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A GENERALIZATION OF GROUPS WITH A ROOT
DATA AND COVERINGS OF THE GROUPS
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Eiichi ABE

0. Introduction

The groups of k-rational points of semi-simple algebraic groups defined over a
field £ or simple groups of Lie types have a structure of the groups with BN-pairs
(Tits system, cf. [2] Chap. IV) or the groups with a root data (due to Bruhat-Tits
[3]). On the other hand, Chevalley groups (normal or twisted) over a commutative
ring with an identity have also root subgroups but in general, they are neither the
groups with BN-pairs nor the groups with a root data. In this note, we treat these
groups axiomatically. Namely, we generalize the axioms for the groups with a
root data to be able to apply to these groups. Further, we can construct universal
convering groups of these groups in the same way as those of R. Steinberg [7].

As for the central extensions of groups of Lie types, C.W. Curtis ([5]) has
treated axiomatically and the universal extension of Chevalley groups over a com-
mutative ring has been treated by M. Stein [6] and the result has been generalized
to the twisted case by the author [I] Some of these results can be generalized
and simplified by our method.

I would like to express my warm thanks to Professor J. Tits who suggested
me the axiomatic treatement of these groups in the same way as those of the groups
with a root data and to Professor C.W. Curtis who has invited me to the Univer-
sity of Oregon at the fall term in 1976 and has given many kind discussions about
the problem during my stay there.

1. Definition of a group with a root data.

Let £” be a Euclidean space of dimension z. A subset @ of E™ is'called a
root system if it satisfies the following properties:
(SR 1) @ is a finite subset of E™ such that 0¢ ® and ©@= —@ and further ® spans
E™.
(SR 2) For any ac®, let o, be the orthogonal transformation of E" defined by o.(x)
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=xr—{2(x, a)/(a, a)la for any xeE". Then o, (D)=0.
(SR 3) For any «, pe®,2(B, a)/(a, a) is an integer.

The subgroup W of the group of automorphisms of £" generated by ¢, for all
ac® is called the Weyl group of @.

A subset 7/ of @ is called a base of @ if it satisfies
(B1) H={a), -, an} is a base of E™.
(B 2) For any root «ac®, a:ij ci; where ¢; are all non-negative integers or all
non-positive integers. o

There exists always a base of @ and with respect to a base // of @, we set

D= azzn:ciaie(b; ciZ__O} and @-=—@*. Then @®=@ U@~ and @*NOP-=¢. An
element 0? 1(b" (resp. @) is called positive (resp. megative) root of @. @,.q={ac®;
(1/2)ad®} is also a root system and is called the reduced part of @. A root system
@ is called reduced if ®=@,.s. The Weyl group of @ is generated by o, (1=i=n).
As for the properties of root system, see [2], Chap. VI. We shall fix a base I/ of
@ once for all.

A root data of type @ in a group G due to Bruhat-Tits ([3], §6.1) is a system
{T, U, M,}«eo Which satisfies the following properties:
(DR 1) T is a subgroup of G and for any root ac®,U, is a subgroup of G which
is not the identity group.
(DR 2) For any voots «, Be® such that Bé—Q'a, where Q" is the set of positive
ratinal numbers, the commutator subgroup [U.,, U] is contained in the group generated
by Upaiqs fOr p,qe N such that pa+qBe®, where we define Uy ={1} for the empty set ¢.
(DR 3) If a and 2a are voots in @, then Uz EU,.
(DR 4) For any root a, M, is a left coset with respect to T and U*.,=U-,—{1}C
Uu.MU.,.
(DR 5) For any roots a, Be® and nelM,,

nUgn='=U, -

(DR 6) If U+ (resp. U-) is the subgroup of G generated by U, for all positive (resp.
negative) roots a€®, then TUNU-={1}.

A root data is called generative if it satisfies further
(DR 7) G is generated by T and U, for all ae®.

