'e;. Let

e

q-1
Yi=) 0%, where keZ, then ¢ Yy=w*Y,r. Since d is square-free and coprime
i=0

q— : r .
to p, es is a generator of a normal basis for Fyleq)/F,, and so }“_,l @ ¥y #0 in
i=0
Fy(eq). Thus we see that Y is a unit in Z,{&;]. Then there is an isomorphism
between

. . |ai;=by;mod nl?d,, if d;,=1, in particular,
(s3), (bs3)) e Mo Ra) ® My Ry }

aij, bijenRap if 6;=0 and §,=1
and End, (L), induced by

(@is), (b)) —> f = f (ei)=(j213l Yi_jauje;, ji Yz'ﬁ‘bijej)ew @B, lsj=q.
Hence we see that

mAut, (L)'= p(Aut, (A D B)) (Aut, (A D B): Aut, (L))
_ IGL(F)?
T IGLAF)|GLyr(F)PPr @
=l —p—pi -

Let ¥=M,(F) and, for each Xe¥, let 4(X)={AeMyR.)| A mod pMyRs)=X}. To

simplify the notation, denote by SA the integral 1%l l3qz pd*x. Then we
X

AX)NGLgR Y
have

LemmA 43. Let L=Lg,,...sp and let r——:}%' o Then
g=1

2
leligmare= 3 (], )
S(L:/ﬂquA‘ vl X%:ET 4(X) ’

where X,={(x:;)eX|zi;=0 for r+1=5i=q, 1=j=g).
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Proor. {L:A)={red|LxSA}, since leL,

¢p(0 )

{:ceA’——Z—e,me/)‘JI and <1— Po(0)

il

)t?jx'E(l—sp)SB if 5j=0 .

Every element of 4 can be written as

%, e€do’zi(0),  2if0)e(Zy[£41Cr)"

154,559

=(T efazii(1), T efaler2ii(ep)eN DB
ird i
Hence {L: A} may be identified with

= R i =Yg mod Tcde for léz,]éq
((z17), (ve5))€ M Ra) ® My(Rap) A ny
Tk, Yrj€nRap for r+1=k=q

= AX)® 41(X),
Xex,
where 4'(X)={BeM(Ru)|Bmod M Rsy)=X). Thus we see that

zl5 d*x
S(L:Ame/t*” !Q"’A

=2 [S ~ ||$||ﬂ4q<§d)d*xs N H$||?wqcf(dp)d*m-].
HeE LA G LK 200OnGLgRp

Since I?d/pf?dzl?dp/nﬁdp, we have

2
lelippare= % ({ )"
SlL :ANQpa Qo Xexy \J 4(X)

13(
Each Xe¥ becomes the standard form X,= 0 “~1 () , for some 0=h=

g, by elementary transformations. Therefore there exist A, BeGLF) such that

AXB=X,. Let A, BeGLR,) such that A mod pMRs)=A and B mod pM,(R,)=B.
Then we have A4(X)B=4(Xs). From this it follows that S =S .
4(Xp)

AX)

LEmMMmaA 4.4.

o hlj: (Pq_Pz)'fﬁ;(l_Pi—qs) .

S P-atg-hs
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Proor. Let E=/ 1+pR
< PR
h R .
\l 1£pR ¢ (R=Rd)
PR
GLy w(R)

.’I)iiEl mOdde for 1§l§h
={ (2:,)eGL{Ra)|wiyepRs for 1=j=<h and ixj
(xij)hnsi,jsqeGLq—h(Rd)

Then E acts on 4(X»)NGL(K,) by left multiplication. As a full set of represent-
atives of E\4(X,)NGLy(K ), we can choose the set of matrices (zi)eGLy(K ) such
that

i) for 1=j=h, z;;=1

ii) for A+1=j=gq, x;;=p™, where m;=1

iii) for 1=j=/ and i+#j, and for A+1=j=<q and i>}, 2;=0

iv) for #+1=j=q and i<j, x;; ranges over all representatives of pRu/p™iRa,
where my, h+1=j=gq, are as in ii). If my A+1<j=gq, are given, there are

q
[T P™i~2Y=b matrices of the form
j=h+1

among the above {(x;;)}. Thus we have

q P'm-i i—1
{ =um 3 0 [( P) p—qmss]
2(x3) M2l i=h+l

h+15isq

P—q(q—h)s

ProrosiTION 4.5.

UZJE1Gys 5)= 3, 3 [qcr T Be=Piy (ﬁl Pa-_pi>x Pacair-sios ]

—— —
=0 h=0 i=h PT“‘Pl =0 Ph—‘Pi k!

i];[h (1 B Pi—QS)z
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h—1 r i
Proor. Let r=# be integers. Then there are #n,,= [] ?h 1133 distinct F-
i=0

subspaces of dimension % contained in an F-space of dimension 7, and there are
mh=’j:[1(P'l-Pi) ways of permutations of ¢ vectors in an F-space V of dimension
k Whli—c(;l span V. Then, in X,, there are n, nm, matrices with standard form X,
for each 0=A=r. Let L=Lg,,..sp and let r= i d;. Then, by force of (1.2), (4.2)

i=1

and (4.3), we have

r—1 (Pq 1,)2 T 2
2u.Li9=11 G- 5 ()]
i=0 h=0 o 4(Xp)

T r—1 (Pq__ 1:)2 h—1 pp _ Pt Patg+r—2nds
-Z[. (0 =) e

L T pr_pi f,Uo Pr_pi X =

.[f (1— pi-asye ] , by (44).

Thus we have

q
{4 s)=§o qCTZ(/I, L(i:./.]_o...m ;' S)

r—1 Pq_. Py h-1 Pg __ Pi P—q(qu—r—zn)s
[ T T ([ B s L
=h 1=0 P P H (] _Pi--qs)z -
i=h

e

7=0 h=01_

Let us recall the polynomial G,(X) defined in (3.4). By the proof of (3.4), we
may view G,(X)= Z P X% as a polynomial both in p and X. From this point of

view, we will erte G,.( 0, X) instead of G,(X). Put Go(p, X)=1. Then, combining
(4.1), (3.7) and (4.5), we have

THEOREM 4.6. Let q be a prime and let n be a square-free integer coprime to
q. Let C,-Cy be the semidirect product of C, by C, in which C, acts faithfully on
the subgroup C, of C, for every p\n. Then

UZ(CnCs 5)=LaKza®(]] T] Crdas—1)A—g*+4')

d#1

X ﬂ(F ORI (Fp_,,,(s))g(l> :
e " g

Fpa(s)= 3 [qcka+<p—1)p-s>q--k(;q_k<p,pk—ﬂ> n @ fp—sxl—pf-q*»] ,

and for d+1,

q r-1 9 p, )2 h—-1 44— i
Fp a(s)= ,Z“:) 2‘;‘0 qCT iUh (§Zr_§zi U (Pd Zi ! _pdi~—qs)2> Xpd—q(qw—zh)s] ,
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where for each p\n and 1xd\np, gq is the number of distinct prime ideals over (p)
in Ry and pe=p* /%,
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