A SYSTEM OF GRAPH GRAMMARS WHICH GENERATES ALL RECURSIVELY ENUMERABLE SETS OF LABELLED GRAPHS

By
Tadahiro Uesu

Introduction

The aim of this paper is to prove that the system of simple graph grammars (Einfache Graph-Grammatiken) in [1] is complete. A graph grammar is a generalization of a Chomsky-grammar which defines a graph language, i.e. a language composed of a set of directed graphs with labelled nodes and arcs. A system of graph grammars is said to be complete if it satisfies the following property: For each finite set T of labels, the class of all graph languages over T defined by graph grammars of the system is identical with the class of all recussively enumerable sets of labelled graphs over T. Where a set of labelled graphs over T is recursively enumerable if the associated set of integers by a Gödel numbering from the labelled graphs over T into the integers is recursively enumerable.

Several authors have introduced their system of graph grammars (e.g. [1], [2], [3], [4], [5], [6], [7]). However they did not refer to the completeness of their systems.

The system of simple graph grammars was introduced in [1] as a subsystem of the system in [2]. In this paper we modify the definition of the system in the following manner: A production of our system is an ordered triple (K, F, K^{\prime}) which consists of two labelled graphs K, K^{\prime} and a one-to-one function F from a set of nodes of K to a set of nodes of K^{\prime}. If (K, F, K^{\prime}) is a production, and if K occurs in a labelled graph G, then the production is applicable to G, and the effect of the application is to replace an occurrence of K in G by K^{\prime}. The function F specifies the embedding of K^{\prime} into the remainder of removing K from G; if a node n^{\prime} of K^{\prime} is the image of a node n of K, then n^{\prime} is put upon the trace of n in the remainder. This is illustrated by Figure 0.

The formal definitions of labelled graphs and several concepts with labelled graphs are given in the first section of this paper. The definition of simple graph grammars is given in the second section. In the third section it is proved that the system of simple graph grammars is complete. The final section gives a generalization of the system of simple graph grammars.

S is the remainder of removing K from G. Dotted circles represent the traces of the nodes l, m, n of $K . G^{\prime}$ is the result of applying the production (K, F, K^{\prime}) to G.

Fig. 0.

In the following we list the notations of set theory and theory of formal languages which we will use.

If $\pi(x)$ is a proposition concerning x, then the symbol

$$
\{x \mid \pi(y)\}
$$

denotes the set of those elements x for which the proposition $\pi(x)$ is true. The union and the difference of sets A and B are denoted respectively by $A \cup B$ and $A-B$. The symbol 0 is used to denote the empty set. An ordered n-tuple is denoted by the symbol $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$. The membership relation is denoted by ϵ. A relation is a set of ordered pairs. A function is a relation f such that for every x and for every pair $y, y^{\prime}(x, y) \in f$ and $\left(x, y^{\prime}\right) \in f$ implies $y=y^{\prime}$. If f is a function from A onto B, then A is called the domain of f, written $\operatorname{dom}(f)$, and then B is called the range of f, written $\operatorname{rng}(f)$. If f is a function and x is an element of $\operatorname{dom}(f)$, then the value of f for the argument x is denoted by $f(x)$. If f is a
function from A to B and g is a function from B to C, then the function h from A to C such that for every x in $A h(x)=g(f(x))$ is denoted by $g \circ f$.

An alphabet is a finite set of symbols. A string over an alphabet is a finite string composed of symbols from the alphabet. The symbol ε denotes the empty string. A Chomsky-grammar is an ordered triple (T, S, P) in which T is an alphabet, S an symbol not in T and P a finite set of expressions of the form $s \rightarrow t$, where s is a string with at most one symbol not in T and t is any string. If t, u and v are strings, and if s is a nonempty string, then the string $u t v$ is said to be directly derived from the string usv according to $s \rightarrow t$. The language defined by the Chomsky-grammar (T, S, P) is the set of all strings w over T satisfying that there exists a finite sequence $s_{0}, s_{1}, \cdots, s_{n}$ of strings such that s_{0} is S, s_{n} is w and s_{i+1} is directly derived from s_{i} according to some element in P for $i=0,1, \cdots, n-1$. The fact that each recursively enumerable set of strings over an alphabet is a language defined by some Chomsky-grammar is well known.

