TSUKUBA J. MATH.
Vol. 2 (1977). 127—134

ON THE DEFINITION OF THE WAVE FRONT SET
OF A DISTRIBUTION

By

Humio Suzuki1

§1. Introduction.

Gabor has indicated an invariant definition of the wave front set of a
distribution. His definition in a slightly modified form is as follows. Let X be a
manifold, (2, &)eT*X\0 and #e=’/(X). Then we say that (x, &) is in the com-
plement of the wave front set WF(#) of u, if and only if there exists a conic
open neighborhocd I'C T*X\0 of (2, &) such that for every compact set F of real-
valued functions feC®(X) and every g€Cy*(X) with (z, df(z))el’ for zesupp g, we
have for every integer k>0, when t—oo,

e7irig, up=0(z"%)

uniformly in feF.

In terms of local coordinates an equivalent definition of WF(#) has been given
using the Fourier transform [1], [3]. Let X be identified with an open subset of
R" and T*X with XxRr. Then (z, &)¢éWF(u) if and only if there exists a
function xeCy*(X) with x(z,)#0 and a conic neighborhood EcCR™0 of & such that
for every integer >0 we have

e=ix Dy, up= 0§,

when |§|—oc0 in H.

In the first definition we test the distribution # by oscillatory test functions
e~irfg with arbitrary phase functions feF, while in the second we need only test #%
by a single oscillating function e—#*®y with the linear phase <z, §> depending on
a parameter §. This suggests that testing the distribution # by a single oscillatory
test function of the form e i¥*x(z) containing a parameter ¢ will suffice under
a suitable condition on the dependence of the phase function ¢(z,¢) on the para-
meter 6. The purpose of this paper is to give a sufficient condition. The phase
function ¢(z, o) is allowed to be nonlinear and this will probably be useful in the
calculus of wave front sets. It is possible to prove the result in this paper using
the theory of Fourier integral operators. However we give here an elementary
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proof using a nonlinear analog of the Fourier transform.

§ 2. Statement of the result,

Let X be an open subset of R" and (z,, &) an element of T*X\0. We consider
an oscillatory test function e~i¥@®y(z) depending on a parameter o. Here the test-
ing phase ¢(z, ¢) is a real-valued C” function defined on XxJ%, 2 an open subset
of RN, such that ¢'z(zo, 0o) =&, at (24, 09)eXx X, and x(z) is a function in Cy™(X)
such that x(z,)#0. From Gabor’s definition of wave front set it follows that,
when (2o, §0)¢ WF(#),

Se—ir1p(:¢,o')x<x>u(x)dx =0(t7%), t—o00,

uniformly in ¢ near g, for every integer 2>0. Conversely, if the phase function
¢(z, o) satisfies a kind of transversality condition about the dependence on the
parameter ¢, then testing a given distribution #€ /(X)) by the oscillating function
e ™y gives us information about the wave front set WF(#) of # near (2, &).

THEOREM 2.1. Let ¢(z, o) be a real-valued C” function defined on Xx % and
assume that
.1 ¢'2(20, 00) =& and
(2.2) the rank of the #nx (N+1) matrix (&, ¢''ze(2y, 05)) is equal to n.
Let x(z) be a function in Cy*(X) such that x(z,)#0. Given #eZ'(X), if there
exists a neighborhood V of ¢, such that for every integer 2>0

Se—irxp(x,v)x(x)u(x)dxz 0(z%), T—00,

uniformly in €V, then (zy, §)dWEF(w).

If we introduce a homogeneous variable 0=(z, t¢), 7<R*, in place of o, then
the above theorem is reformulated as follows. Let ® be a conic open subset of
RN¥+1\0. The phase function ¢(z, ) is now a real-valued C* function defined in
X x®, positively homogeneous of degree 1 with respect to # and such that ¢’'z(z,,
8y)=6&, at (=, 0)eXx 0. .