Let G=SL, (k) be the special linear group over a field 2. Let E™*' be the
Euclidean space of dimension #+1 and {e;, ---, e,.:} be the set of unit vectors. Then
O={a;j=e;—ey; i+]j,1=i,j=n+1} is a root system in the subspace E"= {%lxieieE"“;
1+ +xp1=0t of E**! of dimension #n, and /T ={a;=e;—e;,1; 1§z§11=zl} is a base

of @. Let e;; be the matrix unit, namely (z+1)X(#+1) matrix whose (7, j)-entry is
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1 and all the other entries are 0. For any fek, we set x;;(¢)=I+te;;, where I is
the unit matrix of degree n+1. Now, let U.,; be the subgroup of G generated by

xz;;(t) for all tek. For any tek*=k—{0}, set
wij(8) =1:(8)xj( — )i 5(2)
hif(t) =wi {(Hwi(—1)

and let 7 be the subgroup of G generated by #%;;(¢) for all ¢ek* and all (z, 7) such
that i#j, 1=i, j=n+1 and let M., be the coset Tw;;(1). Then, the system {7, U.

J
M., }a;c0 18 @ generative root data for the group G.

ij?

Now, let R be a commutative ring with an identity and G=SL,.,(R). The

subgroup U,,; of G generated by wx;;(¢) for all teR is called a root subgroup of G.

i
For any element ¢ of the group R* of the units of R, we can define w;;(¢) and A;;(¥)
and also the subgroup T and the coset M,,;=Tw;;i(1). Then, the system {7, U,
M. }asjeo satisfies the properties (DR 1) to (DR 6) except (DR 4).

Let m be a maximal ideal of R and k=R/m. Then, we have a natural homo-

iy’

morphism
Pm * SLn1(R)—>SLn1(R/m)

where in the group SL,.:(R/m), we can define a root data which satisfies (DR 1)
~(DR 7). So that, corresponding to each maximal ideal of R, there is some system
of subgroups in SL,.,;(R) which induces the root data in SL,.,(R/m). This leads to
the following generalization of a group with a root data.

Let A=4,U{l} be a set, where 1¢ 4, and @ be a root system. A system {7%
U.*, M,}aco..cx Which satisfies the following properties is called a (generalized) root
data of type @ in a group G.

(DRG 1) T% U, (1ed, ae®) are subgroups of G. We denote by T, U, the groups
T, U, respectively. Then U,* is a proper normal subgroup of U. for any i€/, and
ae®. T* contains T for any A€ A,.

(DRG 2) For any roots a, Be® such that p&—Qta and for any A€, the commuta-
tor subgroup [U.*, U, is contained in the group generated by Uyl qs for p, ge N such
that pa+qPpe® where we define Uy={1} for the empty set ¢.

(DRG 3) If a and 2a arve voots in @, then U Ac U, for all 2eA and U..SEU..
(DRG 4) For any root ae®, M, is a left coset with respect to T such that M,=M_,
=M,'. For any ied,, set V,i=U,—U," and let K* be the normal subgroup gene-
rated by U, for all ae®. Then

(i) U.NK?*=U,* for any ied, and acd.

(ii) VL,=ZQ0 Vi+g and V_.C V.M, V. for all acd.

(iii) Let M,* be the coset T'n for neM,. Then
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ViiaC VAMAV A for any ied, and aed.
(DRG 5) For any roots a, pe® and nell,,
nUgn='=U; 4 for any 2€/.

(DRG 6) If U* (resp. U-) is the subgroup of G generated by U, for all positive
(resp. negative) roots ae®, then

(1) TU NnU-={1}.

(ii) T*K*U'NK*U-=K?* for any AeA,.
A root data is called to be gemerative if it satisfies (DR 7) and further called to be
strongly generative if it satisfies
(DR 7’) G is generated by U, for all ac®.

Further, if a root data {T'%, U,?, M,}.co.:c4 Satisfies the following properties, it is
called a strict root data in G.
(DRG 8) Let K= N K* then KcU*TU-.

€40

(DRG 9) XQAOT‘K1=TK.

If A, consists of a single element {2} and U,*={1} for any root ae® and T'*=
T1, then the root data is called to be simple. A simple root data coincides with a
root data defined by Bruhat-Tits. If A is a finite set, the root data is called to be
of finite type and if K={1}, the root data is called to be semi-simple.