1. Labelled Graphs

Definition 1.1. A partially labelled graph is an ordered sextuple (N, A, ∂_{s}, $\partial_{t}, \lambda_{n}, \lambda_{a}$) where N and A are finite sets, ∂_{s} and ∂_{t} are functions from A to N, and λ_{n} and λ_{a} are functions such that $\operatorname{dom}\left(\lambda_{n}\right)$ is a subset of N and $\operatorname{dom}\left(\lambda_{a}\right)$ is a subset of A. A partially labelled graph ($N, A, \partial_{s}, \partial_{t}, \lambda_{n}, \lambda_{a}$) is said to be over an alphabet T, if $\operatorname{rng}\left(\lambda_{n}\right)$ and $\operatorname{rng}\left(\lambda_{a}\right)$ are subsets of T.

Let G be a partially labelled graph ($N, A, \partial_{s}, \partial_{t}, \lambda_{n}, \lambda_{a}$). The elements of N are called the nodes of G. The elements of A are called the arcs of G. If a is an arc of G, then the node $\partial_{s}(a)$ is called the source of a and the node $\partial_{t}(a)$ is called the target of a. If n is the source or the traget of an $\operatorname{arc} a$, then n is said to be incident with a and a is said to be incident with n. The nodes in dom (λ_{n}) are said to be labelled, and the nodes in N - $\operatorname{dom}\left(\lambda_{n}\right)$ are said to be unlabelled. Similarly, the arcs in $\operatorname{dom}\left(\lambda_{a}\right)$ are said to be labelled, and the arcs in A - $\operatorname{dom}\left(\lambda_{a}\right)$ are said to be unlalelled. For each labelled node n, the value $\lambda_{n}(n)$ of λ_{n} is called the label of n. Similarly, for each labelled arc a, the value $\lambda_{a}(a)$ of λ_{a} is called the label of a.

Definition 1.2. A partially labelled graph

$$
\left(N, A, \partial_{s}, \partial_{t}, \lambda_{n}, \lambda_{a}\right)
$$

is a labelled graph if and only if $\operatorname{dom}\left(\lambda_{n}\right)=N$ and $\operatorname{dom}\left(\lambda_{a}\right)=A$. The labelled graph

$$
(0,0,0,0,0,0)
$$

is called the empty graph, and donoted by ε.

Definition 1.3. Let G and G^{\prime} be two labelled graphs

$$
\left(N, A, \partial_{s}, \partial_{t}, \lambda_{n}, \lambda_{a}\right) \quad \text { and } \quad\left(N^{\prime}, A^{\prime}, \partial_{s}^{\prime}, \partial_{t}^{\prime}, \lambda_{n}^{\prime}, \lambda_{a}^{\prime}\right)
$$

respectively. If there is a pair f_{n}, f_{a} of functions such that f_{n} is a one-to-one function from N onto N^{\prime}, f_{a} is a one-to-one function from A onto $A^{\prime}, \partial_{s}{ }^{\prime} \circ f_{a}=f_{n} \circ \partial_{s}$, $\partial_{t}{ }^{\prime} \circ f_{a}=f_{n} \circ \partial_{t}, \lambda_{n}=\lambda_{n}{ }^{\prime} \circ f_{n}$ and $\lambda_{a}=\lambda_{a} \circ \circ f_{a}$, then G is said to be isomorphic to G^{\prime}, and also, G and G^{\prime} are said to be isomophic.

We define the concept of partitions of labelled graphs. For example, consider the labelled graph G as shown in Figure 1.1. If we remove the subgraph K from G, then the partially labelled graph S remains, where unlabelled nodes of S represent the traces of labelled nodes of K. Conversely, G is obtained by connecting suitably the unlabelled nodes of S to the labelled nodes of K.

Fig. 1.1

Formally we define the following way:
Definition 1.4. Let K be a labelled graph

$$
\left(N^{K}, A^{K}, \partial_{s}^{K}, \partial_{t}^{K}, \lambda_{n}^{K}, \lambda_{a}^{K}\right)
$$

and S a partially labelled graph

$$
\left(N^{s}, A^{s}, \partial_{s}^{s}, \partial_{t}^{s}, \lambda_{n}^{s}, \lambda_{a}^{s}\right)
$$

without unlabelled arc such that $N^{K} \cap N^{s}=0$ and $A^{K} \cap A^{s}=0$. A coupling between K and S is a one-to-one function from the set of all unlabelled nodes of S to the set N^{K} of labelled nodes of K. If f is a coupling between K and S, and if a labelled graph H is isomorphic to the labelled graph

