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Introduction.

The purpose of this paper is to clarify a relation which exists between trans-

finite induction deduced in elementary number theory and a kind of complexity of

the induction formulas used in its derivation. Our result is stated as follows:

Transfinite induction up to any ordinal number less than $\omega_{\rho\cdot- 2}$ can be proved in
elementary number theory only by the use of mathematical inductions whose induc-
tion formulas have at most $\rho$ quantifiers, but it is impossible to prove transfinite
induction up to $\omega_{\rho+2}$ and higher ordinal numbers only by the use of those mathe-.
matical inductions, where the notation $\omega_{\nu}$ is defined as follows: $\omega_{0}=0,$ $\omega_{1}=1,$ $\omega_{2}=\omega$

etc.; in general, $\omega_{\nu\dashv 1}=\omega^{\omega}\nu$ (Main Theorem).

The impossibility of proving transfinite induction up to the ordinal number $\epsilon_{\cup}$

in elementary number theory is inferred indirectly from Godel’s second incomple-

teness theorem ([5]) and Gentzen’s consistency proof of elementary number theory
([2]). Gentzen [4] gave a direct proof for the nonprovability of transfinite induction
up to $\epsilon_{0}$ in elementary number theory, and further he remarked the fact that trans-
finite induction up to $\omega_{\nu+3}$ and higher ordinal numbers cannot be proved in elemen-
tary number theory only by the use of induction formulas having at most $\nu$ logical
symbols.

Mints [7] gave an exact result by introducing the concept ‘quantifier complexity’

as a measure of the complexity of formulas, instead of the ‘number of logical sym-
bols’. His result is expressible as follows: Transfinite induction up to $\omega_{\nu\dashv 3}$ and
higher ordinal numbers (or any ordinal number below $\omega_{\nu\cdot- 3}$ ) is not (or is) provable

in elementary number theory only by the use of induction formulas which are at
most of quantifier complexity $\nu$ . His proof for the nonprovability is based on the
following facts:

1. The consistency of the system $R_{\nu}$ , which is an extension of primitive re-
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cursive arithmetic by adding the schema of recursions on ordinal numbers less than
($\prime J_{J}3$ , is unprovable only by the use of induction formulas which are at most of
quantifier complexity $\prime y$ .

2. The consistency of $R_{\nu}$ is provable in the system which arises from primitive
recursive arithmetic by adding the principle of transfinite induction up to $\omega_{\nu 43}$ as
axioms.

In the proof of the former he used Godel’s second incompleteness theorem for
the system $R_{\nu}$ . In this sense his proof is indirect.

Our proof presented below is direct one, because it is a modification of the
procedure of proof in Gentzen [4]. Moreover, we can give a proof of Mints’ result
by means of a procedure similar to that used in our proof (cf. \S 7). But, as a measure
of the complexity of formulas, we adopt the number of quantifiers instead of Mints’
quantifier complexity, because we want to make our proof of Main Theorem more
simple.

The greater part of technical terms and conventions are adopted from English
translation [8] of the brilliant works of G. Gentzen including [1], [2], [3] and [4].

The author would like to express his hearty gratitude to Prof. Sh\^oji Maehara
,who directed his attention to this problem, allowed him to make use of several
unpublished results, and encouraged him with many valuable advices during the
preparation of this paper.

\S 1. Formal system and Main Theorem.

1.1. Formal system.
By Gentzen’s result in [4] it is sufficient for our purpose to employ a formal

system of elementary ordinal number theory whose individual domain is restricted
within the set of all ordinal numbers below $\epsilon_{0}$ . In this paper, we shall deal with
the following formal system for elementary theory of ordinal numbers, which is a
slight modification of the system introduced by Gentzen in [4].

1.11. Terms and formulas. As primitive symbols we shall adopt the following:
The individual constant: $0$ .
The function constants: $\alpha+\beta,$ $\alpha\cdot\beta,$ $\omega^{\alpha},$ $fu_{1}(\alpha, \beta, \gamma),$ $fu_{2}(\alpha, \beta, \gamma),$ $\cdots$ .
The predicate constants: $\alpha=\beta,$ $\alpha<\beta,$ $\alpha\leqq\beta,$ $\cdots$ .
The predicate variable: $\mathcal{E}(\alpha)$ .

The letters $\alpha,$ $\beta$ and $\gamma$ indicate the argument places.
Two functions $fu_{1},fu_{2}$ are those defined in [4]. An arbitrary number of function

constants and predicate constants other than those stated explicitly in the above
may occur; but we require that those functions and predicates are not only defined
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in the ordinal numbers below $\epsilon_{0}$ but also decidably defined.
By using those primitive symbols, tems and formulas are defined as usual.
All definite ordinal numbers below $\epsilon_{0}$ can be represented uniquely as a kind of

terms, called numerical terms, in the following way:
The individual constant $0$ is a numerical term. If $\alpha$ and $\beta$ are numerical terms

and $\beta$ is of the form $\omega^{\beta_{1}}$ or $\omega^{\beta_{1}}+\cdots$ and $\beta_{1}$ is not greater than $\alpha$ , then $\omega^{\alpha}+\beta$ is a
numerical term.

In the following, we simply call the numerical terms ordinal numbers.
1.12. The concept of ‘sequent’ is defined as in [4].

A formula is said to be prime when it contains neither logical symbols nor the

predicate variable $\mathcal{E}$ If a prime formula contains no free variables, then we can
determine whether it represents a true or a false proposition on the basis of the

decidable definition of functions and predicates concerned. Suppose that it is known
of each formula in the antecedent and the succedent of a sequent without free

variables whether it is true or false. Then the sequent is said to be ‘true’ if there

exists a true formula in the succedent or a false formula in the antecedent. In
every other case the sequent is said to be ‘ false’.

1.13. As ‘basic sequents’ we shall admit ‘basic logical sequents’, ‘basic equality

sequents’ and ‘ basic mathematical sequents’. A basic logical sequent is a sequent

of the form
$D\rightarrow D$ ,

where $D$ is an arbitrary formula. A basic equality sequent is a sequent of the form

$s=t,$ $\mathcal{E}(s)\rightarrow \mathcal{E}(t)$

where $s$ and $t$ are arbitrary terms. A basic mathematical sequent is a sequent con-
sisting of prime formulas which becomes true sequent with every arbitrary sub-
stitution of ordinal numbers for possible occurrences of free variables.

1.14. As ‘inference figures’ we shall use the same ones as in [4] except those

of the implication $‘\supset$ and CJ-inference figures. As schemata for introduction of
$\supset$ in antecedent and introduction of $\supset$ in succedent we shall use $\supset- IA$ and $\supset$ -IS

in Gentzen [1].

The schema for CJ-inference figures runs:

$\frac{\Gamma\rightarrow\Theta,F(0)a<\omega,F(a),l\prime\rightarrow\Theta,F(a+1)}{t<\omega,\Gamma\rightarrow\Theta,F(t)}$

where the eigenvariable $a$ must not occur in the lower sequent. The formula des-

ignated by $F(a)$ is called the induction formula of the CJ-inference figure concerned
and the formula designated by $F(t)$ is called the principal formula.
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1.15. By using the basic sequents and the inferenoe figures the concept of the
‘ proof figure’ is defined as usual. It should be noted that we only refer to proof
figures in tree form in the following. A sequent $S$ is said to be provable if there
exists a proof figure whose lowermost sequent is S.

1.2. Main Theorem.
We use a notation $\omega_{\nu}$ of ordinal numbers, as in [4], in the following meaning:

$\omega_{0}=0,$ $\omega_{1}=1,$ $\omega_{2}=\omega$ etc.; in general $\omega_{\nu}1=\omega^{\omega_{\nu}}$ .
By using this ordinal notation and the formal system, our result is expressible

as the following

MAIN THEOREM. Let $\alpha$ be an ordinal number, and $\rho$ a non-negative integer.
Then the $s^{\rho}quent$ , which expresses the validity of the transfinite induction up to $\alpha$ ,

$\forall y[\forall x(x<y\supset \mathcal{E}(x))\supset \mathcal{E}(y)]\rightarrow \mathcal{E}(\alpha)$

is provable without using CJ-inference figures whose induction formulas have quan-
tifiers greater than $\rho$ if and only if $\alpha$ is less than $\omega_{\rho 2}$ .

\S 2. TJ-derivations.

2.0. In this section we shall introduce the concept ‘TJ-derivation’, which is a
slight modification of ‘TJ-derivation’ in [4].

2.1. We begin by formulating a schema for inference figures which mean the
validity of the progressiveness of $\mathcal{E}$ The schema has the form

$a<t,$ $/1\rightarrow\Theta,$ $\mathcal{E}(a)$

–

$I^{7}\rightarrow\Theta,$ $\mathcal{E}(t)$

where $t$ is an arbitrary term and $a$ is a free variable not occurring in the lower
sequent. The inference figures according to the schema are called ‘ TJ-inference
figures’, though they differ from those used in [4]. The free variable $a$ is called
the eigenvariable of the TJ-inference figure, and the formula designated by $\mathcal{E}(t)$ is
called the principal formula.

Next we admit the TJ-inference figures into our formalism. The extended
formal proofs obtained by adding those inference figures are called ‘TJ-derivations’.
A sequent $S$ is said to be TJ-derivable if there exists a TJ-derivation whose lower-
most sequent is $S$.

REMARK: In the following of this paper, we simply call the TJ-derivations
derivations and we use a term ‘derivable’ in the following meaning: ‘TJ-derivable’.
Hence it should be noted that ‘proof figure’ and ‘derivation’ (’provable’ and ‘deriva-
ble’) are used to have different meanings.
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2.2. Suppose that we have proved the following

PROPOSITION 1. A sequent $\Gamma\rightarrow\Theta$ is derivable only by the use of CJ-inference
figures whose induction formulas have at most $\rho$ quantifiers if and only if the sequent

$\forall y[\forall x(x<y\supset \mathcal{E}(x))\supset \mathcal{E}(y)],$ $ l^{1}\rightarrow\Theta$

is provable only by the use of those CJ-inference figures.
Then, by using Proposition 1, our main theorem is reformed in the following

version:
Let $\alpha$ be an ordinal number, and $\rho$ a non-negative integer. Then the sequent

$\rightarrow \mathcal{E}(\alpha)$ is derivable only by the use of CJ-inference figures whose induction formulas
have at most $\rho$ quantifiers if and only if $\alpha$ is less than $\omega_{\rho+2}$ (A reformed version
of Main Theorem).

Hence in order to prove Main Theorem it suffices to show the reformed version.

