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A SYSTEM OF GRAPH GRAMMARS WHICH GENERATES ALL
RECURSIVELY ENUMERABLE SETS OF LABELLED GRAPHS

By

Tadahiro UESU

Introduction

The aim of this paper is to prove that the system of simple graph grammars
(Einfache Graph-Grammatiken) in [1] is complete. A graph grammar is a gener-
alization of a Chomsky-grammar which defines a graph language, i.e. a language
composed of a set of directed graphs with labelled nodes and arcs. A system of
graph grammars is said to be complete if it satisfies the following property: For
each finite set $T$ of labels, the class of all graph languages over $T$ defined by graph
grammars of the system is identical with the class of all recussively enumerable
sets of labelled graphs over $T$ . Where a set of labelled graphs over $T$ is recursively
enumerable if the associated set of integers by a Godel numbering from the label-
led graphs over $T$ into the integers is recursively enumerable.

Several authors have introduced their system of graph grammars (e.g. [1], [2],

$[31, [4]$ , $[51, [6]$ , [7]). However they did not refer to the completeness of their
systems.

The system of simple graph grammars was introduced in [1] as a subsystem
of the system in [2]. In this paper we modify the definition of the system in the
following manner: A production of our system is an ordered triple $(K, F, K^{\prime})$ which
consists of two labelled graphs $K,$ $K^{\prime}$ and a one.to.one function $F$ from a set of
nodes of $K$ to a set of nodes of $K^{\prime}$ . If $(K, F, K^{\prime})$ is a production, and if $K$ occurs
in a labelled graph $G$, then the production is applicable to $G$, and the effect of the
application is to replace an occurrence of $K$ in $G$ by $K^{\prime}$ . The function $F$ specifies
the embedding of $K^{\prime}$ into the remainder of removing $K$ from $G$ ; if a node $n^{\prime}$ of $K^{\prime}$

is the image of a node $n$ of $K$, then $n^{\prime}$ is put upon the trace of $n$ in the remainder.
This is illustrated by Figure $0$ .

The formal definitions of labelled graphs and several concepts with labelled
graphs are given in the first section of this paper. The definition of simple graph
grammars is given in the second section. In the third section it is proved that the
system of simple graph grammars is complete. The final section gives a generaliza-
tion of the system of simple graph grammars.
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K F $K^{\prime}$

Production $(K, F, K^{\prime})$ . Straight lines represent arcs.
Circles $l,$ $m,$ $n,$

$l^{\prime}$ , $m^{/}$ and $n^{\prime}$ represent nodes. Dotted
arrows represent the function $F$ from $\{l, m, n\}$ to $\{l^{\prime},$ $m^{/}$ ,
$n^{\prime}\}$ .

$G$ S $G^{\prime}$

$S$ is the remainder of removing $K$ from $G$ . Dotted
circles represent the traces of the nodes $l,$ $m,$ $n$ of K $G^{\prime}$

is the result of applying the production $(K, F, K^{\prime})$ to $G$ .
Fig. $0$ .

In the following we list the notations of set theory and theory of formal languages

which we will use.
If $\pi(x)$ is a proposition conceming $x$ , then the symbol

$\{x|\pi(y)\}$

denotes the set of those elements $x$ for which the proposition $\pi(x)$ is true. The

union and the difference of sets $A$ and $B$ are denoted respectively by $A\cup B$ and

$A-B$. The symbol $0$ is used to denote the empty set. An ordered $n\cdot tuple$ is

denoted by the symbol $(x_{1}, x_{2}, \cdots, x_{n})$ . The membership relation is denoted by $\in$ .
A relation is a set of ordered pairs. A function is a relation $f$ such that for every
$x$ and for every pair $y,$ $y^{\prime}(x, y)\in f$ and $(x, y^{\prime})\in f$ implies $y=y^{\prime}$ . If $f$ is a function

from $A$ onto $B$, then $A$ is called the domain of $f$, written $dom(f)$ , and then $B$ is

called the range of $f$, written $mg(f)$ . If $f$ is a function and $x$ is an element of

$dom(f)$ , then the value of $f$ for the argument $x$ is denoted by $f(x)$ . If $f$ is a
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function from $A$ to $B$ and $g$ is a function from $B$ to $C$, then the function $h$ from
$A$ to $C$ such that for every $x$ in $A$ $h(x)=g(f(x))$ is denoted by $g\circ f$.