$$
\left(N, A, \partial_{s}, \partial_{t}, \lambda_{n}, \lambda_{a}\right)
$$

in which

$$
\begin{aligned}
& \mathrm{N}=N^{K} \cup\left(N^{S}-\operatorname{dom}(f)\right) \\
& A=A^{K} \cup A^{S}
\end{aligned}
$$

$$
\partial_{s}=\partial_{s} s-\left\{(a, n) \mid(a, n) \in \partial_{s}^{s} \text { and } n \text { is an unlabelled node of } S\right\}
$$

$$
\begin{aligned}
& \cup\left\{(a, f(n)) \mid(a, n) \in \partial_{s} S \text { and } n \text { is an unlabelled node of } S\right\} \\
& \cup \partial_{s}^{K}, \\
\partial_{t}= & \partial_{t} S-\left\{(a, n) \mid(a, n) \in \partial_{t} S \text { and } n \text { is an unlabelled node of } S\right\} \\
& \cup\left\{(n, f(n)) \mid(a, n) \in \partial_{t} S \text { and } n \text { is an unlabelled node of } S\right\} \\
& \cup \partial_{t}{ }^{K}, \\
& \lambda_{n}=\lambda_{n}{ }^{K} \cup \lambda_{n} S^{S} \text { and } \lambda_{a}=\lambda_{a}^{K} \cup \lambda_{a} S
\end{aligned}
$$

then the ordered triple (K, S, f) is called a simple partition of H, and K and S are called respectively the kernel and the shell of the simple partition (K, S, f).

Fig. 1.2 (a) denotes a simple partition of (b). In (a) dotted arrows represent the coupling between K and S.

2. Simple Graph Grammars

Definition 2.1. A simple production is an ordered triple (K_{1}, F, K_{2}) where K_{1} and K_{2} are labelled graphs, K_{1} is not the empty graph, and F is a one-to-one function from a set of nodes of K_{1} to the set of nodes of $K_{2} . \quad K_{1}, K_{2}$ and F are called respectively the left kernel, the right kernel and the embedding of the simple production (K_{1}, F, K_{2}),

Example 2.1. Let K_{1} and K_{2} be two labelled graphs

$$
(\{0,1\},\{0\},\{(0,0)\},\{(0,1)\},\{(0, A),(1, B)\},\{(0, X)\})
$$

and

$$
\begin{aligned}
& (\{0,1,2\},\{0,1\},\{(0,0),(1,1)\},\{(0,1),(1,2)\} \\
& \quad\{(0, C),(1, D),(2, E)\},\{(0, Y),(1, Z)\})
\end{aligned}
$$

respectively and let K_{3} be the empty graph ε. Consider the simple productions (K_{1}, $\left.F_{1}, K_{2}\right),\left(K_{1}, F_{2}, K_{2}\right),\left(K_{1}, F_{3}, K_{2}\right)$ and (K_{1}, F_{3}, K_{3}) where F_{1} and F_{2} are the function $\{(0,0),(1,2)\},\{(0,0)\}$ respectively and F_{3} is the empty function 0 . The

Fig. 2.1
corresponding diagrams are as shown in Figure 2.1.
Definition 2.2. A labelled graph G_{2} is directly derived from a labelled graph G_{1} according to a simple production (K_{1}, F, K_{2}) if there exist simple partitions (K_{1}, S, f_{1}) of G_{1} and (K_{2}, S, f_{2}) of G_{2} such that $\operatorname{rng}\left(f_{1}\right)=\operatorname{dom}(F)$ and $F \circ f_{1}=f_{2}$. A labelled graph G is derived from a labelled graph H according to a set P of simple productions if there exists a finite sequence $H_{0}, H_{1}, \cdots, H_{n}$ of labelled graphs such that H_{0} is H, H_{n} is G, and H_{i+1} is directly derived from H_{i} according to some simple production in P for $i=0,1, \cdots, n-1$.

Definition 2.3. A simple graph grammar over an alphabet T is an ordered triple (T, S, P) in which S is a symbol not in T and P is a finite set of simple productions whose left kernels are not over T.

In the following, we identify isomorphic labelled graphs.
Definition 2.4. If \mathfrak{S} is a simple graph grammar (T, S, P), then the set of all the labelled graphs over the alphabet T that are derived from the labelled graph, which consists only of one node with the label S, according to the set P of simple productions is called the graph language defined by \mathfrak{S}; it is denoted by $L(\mathbb{S})$.