Let {T%, U.*, M.}eco,ics be a root data in a group G. For any 2¢4,, set G,=G/K*
and define U,,=U,K*K?* which is isomorphic to U,/U.NK*=U,/U.* (DRG 4-i),
M e=M,K?*K?*and T,=T*K*K?* Then the system {T%, Uia, M;a}.co iS a simple root
data in the group G,. Also, set G=G/K and for any i€/, define T*=TK|K, U,*=
U K/K and M.=M,K/K. Then the system {T% U.’, Mo}ucoics iS @ semi-simple root
data in the group G. In fact, by (DRG 4-ii), we have U, U, for any ieA, It is
clear that U, KNK*DU,K and conversely, if 2’ =ukecU,KNK?* then u=~k'k'cK*N
U.=U,* by (DRG 4-i) and we have k’¢U,’K. Therefore, U, KNK*cU,K. Fur-
ther, TKU*NKU-cK?* for all ied, by (DRG 6-ii). Therefore, TKU*NKU-cK.
Since TKU*NKU-DK, we have TKU*NKU-=K. This gives (DRG 6-ii) for the
system {73, l—],,‘,]\;l,,},,e,,,,ZG « Other axioms follows from axioms for the group G.

2. Examples of groups with a root data

As an example of a group with a root data, first we take up a Chevalley group
over a commutative ring (cf. M. Stein [6]).

Let R be a commutative ring with an identity and G be a Chevalley-Demazure
group Scheme of type @, G(R) be the group of points of G in R. For each ae®,
there is a monomorphism
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t——rel(t)

of the additive group Go(R) of R onto a subgroup U.=U.,' of G(R). The subgroup
E(R) generated by U, for all ae® is called the elementary subgroup of G(R). Let
Spm R={m,; Aed,} be the set of all maximal ideals of R. Denote by U.’ the sub-
group of U, generated by e.(?) for all tem,. Then, U,* is a proper normal sub-
group of U, for any e, and V,'=U,—U.* is the set of elements e.(f) for all
te R—m,;. Then, we have

Vo= N Vi={e.(t); teR*},

A€o

where R* is the multiplicative group of the units of R.
For any te R*, we set

Wo(t) =e (t)e_a(—t1ea(t)
Rt =wa(Hwa(—1) .

Further, for any pair of elements #, ue R—m, such that fz=1 (mod m,), we set

wAt, u) =et)e_(—u)e.t)
Rt w) =w A E, w)w.(—1) .

Now, let 7% (resp. T'=T) be the subgroup of E(R) generated by /h.'(¢, ) for all
a€® and all elements ¢, % of R—m, such that fz=1 (mod m;) (resp. by A.(#) for all
ae® and te R*), and by M, the left coset Tw.(1). Then, we have

PROPOSITION 2.1 Let G(R) be a Chevalley group over a commutative ring R
with an identity of type ®. Then, the system {T*, Ud*, Mo}uco,ea S @ root data in
the group G(R) and it is a strongly generative, strict root data in the elementary
subgroup E(R) of G(R).

Note that if R is a field, the root data is simple and if R is semi-local (resp.
without radical), then the root data is of finite type (resp. semi-simple).

Proor (DRG 1,2,3) are clear from definition. Since K* is contained in the
kernel of the natural homomorphism ¢,: E(R)—E(R/m,), we have U,NK*=U.* (DRG
4-1). If we denote by J the Jacobson radical of R, then

K=nNK'=n ER,m)CER,]).

A€ 40 €40
Since e, (1)e V., V.#¢. For any ueR*,
e_o(tt)=e (YW (— Ve ") eV MV, .

Thus, we see (DRG 4-ii). Also, for any pair of elements ¢, % of R—m, such that
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tu=1 (mod m,),
e-(t)=e.(t)w(—t, —u)e.t)e VMV,

Thus, we see (DRG 4-iii). (DRG 5) is trivial and we can see that TU*NU-={1}.
Since E'(R/m;) is a group with the simple root data induced by the system {7'%,
Ua*y Mo} aco,er» We have