An alphabet is a finite set of symbols. A string over an alphabet is a finite
string composed of symbols from the alphabet. The symbol $\epsilon$ denotes the empty
string. A Chomsky-grammar is an ordered triple $(T, S, P)$ in which $T$ is an
alphabet, $S$ an symbol not in $T$ and $P$ a finite set of expressions of the form $s\rightarrow t$ ,

where $s$ is a string with at most one symbol not in $T$ and $t$ is any string. If $t,$ $u$

and $v$ are strings, and if $s$ is a nonempty string, then the string $utv$ is said to be
directly derived from the string $usv$ according to $s\rightarrow t$ . The language defined by

the $Chomsky\cdot grammar(T, S, P)$ is the set of all strings $w$ over $T$ satisfying that

there exists a finite sequence $s_{0},$ $s_{1},$ $\cdots,$ $Sn$ of strings such that $s_{0}$ is $S,$ $Sn$ is $w$ and
$s_{i+1}$ is directly derived from $s_{i}$ according to some element in $P$ for $i=0,1,$ $\cdots,$ $n-1$ .
The fact that each recursively enumerable set of strings over an alphabet is a
language defined by some Chomsky-grammar is well known.

1. Labelled Graphs

DEFINITION 1.1. A partially labelled graph is an ordered sextuple $(N,$ $A,$ $\partial_{s}$ ,
$\partial_{t},$ $\lambda_{n},$ $\lambda_{a}$) where $N$ and $A$ are finite sets, $\partial_{s}$ and $\partial_{t}$ are functions from $A$ to $N$, and
$\lambda_{n}$ and $\lambda_{a}$ are functions such that $dom(\lambda_{n})$ is a subset of $N$ and $dom(\lambda_{a})$ is a subset

of $A$ . A partially labelled graph $(N, A, \partial_{s}, \partial_{t}, \lambda_{n}, \lambda_{a})$ is said to be over an alphabet
$T$, if $mg(\lambda_{n})$ and $mg(\lambda_{a})$ are subsets of $T$ .

Let $G$ be a partially labelled graph $(N, A, \partial_{s}, \partial_{t}, \lambda_{n}, \lambda_{a})$ . The elements of $N$

are called the nodes of $G$ . The elements of $A$ are called the arcs of $G$ . If $a$ is an
arc of $G$, then the node $\partial_{s}(a)$ is called the source of $a$ and the node $\partial_{t}(a)$ is called
the target of $a$ . If $n$ is the source or the traget of an arc $a$ , then $n$ is said to be

incident with $a$ and $a$ is said to be incident with $n$ . The nodes in $dom(\lambda_{n})$ are
said to be labelled, and the nodes in $N-dom(\lambda_{n})$ are said to be unlabelled.
Similarly, the arcs in $dom(\lambda_{a})$ are said to be labelled, and the arcs in $A-dom(\lambda_{a})$

are said to be unlalelled. For each labelled node $n$ , the value $\lambda_{n}(n)$ of $\lambda_{n}$ is called
the label of $n$ . Similarly, for each labelled arc $a$ , the value $\lambda_{a}(a)$ of $\lambda_{a}$ is called
the label of $a$ .

DEFINITION 1.2. A partially labelled graph

$(N, A, \partial_{s}, \partial_{t}, \lambda_{n}, \lambda_{\alpha})$

is a labelled graph if and only if $dom(\lambda_{n})=N$ and $dom(\lambda_{a})=A$ . The labelled graph

$(0,0,0,0,0,0)$

is called the empty graph, and donoted by $\epsilon$ .
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DEFINITION 1.3. Let $G$ and $G^{\prime}$ be two labelled graphs