If \mathfrak{S} is a simple graph grammar, then the graph language defined by \mathbb{S} is a countable set, since isomorphic labelled graphs are identified.

For each string $A_{1}, A_{2}, \cdots, A_{m}$, the labelled graph

is called the graph-expression of the string.
The following example explains the translation of Chomsky-grammars to simple graph grammars.

Example 2.2. Consider the Chomsky-grammar

$$
(\{A, B\}, S,\{S \rightarrow \varepsilon, S \rightarrow A S B\}),
$$

and simple productions p_{1}, p_{2}, p_{3} and p_{4} as shown in Figure 2.2. The pair p_{1}, p_{2} corresponds to $S \rightarrow \varepsilon$, and the pair p_{3}, p_{4} corresponds to $S \rightarrow A S B$. Then the graph language defined by the simple graph grammar

$$
\left(\{A, B, E\}, S,\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}\right)
$$

consists of all the graph-expressions of strings in the language defined by the Chomsky-grammar.
$p_{1}: S \varepsilon$ p_{2} :
 p_{3} :

Fig. 2.2

It is generalized as the following proposition:
Proposition 2.1. For each Chomsky-grammar ©. There exists a simple graph grammar \mathfrak{S} such that the graph language $L(\mathbb{S})$ defined by \subseteq consists of all graphexpressions of strings in the language $L(\mathfrak{C})$ defined by \mathfrak{C}.

3. The Completeness of the System of Simple Graph Grammars

Throughout this section we identify isomorphic labelled graphs, and we assume that each set of nodes is a set of positive integers.

Definition 3.1. The representing pair of a node n of a labelled graph is the ordered pair (n, A), in which A is the label of n. The representing sextuple of an $\operatorname{arc} a$ of a labelled graph is the ordered sextuple (m, A, a, B, n, C) in which m
and n are the source and the traget of a respectively, A and C are the labels of m and n respectively, and B is the label of a.

If α is a representing sextuple of the form (m, A, a, B, n, C), then $\bar{\alpha}$ denotes the string

$$
A \underbrace{\circ}_{m+1} 11 \cdots 1 B^{\circ} \underbrace{11 \cdots 1}_{n+1} C^{\circ} .
$$

If β is a representing pair of the form (n, A), then $\bar{\beta}$ denotes the string

$$
\underbrace{22 \cdots 2}_{n+1} A^{\circ} .
$$

Definition 3.2. If $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}$ is a sequence without repetition of all the representing sextuples of arcs of a labelled graph G and $\beta_{1}, \beta_{2}, \cdots, \beta_{s}$ is a sequence without repetition of all the representing pairs of nodes of G, then the string

$$
\bar{\alpha}_{1} \bar{\alpha}_{2} \cdots \bar{\alpha}_{r} \bar{\beta}_{1} \bar{\beta}_{2} \cdots \bar{\beta}_{s}
$$

is called a string-expression of G. The empty string is the string-expression of the empty graph.

Proposition 3.1. If © is a Chomsky-grammar such that the lauguage $L(\mathbb{C})$ defined by \mathfrak{C} is a set of string-expressions of labelled graphs, then there exists a simple graph grammar \mathfrak{S} such that
(a) euery string in $L(\mathbb{C})$ is a string-expression of some labelled graph in $L(\mathbb{S})$, and
(b) every labelled graph in $L(\mathbb{(})$ has a string-expression in $L(\mathbb{C})$.

Proof. Let © be a Chomsky-grammar such that the language $L(\mathbb{C})$ defined by \mathbb{C} is a set of string-expressions of labelled graphs over an alphabet T and let \Im_{0} be a simple graph grammar (T_{0}, S, P_{0}), in which

$$
T_{0}=\left\{A^{\circ} \mid A \in T\right\} \cup\{1,2, E\},
$$

such that the graph language $L\left(\mathbb{S}_{0}\right)$ defined by \mathfrak{S}_{0} consists of all the graph-expressions of strings in $L(\mathbb{C})$. The existence of such \Im_{0} is assured by proposition 2.1. Let P_{1}, P_{2} and P_{3} be the sets of simple productions as shown in Figure 3.1, Figure 3.2 and Figure 3.3 respectively. We may assume that the symbols $1^{\prime}, 2^{\prime}$ and A^{\prime}, for A in T, are not contained in any kernels of simple productions in P_{0}, and

$$
\left(\left\{A^{\circ} \mid A \in T\right\} \cup\left\{A^{\prime} \mid A \in T\right\} \cup\left\{1,2,1^{\prime}, 2^{\prime}, E, S\right\}\right) \cap T=0 .
$$