2.3. $p_{R00F}$ OF PROPOSITION 1.
The ‘if’ part is obvious, because the sequent

$\rightarrow\forall y[\forall x(x<y\supset \mathcal{E}(x))\supset \mathcal{E}(y)]$

is derivable without $CJ$ in the following way:

$a<b\rightarrow a<b$ $\mathcal{E}(a)\rightarrow \mathcal{E}(a)$

$a<b\supset \mathcal{E}(a),$ $a<b\rightarrow \mathcal{E}(a)$

$\forall x(x<b\supset \mathcal{E}(x)),$ $a<b\rightarrow \mathcal{E}(a)$

$a<b,$ $\forall x(x<b\supset \mathcal{E}(x))\rightarrow \mathcal{E}(a)$

$\forall x(x<b\supset \mathcal{E}(x))\rightarrow \mathcal{E}(b)$

$\rightarrow\forall x(x<b\supset \mathcal{E}(x))\supset \mathcal{E}(b)$

$\rightarrow\forall y[\forall x(x<y\supset \mathcal{E}(x))\supset \mathcal{E}(y)]$

where $a$ and $b$ are distinct free variables.
Next we shall give a proof of the ‘only if’ part. Let be given a derivation of

the sequent $\Gamma\rightarrow\Theta$ where all the induction formulas have at most $\rho$ quantifiers.
Suppose that there occurs no TJ-inference figures in the derivation. Then the sequent
$ l^{1}\rightarrow\Theta$ is provable only by the use of CJ-inference figures whose induction formulas
have at most $\rho$ quantifiers. Hence our assertion clearly holds. Thus we may assume
that there occurs a TJ-inference figure in the given derivation. Then between the
upper and the lower sequent of each TJ-inference figure–which has the form

$\frac{a<t,\Delta\rightarrow\Lambda,\mathcal{E}(a)}{\Delta\rightarrow\Lambda,\mathcal{E}(t)}$
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–we insert the following derivational section:

$\Delta\rightarrow\Lambda,$ $a<t\supset \mathcal{E}(a)$

$\Delta\rightarrow\Lambda,$ $\forall x(x<t\supset \mathcal{E}(x))$ $\mathcal{E}(t)\rightarrow \mathcal{E}(t)$

$\forall x(x<t\supset \mathcal{E}(x))\supset \mathcal{E}(t),$ $\Delta\rightarrow\Lambda,$ $\mathcal{E}(t)$

$\frac{\forall y[\forall x(x<y\supset \mathcal{E}(x))\supset \mathcal{E}(y)],\Delta\rightarrow\Lambda,\mathcal{E}(t)}{\Delta,\forall y[\forall x(x<y\supset \mathcal{E}(x))\supset \mathcal{E}(y)]\rightarrow\Lambda,\mathcal{E}(t)}$
$possiblyseveralinterchanges$

And the new formula $\forall y[\forall x(x<y\supset \mathcal{E}(x))\supset \mathcal{E}(y)]$ is written down as the last an-
tecedent formula of each individual sequent in the derivational path (cf. 1.5 of [3])

leading from the lower sequent of the TJ-inference figure to the endsequent. We
may use some interchanges and contractions, if necessary, in order to turn the re-
sult of the above treatment into correct proof figure. Now the endsequent is

$\Gamma,$ $\forall y[\forall x(x<y\supset \mathcal{E}(x))\supset \mathcal{E}(y)]\rightarrow\Theta$ .

Thus we may obtain a proof figure of the sequent

$\forall y\lfloor\forall x(x<y\supset \mathcal{E}(x))\supset \mathcal{E}(y)],$ $ l^{7}\rightarrow\Theta$ ,

where all the induction formulas have at most $\rho$ quantifiers.

\S 3. Derivability of transfinite induction up to ordinal number below $\omega_{\rho+2}$ .

3.0. In this section we shall prove the ‘ if ‘ part of the reformed version of
Main Theorem, which is stated as

THEOREM 1. Let $\rho$ be a non-negative integer, and $\alpha$ any ordinal number less
than $\omega_{\rho+2}$ . Then the sequent $\rightarrow \mathcal{E}(\alpha)$ is derivable only by the use of CJ-inference
figures whose induction formulas have at most $\rho$ quantifiers.

3.1. For the sake of proof of Theorem 1, we shall introduce for every $\nu\geqq 0$

the relations: a formula is $\Pi_{\nu}$ (or $\Sigma_{\nu}$ ).

3.11. For every natural number $\nu$ , a formula is said to be $\Pi_{\nu}$ (or $\Sigma_{\nu}$ ) if it is
equivalent to a prenex formula $Q_{1}x_{1}\cdots Q_{\nu}x_{\nu}F(x_{1}, \cdots, x_{\nu})$ with $\nu$-quantifiers $Q_{1}x_{1},$

$\cdots,$
$Q_{\nu}x_{\nu}$

where $F$ is quantifier-free and no two adjacent quantifiers are of the same kind and
the first quantifier is universal (or existential). A formula is said to be $\Pi_{0}$ and $\Sigma_{0}$

if it is equivalent to a quantifier-free formula.
3.12. The following properties are proved:
(1) If a formula is $\Pi_{\nu}$ or $\Sigma_{\nu}$ , then it is $\Pi_{\nu\vdash 1}$ ;
(2) If a formula $A$ is $\Pi_{\nu}$ , then $\urcorner A$ is $\Sigma_{\nu}$ ;

(3) If a formula $A(a)$ is $\Pi_{\nu}$ , so is $\forall xA(x)$ for $\nu\geqq 1$ ;
(4) If both formulas $A$ and $B$ are $\underline{\backslash }\urcorner\nu$

’ so is $AB$ ;
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(5) If both formulas $A$ and $B$ are II,, so is $AB$.
The proof of the properties (4) and (5) is carried out by a simultaneous induc-

tion on $\nu$ . In the proofs of (3) and (5), we shall use the fact: From a given for-
mula containing successive quantifiers of the same kind (existential or universal),

we can obtain the formula equivalent to the given one by condensing the succes-
sive quantifiers into one such quantifier.

This fact follows from the existence of a pair of calculable unary functions
$g_{1}$ and $g_{2}$ such that any formula of the form $\forall x\forall yF(x, y)$ (or $\forall x\exists yF(x,$ $y)$ ) is
equivalent to $\forall zF(g_{1}(z), g_{2}(z))$ (or $\exists zF(g_{1}(z),$ $g_{2}(z))$ ), where $g_{1}$ and $g_{2}$ mean unary
function symbols which correspond to calculable functions $g_{1}$ and $g_{2}$ respectively.
For example, the existence of such a pair of functions is proved as follows:

Let $g$ be the function obtained from Godel’s order isomorphism $P$ (cf. 7.9 of
Godel [6]) by the restriction of the domain over $\epsilon_{0}\times\epsilon_{0}$ . Then $g$ is calculable isomor-
phism from $\epsilon_{0}\times\epsilon_{0}$ onto $\epsilon_{0}$ . Let $g_{1}$ and $g_{2}$ be the inverse functions of $g$ which satisfy
the relations:

$g_{1}(q(\alpha, \beta))=\alpha,$ $ g_{2}(q(\alpha, \beta))=\beta$ and $ g(g_{1}(\alpha), g_{2}(\alpha))=\alpha$ .

Then $g_{1}$ and $g_{2}$ are calculable and the pair is one of the desired pairs.
3.13. We abbriviate $\forall x(x\leqq a\supset F(x))$ by $F^{*}(a)$ as in [4] and also abbriviate

$\forall x(F^{*}(x)\supset F^{*}(x+\omega^{a}))$ by $F^{\prime}(a)$ . Then the following property is proved:
(6) For any natural number $\nu$ and for any term $t$ , if $F(t)$ is $\Pi_{\nu}$ , then $F^{\prime}(t)$ is

$lI_{\nu+1}$ .
The property is proved by using (1)$-(5)$ in the following way:
From the hypothesis it follows that $\nu\geqq 1$ and $F$ is $\Pi_{\nu}$ . Hence by using (3) it

follows that $F^{*}$ is $\Pi_{\triangleright}$ . Hence from (2) it follows that $\urcorner F^{*}(a)$ is $\Sigma_{\nu}$ . Hence it
follows from (1) that $\urcorner F^{*}(a)$ is $\Pi_{\nu+1}$ . On the other hand, it follows from the hy-
pothesis that $F(a+\omega^{t})$ is also $\Pi_{\nu}$ . Hence it follows from (3) that $F^{*}(a+\omega^{t})$ is $\Pi_{\nu+1}$ .
Hence it follows from (5) and above two facts that $\urcorner F^{*}(a)F^{*}(a+\omega^{t})$ is $\Pi_{\nu+1}$ .
Hence, by (3) we have that $\forall x(\urcorner F^{*}(x)F^{*}(x+\omega^{t}))$ is $\Pi_{\nu+1}$ . But, $F^{\prime}(t)$ is equivalent
to the formula. Hence we can conclude that $F^{\prime}(t)$ is $\Pi_{\nu+1}$ .

As a corollary of the property (6) we have the property (7).
$\mathcal{E}$ is $\Pi_{1},$ $\mathcal{E}^{\prime}$ is $\Pi_{2},$ $\mathcal{E}^{\prime\prime}$ is $\Pi_{3}$ and in general $\mathcal{E}^{(\nu)}$ is $\Pi_{\nu+1}$ .
3.2. For convenience’s sake, we shall use a notation $\omega_{\nu}(\alpha)$ for every non-nega-

tive integer $\nu$ and ordinal number $\alpha$ , which is defined recursively as follows: $\omega_{0}(\alpha)$

is $\alpha;\omega_{\nu 11}(\alpha)$ is $\omega^{\omega_{\nu^{(\alpha)}}}$ .
3.21. In order to prove Theorem 1, it suffices to prove the fact:
Let $m$ be a formal natural number. Then, the sequent $\rightarrow \mathcal{E}(\omega_{\rho}(m))$ is deriva-

ble only by the use of CJ-inference figures whose induction formulas have at most
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$\rho$ quantifiers.
But, from the property (7), it follows that $\mathcal{E}^{(\mu)}$ is $\Pi_{\mu+1}$ . Hence $\mathcal{E}^{(\mu)^{1}}$ is also

$\Pi_{\mu+1}$ . Hence $\mathcal{E}^{(\mu)^{*}}$ is equivalent to a formula with $\mu+1$ quantifiers. Thus in order
to prove the above fact it suffices to show the fact:

Let $m$ be a formal natural number. Then, we can construct a derivation of
the sequent $\rightarrow \mathcal{E}(\omega_{\rho}(m))$ where each induction formula is of the form $\mathcal{E}^{(\mu)*}$ for
some $\mu<\rho$.

It remains for us to state a procedure for the construction of such a derivation.
3.22. The procedure is easily obtained by a slight modification from the Gen-

tzen’s procedure for the systematic construction of TJ-derivation up to $\omega_{\nu}$ i.e., TJ-
derivation of the sequent $\mathcal{E}(0)\rightarrow \mathcal{E}(\omega_{\nu})$ . He gave it in \S 2 of [4], by a mathematical
induction on $\nu$ .

3.221. Basis: In his construction a TJ-derivation up to $0$ consists of the only

one sequent $\mathcal{E}(0)\rightarrow \mathcal{E}(0)$ .
On the contrary, we shall give a derivation of the sequent $\rightarrow \mathcal{E}(m)$ , without

$CJ$ in the following way;
Let $\mu$ be a natural number, $m$ the formal one corresponding to $\mu$ . And let $a_{0}$ ,

$a_{1},$ $\cdots,$ $a_{\mu}$ be distinct $\mu+1$ free variables. Then we see that the following diagram
is a desired derivation

$a_{0}<a_{1},$ $a_{1}<a_{2},$ $\cdots,$ $a_{\mu-1}<a_{\mu},$ $ a_{\mu}<m\rightarrow$

$a_{0}<a_{1},$ $a_{1}<a_{2},$ $\cdots,$ $a_{\iota-1}<a_{\mu},$ $a_{\mu}<m\rightarrow \mathcal{E}(a_{0})$

$a_{1}<a_{2},$

$\cdots,a<_{a_{\mu}^{\mu},a_{\mu}^{\mu}<^{m\rightarrow \mathcal{E}(a_{1})}}\overline{a_{\mu-1}^{\mu-1}<^{a,a<_{m\rightarrow \mathcal{E}(a_{\mu-1})}}}:\mu+lTJ- inference$

figures.
$\frac{a_{\ell}<m\rightarrow \mathcal{E}(a_{\mu})}{\rightarrow \mathcal{E}(m)}$

3.222. Induction step: Gentzen replaces, in a given TJ-derivation up to $\omega_{v}$ ,

each $\propto currence$ of arbitrary expression of the form $\mathcal{E}(u)$ by $\mathcal{E}^{\prime}(u)$ . Next above the
resulting sequent obtained from a TJ-upper sequent by the replacement he writes
a derivation of the resulting sequent that contains only one $CJ$ with induction for-
mula of the form $\mathcal{E}^{*}$ Hence he has a derivation of the sequent $\mathcal{E}^{\prime}(0)\rightarrow \mathcal{E}^{\prime}(\omega_{\nu})$ .
From this derivation he constructs a TJ-derivation up to $\omega_{\nu\dashv 1}$ by supplying some
diagrams which contain no $CJ$.