$(N, A, \partial_{s}, \partial_{t}, \lambda_{n}, \lambda_{a})$ and $(N^{\prime}, A‘, \partial_{s^{\prime}}, \partial_{t^{l}}, \lambda_{n^{\prime}}, \lambda_{a}^{\prime})$

respectively. If there is a pair $f_{n},$ $f_{a}$ of functions such that $f_{n}$ is a $one\cdot to\cdot one$ func $\cdot$

tion from $N$ onto $N^{\prime},$ $f_{a}$ is a one-to-one function from $A$ onto $A^{\prime},$ $\partial_{s^{\prime}}\circ f_{a}=f_{n}\circ\partial_{s}$ ,
$\partial_{t^{l}}\circ f_{a}=f_{n}\circ\partial_{t},$ $\lambda_{n}=\lambda_{n}^{\prime}\circ f_{n}$ and $\lambda_{a}=\lambda_{a}^{\prime}\circ f_{a}$ , then $G$ is said to be isomorphic to $G$ ‘, and
also, $G$ and $G^{\prime}$ are said to be isomophic.

We define the concept of partitions of labelled graphs. For example, consider
the labelled graph $G$ as shown in Figure 1.1. If we remove the subgraph $K$ from
$G$, then the partially labelled graph $S$ remains, where unlabelled nodes of $S$ represent
the traces of labelled nodes of $K$. Conversely, $G$ is obtained by connecting suitably
the unlabelled nodes of $S$ to the labelled nodes of $K$.

G K $S$

Fig. 1. 1

Formally we define the following way:
DEFINITION 1.4. Let $K$ be a labelled graph

$(N^{K}, A^{K}, \partial_{s^{K}}, \partial_{t^{K}}, \lambda_{7l}^{K}, \lambda_{a^{K}})$

and $S$ a partially labelled graph

$(N^{s}, A^{S}, \partial_{s^{S}}, \partial_{t^{S}}, \lambda_{7l}^{S}, \lambda_{a^{S}})$

without unlabelled arc such that $N^{I\zeta}\cap N^{S}=0$ and $A^{K}\cap A^{s}=0$ . A coupling between $K$

and $S$ is a $one- to\cdot one$ function from the set of all unlabelled nodes of $S$ to the set $N^{I}$

of labelled nodes of $K$. If $f$ is a coupling between $K$ and $S$, and if a labelled graph
$H$ is isomorphic to the labelled graph

$(N, A, \partial_{s}, \partial_{t}, \lambda_{n}, \lambda_{a})$

in which

$N=N^{K}\cup(N^{S}-dom(f))$

$A=A^{K}\cup A^{s}$

$\partial_{s}=\partial_{s^{S}}-$ { $(a,$ $n)|(a,$ $n)\in\partial_{s^{S}}$ and $n$ is an unlabelled node of $S$}
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$\cup$ { $(a,$ $f(n))|(a,$ $n)\in\partial_{s^{S}}$ and $n$ is an unlabelled node of $S$}
$\cup\partial_{s^{K}}$,

$\partial_{t}=\partial_{t^{S}}-$ { $(a,$ $n)|(a,$ $n)\in\partial_{t^{S}}$ and $n$ is an unlabelled node of $S$}

$\bigcup_{\cup}$

{ $(n,$

$f(n))\partial_{t^{K}},|(a,$

$n)\in\partial_{t^{S}}$ and $n$ is an unlabelled node of $S$}

$\lambda_{n}=\lambda_{n^{K}}\cup\lambda_{n^{S}}$ and $\lambda_{a}=\lambda_{a^{K}}\cup\lambda_{a^{S}}$ ,

then the ordered triple $(K, S, f)$ is called a simple partition of $H$, and $K$ and $S$ are
called respectively the kernel and the shell of the simple partition $(K, S, f)$ .

$K$

$s$

(b)
(a)

Fig. 1.2 (a) denotes a simple partition of (b). In (a)
dotted arrows represent the coupling between $K$

and $S$.

2. Simple Graph Grammars

DEFINITION 2.1. A simple production is an ordered triple $(K_{1}, F, K_{2})$ where $K_{1}$

and $K_{2}$ are labelled graphs, $K_{1}$ is not the empty graph, and $F$ is a one-to-one function
from a set of nodes of $K_{1}$ to the set of nodes of $K_{2}$ . $K_{1},$ $K_{2}$ and $F$ are called respec $\cdot$

tively the left kemel, the right kemel and the embedding of the simple production
$(K_{1}, F, K_{2})$ ,