THEOREM 2.2. Assume that
2.3 the rank of the nx (N+1) matrix ¢'/z9(z, 6y) is equal to n.

Let ue 2’(X). If there exists a conic neighborhoocd V of 6, such that for every
integer k>0
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[ 02CyuCdda= 0105, [p]—co,

uniformly in @€V, then (z, &)d WF(n).
In [Theorem 2.1, renumbering the ¢ variables, we may assume that

2.2)! det(&y, ¢’z (%o, 9¢)) #O0.

Here o= (o', ¢'"), 0/ =(0y, :++,0n1), ¢''=(0n, ---, on). If we set J'={d’'eR"1; (d’, a'’y)
GZ} and ¢1<x7 U,)=¢<x) gly 0,’0) for (w’ 0,>EXXZI, then

Se—z’ﬁl’u(x.v') x(@u(x)dz=0(zk), r—>00,

uniformly in ¢’eV'=VNJ3'. Therefore we need only prove the theorems when
N=n—1. In §4 we prove with N=z—1 under the assumption that

(2.3) det ¢''zq(xo, b,) #0.

§ 3. An analog of Fourier transform.

In this section we shall define an analog of Fourier transform with nonlinear
phase function.

Let X be an open subset of R”, ® a conic open subset of R*\0. We denote by
(@) the space of weC*(®) such that for some constant M depending only on w
and for every compact set KC® and every multiindex «, the estimate

|De*w(0)| < Co, k|01, OeKe,

is valid for some constant C, x. Here we set K¢={z0; t>1, 6eK).
Let ¢(x, 0) be a real-valued C* function defined in X x® and positively homo-
geneous of degree 1 with respect to #. For every ve&/(X) we set

F o= Se‘i’s”(’”"’)v(x)dx, 0e®,

Then # v belongs to «7(®) and . is a continuous linear operator from &’'(X)
to 7 (®), if (@) is equipped with a suitable inductive limit topology.

By S™ we denote the space of classical symbols of order m. Let aeS(Xx®)
be such that supp aC Xx K¢ for some compact set KC®. If ¢'z(z, )+0in Xx K¢,
then for every we7(®) the oscillatory integral

S w(x)= Sei¢<x:9>a(x, DHw()do

defines a distribution & aw e @/(X) and % . is a continuous linear operator from
c(®) to 2'(X).
Now we shall show that under the condition (2.3)’, we can find a symbol
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aeS? such that & «.% is micro-locally equal to the identity operator in a conic
neighborhood of (zy, §)€T*X\0. More precisely we have the following theorem.

THEOREM 3.1. Let ¢(z, 8) be a real-valued C*® function defined in Xx® and
positively homogeneous of degree 1 with respect to §. We assume that

3.1 &' 2(xo, 00) =& #0,
(3. 2) det S["lxe(xo, 00) #0.
Then there exists a symbol a(z, )eS°(Xx®) and a compact set KC® such that
supp aC Xx K¢ and ¢'z(z, 0)#0 in Xx K¢. Morever we can find an open neighbor-
hood X; of 2y and a conic open neighborhood E;CR"\0 of & so that for every
ve&'(X) we have

e™irig, F o F v)~Le 771G, v), T—>00,

when feC*(X) is real-valued and geCy”(X) has support in X; and f/(x)eE, for
zesupp ¢. If f and ¢ depend on a parameter, then the above asymptotic relation
is valid uniformly in the parameter.

In the theorem we have used the notation

a()~b(r), t—o0,
when we have, for every integer k>0,

a(®)—b(x)=0(="F), 7—o0.

Proor. There is a map é: Xx Xx@®—R* which is C* and positively homo-
geneous of degree 1 with respect to @ and such that

Pz, 0)—¢(y, H=<z—y, &=, y, )) in Xx Xx06.
This implies that
&z, z, ) =¢'=(z, 0),
Eo(z, z, H=¢" 29z, 0).