Suppose that a derivation of the sequent $\rightarrow \mathcal{E}(\omega_{\nu}(m))$ is given such that each
induction formula occurring in it is of the form $\mathcal{E}^{(\mu)}$

‘ for some $\mu<\nu$ . Then by
taking the similar procedure we may easily construct a derivation of the sequent
$\rightarrow \mathcal{E}(\omega_{\nu+1}(m))$ , in which each induction formula is of the form $\mathcal{E}^{(\mu)*}(\mu<\nu+1)$ , from
the given derivation.
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We replace in the given derivation each $\mathcal{E}(u)$ by $\mathcal{E}^{\prime}(u)$ . Then every TJ-inference
figure has the form

$\frac{a<t,\Gamma\rightarrow\Theta,\mathcal{E}^{\prime}(a)}{\Gamma\rightarrow\Theta,\mathcal{E}\prime(t)}$ .

Then we replace it by the following

$a<t,$ $\Gamma\rightarrow\Theta,$ $\mathcal{E}^{\prime}(a)$

$\Gamma\rightarrow\Theta,$ $a<t\supset \mathcal{E}^{\prime}(a)$

$\Gamma\rightarrow\Theta,$ $\forall y[y<t\supset \mathcal{E}^{\prime}(y)]$ $\forall y[y<t\supset \mathcal{E}^{\prime}(y)]\rightarrow \mathcal{E}^{\prime}(t)$

$\Gamma\rightarrow\Theta,$ $\mathcal{E}^{\prime}(t)$

and above the right upper sequent $\forall y[y<t\supset \mathcal{E}^{\prime}(y)]\rightarrow \mathcal{E}^{\prime}(t)$ of the new cut we write
the derivation of the sequent which is obtained from the derivation of the corres-
ponding sequent, stated in 2.22 of [4], by using TJ-inference figures instead of TI-
upper sequents. Thus we have a derivation of the sequent $\rightarrow \mathcal{E}^{\prime}(\omega_{\nu}(m))$ . From
that derivation, as stated in [4], we can construct a derivation of the sequent
$\rightarrow \mathcal{E}(\omega_{\nu+1}(m))$ without adding new $CJ$.

In order to see that the constructed derivation is a desired one, it suffices to

show that in the derivation of the sequent $\rightarrow \mathcal{E}^{\prime}(\omega_{\nu}(m))$ each induction formula
is of the form $\mathcal{E}^{(\mu)*}$ for $\mu<\nu+1$ . By the replacement of $\mathcal{E}$ by $\mathcal{E}^{\prime},$ $\mathcal{E}^{(\mu)}$ changes
into $\mathcal{E}^{(\mu+1)}$ . Hence each induction formula of the form $\mathcal{E}^{(\mu)*}$ in the given deriva-
tion changes into an induction formula of the form $\mathcal{E}^{(\mu+1)*}(\mu<\nu)$ . All induction
formulas that are newly added are of the form $\mathcal{E}^{*}$ Hence each induction formula
in the derivation of the sequent $\rightarrow \mathcal{E}^{\prime}(\omega_{\nu}(m))$ is of the form $\mathcal{E}^{(\mu)*}$ for $\mu<\nu+1$ .

Thus we can construct a desired one. This concludes the proof of Theorem 1.

\S 4. Underivability of transfinite induction up to $\omega_{\rho\vdash 2}$ and
higher ordinal number.

4.0. In this section we shall give a proof of the ‘only if’ part of the reform-
ed version of Main Theorem (2.2):

Let $\alpha$ be an ordinal number, and $\rho$ a non-negative integer. If the sequent
$\rightarrow \mathcal{E}(\alpha)$ is derivable only by the use of CJ-inference figures whose induction formulas
have at most $\rho$ quantifiers, then $\alpha$ is less than $\omega_{\rho+2}$ .

4.1. A derivation is called a $\rho\cdot derivation$ if it consists of prenex formulas with
at most $\rho$ quantifiers $(\rho\geqq 0)$ . O-derivation is a quantifier-free derivation.

Suppose that we have proved the following

PROPOSITION 2. Let $\Pi\rightarrow\Sigma$ be a quantifier-free sequent. If the sequent is deriva-
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$ble$ only by the use of CJ-inference figures whose induction formulas have at most
$\rho$ quantifiers, then there exists a $\rho$-derivation of the sequent $ l\overline{I}\rightarrow\Sigma$ .

Then, in order to prove the ‘ only if’ part of the reformed version of Main
Theorem, it suffices to show

THEOREM 2. Let $\alpha$ be an ordinal number, and $\rho$ a non-negative integer. If there
exists a $\rho$-derivation of the sequent $\rightarrow \mathcal{E}(\alpha)$ , then $\alpha$ is less than $\omega_{\rho\}2}$ .

4.2. PROOF OF PROPOSITION 2.
Proposition 2 follows from the following two lemmas:

LEMMA 1. Let be given a quantifier-free sequent. If the sequent is derivable
only by using CJ-inference figures whose induction formulas have at most $\rho$ quan-
tifiers, then there exists a derivation of the sequent which consists of formulas with
at most $\rho$ quantifiers.

LEMMA 2. If there exists a derivation of a quantifier-free sequent and it con-
sists of formulas with at most $\rho$ quantifiers, then there exists a $\rho$-derivatim of the
sequent.

4.21. PROOF OF LEMMA 1.
Gentzen’s Hauptsatz (cf. [1]) plays an important role in this proof.
Let $\Pi\rightarrow\Sigma$ be a quantifier-free sequent and let be given a derivation of the sequent

in which every induction formula has at most $\rho$ quantifiers.

4.211. Here we recall that a LK-derivation in [1] is a derivation which is de-
fined only by using basic logical sequents, structural inference figures and opera-
tional (propositional and predicate) inference figures.

The following facts are easily seen:
(1) A sequent

$t<\omega,$ $\Gamma,$ $t<\omega\supset[F(0)\supset\{\forall x(x<\omega\supset(F(x)\supset F(x+1)))\supset F(t)\}]$

$\rightarrow\Theta,$ $F(t)$

is provable in the predicate calculus from both sequents

$\Gamma\rightarrow\Theta,$ $F(O)$ and $a<\omega,$ $F(a),$ $\Gamma\rightarrow\Theta,$ $F(a+1)$

for each free variable $a$ not in $\Gamma,$ $\Theta$ and $F(t)$ .
(2) A sequent

$\Gamma,$ $\forall x(x<t\supset \mathcal{E}(x))\supset \mathcal{E}(t)\rightarrow\Theta,$ $\mathcal{E}(t)$

is provable in the predicate calculus from a sequent $a<t,$ $\Gamma\rightarrow\Theta,$ $\mathcal{E}(a)$ for each free
variable $a$ not in $\Gamma,$ $\Theta$ and $\mathcal{E}(t)$ .
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Contemporarily, a formula is called a characteristic formula if it is a closed
formula of the form $\forall x_{1}\cdots\forall x_{\nu}M(x_{1}, \cdots, x_{\nu})$ such that with a substitution of some
terms for distinct free variables $a_{1},$ $\cdots,$ $a_{\nu}$ in $M(a_{1}, \cdots, a_{\nu})$ the resulting formula is
one of these: (i) a provable formula in the propositional calculus from basic ma-
thematical sequents or basic equality sequents; (ii) a formula of the form

$t<\omega\supset[F(0)\supset\{\forall x(x<\omega\supset(F(x)\supset F(x+1)))\supset F(t)\}]$

where $F$ has at most $\rho$ quantifiers; (iii) a formula of the form

$\forall x(x<t\supset \mathcal{E}(x))\supset \mathcal{E}(t)$ .
Then, by (1) and (2), from the given derivation of the sequent $\Pi\rightarrow\Sigma$ we can

construct a LK-derivation of a sequent $\Gamma_{0},$ $\Pi\rightarrow\Sigma$ for some sequence $\Gamma_{0}$ of charac-
teristic formulas. Hence, by making use of Gentzen’s Hauptsatz for LK-derivations,

we shall have a LK-derivation of the same endsequent, in which no cuts occur.
4.212. Let be given a cut-free LK-derivation of $\Gamma_{0},$ $\Pi\rightarrow\Sigma$ . Now from the cut-

free LK-derivation we shall construct a derivation of $ lI\rightarrow\Sigma$ which consists of for-
mulas containing at most $\rho$ quantifiers.

A CJ-inference figure (or cut) is called a $CJ$ with rank $\rho$ (or cut with rank $\rho$)

if its induction formula (or cut formula) has at most $\rho$ quantifiers.
Suppose that we have proved the following

LEMMA 3. Let $A$ be a characteristic formula. If a sequent $A,$ $\Gamma\rightarrow\Theta$ is derivable
only by using $CJs$ and cuts with rank $\rho$ , then so is $\Gamma\rightarrow\Theta$ .

Clearly the sequent $l_{0}^{\urcorner},$
$\Pi\rightarrow\Sigma$ is derivable only by using $CJs$ and cuts with rank

$\rho$ . Hence, by using Lemma 3 repeatedly, we shall obtain a derivation of the sequent
$\Pi\rightarrow\Sigma$ which contains only $CJs$ and cuts with rank $\rho$

We note that the following subformula property holds for derivations:
In a derivation, every derivational formula is a subformula of one of these; a

formula in the endsequent, a cut formula, a formula in uppersequents of a $CJ$ which
is designated explicitly by $F(O),$ $a<\omega,$ $F(a)$ or $F(a+1)$ in the schema (1.14), or a
formula in the upper sequent of a $TJ$ which is designated explicitly by $a<t$ or
$\mathcal{E}(a)$ in the schema (2.1).

Hence, by the subformula property we see that the derivation (obtained above)

consists of formulas with at most $\rho$ quantifiers. Hence we have a derivation of
$\Pi\rightarrow\Sigma$ which consists of formulas with at most $\rho$ quantifiers.

4.213. PROOF OF LEMMA 3. Let $\forall x_{1}\cdots\forall x_{\nu}M(x_{1}, \cdots, x_{\nu})$ be a characteristic for-
mula, and $M$ a resulting formula of substitution of arbitrary terms in $M(a_{1}, \cdots, a_{\nu})$ .
In order to prove the lemma it suffices to show the following assertion:

If $M,$ $\Gamma\rightarrow\Theta$ is derivable only by using $CJs$ and cuts with rank $\rho$ , so is $\Gamma\rightarrow\Theta$ .
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Suppose that $M$ has at most $\rho$ quantifiers. Then, since the sequent $\rightarrow M$ is
derivable only by using $CJs$ with rank $\rho$ (but without use of any cut), we can easily
show the assertion. Hence we may assume that $M$ has quantifiers greater than $\rho$ .
Then the assertion follows from the following three sublemmas:

SUBLEMMA 1. Suppose that $A\supset B$ has quanlifiers greater than $\rho$ . If the sequent
$\Gamma,$ $A\supset B,$ $\Delta\rightarrow\Theta$ is derivable only by using $CJs$ and cuts with rank $\rho$ , then so are both
sequents $\Gamma,$ $B,$ $\Delta\rightarrow\Theta$ and $\Gamma,$ $\Delta\rightarrow\Theta,$ $A$ .

SUBLEMMA 2. Suppose that $A\supset B$ has quantifiers greater than $\rho$. If the sequent
$\Gamma\rightarrow\Theta,$ $A\supset B,$ $\Lambda$ is derivable only by using $CJs$ and cuts with rank $\rho$ , then so is the
sequent $\Gamma,$ $A\rightarrow\Theta,$ $B,$ $\Lambda$ .

SUBLEMMA 3. Suppose that $\forall xF(x)$ has quantifiers greater than $\rho$ . If the
sequent $\Gamma\rightarrow\Theta,$ $\forall xF(x),$ $\Lambda$ is derivable only by using $CJs$ and cuts with rank $\rho$ . then
so is the sequent $1^{\urcorner}\rightarrow\Theta,$ $F(t),$ $\Lambda$ for any term $t$ .