EXAMPLE 2.1. Let $K_{1}$ and $K_{2}$ be two labelled graphs

$(\{0,1\}, \{0\}, \{(0,0)\}, \{(0,1)\}, \{(0, A), (1, B)\}, \{(0, X)\})$

and

$(\{0,1,2\},$ $\{0,1\},$ $\{(0,0), (1,1)\},$ $\{(0,1), (1,2)\}$ ,
$\{(0, C), (1, D), (2, \mathfrak{H}\},$ $\{(0, Y), (1, Z)\})$

respectively and let $K_{3}$ be the empty graph $\epsilon$ . Consider the simple productions $(K_{1}$ ,
$F_{1},$ $K_{2}$)

$,$

$(K_{1}, F_{2}, K_{2}),$ $(K_{1}, F_{3}, K_{2})$ and $(K_{1}, F_{3}, K_{3})$ where $F_{1}$ and $F_{2}$ are the func-
tion $\{(0,0), (1,2)\},$ $\{(0,0)\}$ respectively and $F_{3}$ is the empty function $0$ . The
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$K_{1}$ $F_{1}$ $K_{2}$ $K_{1}$ $F_{2}$ $K_{2}$

A $C$

$Y$

$X$
$D$

$Z$

$B$ $E$

$K_{1}$ $F_{3}$ $K_{2}$ $K_{1}$ $F_{3}$ $K_{3}$

Fig. 2. 1

corresponding diagrams are as shown in Figure 2.1.
DEFINITION 2.2. A labelled graph $G_{2}$ is directly derived from a labelled graph

$G_{1}$ according to a simple production $(K_{1}, F, K_{2})$ if there exist simple partitions $(K_{1}$ ,
$S,$ $f_{1}$) of $G_{1}$ and $(K_{2}, S, f_{2})$ of $G_{2}$ such that $mg(f_{1})=dom(F)$ and $F\circ f_{1}=f_{2}$ . A
labelled graph $G$ is derived from a labelled graph $H$ according to a set $P$ of simple

productions if there exists a finite sequence $H_{0},$ $H_{1},$ $\cdots,$
$H_{n}$ of labelled graphs such

that $H_{0}$ is $H,$ $H_{n}$ is $G$, and $H_{i+1}$ is directly derived from $H_{i}$ according to some simple
production in $P$ for $i=0,1,$ $\cdots,$ $n-1$ .

DEFINITION 2.3. A simple graph grammar over an alphabet $T$ is an ordered
triple $(T, S, P)$ in which $S$ is a symbol not in $T$ and $P$ is a finite set of simple
productions whose left kemels are not over $T$ .

In the following, we identify isomorphic labelled graphs.
DEFINITION 2.4. If $\mathfrak{S}$ is a simple graph grammar $(T, S, P)$ , then the set of all

the labelled graphs over the alphabet $T$ that are derived from the labelled graph,

which consists only of one node with the label $S$, according to the set $P$ of simple

productions is called the graph language defined by $\mathfrak{S}$ ; it is denoted by $L(\mathfrak{S})$ .
If $\mathfrak{S}$ is a simple graph grammar, then the graph language defined by $\mathfrak{S}$ is a

countable set, since isomorphic labelled graphs are identified.
For each string $A_{1},$ $A_{2},$

$\cdots,$
$A_{m}$ , the labelled graph
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is called the graph-expression of the string.
The following example explains the translation of Chomsky-grammars to simpie

graph grammars.
EXAMPLE 2.2. Consider the Chomsky-grammar

$(\{A, B\}, S, \{S\rightarrow\epsilon, S\rightarrow ASB\})$ ,

and simple productions $p_{1},$ $p_{2},$ $p_{3}$ and $p_{4}$ as shown in Figure 2.2. The pair $p_{1},$ $p_{2}$

corresponds to $ S\rightarrow\epsilon$ , and the pair $p_{3},$ $p_{4}$ corresponds to $S\rightarrow ASB$. Then the graph
language defined by the simple graph grammar

$(\{A, B, E\}, S, \{p_{1}, p_{2}, p_{3}, p_{4}\})$

consists of all the $graph\cdot expressions$ of strings in the language defined by the
Chomsky-grammar.

$p_{1}$ : $\circ s$
$p_{2}$

.