From (8.1), (8.2) we have &(xq, z4 09) =&, and det & ¢(zg, Zo, 0y) #0. Therefore the
map (z, y, 0)—(z, y, (=, y, 8)) is a diffeomorphism of a conic open neighborhood
XoX Xox®, of (g, o 0,) onto a conic open neighborhood Wc X,x Xo%x (R™\0) of
(Zo, Zo, &0)-

Choose a C* function {(z, ¥, &) defined in R®* with supp{c L¢ for some com-
pact subset L of W. Furthermore assume that { is positively homogeneous of
degree 0 with respect to ¢ when & is large, and {=1 in a conic neighborhood
Xix Xy xB,CW of (zg, 2o, &) for large §. If we set
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b0<x! Y, 0>=<2 ﬂ)—"C(d], Y, S(x; Y, 0>)|det E,9<x! Y, 0)'

then 5eS*(Xx Xx®) and supp bpc Hx Hx K¢ for some compact sets HC X, and
Kc®, The oscillatory integral

B (z, y)=@mei-20((a, y, Odé

_ Seit¢<x,9>—¢<v»9>3bo(x, y, 0)do

defines a distribution kernel Be /(X x X). It is easily proved by the method of
stationary phase that for every ve&’(X)

<e—irf9, BU>~<e_irf‘9s 1)>, T—00,

if feC*(X) is real-valued and geCy”(X) has support in X; and f'(x)eE,; for
Z€ supp g.

Now we wish to replace b,(z, y, 8) by a simple symbol a(z, 1)eS(Xx®). We
set ao(z, 0)=by(x, z,0). Then @S (Xx®) with suppa,CHx K¢ and positively
homogeneous of degree 0 when @ is large. Since ¢(z, ) —¢(y, ) =<{z—vy, (=2, y, 0))
and deté'o(z, y, O)#0 in Xox Xox @y (/0[P (z, O)—¢(y, 0)]1=0, j=1,---,n, if
and only if 2=y. Since det ¢'/z9(x, 0)=det &y(z, 2, ) #0 when (2, )eX,x ®,, the
differentials of (9/30)[¢(x, )—¢(y, 0)] are linearly independent in X,x X,x @,.
So we can find ¢y;eS*(X x Xx®) with supp ¢, C Hx H' x K¢, positively homogeneous
of degree 0 with respect to & when @ is large, and such that

boCz, v, )= h()ax(, ) =60, ¥, D[4 D=4y, ),

where & is a cutoff function €Cy”(X) with H'=supp hC X, and such that kA(z)=1
for ze H. Next we set

n
bl(x: Y, 0) =i2 'a%f’co.';(xi Y, 0)-
j=1 J

It is possible to choose successively areS*(Xx®), bk, cri€S*(Xx Xx®) with
supp axCHx K¢, supp bx, suppcriCHXH'x K¢ and positively homogeneous of
degree—k with respect to ¢ when @ is large and such that

dk(x, 0)=bk(x; z, 0):

b, v, 0)—h(WDax(z, )=3 cki(x, 1, )59z, O~ ¢ (v, O],

b (@, y, 0)=i3 20— cii(z, ¥, 0).
j=10Y7g

Then the asymptotic sum a(z, 8) of arx(z, ©),
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a(z, 0>~k§; ar(z, 0),

belongs to S°(Xx®) and supp a is contained in Hx Ke.
Let Ae2’(Xx X) be the distribution kernel defined by the oscillatory integral

Az, y)= Seih[:(:r,e)—'l[:(y,e)]a(x, 6)do.
It remains to prove that for every ve&’(X)

Ke~ittg, Avy~<e ilg, Bv), t—00,

when feC”(X) is real-valued and 2eCy™(X) has support in X; and f’(z)eE, for
zesupp ¢. By repeated integrations by parts

{e~irfg, Bv— A(hv)>

=SSSe‘iff“’g(a:)e“‘l’(xr‘”"1’(%9”[bo(x, y, ) —h(y)az, 0)Jv(y)dzdydd

=SSSe—irﬂwg(x)eiw.9>~¢<y,e>1[bkcx, y, 0) —h(y)Re(z, ) To(y)dzdydo

where Rr=a—ay—--—ar-,€S7%. Using the substitution §—78 we have

<e~itlg, Bu— A(hv))
=({{errr@mveovwog@ b, v, 20) — h(yI Rz, 0) Jo(y)erddyds.