4.213.1. In order to prove sublemmas, we shall introduce two auxiliary con-
cepts:

A formula $A$ in an upper sequent of an arbitrary inference figure is called a
predecessor of a formula $B$ in the lower sequent if and only if the sequent for-
mulas $A$ and $B$ are identical and correspond to one another according to the in-
ference figure schema (cf. 1.14 and 2.1).

The ‘ancestors’ of a derivational formula $A$ are defined recursively as follows:
(i) The formula $A$ itself is an ancestor of $A$ ;
(ii) If a derivational formula is an ancestor of $A$ , then every predecessor of

the derivational formula is an ancestor of $A$ .
4.213.2. The proofs of three sublemmas are easy. For example, Sublemma 3

is proved as follows:
Let be given a derivation of the sequent $l^{\urcorner}\rightarrow\Theta,$ $\forall xF(x),$ $\Lambda$ which contains only

$CJs$ and cuts with rank $\rho$ . Then, since $\forall xF(x)$ has quantifiers greater than $\rho$ , each

ancestor of the derivational formula $\forall xF(x)$ in the endsequent is neither a principal
formula of a $CJ$ nor a principal formula of a TJ-inference figure. We replace by
$F(t)$ all ancestors of the derivational formula $\forall xF(x)$ . And, if there occurs an in-
troduction of $\forall$ in succedent whose principal formula is replaced by $F(t)$ , then we
substitute (in the derivational section standing above the lower sequent) the free
variable used as its eigenvariable for $t$. By these treatment we obtain a derivation
of the sequent $\Gamma\rightarrow\Theta,$ $F(t),$ $\Lambda$ which contains $CJs$ and cuts with rank $\rho$ only.

This completes the proof of Lemma 3, and consequently the proof of Lemma 1.
4.22. PROOF OF LEMMA 2. Let be given a derivation of a quantifier-free
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sequent which consists of formulas with at most $\rho$ quantifiers. Now we recall that
every formula $A$ with at most $\rho$ quantifiers has a prenex normal form $A^{o}$ which
contains at most $\rho$ quantifiers. Then from the given derivation we can obtain a
$\rho$-derivation of the sequent in the following way:

We first replace in the entire given derivation each formula $A$ by its prenex
normal form $A^{o}$ stated in the above. Then all inference figures except operational
ones remain correct. The correctness of operational inference figures is destroied
in general, but it is recovered by supplying some cuts and some derivations con-
sisting of prenex formulas with at most $\rho$ quantifiers. For example, suppose that
there occurs an introduction of $\wedge$ in antecedent of the form

$\frac{A,\Gamma\rightarrow\Theta}{A\wedge B,\Gamma\rightarrow\Theta}$

in the given derivation. After the replacement it runs:

$\frac{A^{o},\Gamma^{o}\rightarrow\Theta^{o}}{(A\wedge B)^{o},\Gamma^{o}\rightarrow\Theta^{o}}$

where $\Gamma^{o}$ and $\Theta^{O}$ are the sequences of formulas obtained from $\Gamma$ and $\Theta$ by the
replacement. Then we replace it by the following cut

$\frac{(A\wedge B)^{o}\rightarrow A^{o}A^{o},\Gamma^{O}\rightarrow\Theta^{o}}{(A\wedge B)^{o},\Gamma^{o}\rightarrow\Theta^{o}}$

and above the sequent $(A\wedge B)^{o}\rightarrow A^{o}$ we write a cut-free derivation of the sequent
without $CJ$ or $TJ$.

In this way we may obtain a $\rho$-derivation of the given quantifier-free sequent.
4.3. PROOF OF THEOREM 2. Let $\alpha$ be an ordinal number, and $\rho$ a non-negative

integer. Let be given a $\rho$-derivation of the sequent $\rightarrow \mathcal{E}(\alpha)$ .
Suppose that we have proved the following

FUNDAMENTAL LEMMA. Let $\Pi\rightarrow\Sigma$ be a quantifier-free and closed sequent, and
$\rho$ a non-negative integer. If there exists a $\rho$-derivation of the sequent $\Pi\rightarrow\Sigma$ , then
the sequent

$\forall x(x<\gamma\supset \mathcal{E}(x)),$ $\Pi\rightarrow\Sigma$

is provable for some ordinal number $\gamma$ less than $\omega_{\rho\dagger 2}$ .
Then, by applying Fundamental Lemma to the given $\rho$-derivation we know

that there exists a proof figure of the sequent

$\forall x(x<\gamma\supset \mathcal{E}(x))\rightarrow \mathcal{E}(\alpha)$

for some $\gamma$ less than $\omega_{\rho 2}$ . In the proof figure we replace $\mathcal{E}$ as follows: $\mathcal{E}(v)$ is
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in each case turned into $v<\omega_{\rho 2}$ , where $v$ in each case designates the expression

standing in the argument place of $\mathcal{E}$ . Then all inference figures and all basic
sequents in the proof figure remain correct. Hence we have a proof figure of the

sequent

$\forall\tau(x<\gamma\supset x<(l)_{\rho^{1}2})\rightarrow\alpha<\prime J_{\rho 2}$ .

On the other hand, a sequent $ a<\neg/\cdot\rightarrow a<c\iota$)
$\rho 2$ is a basic mathematical sequent. Hence

the sequent $\rightarrow\forall x(x<7^{l}\supset x<(\iota_{\rho 2})$ is provable. Hence we have that the sequent
$\rightarrow\alpha<\omega_{\rho^{\llcorner}2}$ is provable.

From the provability of the sequent $\rightarrow\alpha<c_{l})_{\rho 2}\ulcorner$ we can conclude the fact that
$\alpha$ is less than ($\iota J_{\rho 2}$ by a reduction of absurdity:

Suppose that $\alpha$ were not less than $C\ell J_{\rho 2}$ . Then the sequent $\alpha<\omega_{\rho+2}\rightarrow$ were a
basic mathematical sequent. From the above argument it follows that the sequent
$\rightarrow\alpha<\omega_{\rho 2}T$ is provable. Hence we could obtain that the empty sequent $\rightarrow$ were
provable. This is a contradiction. Hence $\alpha$ is less than $\omega_{\rho+2}$ .

It remains for us to prove Fundamental Lemma. We shall carry out the proof

by dividing it into two cases according as $\rho=0$ or $\rho\geqq 1$ . The proof for the case of
$\rho=0$ is given in \S 5, and that for the case of $\rho\geqq 1$ in \S 6.

\S 5. Proof of Fundamental Lemma for the case of $\rho=0$ .
5.0. In order to prove Fundamental Lemma in the case of $\rho=0$ , it suffices to

prove Prof. Maehara’s unpublished result:
Let $\Pi\rightarrow\Sigma$ be a quantifier-free sequent. If there exists a quantifier-free deriva-

tion of $\Pi\rightarrow\Sigma$ , then the sequent

$\forall x(x<k\supset \mathcal{E}(x)),$ $\Pi\rightarrow\Sigma$

is provable for some formal natural number $k$ .
5.1. A formula in a sequent is called a negative subformula of the sequent if

it is a negative subformula of some formula in the succedent or a positive subfor-
mula of some formula in the antecedent.

PROPOSITION 3. Let $\Pi\rightarrow\Sigma$ be a quantifier-free sequent and let $\mathcal{E}(t_{1}),$
$\cdots,$

$\mathcal{E}(t_{\nu})$

be the negative subformulas of the form $\mathcal{E}$ occurring in it. If a sequent

$\forall x(x<t\supset \mathcal{E}(x)),$ $\Pi\rightarrow\Sigma,$ $\mathcal{E}(s)$

is provable, then so is the sequent

$\forall x(x<t\supset \mathcal{E}(x)),$ $\Pi\rightarrow\Sigma,$ $s<ts=t_{1}\cdots s=t_{\nu}$ .
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5.11. $p_{ROOr^{\backslash }}$ OF PROPOSITION 3. Let be given a proof figure of the sequent
$\forall x(x<t\supset \mathcal{E}(x)),$ $\Pi\rightarrow^{\underline{\backslash }},$ $\mathcal{E}(s)$ . We replace, in the entire proof figure, each occurrence
of arbitrary expression of the form $\mathcal{E}(v)$ by $\mathcal{E}(v)\wedge(v<tv=t_{1}\cdots v=t_{\nu})$ . It is
easily seen that all inference figures, all basic logical sequents and all basic mathe-
matical sequents remain correct. The resulting sequents obtained from basic equality
sequents by the replacement are provable. Hence the sequent

$\forall x[x<t\supset\{\mathcal{E}(x)\wedge(x<tx=t_{1}\cdots x=t_{\nu})\}],\tilde{II}$

$\rightarrow\overline{\Sigma},$ $\mathcal{E}(s)\wedge(s<ts=t_{1}\cdots s=t_{\nu})$

is provable, where $\tilde{\Pi}$ and $\Sigma$ are sequences of formulas obtained from $\Pi$ and $\Sigma$ re-
spectively by the replacement. The sequent

$\forall x(x<t\supset \mathcal{E}(x))\rightarrow\forall x[x<t\supset\{\mathcal{E}(x)\wedge(x<tx=t_{1}\cdots x=t_{\nu})\}]$

and
$\mathcal{E}(s)\wedge(s<ts=t_{1}\cdots s=t_{\nu})\rightarrow s<ts=t_{1}\cdots s=t_{\nu}$

are also provable. Hence it follows that the sequent

$\forall x(x<t\supset \mathcal{E}(x)),\tilde{\Pi}\rightarrow\overline{\Sigma},$ $s<ts=t_{1}\cdots s=t_{\nu}$

is provable.

On the other hand, from the assumptions it follows that the sequent $\Pi\rightarrow\Sigma$ is
quantifier-free and the formulas $\mathcal{E}(t_{1}),$

$\cdots,$
$\mathcal{E}(t_{\nu})$ are the negative subformulas of the

sequent. Hence, from the definition of the replacement, it follows that for each
formula $A$ in $\Pi$ the sequent $A\rightarrow\tilde{A}$ is provable and for each formula $A$ in $\Sigma$ the
sequent $\tilde{A}\rightarrow A$ is provable.

Hence the sequent

$\forall x(x<t\supset \mathcal{E}(x)),$ $\Pi\rightarrow\Sigma,$ $s<ts=t_{1}\cdots s=t_{\nu}$

is provable.
5.2. PROOF OF MAEHARA’S RESULT. Let be given a quantifier-free derivation

of the sequent $\Pi\rightarrow\Sigma$ and let $\mu$ be the total number of the derivational sequents in
it. Then by mathematical induction on $\mu$ we shall prove the existence of a formal
natural number $k$ such that the sequent

$\forall x(x<k\supset \mathcal{E}(x)),$ $\Pi\rightarrow\Sigma$

is provable.

5.21. Suppose that $\mu$ is 1. Then our assertion is clear, because the sequent
$\Pi\rightarrow\Sigma$ itself is a basic sequent.

5.22. Suppose that $\mu$ is greater than 1. Let $I$ be the lowermost inference
figure in the given derivation. By the hypothesis of the induction, for each upper
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sequent of $I$, the existence of a desired formal natural number has already been
proved. We shall show the existence of such a formal natural number for the lower
sequent of $I$.

5.221. Suppose that $I$ is an inference figure with one upper sequent other than

TJ-inference figures. Then as the desired formal natural number we may take the

same as that for the upper sequent.

5.222. Suppose that $I$ is an inference figure with two upper sequents. Then
as the desired formal natural number we may take the maximum of the two ones
for the upper sequents.