Set

$$
\varsigma=\left(T, S, P_{0} \cup P_{1} \cup P_{2} \cup P_{3}\right)
$$

(1)

(2)

(6)

(3)
(7)

(4)

(8)

(5)

(9)

Fig. 3.1 The set P_{1} of simple productions. A, B and C are symbols from T.
(10)

(12)

(13)

Fig. 3.2 The set P_{2} of simple productions. A and B are symbols from T and $i=1,2$.

Fig. 3.3 The set P_{3} of simple productions. A is a symbol from T.

We shall prove (a) and (b). Let G be a labelled graph over T as shown in Figure 3.4 and let the set $\{1,2, \cdots, t\}$ be the set of nodes of G.

Fig. 3.4 Labelled graph G. $\quad A_{i}$ is the label of the node i of G for $i=1,2, \cdots, t$. Straight lines represent arcs of G.

For each representing sextuple α of an $\operatorname{arc} a$ of G of the form (m, A, a, B, n, C), let $\hat{\alpha}$ denote the following labelled graph:

For each representing pair β of a node n of G of the form (n, A), let $\hat{\beta}$ denote the following labelled graph:

Let

$$
\bar{\alpha}_{1} \bar{\alpha}_{2} \cdots \bar{\alpha}_{r} \bar{\beta}_{1} \bar{\beta}_{2} \cdots \bar{\beta}_{s}
$$

be a string expression of G where α_{i} is a representing sextuple for $i=1,2, \cdots, r$ and β_{j} is a representing pair for $j=1,2, \cdots, s$. Let H be the graph-expression of the string-expression

$$
\bar{\alpha}_{1} \bar{\alpha}_{2} \cdots \bar{\alpha}_{r} \bar{\beta}_{1} \bar{\beta}_{2} \cdots \bar{\beta}_{s},
$$

and let H_{1} be labelled graph of the form

$$
\hat{\alpha}_{1} \hat{\alpha}_{2} \cdots \hat{\alpha}_{r} \hat{\beta}_{1} \hat{\beta}_{2} \cdots \hat{\beta}_{s} .
$$

Then H_{1} is derived from H according to P_{1}. If ($1, A_{1}$) is the representing pair of the node 1 of G, then H_{1} is of the form as shown in Figure 3.5. Hence, the labelled graph $H_{1}{ }^{1}$ in Figure 3.5 is derived from H_{1} according to P_{2}.

Fig. 3.5 Straight lines represent arcs with labels in T and each dotted square represents the remainder of H_{1}. $\quad i_{1}$ is the sum of the number of arcs whose source is 1 and the number of arcs whose target is 1 .

Fig. 3.6 Straight lines represent arcs with labels in T and each dotted square represents the remainder of $H_{1}{ }^{1} . \quad i_{2}$ is the sum of the number of arcs whose source is 2 and the number of arcs whose target is 2 .

If (2, A_{2}) is the representing pair of the node 2 of G, then $H_{1}{ }^{1}$ is of the form as shown in Figure 3.6, so that the labelled graph $H_{1}{ }^{2}$ in Figure 3.6 is derived from $H_{1}{ }^{2}$ according to P_{2}. In this way we get the labelled graph H_{2} as shown in Figure 3.7 which is derived from H_{1} according to P_{2}.

Fig. 3.7

Clearly the labelled graph G is derived from H_{2} according to P_{3}. Therefore G is derived from H according to $P_{1} \cup P_{2} \cup P_{3}$. Thus the condition (a) holds. It is easily seen that for each labelled graph H in $L\left(\Im_{0}\right)$, there exists uniquely a labelled graph G in $L(\mathbb{S})$ such that G is derived from H according to $P_{1} \cup P_{2} \cup P_{3}$. Conversely, for each labelled graph G in $L(\mathbb{S})$, there exists a labelled graph H in $L\left(\Im_{0}\right)$ such that G is derived from H according to $P_{1} \cup P_{2} \cup P_{3}$. Therefore the condition (b) holds. This completes the proof.