Hence by the method of stationary phase
le~irig, Bv—A(hv)>=0(z"%), t—o0,

for every k. Finally we use again the methcd of stationary phase to show that
Ke“ir/g, A(hv)y~<e~i"/g, Av), T—00.

This concludes the proof of [Theorem 3. 1.

§4. Proof of Theorem 2.2.

We keep the notation in the proof of and shrinking X; if necessary
we may assume that x(z)#0 when z€X;. From it follows that

e~irfg, uy=<Le trix~1g, xu)
~LetfyT1g, F o F (Qu)), T—00,

if feC*(X) is real-valued and 2eC,”(X) has support in X; and f/(2)eE, for ze
supp ¢. Hence it is sufficient to prove that
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3.1) le~irig, F aw)~0, T—00,
when we7(®) satisfies the estimate
(3.2) |w(8)| < Ck|0|*, OeV N Ke,

where V is a conic neighborhood of 6,. If we set

100, t) =S i@, 00— g () a(z, 0)dx,
then we have
(3.3) le=itlg, Fawy= SI(&, DHw(@)do.

From the proof of [Theorem 3.1, it follows that the map (#, 0)— (x, ¢'z(z, 6))
is a diffeomorphism of Xy;x®, onto a conic open neighborhocd W’ of (2, &). The
image of Xyx(@;,NV) under this map is a conic neighborhood of (z,, &). Hence
there exists €0, a neighborhood X, of z, and a conic neighborhood E; of & such
that

|¢'=(2, 6> —&| =e(|0]+ €D

if reX,, 0€@o\V and feE,.

Now put Xz=X;N X, Hs=E;NE, and assume that supp CX; and f'(z)€E;
for ze supp g. Then ¢'z(z, ) —7f'(z)#0 when zesupp g, 0e@,\V and zeR*. We
set

L=|¢'s(x, ) —7f'(@)| K¢ z(x, O)—7f'(2), D).
The coefficients of L are positively homogeneous of degree —1 with respect to
(0, ) and we have

Letty®, 007 @] = pil(x, 01— f@d]
By repeated integrations by parts, if 0e®\V, teR*,
106, ©) = Sei[1p(x,6)~rf(x)](tL)k(g(x>a(x, 9))dz,
where tL is the adjoint of L. Since the coefficients of (!L)¥ are of degree —% and
acS°(X x®) has support in Xx K¢, K a compact subset of ®, we have
(3.4) |10, | < Ci’(|0] +7)7%
when 0e@\V and zeR*.

If we choose >0 sufficiently small, then ¢'z(z, 8)—7f'(2)+#0 when z€ supp &,
0ecKe¢ and |0]<8r. Hence the estimate (3.4) is also valid when feK¢ and |0|<dz.
Note that I(f, =) is bounded,
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(3.5) 110, ©)|<C, 0€B, veR™,

and since suppacC Xx K¢, I(0,t)=0 when 6¢Kc. From the definition of the space
o (®) we have

(3.6) |w(8)| < Co,x |0]M, OeKe.

We divide the integral in (3.3) into two parts J; and [, J; over V and J; over
®\V. From (3.2), (3.4)~(3.6), it follows that

|l < CCkS |6]7%d6+ C'kCy S (6] +7)*df0= const t"¥,

6] =07 18|87

|l <Clk Co,KS (0] +7)7*|0|Mdf=const Tn+M-k,

Combining these two estimates we obtain (3.1), which completes the proof.
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