5.223. Suppose that $I$ is a TJ-inference figure. We may assume that the upper
sequent of $I$ runs $a<t,$ $l^{7}\rightarrow\Theta,$ $\mathcal{E}(a)$ . Let $k_{1}$ be the formal natural number for the
upper sequent. Then by the hypothesis of the induction the sequent

$\forall x(x<k_{1}\supset \mathcal{E}(x)),$ $a<t,$ $l^{1}\rightarrow\Theta,$ $\mathcal{E}(a)$

is provable.
Let $\mathcal{E}(t_{1}),$

$\cdots,$
$\mathcal{E}(t_{\nu})$ be the negative subformulas of the form $\mathcal{E}$ occurring in

the sequent $a<t,$ $\Gamma\rightarrow\Theta$ . We know that the sequent $a<t,$ $\Gamma\rightarrow\Theta$ is quantifier-free.
Hence by applying Proposition 3 to the provable sequent

$\forall x(x<k_{1}\supset \mathcal{E}(x)),$ $a<t,$ $l^{7}\rightarrow\Theta,$ $\mathcal{E}(a)$

we can see that the sequent

$\forall x(x<k_{1}\supset \mathcal{E}(x)),$ $a<t,$ $\Gamma\rightarrow\Theta,$ $a<k_{1}a=t_{1}\cdots a=t_{\nu}$

is provable. Here we recall that the free variable $a$ is the eigenvariable of $I$ and
doesn’t occur in the lower sequent of $I$. Hence the free variable $a$ does not occur
in the sequent

$\forall x(x<k_{1}\supset \mathcal{E}(x)),$ $\Gamma\rightarrow\Theta,$ $\forall x[x<t\supset(x<k_{1}x=t_{1}\cdots x=t_{\nu})]$ .
Hence the sequent is provable.

On the other hand, it follows that for any terms $t_{1},$
$\cdots,$

$t_{\nu},$ $t$ and $s$ the sequent

$\forall x[x<t\supset(x<sx=t_{1}\cdots x=t_{\nu})]\rightarrow t<s+n+1$

is provable, where $n$ is the formal natural number corresponding to $\nu$ .
Hence from the provability of these two sequents it follows that the sequent

$\forall x(x<k_{1}\supset \mathcal{E}(x)),$ $\Gamma\rightarrow\Theta,$ $t<k_{1}+n+1$

is provable. Clearly both sequents

$\forall x(x<k_{1}+n+1\supset \mathcal{E}(x))\rightarrow\forall x(x<k_{1}\supset \mathcal{E}(x))$

and
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$\forall x(x<k_{1}+n+1\supset \mathcal{E}(x)),$ $t<k_{1}+n+1\rightarrow \mathcal{E}(t)$

are provable. Hence we can conclude that the sequent

$\forall x(x<k_{1}+n+1\supset \mathcal{E}(x)),$ $I^{\urcorner}\rightarrow\Theta,$ $\mathcal{E}(t)$

is provable. Thus as the desired formal natural number for the lower sequent of
$I$ we may take one which is equal to $k_{1}+n+1$ .

\S 6. Proof of Fundamental Lemma for the case of $\rho\geqq 1$ .
6.0. In this section, we shall give a proof of Fundamental Lemma for the case

of $\rho\geqq 1$ along similar lines of the proof of Gentzen’s fundamental lemma (’grund-

legende Satz’) stated in 3.1 of [4]. Fundamental Lemma in the case of $\rho\geqq 1$ is
stated as follows:

Let $\Pi\rightarrow\underline{\backslash }1$ be a quantifier-free and closed sequent. Let $\rho$ be a natural number
(i.e., $\rho\geqq 1$ ). If there exists a $\rho$-derivation of the sequent $T1\rightarrow_{A^{}}^{\backslash }$ , then the sequent

$\forall x(x<\gamma\supset \mathcal{E}(x)),$ $\Pi\rightarrow\underline{\backslash }$

is provable for some ordinal number $\gamma$ less than $\omega_{\rho}2$ .

REMARK: The only derivations that we shall consider in the following are
TJ-derivations consisting of prenex formulas. Hence by ‘derivations’ we shall mean
those derivations.

6.1. Our proof of Fundamental Lemma in the case of $\rho\geqq 1$ consists of four
stages: 6.11; 6.12; 6.13 and 6.14. From an exact version of Fundamental Lemma
in the case of $\rho\geqq 1(6.13)$ and the estimate of the values of $\rho$-derivations (6.14), the
proof of Fundamental Lemma in the case of $\rho\geqq 1$ can be deduced immediately.

6.11. We define ‘ reduction steps’ for arbitrary derivations which satisfy the
following conditions:

(i) The endsequent is quantifier-free and closed;

(ii) A TJ.inference figure occurs in it.
The precise definition of the reduction steps will be given in 6.3. Each reduc-

tion concerns to a specified inference figure in such a derivation. According to the
kinds of the specified inference figures, the reductions are divided into those: CJ-
reductions; quantifier-free cut reductions; propositional reductions; predicate reduc-
tions; the first critical reductions and the second critical reductions.

When a reduction concerns to an inference figure with one upper sequent (i.e.,

it is one of the reductions: CJ-reductions, propositional reductions for propositional
inference figures with one upper sequent, predicate reductions or the second critical
reductions), its reduction step transforms every derivation satisfying the conditions
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(i) and (ii) into another derivation with a quantifier-free and closed endsequent.
Especially in the case of a CJ-reduction or a predicate reduction the endsequent of
the derivation is preserved in the process. And in every other case the endsequent
is not preserved in the process, but the endsequent of old derivation is derivable
from the new one without use of TJ-inference figures.

When a reduction concerns to an inference figure with two upper sequents
(i.e., it is one of the propositional reductions for propositional inference figures with
two upper sequents, quantifier-free cut reductions or the first critical reductions),

its reduction step transforms a derivation into two derivations with quantifier-free
and closed endsequents. From two newly resulting endsequents, the old one is
derivable without use of TJ-inference figures.

6.12. We furthermore correlate an ordinal number with each derivation, toge-
ther with a rule for its calculation; we call it the ‘ value’ of the derivation. As
values only transfinite ordinal numbers below $\epsilon_{0}$ (but not equal to $0$) will be used.
It is then proved that with each reduction step the value diminishes. Especially
$wit/l$ the second critical reduction step the value diminishes at least $\omega$ in the sense
of natural sum, i.e., the natural sum of $\omega$ and the value of the reduced derivation
is not over the value of the given derivation.

The correlation of ordinal numbers with derivations and the proof of the above
facts will be given in 6.4.

6.13. Once these concepts in 6.11 and 6.12 have been defined and the stated
assertions have been proved, then the following important lemma follows:

Let be given a derivation of a quantifier-free and closed sequent and let $\gamma$ be
the value of the derivation. Suppose that the endsequent of the derivation is $1I\rightarrow\underline{\backslash }$ .
$T/len$ the sequent

$\forall x(x<\gamma\supset \mathcal{E}(x)),$ $ll\rightarrow\underline{\backslash }$

is provable (An exact version of Fundamental Lemma in the case of $\rho\geqq 1$ ).

The lemma will be proved by a transfinite induction on the value $\gamma$ of the
derivation.

6.131. Suppose that the value $\gamma$ is $0$ . Then the assertion is vacuously true,

because there is no derivation with value $0$ .
6.132. Suppose that $\gamma$ is greater than $0$ . We may assume that the assertion

has been recognized as true for all derivations whose value is smaller than $\gamma$ and
whose endsequent is quantifier-free and closed. Now suppose that an arbitrary

derivation with the value 7 is given and its endsequent is $ JT\rightarrow\Sigma$ .
6.132.1. Suppose that the given derivation contains no TJ-inference figure.

Then the endsequent itself is provable. Hence our assertion holds clearly.
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6.132.2. Suppose that the given derivation contains a TJ-inference figure.

The concept ‘critical’ will be explained later (6.37). We distinguish two cases
according as the given derivation is critical or not.

6.132.21. Suppose that the derivation is not critical. Then a reduction step

may be carried out which reduces the derivation to one or two derivations with a
quantifier-free closed endsequent and a smaller value. And from the one or two

endsequents the old endsequent is derivable without use of any TJ-inference figures.

6.132.211. First we suppose that the derivation is reduced to one derivation

with the endsequent $\Pi_{1}\rightarrow\Sigma_{1}$ and the value $\gamma_{1}$ . Since $\gamma_{1}$ is smaller than $\gamma$ , by the

hypothesis of the transfinite induction the assertion holds for the reduced deriva-

tion. Hence the sequent $\forall x(x<\gamma_{1}\supset \mathcal{E}(x)),$ $lI_{1}\rightarrow\Sigma_{1}$ is provable. Hence the sequent
$\forall x(x<\gamma\supset \mathcal{E}(x)),$ $\Pi_{1}\rightarrow\Sigma_{1}$ is provable. But from the sequent $JJ_{1}\rightarrow\Sigma_{1}$ the sequent
$\Pi\rightarrow\Sigma$ is derivable without use of any TJ-inference figures. Hence the sequent
$\forall x(x<\gamma\supset \mathcal{E}(x)),$ $\Pi\rightarrow\Sigma$ is provable. Thus the assertion holds for the given one.

6.132.212. Next we suppose that the derivation is reduced to two derivations,

one with the endsequent $\Pi_{1}\rightarrow\Sigma_{1}$ and the value $\gamma_{1}$ and the other with the endsequent
$II_{2}\rightarrow\Sigma_{2}$ and the value $\gamma_{2}$ . Since $\gamma_{1}$ and $\gamma_{2}$ are smaller than $\gamma$ , by the hypothesis of

the transfinite induction the assertion holds for the reduced derivations. Hence both
sequents

$\forall x(x<\gamma_{1}\supset \mathcal{E}(x)),$ $l1_{1}\rightarrow\underline{\backslash }1$ and $\forall x(x<\gamma_{2}\supset \mathcal{E}(x)),$ $1I_{2}\rightarrow\underline{\backslash }2$

are provable. Hence the sequents

$\forall x(x<\gamma\supset \mathcal{E}(x)),$ $\Pi_{1}\rightarrow\underline{\backslash }1$ and $\forall x(x<\gamma\supset \mathcal{E}(x)),$ $l1_{2}\rightarrow\underline{\backslash }2$

are provable. But from the sequents $\Pi_{1}\rightarrow\underline{\backslash }_{1}$ and $If_{2}\rightarrow\Sigma_{2}$ the sequent $\Pi\rightarrow\underline{\rangle}$ is de-
rivable without use of any TJ-inference figures. Hence $\forall x(x<\gamma\supset \mathcal{E}(x)),$ $ lI\rightarrow\Sigma$ is
provable. Thus the assertion holds for the given derivation.

6.132.22. Suppose that the given derivation is critical. Then the first critical
reduction step may be carried out. And, if it is not in that case, there occurs in

the succedent of the endsequent a formula $\mathcal{E}(s)$ such that $s$ is less than $\gamma$ , or the

second critical reduction step may be carried out.
6.132.221. Suppose that the first critical reduction step is carried out. Then

it reduces the given derivation to two derivations with a quantifier-free closed end-
sequent and a smaller value. And from two newly resulting endsequents the old

one is derivable without use of any TJ-inference figures. Hence, as in 6.132.212,

it is proved that the assertion holds for the given derivation.
6.132.222. Suppose that we cannot carry out the first critical reduction step.

Then, in the succedent of the endsequent of the given derivation, there occurs a
formula $\mathcal{E}(s)$ such that the second critical reduction step may be carried out if $s$
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is not less than $/^{l}\cdot$

6.132.222.1. Suppose that $s$ is less than $\gamma$ . Then the sequent $\rightarrow s<\gamma$ is prov-
able. Hence the sequent $\forall x(x</^{\prime}\supset \mathcal{E}(x))\rightarrow \mathcal{E}(s)$ is provable. Hence in this case
we shall obtain the conclusion without use of the hypothesis of the transfinite
induction.