From the above proposition we are able to deduce the main result.
Theorem. For each alphabet the class of all recursively enumerable sets of labelled graphs over the alphabet and the class of all graph language defined by simple graph grammars over the alphabet are identical.

Proof. It is clear that a graph language defined by a simple graph grammar is recursively enumerable set of labelled graphs over an alphabet T. Then the set E^{\prime} of all the string-expressions of labelled graphs in E is recursively enumerable, and so there is a Chomsky-grammar \mathfrak{C} such that the language defined by \mathbb{C} is the set E^{\prime}. Therefore, by virtue of proposition 3.1, there exists a simple graph grammar \mathfrak{S} such that

$$
L(ভ)=E .
$$

4. General Productions

In our system of simple graph grammars, a simple production consists of two kernels which are labelled graphs and an embedding which is a partial fuction from the set of nodes of the left kernel to the set of nodes of the right kernel. This can be generalized in the following way; we allow the embedding of a production to be a relation between the set of nodes of the left kernel and the set of nodes of the right kernel. If (K, R, K^{\prime}) is such a production and K occurs in a labelled graph G, then the application of the production is to replace an occurrence of K in G by K^{\prime} such that if a is an arc of the remainder of removing the occurrence of K from G and has been incident with a node n of K, then a is connected with some node n^{\prime} of K^{\prime} which satisfies $\left(n, n^{\prime}\right) \in R$. Moreover, we allow the kernel of a production to be partially labelled graphs without unlabelled arc. Then such a production may be regarded as a version of a Schneider-Ehrig's production in [7], since a labelled partial graph in [7] may be interpreted as a partially labelled graph without unlabelled arc.

We shall not give the precise definition of the generalized system here. However, we illustrate the direct derivation for the generalized system with two examples (cf. pp. 303-306 in [7]D. Consider the the general production in Figure 4.1. and the labelled graph G_{1} in Figure 4.2. Then the labelled graph G_{2} is directly derived from G_{1} as shown in Figure 4.2.

Fig. 4. 1 Dotted lines represent the relation between the set $\{n\}$ of the node of K_{1} and the set $\left\{n_{1}, n_{2}, n_{3}\right\}$ of nodes K_{2}.

Fig. 4.2 The pair K_{i}, S_{1} is a partition of G_{i} for $i=1,2$. Curved lines represent the couplings. The arcs a, b, c are distributed such that a is to the node n_{1}, and b and c are to the node n_{3}.

However, if we consider the partition of $G_{2}{ }^{\prime}$ as shown in Figure 4.3, then $G_{2}{ }^{\prime}$ is derived from G_{1} according to the production also.

Fig. 4.3
Thus, 27 labelled graphs are directly derived from the labelled graph G_{1} according to the production.

Fig. 4. 4 Dotted arrows represent the one-to-one function from the set of unlabelled nodes of K_{3} onto the set of unlabelled nodes of K_{4}.

Concider the general production in Figure 4.4. Then the labelled graph G_{4} is directly derived from the labelled graph G_{3} as shown in Figure 4.5.

Fig. 4.5 The pair K_{i}, S_{2} is a partition of G_{i} for $i=3,4$. Curved lines represent the couplings.

References

[1] E. Denert \& H. Ehrig, Mehrdimensionale Sprachen, Skript WS 1975/76, mimeographed notes.
[2] H. Ehrig, M. Pfender \& H.J. Schneider, Graph-Grammars: an algebraic approach, Proc. 14th Ann. IEEE Symp. Switch. Automat. Theory, Iowa City, 1973, 167-180.
[3] U.G. Montanari, Separable Graphs, Planar Graphs and Web Grammars, Information and Control 16 (1970) 243-267.
[4] M. Nagl, Formal Languages of Labelled Graphs, Computing 16 (1976) 113-137.
[5] J.L. Pfaltz \& A. Rosenfeld, Web grammars. Proc. 1st Inter. Joint Conf. on Artificial Intelligence, Washington, D.C., May 1969, 609-619.
[6] A. Rosenfeld \& D.L. Milgram, Web Automata and Web Grammars, Machine Intellingence 7 (1972) 307-324.
[7] H.J. Schneider \& H. Ehrig, Grammars on Partial Graphs, Acta Informatica 6 (1976) 297-316.

Department of Mathematics
Fuculty of Science
Kyushu University
Fukuoka, 812, Japan