$p_{3}$ : $\circ s$
$p_{4}$ :

Fig. 2. 2

It is generalized as the following proposition:
PROPOSITION 2. 1. For each Chomsky-grammar $\mathfrak{C}$ . There exists a simple graph

$g^{r}rammar\mathfrak{S}$ such that the graph language $L(\mathfrak{S})$ defined by $\mathfrak{S}$ consists of all graph $\cdot$

expressions of strings in the language $L(\mathfrak{C})$ defined by $\mathfrak{C}$ .

3. The Completeness of the System of Simple Graph Grammars

Throughout this section we identify isomorphic labelled graphs, and we assume
that each set of nodes is a set of positive integers.

DEFINITION 3.1. The representing pair of a node $n$ of a labelled graph is the
ordered pair $(n, A)$ , in which $A$ is the label of $n$ . The representing sextuple of
an arc $a$ of a labelled graph is the ordered sextuple $(m, A, a, B, n, C)$ in which $m$
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and $n$ are the source and the traget of $a$ respectively, $A$ and $C$ are the labels of $m$

and $n$ respectively, and $B$ is the label of $a$ .
If $\alpha$ is a representing sextuple of the form $(m, A, a, B, n, C)$ , then $\overline{\alpha}$ denotes

the string

$A^{o}11\cdots 1B^{o}11\cdots 1C^{o}$ .
$\mp_{m1}$ $\mp_{n1}$

If $\beta$ is a representing pair of the form $(n, A)$ , then $\overline{\beta}$ denotes the string

$\frac{22\cdots 2}{n+1}A^{o}$
.

DEFINITION 3.2. If $\alpha_{1},$ $\alpha_{2},$ $\cdots,$ $\alpha_{r}$ is a sequence without repetition of all the
representing sextuples of arcs of a labelled graph $G$ and $\beta_{1},$ $\beta_{2},$

$\cdots,$
$\beta_{s}$ is a sequence

without repetition of all the representing pairs of nodes of $G$, then the string

$\overline{\alpha}_{1}\overline{\alpha}_{2}\cdots\overline{\alpha}_{r}\overline{\beta}_{1}\overline{\beta}_{2}\cdots\overline{\beta}_{s}$

is called a $string\cdot expression$ of $G$ . The empty string is the string-expression of
the empty graph.

PROPOSITION 3.1. If $\mathfrak{C}$ is a Chomsky-grammar such that the lauguage $L(\mathfrak{C})$

defined by $\mathfrak{C}$ is a set of string-expressions of labelled graphs, then there exists a
simple graph grammar $\mathfrak{S}$ such that

(a) euery string in $L(\mathfrak{C})$ is a string-expression of some labelled graph in $L(\mathfrak{S})$ ,

and
(b) every labelled graph in $L(\mathfrak{S})$ has a $string\cdot expression$ in $L(\mathfrak{C})$ .
PROOF. Let $\mathfrak{C}$ be a Chomsky-grammar such that the language $L(\mathfrak{C})$ defined

by $\mathfrak{C}$ is a set of string-expressions of labelled graphs over an alphabet $T$ and let $\mathfrak{S}_{0}$

be a simple graph grammar $(T_{0}, S, P_{0})$ , in which

$T_{0}=\{A^{o}|A\in T\}\cup\{1,2, E\}$ ,

such that the graph language $L(\mathfrak{S}_{0})$ defined by $\mathfrak{S}_{0}$ consists of all the $graph\cdot expres$.

sions of strings in $L(\mathfrak{C})$ . The existence of such $\mathfrak{S}_{0}$ is assured by proposition 2.1.
Let $P_{1},$ $P_{2}$ and $P_{3}$ be the sets of simple productions as shown in Figure 3. 1, Figure
3.2 and Figure 3.3 respectively. We may assume that the symbols 1‘, 2‘ and $A^{\prime}$ ,

for $A$ in $T$, are not contained in any kernels of simple productions in $P_{0}$, and

$(\{A^{o}|A\in T\}\cup\{A^{\prime}|A\in T\}\cup\{1,2,1^{\prime}, 2^{\prime}, E, S\})\cap T=0$ .
Set

$\mathfrak{S}=(T, S, P_{0}\cup P_{1}\cup P_{2}\cup P_{3})$ .