6.132.222.2. Suppose that $s$ is not less than / $\cdot$ Then the second critical reduc-
tion step is carried out. It reduces the given derivation to a derivation with an
endsequent $\Pi,$ $\beta<t\rightarrow \mathcal{E}(\beta),$

$\Sigma$ and a smaller value $\gamma_{1}$ , where $s=t$ is true, $\beta$ is an ar-
bitrary ordinal number and $/^{r_{1}}\#\omega\leqq\gamma$ . Let $\mathcal{E}(t_{1})$ . $\cdots,$

$\mathcal{E}(t_{\nu})$ be the negative subformulas
of the form $\mathcal{E}$ in $lI\rightarrow\underline{\backslash }$ . By using the facts that $\gamma_{1}\#\omega\leqq\gamma$ and that $s=t$ is true, we
may choose as $\beta$ an ordinal number that satisfies the conditions: $\beta<t$ is true; all
the formulas $\beta=t_{1},$ $\beta=t_{2},$ $\cdots,$ $\beta=t_{\nu}$ are false; $\beta<\gamma_{1}$ is false. By the hypothesis of the
transfinite induction the assertion holds for the reduced derivation. Hence the sequent

$\forall x(x<\gamma_{1}\supset \mathcal{E}(x)),$ $l1,$ $\beta<t\rightarrow \mathcal{E}(\beta),$
$\sim^{7}\backslash $

is provable.

We recall that the sequent II, $\beta<t\rightarrow\Sigma$ is quantifier-free and that $\mathcal{E}(t_{1}),$
$\cdots,$

$\mathcal{E}(t_{\nu})$

are the negative subformulas of the form $\mathcal{E}$ in the sequent. Hence by applying
Proposition 3 (5.1) to the provable sequent

$\forall x(x<\wedge/1\supset \mathcal{E}(x)),$ $ll,$ $\beta<t\rightarrow\underline{\backslash },$ $\mathcal{E}(\beta)$

we shall obtain the fact that the sequent

$\forall x(x<\gamma_{1}\supset \mathcal{E}(x)),$ $fT,$ $\beta<t\rightarrow\rightarrow^{7}\backslash ,$ $\beta<\gamma_{1}\beta=t_{1}\cdots\beta=t_{\nu}$

is provable. On the other hand, from the definition of $\beta$ , it follows that the follow-
ing sequents

$\rightarrow l^{\cap}J<r$ and $/^{3<\gamma_{1}\beta=t_{1}\cdots\beta=t_{\nu}}\rightarrow$

are provable. Hence the sequent

$\forall x(x<\gamma\supset \mathcal{E}(x)),$ $\Pi\rightarrow\underline{)}$

is provable. Thus the assertion holds for the given derivation.
This completes the proof of the exact version of Fundamental Lemma in the

case of $\rho\geqq 1$ .
6.14. Between $\rho$-derivations and their values we have the following relation-

ship: The value of $\rho$-derivation is less than $\omega_{\rho 2}|(\rho\geqq 1)$ . The proof is given in 6.5.
6.2. For convenience of the discussion that follows, the formalism defined in

1.1 in \S 1 will be modified: We now admit further inference figures ‘subslitutions

of terms’, as in 3.2 of Gentzen [4], according to the following schemata:
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$\frac{I_{1}^{7},F(s),\Gamma_{2}\rightarrow\Theta}{\Gamma_{1},F(t),\Gamma_{2}\rightarrow\Theta}$ or $\frac{J^{7}\rightarrow\Theta_{1},F(s),\Theta_{2}}{l^{\gamma}\rightarrow\Theta_{1},F(t),\Theta_{2}}$

where $s$ and $t$ are terms without free variables and designate the same ordinal
number.

6.3. Definition of the reduction steps for derivations.
6.30. Suppose that a derivation is given which contains at TJ-inference figure

and that its endsequent is a quantifier-free and closed sequent $\Pi\rightarrow\Sigma$ .
The definition of a reduction step will, in essence, be taken over from Gentzen

[4], \S 3. Let us therefore first examine the essential differences between our present
concept of a derivation and its counterpart in [4]:

The endsequent now may be an arbitrary quantifier-free closed sequent; in [4]

it has the special form. The basic equality sequent is restricted for formula of
the form $\mathcal{E}$ ; in [4] it is admitted for arbitrary formula. The inference figures for
introduction of $\supset$ in antecedent or in succedent are now admitted. The CJ-inference
figures are now modified to have two upper sequents. Finally the TJ-inference
figures are introduced but the TJ-upper sequents are omitted.

6.31. The reduction step begins with the first preparatory step as in 3.32 of
[4]: the replacement of ‘redundant’ free variables by 1.

The ‘ending’ of the given derivation is defined somewhat differently from 3.32
of [4], as follows:

The ending includes all those derivational sequents which are encountered if
we trace each individual path from the endsequent upwards and stop as soon as we
reach the line of inference of a predicate, $CJ$ or TJ-inference figure.

The ending can therefore contain not only structural inference figures and sub-
stitutions of terms but also propositional inference figures and, after the preparatory
step, no free variables. The uppermost sequents of the ending may be lower sequents
of predicate, $CJ$ or TJ-inference figures as well as basic sequents of any one of these
three kinds.

As in [4], we add to the preparatory step an additional step: the replacement
of all terms occurring in the ending by the ordinal numbers of their values. After
the additional step, basic equality sequents no longer occur in the ending.

6.32. If an uppermost sequent of the ending is the lower sequent of a CJ-
inference figure, then a CJ-reductim is carried out. We may adapt the definition
of CJ-reduction in [4] with minor change which is caused by the difference in forms
between the schema for CJ-inference figures in 1.14 and that in [4].

Let us consider such a CJ-inference figure. It has a form

$\frac{\Gamma\rightarrow\Theta,F(0)a<\omega,F(a),\Gamma\rightarrow\Theta,F(a+1)}{t<\omega,\Gamma\rightarrow\Theta,F(t)}$
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where $t$ is an ordinal number. It can be decided whether $ t<\omega$ is true or not. If
$ t<\omega$ is not true, we simply from

$\frac{----\underline{t<\omega\rightarrow}}{t<\omega,\Gamma\rightarrow\Theta,F(t)}$ $thinningsandinterchanges$
possibly several

and the rest of the given derivation is then added unchanged below the sequent
$t<\omega,$ $\Gamma\rightarrow\Theta,$ $F(t)$ .

If $ t<\omega$ is true, $t$ is $0$ or a natural number $n$ . If $t$ is $0$ , we replace the CJ-
inference figure by a thinning

$\frac{l^{7}\rightarrow\Theta,F(0)}{t<\omega,\Gamma\rightarrow\Theta,F(t)}$

and omit the derivational part standing above the right upper sequent of the CJ-
inference figure. If $t$ is a natural number $n$ , we replace the CJ-inference figure bv
the following diagram

.
$1’\rightarrow\Theta,$ $F(O)$ $F(0),$ $/\rightarrow\Theta,$ $F^{\backslash }(n)$

$-----$
$I^{7},$ $l\urcorner\rightarrow\Theta,$ $\Theta,$ $F(n)$

$I’\rightarrow\Theta,$ $F(n)$

$t<\omega,$ $\Gamma\rightarrow\Theta,$ $F(t)$

where we write the derivational section standing above the left upper sequent of
the CJ-inference figure above the sequent $l^{7}\rightarrow\Theta,$ $F(O)$ and we write the diagram
stated in 3.33 of [4], above the sequent $F(O),$ $J\urcorner\rightarrow\Theta,$ $F(n)$ . From the sequent $ t<\omega$ ,
$\Gamma\rightarrow\Theta,$ $F(t)$ downwards, the rest is finally continued by adjoining the unchanged re-
mainder of the old derivation.

6.33. If the ending includes a quantifier-free cut, then a quantifier-free cut
reduction is carried out.

Let us therefore consider such an inference figure. We may consider that the
derivation looks like this:

.

$\frac{\Gamma\rightarrow\Theta,DD,\Delta\rightarrow\Lambda}{\Gamma,\Delta\rightarrow\Theta,\Lambda}$ The quantifier-free cut

$\Pi\rightarrow\Sigma$ The endsequent.

The reduction step consists of the transformation of the derivation into the
two derivations:

One of them is Qbtained from the following diagram:
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.
$\frac{\underline{\Gamma}}{\Gamma,\Delta}\frac{-\frac{\Theta,D}{}\rightarrow}{\rightarrow D,\Theta,\Lambda}$ $andinterchangespossiblyseveraIthinnings$

$\Pi\rightarrow D,$ $\Sigma$ The endsequent.

It is obtained from the given derivation first by omitting the section standing above
the right upper sequent of the quantifier-free cut, next by replacing the cut by
possibly several thinnings and interchanges and finally by inserting the formula $D$

as the first succedent formula into every sequent below the sequent

$\Gamma,$ $\Delta\rightarrow D,$ $\Theta,$ $\Lambda$ .
The other of them is obtained from the diagram:

.
$D,$ $\Delta\rightarrow\Lambda$ possibly several thinnings

$\overline{\overline{\Gamma}\overline,\Delta},D\rightarrow\Theta,$$\Lambda-$ and interchanges

11, $D\rightarrow\underline{\backslash }$

‘ The endsequent.

Since the cut formula $D$ is quantifier-free and closed, both new endsequents
$ll\rightarrow D,$ $\Sigma$ and 11, $ D\rightarrow\Sigma$ are quantifier-free and closed. From these two, the original
endsequent $11\rightarrow\Sigma$ is derivable only by using structural inference figures.

6.34. If the ending includes a propositional inference figure and does not in-
clude a quantifier-free cut, then a propositional reducfion is carried out.

Let us consider one of the lovermost those propositional inference figures.
When the inference figure has two upper sequents, the reduction step consists

of the transformation of the derivation into the two derivations, which are obtained
by the same way as in 6.33. 0therwise, the reduction step consists of the trans-
formation of the derivation into one derivation. Since the reductions are similar
we shall only deal with the case when the propositional inference figure is an in-
troduction of $\wedge in$ antecedent. Suppose that our derivation looks like this:

.

$\frac{\frac{A,\Gamma\rightarrow\Theta}{}}{A\wedge B,\Gamma\rightarrow\Theta}$ The propositional inference figure

$/1\rightarrow\Sigma$ The endsequent.
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Then the transformation is to construct a derivation of the form:

.
$\frac{A,l\prime\rightarrow}{---}\Theta_{-}$ possibly several interchanges
$A\wedge B,$ $\Gamma,$ $ A\rightarrow\Theta$ and thinnings

Il, $ A\rightarrow\Sigma$ The endsequent.

It is obtained from the derivation first by replacing the propositional inference
figure by a thinning and possibly several interchanges and next by inserting the
formula $A$ as the last antecedent formula in each sequent below the sequent $A\wedge B$ ,

$\Gamma,$ $ A\rightarrow\Theta$ . Since the given derivation consists of prenex formulas, the subformula
$A$ of $A\wedge B$ is quantifier-free. Hence the sequent $\Pi,$ $ A\rightarrow\Sigma$ is quantifier-free and
closed. In the ending of the given derivation, the propositional inference figure

concerned is one of the lowermost ones and no quantifier-free cuts occur. Hence
there occurs a formula $A\wedge B$ in the antecedent of the endsequent, one of whose
ancestors is the principal formula of the inference figures. Therefore from the new
endsequent the original endsequent is derivable only by using an introduction of
$\wedge in$ antecedent, a contraction and possibly several interchanges.

6.35. If the ending is nowhere bounded above by a CJ-inference figure and it
contains neither quantifier-free cuts nor propositional inference figures, then the
actual reduction step is preceded by a second preparatory step as in 3.34 of [4].

Now the ending can contain only structural inference figures (except quantifier-

free cuts) and substitutions of terms. Hence the concepts ‘clustered’ and ‘cluster of
formulas’ are defined in the same way as in [4].

The second preparatory step is carried out precisely as in 3.34 of [4]; for the
eliminatim of thinnings there is nothing to do except those stated in [4]. For the
elimination of the basic logical sequents, as stated in [4], it is important that the

derivation concerned does not consist of basic logical sequents and thinnings only;

this requirement is also met, since the derivation contains at least one TJ-inference
figure (cf. 6.11 and 6.30).