$A_{\sim}system$ of graph grammars which generates all recursively 19

(1) $OA----*\circ A$

(6)

(2) $O^{2}----C2$

(3)
(7)

(4) (8)

(5)

(9)

Fig. 3.1 The set $P_{1}$ of simple productions. $A,$ $B$ and $C$

are symbols from $T$.

(12)
(10)

(13)
(11)

Fig. 3.2 The set $p_{2}$ of simple productions.
$A$ and $B$ are symbols from $T$ and
$i=1,2$ .



20 Tadahiro UESU

(14) (15)

Fig. 3. 3 The set $P_{3}$ of simple productions. $A$ is a symbol
from $T$.

We shall prove (a) and (b). Let $G$ be a labelled graph over $T$ as shown in Figure

3.4 and let the set $\{1,2, \cdots, t\}$ be the set of nodes of $G$ .

Fig. 3.4 Labelled graph G. $A_{i}$ is the label of the node
$i$ of $G$ for $i=1,2,$ $\cdots,$

$t$. Straight lines represent
arcs of $G$.

For each representing sextuple $\alpha$ of an arc $a$ of $G$ of the form $(m, A, a, B, n, C)$ ,

let $\hat{\alpha}$ denote the following labelled graph:

For each representing pair $\beta$ of a node $n$ of $G$ of the form $(n, A)$ , let $\hat{\beta}$ denote
the following labelled graph:

$n+1$

Let

$\overline{\alpha}_{1}\overline{\alpha}_{2}\cdots\overline{\alpha}_{r}\overline{\beta}_{1}\overline{\beta}_{2}\cdots\overline{\beta}_{S}$
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be a string expression of $G$ where $\alpha i$ is a representing sextuple for $i=1,2,$ $\cdots,$
$r$ and

$\beta j$ is a representing pair for $j=1,2,$ $\cdots,$ $s$ . Let $H$ be the $graph\cdot expression$ of the
string-expression

$\overline{\alpha}_{1}\overline{\alpha}_{2}\cdots\overline{\alpha}_{r}\overline{\beta}_{1}\overline{\beta}_{2}\cdots\overline{\beta}_{S}$ ,

and let $H_{1}$ be labelled graph of the form

$\hat{\alpha}_{1}\hat{\alpha}_{2}\ldots\hat{\alpha}_{r}\hat{\beta}_{1}\hat{\beta}_{2}\ldots\hat{\beta}_{S}$ .
Then $H_{1}$ is derived from $H$ according to $P_{1}$ . If $(1, A_{1})$ is the representing pair
of the node 1 of $G$, then $H_{1}$ is of the form as shown in Figure 3.5. Hence, the
labelled graph $H_{1}^{1}$ in Figure 3.5 is derived from $H_{1}$ according to $P_{2}$ .

$j_{1}$

$H_{1}$
$H_{1}^{1}$

Fig. 3.5 Straight lines represent arcs with labels in $T$

and each dotted square represents the remainder
of $H_{1}$ . $i_{1}$ is the sum of the number of arcs whose
source is 1 and the number of arcs whose target
is 1.

$H_{1}^{1}$

Fig. 3. 6 Straight lines represent arcs with labels in $T$ and
each dotted square represents the remainder of
$H_{1^{1}}$ . $i_{2}$ is the sum of the number of arcs whose
source is 2 and the number of arcs whose target
is 2.
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If $(2, A_{2})$ is the representing pair of the node 2 of $G$, then $H_{1^{1}}$ is of the form
as shown in Figure 3.6, so that the labelled graph $H_{1}^{2}$ in Figure 3.6 is derived
from $H_{1^{2}}$ according to $P_{2}$ . In this way we get the labelled graph $H_{2}$ as shown in
Figure 3.7 which is derived from $H_{1}a\propto ording$ to $P_{2}$ .

Fig. 3. 7

Clearly the labelled graph $G$ is derived from $H_{2}$ according to $P_{3}$ . Therefore $G$ is
derived from $H$ according to $P_{1}\cup P_{2}\cup P_{3}$ . Thus the condition (a) holds. It is easily

seen that for each labelled graph $H$ in $L(\mathfrak{S}_{0})$ , there exists uniquely a labelled graph
$G$ in $L(\mathfrak{S})$ such that $G$ is derived from $H$ according to $P_{1}\cup P_{2}\cup P_{3}$ . Conversely, for
each labelled graph $G$ in $L(\mathfrak{S})$ , there exists a labelled graph $H$ in $L(\mathfrak{S}_{0})$ such that
$G$ is derived from $H$ according to $P_{1}\cup P_{2}\cup P_{3}$ . Therefore the condition (b) holds.
This $\infty mpletes$ the $pr\infty f$ .