For the ending the following therefore holds: the inference figures which it
contains are ‘substitutions of terms’ and structural inference figures except quantifier

free cuts, with thinnings at most immediately above the endsequent. It contains
no free variables. Its uppermost sequents are basic mathematical sequents or lower
sequents of predicate inference figures or TJ-inference figures.

6.36. If the second preparatory step produces in the ending a ‘cluster of for-
mulas suitable for the application of a predicate $reduction’-i.e.$ , a cluster of formulas
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which possesses an associated cut and whose right and left sides contain at least
one formula which is the principal formula of a predicate inference figure and con-
tains at least two quantifiers–then a predicate reduction is carried out as in 3.35
of [4]. Our concept ‘cluster of formulas suitable for the application of a predicate
reduction’ is different from that in [4]. The difference is caused by the difference
of the definition of the ‘level’ of a derivational sequent. The definition of ‘level’ is
now given as follows:

By the level of a derivational sequent we mean the maximum of two numbers
v-l and $0$ where $\nu$ is the greatest number of quantifiers of any formula occurring
in or below the sequent concerned.

6.37. We shall now examine the question of what a derivation looks like to
which none of the described reductions is applicable. In this case, we shall call the
derivation ‘critical’ and shall state ‘critical reduction steps’ for it.

We recall that our derivation contains at least one TJ-inference figure. We
now adapt the proof from 3.36 of [4], in such a way that the TJ-inference figures
(instead of TJ-upper sequents) are given equal status with the predicate inference
figures. (The formula designated by $\mathcal{E}(t)$ in the schema of TJ-inference figure is
called the ‘principal formula’.) Then, from the adapted considerations, we can see
that one of the following cases arises for the derivation: There exists a cluster of
formulas which possesses an associated cut and whose cut formula contains only
one quantifier and whose both right and left sides contain at least one formula
which is the principal formula of a predicate inference figure; or there exists a
succedent formula of the endsequent which belongs to the same cluster of formulas
as the principal formula of one of the TJ-inference figures.

6.38. If there exists in the ending a cluster of formulas which possesses an
associated cut and whose cut formula contains only one quantifier and whose right
and left sides contain at least one principal formula of a predicate inference figure,
then the ‘first critical reduction step’ is carried out.

Let us therefore select such a cluster of formulas and from each of its sides
one uppermost formula of the kind mentioned. We shall deal with the case in
which the outermost logical symbol of the cluster formulas in a $\forall$ , since the re-
duction for the case in which the outermost logical symbol is a $\exists$ proceeds com-
pletely symmetrically to the case $\forall$ . The derivation therefore looks like this:
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: $(a)$ :
$\frac{\Gamma_{1}\rightarrow\Theta_{1},F_{1}(a)}{\Gamma_{1}\rightarrow\Theta_{1},\forall xF(x)}$ $\frac{F_{2}(t),\Gamma_{2}\rightarrow\Theta_{2}}{\forall xF_{2}(x),\Gamma_{2}\rightarrow\Theta_{2}}$

$Thetwopredicateinferencefigures$

$\frac{\Gamma\rightarrow\Theta,\forall xF_{1}}{\Gamma}\frac{x)\forall xF(x),\Delta\rightarrow\Lambda}{\Delta\rightarrow\Theta,\Lambda}($
$Thecutassociatedwiththecluster$

$\Pi\rightarrow\Sigma$ The endsequent.

In the above diagram the formulas $\forall xF_{1}(x),$ $\forall xF_{2}(x)$ and $\forall xF(x)$ all belong to the
cluster. The reduction step consists now of the transformation of the derivation
into two derivations. One of them is of the form indicated by the following diagram:

thinning and possibly
$----\Gamma_{\underline{1}}\rightarrow\Theta_{1}^{(t)}F_{1}(t\underline{)}-, F_{2}(t),$

$I_{2}^{\urcorner}\rightarrow\Theta_{2}$

$severalinterchangesandsubstitutionsofterms$ $\Gamma_{1}\rightarrow F(t\overline{).\prime}\Theta_{1}\overline{.\prime\forall xF_{1}}(x)$

$\overline{\forall xF_{2}(x),}\overline{\Gamma_{2}\rightarrow\Theta}_{2}^{-}$

$\frac{\Gamma\rightarrow F(t),\Theta,\forall xF(x)\forall xF(x),\Delta\rightarrow\Lambda}{\Gamma,\Delta\rightarrow F(t),\Theta,\Lambda}$ cut

$\Pi\rightarrow F(t),$ $\Sigma$ The endsequent.

The other is of the form indicated by the following diagram:

$\Gamma_{1}\rightarrow\Theta,$

$F_{1}(a)(a)_{1}$
$F_{2}(t),\dot{\Gamma}_{2}\rightarrow\Theta_{2}$ thinning and possibly

$\Gamma\rightarrow\Theta$ $\forall xF(x)$ $---\overline{\forall xF(x),\Gamma F(t)\rightarrow}\Theta$ several interchanges and
1 1, 1 2 2, 2 substitutions of terms

$\frac{\Gamma\rightarrow\Theta,\forall xF(x)\forall xF(x),\Delta,F(t)\rightarrow\Lambda}{\Gamma,\Delta,F(t)\rightarrow\Theta,\Lambda}$ cut

$\Pi,$ $ F(t)\rightarrow\Sigma$ The endsequent.

The former is obtained from the given derivation first by substituting the term
$t$ for each occurrence of the free variable $a$ in the section of the derivation stand-
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ing above the lower sequent of the introduction of $\forall$ in succedent, next by replac-

ing the predicate inference figure by a thinning and possibly several interchanges

and substitutions of terms, and finally inserting the formula $F(t)$ as the first suc-
cedent formula into every sequent below the sequent $\Gamma_{1}\rightarrow F(t),$ $\Theta_{1},$ $\forall xF_{1}(x)$ . Since
$t$ is a closed term and the formula $F(t)$ is quantifier-free, the new endsequent is
also quantifier-free and closed.

The latter is obtained by the similar treatment.
6.39. If there exists a formula in the succedent of the endsequent which be-

longs to the same cluster of formulas as the principal formula of one of the TJ-
inference figures, then the second critical reduction step may be carried out.

If there are several those formulas, we shall agree to choose that TJ-inference
figure with the above property which stands furthest to the right. Suppose that

its principal formula is $\mathcal{E}(t)$ and the derivation looks like this:

$\frac{a<t,\Gamma\rightarrow\Theta,\mathcal{E}(a)(a)}{\Gamma\rightarrow\Theta,\mathcal{E}(t)}$

The TJ-inference figure

$\Pi\rightarrow\Sigma$ The endsequent.

We now define the ‘second critical reduction step’:

We first specify an arbitrary ordinal number and designate it by $\beta$ . The re-
duction step consists of the transformation of the derivation into the form indicated
by the following diagram:

: $(\beta)$

$\beta<t,$

$\Gamma\rightarrow\Theta,\mathcal{E}(\beta)\overline{\overline{\Gamma,\beta<t\rightarrow \mathcal{E}(\beta),\Theta,\mathcal{E}(t)}}$
$severalinterchangesthinningsandpossibly$

$\Pi,$ $\beta<t\rightarrow \mathcal{E}(\beta),$ $\Sigma$ The endsequent.

It is obtained from the given derivation first by substituting the ordinal number $\beta$

for each occurrence of the free variable $a$ in the section standing above the lower
sequent of the TJ-inference figure, next by replacing the TJ-inference figure by a
thinning and possibly several interchanges, and finally by inserting the formula
$\beta<t$ as the last antecedent formula and $\mathcal{E}(\beta)$ as the first succedent formula into
every sequent below the sequent

$\Gamma,$ $\beta<t\rightarrow \mathcal{E}(\beta),$ $\Theta,$ $\mathcal{E}(t)$ .



118 Kokio SHIRAI

This completes the definition of the reduction steps.

6.4. The correlatim of ordinal numbers with derivations and the proofs of the
two facts that with each reduction step the value of the derivation diminishes and
that with the second critical reduction step the value diminishes at least by $\omega$ in
the sense of natural sum.

6.41. We can adapt the correlation of ordinal numbers with derivations with
minor three modifications:

If the inference figure has two upper sequents and is not $CJ$ , then the ordinal
number of the line of inference is defined to be the natural sum of the ordinal
numbers of the two upper sequents.

If the inference figure is a $CJ$, then the ordinal number of the line of inference
is defined to be the natural sum of the ordinal number of the left upper sequent

and $\omega^{\alpha_{1+1}}$ , where $\omega^{\alpha_{1}}+\cdots$ is the ordinal number of the right upper sequent.
If the inference figure is a $TJ$, then the ordinal number of the line of inference

is defined to be the natural sum of $\omega$ and the ordinal number of the upper sequent.

6.42. Then we may also verify that in each reduction step the value of the
derivation diminishes.

In the ‘first preparatory step’ the value of the derivation remains unchanged.
For the CJ-reduction, the value of the derivation diminishes as in [4].

For the quantifier-free cut reduction, the value of the derivation diminishes.
Since the cut formula $D$ is quantifier-free, by the replacement of the cut by thinn-
ings and interchanges the level of a whole collection of sequents does not change.

Moreover the derivational sections standing above the sequent $\Gamma\rightarrow\Theta,$ $D$ (or $D,$ $\Delta\rightarrow\Lambda$ )

in the first (or second) reduced derivation have the correspondent in the old deriva-
tion. Hence the sequent $\Gamma\rightarrow\Theta,$ $D$ (or $D,$ $\Delta\rightarrow\Lambda$ ) in the reduced derivation and the
corresponding upper sequent of the cut receives the same ordinal number. And a
decrease in the ordinal number results from the replacement of the natural sum of
two numbers by only one of these two numbers. But, since no CJ-inference figures

occurs below the sequent, the decrease is preserved in the calculation of the ordinal
number further down to the endsequent. Thus the value of each reduced deriva-
tion is smaller than that of the given derivation.

For the propositional reduction, the value of the derivation diminishes. This
case is dealt with as in the case of quantifier-free cut reduction. By the replace-

ment of a propositional inference figure by a thinning and possibly several inter-
changes the level of a whole collection of sequents does not change. A decrease in
the ordinal number results from the replacement, and the decrease is preserved in
the calculation of the ordinal number further down to the endsequent. Thus the
value of the derivation diminishes.
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For the second preparatory step, as proved in [4], we can verify that this pre-
paratory step cannot cause an increase in the ordinal number.

For the predicate reduction we must demonstrate a decrease of the value. Our
definition of ‘level’ is different from that in [4]. But in this case the principal for-
mula of the selected predicate inference figure contains at least two quantifiers and
we can still prove the existence of the level $lin^{\circ}$ , and the proof of a decrease of the
ordinal number is carried out in the same way as in [4].

We now come to the first critical reduction. In the derivation the only pred-
icate inference figure has disappeared and been replaced by structural inference
figures. This replacement has no influence on the level of a whole derivational
sequents and on the ordinal number of the sequent corresponding to the upper se-
quent of the predicate inference figure. At this point a decrease in the ordinal
number has therefore taken place which is preserved down to the endsequent. Hence
a decrease of the value is proved.

6.43. Finally we shall examine the second critical reduction. In this case we
must prove not only the fact that the value $\gamma_{1}$ of the reduced derivation is smaller
than the value $\gamma$ of the derivation but also the fact that $\gamma_{1}\#\omega\leqq\gamma$ . In the derivation
the TJ-inference figureh as replaced by some interchanges. Clearly this replace-
ment has no influence on the level of a whole derivational sequents. Hence the
sequent $\beta<t,$ $\Gamma\rightarrow\Theta,$ $\mathcal{E}(\beta)$ receives the same ordinal number (designated by $\alpha$ ) as the
sequent $a<t,$ $\Gamma\rightarrow\Theta,$ $\mathcal{E}(a)$ . Then the place of the lower sequent of TJ-inference figure
with the ordinal number $\alpha\#\omega$ is taken by a derivational section whose lowest sequent
is the sequent $\Gamma,$ $\beta<t\rightarrow \mathcal{E}(\beta),$ $\Theta,$ $\mathcal{E}(t)$ correlated with the ordinal number $\alpha$ . The
decrease is preserved or is progressed as we pass down to the endsequent. (If there
occurs a cut below the TJ-inference figure and the difference in levels between the
lower and the upper sequent is greater than $0$ , then and only then the decrease
of the ordinal number is progressed.) Thus we can conclude that $\gamma_{1}\#\omega\leqq\gamma$ . Hence
we have proved that with the second critical reduction step the value diminishes
at least by $\omega$ in the sense of natural sum.

6.5. Conclusion. Now the exact version of Fundamental Lemma in the case
of $\rho\geqq 1$ , stated in 6.13, follows:

Suppose that a $\rho$-derivation is given and that its endsequent is a quantifier-free
and closed sequent $\Pi\rightarrow\Sigma$ . Then the sequent $\forall x(x<\gamma\supset \mathcal{E}(x)),$ $\Pi\rightarrow\Sigma$ is provable for
the value $\gamma$ of the $\rho$-derivation.

Between $\rho$-derivations and their values we have the following relationship:

The value of $\rho$-derivation is less than $\omega_{\rho+2}$ for $\rho\geqq 1$ .
This is easily seen from the definition of the correlation of ordinal numbers

and the fact that the level of every sequent in a $\rho$-derivation is at most $\rho-1$ .
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From these two results we shall obtain Fundamental Lemma in the case of
$\rho\geqq 1$ :

Let $\Pi\rightarrow\underline{\backslash }$ be a quantifier-free and closed sequent, and $\rho$ a natural number. If
there exists a $\rho$-derivation of $ fl\rightarrow\underline{\backslash }\gamma$ then the sequent

$\forall x(x<\gamma\supset \mathcal{E}(x)),$ $fl\rightarrow\underline{\backslash }$

is provable for some ordinal number 7’ less than $\prime\prime$ )
$\rho 2$ .

\S 7. A direct proof of Mints’ result.

7.0. In this section we shall state a direct proof of Mints’ result by using our
method.

The quantifier complexity of a formula, defined by Mints [7], is the maximum
number of quantifier alternations in the chains of mutually regulating occurrences
of quantifiers in that formula. Then Mints’ result can be stated as follows:

Transfinite induction up to $\omega_{\nu\vdash 3}$ and higher ordinal numbers cannot be proved

in elemontary number theory only by using mathematical inductions whose induction

formulas are at most of quantifier complexity $\nu$ .
7.01. We shall introduce an auxiliary concept.

A formula $A$ is called a normal formula if it satisfies the following conditions
(i) and (ii):

(i) If $\forall xF(x)$ or $\exists xF(x)$ is a subformula (of $A$) with quantifier complexity
$0$ , then the formula $F(a)$ is quantifier-free.

(ii) If $\forall xF(x)$ or $\exists xF_{(}x$ ) is a subformula (of $A$ ) with quantifier complexity
$\nu+1$ , then the formula $F(a)$ is of quantifier complexity $\nu$ .

Then the following properties are easily proved:
(1) Every formula has an equivalent normal formula with the same quantifier

complexity.
(2) Every subformula of a normal formula is normal.
The proof of property (1) is carried out by a mathematical induction on the

number of quantifiers in the given formula.
7.1. In the arguments stated in \S 2 and \S 4, we read ‘quantifier complexity at

most $\nu$

‘ and ‘ normal formula’ for ‘ at most $\rho$ quantifiers’ and ‘ prenex formula’ re-
spectively, and we can easily see that both Proposition 1 and Proposition 2 hold.
Hence, in order to prove Mints’ result, it suffices to prove

THEOREM 2. Let $\alpha$ be an ordinal number. If there exists a $\nu$-derivatim of the
sequent $\rightarrow \mathcal{E}(\alpha)$ , then $\alpha$ is less than $\omega_{\nu+3}$ .

In the above, $\nu$ -derivation is, in this case, a derivation consisting of normal for-
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mulas with quantifier complexity at most $\nu$ .
On the other hand, Theorem 2 can be inferred (as in 4.3) from

FUNDAMENTAL LEMMA. Let $ Il\rightarrow\Sigma$ be a quantifier-free and closed sequent. If
there exists a $\nu$ -derivation of the sequent $ f/\rightarrow\Sigma$ , then the sequent

$\forall x(x<\gamma\supset \mathcal{E}(x)),$ $f/\rightarrow\underline{\backslash }$

is provable for some ordinal number $\gamma$ less lhan $\omega_{\nu}|3$ .
Hence, for our purpose, it suffices to prove the lemma. In the case of the proof

we need not consider the classification of cases such that $\nu=0$ or $\nu\geqq 1$ . The proof
of the lemma is carried out by similar procedure as that of Fundamental Lemma
in the case of $\rho\geqq 1$ (cf. \S 6).

7.2. The proof of the lemma consists of four stages. The only derivations
considered in the following are those which consists of normal formulas and in
which all basic logical sequents are quantifier-free.

7.21. We define ‘ reduction steps’ for arbitrary derivations of quantifier-free
closed sequent which contains at least one TJ-inference figure. The reduction steps
are those defined in 6.3 and a new kind of reduction steps.

The CJ-reduction step (6.32) is now carried out when there is a CJ-inference
figure with closed principal formula (1.14) in the entire derivation. (It is not neces-
sary that the lower sequent of the CJ-inference figure belongs to the ending.)

The propositional reduction (6.34) is carried out only when the ending includes
a propositional inference figure with quantifier-free principal formula but does not
include a cut with quatifier-free cut formula.

7.210. In order to define the new kind of reduction steps, we begin by modify-

ing the concepts ‘predecessor’ and ‘ancestor’ defined in 4.213.1. In the ‘substitutions
of terms’ (6.2), the formula $F(s)$ in the upper sequent is a predecessor of the for-
mula $F(t)$ in the lower sequent, and every formula of $\Gamma_{1},$ $\Gamma_{2}$ , etc., occurring in the
upper sequent is a predecessor of one occurring in the same place in the lower
sequent (as usual).

Now the ancestors of a formula therefore need not be entirely identical, but
may differ formally in the values of their terms.

7.211. The new kind of reduction steps is necessary, because the formulas in

the given derivation are not always in prenex forms in this case. It is carried out

when the given derivation satisfies the following conditions (i) and (ii):

(i) There occurs no CJ-inference figure with closed principal formula.
(ii) There occurs a cut in the ending whose cut formula has a propositional

connective as its outermost logical symbol and contains at least one quantifier.
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Let us consider such a cut in (ii). Since the other cases are similar we shall
only deal with the case when the outermost logical symbol is $\wedge$ . Suppose that our
derivation looks like this:

..
$\frac{/\rightarrow\Theta,ABAB,\Delta\rightarrow\Lambda}{/,\Delta\rightarrow\Theta,\downarrow}$ The cut concerned

$ll\rightarrow\underline{\backslash }1$

Then the transformation is to construct a derivation of the form:
.
:

$\Gamma\rightarrow\Theta,$ $A$ $A,$ $ B,\dot{\Delta}\rightarrow\Lambda$ The first
: $\overline{\underline{\Gamma_{-},}\underline{B},\underline{\Delta\rightarrow}\Theta_{--}\Lambda}$ new cut

$\frac{/\rightarrow\Theta,BB,\Gamma,\Delta\rightarrow\Theta,\Lambda}{\frac{\Gamma}{l}\int_{\frac{1\Delta\rightarrow-}{7\Delta\rightarrow}}\underline,\Theta=\prime\frac{\Theta,\Lambda}{-\Lambda^{---}},\Theta}$

$Thenewsecondcut$

$ ll\rightarrow\Sigma$ .
In the above diagram, above the left upper sequent $\Gamma\rightarrow\Theta,$ $A$ of the first new

cut and above the left upper sequent $\Gamma\rightarrow\Theta,$ $B$ of the second new cut we write those
obtained with slight modifications from the derivational section (of the given deriva-
tion) standing above the left upper sequent $\Gamma\rightarrow\Theta,$ $A\wedge B$ of the cut concerned; and
above the right upper sequent $A,$ $B,$ $\Delta\rightarrow\Lambda$ of the first new cut we write a modifica-
tion of that standing above the right upper sequent $A\wedge B,$ $\Delta\rightarrow\Lambda$ of the cut con-
cerned. Except the derivational section standing above the sequent $\Gamma,$ $\Delta\rightarrow\Theta,$ $\Lambda$ ,

everything else is left exactly as it was in the given derivation.
For example, the derivational section standing above the sequent $\Gamma\rightarrow\Theta,$ $A$ is

defined as follows:
In the derivational section standing above the sequent $\Gamma\rightarrow\Theta,$ $A\wedge B$, we first

replace all ancestors of the left cut formula $A\wedge B$ by their first conjuncts respec-
tively. Next, if an uppermost ancestor of the cut formula is a principal formula
of an introduction of $\wedge in$ succedent, then we omit the section standing above the
right upper sequent of the inference figure.

In the given derivation, the ending contains no free variable (by the first pre-
paratory step), and every ancestor of the left cut formula is closed. Hence, by (i),

each ancestor of the cut formula is not a principal formula of $CJ$. Moreover each
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ancestor contains a quantifier. Hence each uppermost ancestor is either a thinning
formula or a principal formula of an introduction of $\wedge in$ succedent. This ensures
that by the treatments stated before the correctness of all basic sequents and in-
ference figures is preserved.

7.22. We define the ‘value’ of the derivation (6.12, 6.4). The correlation of
ordinal numbers with derivations are defined in the same way as in 6.4 with the
following modifications (i), (ii) and (iii):

(i) If the inference figure is a $CJ$, then the ordinal number of the line of the
inference is $\omega^{a_{1+1}}+\cdots+\omega^{\alpha_{\nu}+1}$ , where $\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{\nu}}$ is the natural sum of the ordinal
number of the right upper sequent and the left upper sequent.

(ii) If the inference figure is a cut, then the ordinal number of the line of
the inference is the natural sum of 2“ $\alpha^{\prime}s$ and $2^{u}\beta^{\prime}s$ , where $\nu$ is the number of
occurrences of propositional connectives not included in the scopo. of quantifiers in
the cut formula, and $\alpha$ and $\beta$ are the ordinal numbers of the $upp\circ.r$ sequents.

(iii) The level of a derivational sequent is defined now to be the maximum of
quantifier complexities of all formulas occurring in or below the sequent concerned.

The modifications of definition on the correlation of ordinal numbers are caused
by the following facts: The CJ-reduction is carried out whenever there occurs a
$CJ$ with closed principal formula in the entire derivation; a new kind of reduction
steps is introduced.

Then it is proved that with each reduction step the value diminishes. Especially
with the second critical reduction step the value diminishes at least $\omega$ in the sense
of natural sum.

7.23. As in 6.13 by using a transfinite induction on the value of the deriva-
tion, we can prove an exact version of Fundamental Lemma:

Let be given a derivation of a quantifier-free and closed sequent. Let $\gamma$ be the
value of the derivation. Suppose that its endsequent is $\Pi\rightarrow\Sigma$ . Then the sequent

$\forall x(x<\gamma\supset \mathcal{E}(x)),$ $\Pi\rightarrow\underline{\backslash }^{V}$

is provable.

7.24. The estimate of the value of $\nu$ -derivation is easily obtained:
The value of $\nu$ -derivation is less than $\omega_{\nu+3}$ for all $\nu\geqq 0$ .
7.25. Conclusion. From the estimate (7.24) and the exact version of Funda-

mental Lemma (7.23), we can obtain Fundamental Lemma in 7.1, and consequently
Mints’ result.
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