From the above proposition we are able to deduce the main result.

THEOREM. For each alphabet the class of all recursively enumerable sets of
labelled graphs over the alphabet and the class of all graph language defined by
simple graph grammars over the alphabet are identical.
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PROOF. It is clear that a graph language defined by a simple graph grammar
is recursively enumerable set of labelled graphs over an alphabet $T$ . Then the set
$E^{\prime}$ of all the $string\cdot expressions$ of labelled graphs in $E$ is recursively enumerable,

and so there is a Chomsky-grammar $\mathfrak{C}$ such that the language defined by $\mathfrak{C}$ is the
set $E^{\prime}$ . Therefore, by virtue of proposition 3. 1, there exists a simple graph gram-
mar $\mathfrak{S}$ such that

$L(\mathfrak{S})=E$.

4. General Productions

In our system of simple graph grammars, a simple production consists of two

kernels which are labelled graphs and an embedding which is a partial fuction from
the set of nodes of the left kernel to the set of nodes of the right kemel. This
can be generalized in the following way; we allow the embedding of a production

to be a relation between the set of nodes of the left kemel and the set of nodes
of the right kernel. If $(K, R_{1}K^{\prime})$ is such a production and $K$ occurs in a labelled
graph $G$, then the application of the production is to replace an occurrence of $K$

in $G$ by $K^{\prime}$ such that if $a$ is an arc of the remainder of removing the occurrence
of $K$ from $G$ and has been incident with a node $n$ of $K$, then $a$ is connected with
some node $n^{\prime}$ of $K^{\prime}$ which satisfies $(n, n^{\prime})\in R$ . Moreover, we allow the kernel of a
production to be partially labelled graphs without unlabelled arc. Then such a
production may be regarded as a version of a Schneider-Ehrig’s production in [7],

since a labelled partial graph in [7] may be interpreted as a partially labelled
graph without unlabelled arc.

We shall not give the precise definition of the generalized system here.
However, we illustrate the direct derivation for the generalized system with two
examples (cf. pp. 303-306 in [7]). Consider the the general production in Figure

4.1. and the labelled graph $G_{1}$ in Figure 4.2. Then the labelled graph $G_{2}$ is
directly derived from $G_{1}$ as shown in Figure 4.2.

$K_{1}$
$K_{2}$

Fig. 4.1 Dotted lines represent the relation between the
set $\{n\}$ of the node of $K_{1}$ and the set $\{n_{1}, n_{2}, n_{8}\}$

of nodes $K_{2}$.
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$K_{1}$

$K_{2}$

$G_{2}$

Fig. 4.2 The pair $K_{i}$ . $S_{1}$ is a partition of $G_{i}$ for $i=1,2$ .
Curved lines represent the couplings. The arcs
$a,$ $b,$ $c$ are distributed such that $a$ is to the node
$n_{1}$ , and $b$ and $c$ are to the node $n_{3}$ .

However, if we consider the partition of $G_{2}^{\prime}$ as shown in Figure 4.3, then $G_{2^{\prime}}$

is derived from $G_{1}$ according to the production also.

Fig. 4. 3

Thus, 27 labelled graphs are directly derived from the labelled graph $G_{1}$ according
to the production.
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$K_{3}$ $K_{4}$

Fig. 4.4 Dotted arrows represent the one-to-one function
from the set of unlabelled nodes of $K_{3}$ onto the
set of unlabelled nodes of $K_{4}$ .

Concider the general production in Figure 4.4. Then the labelled graph $G_{4}$ is
directly derived from the labelled graph $G_{3}$ as shown in Figure 4.5.

$K_{3}$

$G_{3}$

Fig. 4.5 The pair $K_{i},$ $S_{2}$ is a partition of $ G\iota$ for $i=3,4$ .
Curved lines represent the couplings.
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