T'K*U*NKU-=K*

Thus, we have proved (DRG 6). Therefore, the system {T'%, U.*, M,}ucoscs IS a root
data in the group G(R) and it is strongly generative in the group E(R). Now, we
shall show that the root data is strict in E(R). Let Ux*=U*NK and Tx=TNK.
To claim (DRG 8), we shall show that L=Ux'TxUx~ is a normal subgroup of E(R)
generated by N U,'=U.NK for all ae®, this shows that K=LcU*TU-. To do
this it is sui%gient to show that e.(t)Lc L for any e,(¢)eK,ae(—1/) and L is nor-
malized by e.(t)e E(R) for any ae(—//). We claim that e,(#)Lc L for any e.(¢)ekK,
ae(—1I1). If ae(—1/) then e,(?) normalizes the subgroup Ug,+_(—., generated by
es(t)e Uk for all pe®'—{—a}. Further, since #=1+st is a unit in R if seJ or te],

we have
(1 t><1 ))(1 —l‘)_( 1 O) (u 0)(1 —tzsu”‘)
0 1/\s 0 1) \sut 1/J\0 «'/\0 1 )

Call)e—o(S) =C_a(st™)a(tt)e(— s~ )ea(t)

Therefore,

for any te/ and seR. Thus, we have e, (¢)LcC L for all e, (t)eK,ae(—1/). We claim
that e.(¢) normalizes L for all wae(—//) and teR. We have

L= U},w*-(—a) UK,-—aTKUI}

where Uk .=U-.NK. e.(t) normalizes U ,+_(_,, and Uz by the above equation,
ea(t)Uk, ~ata(t)'C L. Also, e.(t)Txe(t)'cTxUzc L. Therefore, e.(t) normalizes L for
all ze R and ae(—17). Finally, we shall show (DRG 9). It is trivial that N T*K*?

2€40

ODTK. If xe N T'K?* then by canonical representation of G,z is diagonal modulo
A€o

K* for all 2e4,. Therefore, x is diagonal modulo K. So that xeTK and we see
N I"K*=TK. g.e.d.
e As the second example, we take up twisted Chevalley groups over a commu-
tative ring R with an identity and with an involution (cf. E. Abe [I]).

Let G be a Chevalley-Demazure group scheme of type ®=A, D, or E; and of
universal or adjoint type. Let G,(R) be the twisted Chevalley group over R and
E(®,, R) be its elementary subgroup. Let Spm,R={m,; 1€.1,} be the set of all g-

invariant maximal ideals of R. For convenience, we assume @ is of type A,, (The
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other case is simpler than the present case). We shall denote (@.)rea simply by @,.
Let

R=1{6=(a,b); a,beR, ai=b+b}
R¥={6=(a,b)eR; be R*}.

For a long (resp. short) root a€®,, there is a bijection #——x.(Z) (resp. E——x,(8))
of R (resp. R) onto a subgroup U,=U,' of E(®,, R). Let U.* be the subgroup of
U, consisting of the elements x.(¢) for all fem, (resp. x.(§) for all &=(a, b) such
that @, bem; for a long (resp. short) root a. We set, for a long root a€®, and fe R*,

Wa(t) =xa(t)2 - — 1) 2a(?)
") =w. (Hw.(—1)

and for a short root a€®, and £=(a,b), n=(c,d)e R*,

Wal€) = Lo(E) ol —b—E)u(bO~'—)
ho(&, 7)) =Wa(E)wa(n) -

Further, for a long root «e®, and a pair of elements ¢, # of R—m; such that fu=1
(mod m,;), we define

WoA(t, ) =2 (8)x_o —tt)xu(t)

(it u)=w At wyw—1),

and also, for a short ae®, and for £=(a,b), p=(c,d)e R such that b, de R—m,, take
a pair of elements x,ye R—m; such that br=1, dy=1 (mod m;), we define

W A&, &) =L E)T— o —b—E)Lo(bF—E)
hA(E, x5, Y) =W E, 2)Wat(n, ¥) -

Let T'! be the subgroup generated by /.(¢) for all long roots « and all e R* and
ho(€,n) for all short roots a and all & »eR*, and let M, be the coset Tw,.(¢) for
some te R* if a is long and the coset Tw,(&) for some &€ R* if a is short. Let T'*
be the subgroup generated by %.4(¢, ) for all ¢, ue R—m, such that fu=1 (mod m,)
for all long roots a, and A&, z; 5, y) for all £=(a,b), n=(c,d)e R* and z,ye R—m,
such thnt dx=1, dy=1 (mod m,), for all short roots a.

If the intersection of all ¢-invariant maximal ideals of R coincides with the
Jacobson radical of R (for example if R is a local ring) and R*+¢, we can show
that the system {73, U.*, M.}aco, e iS @ strongly generative strict root data in E(@,,
R). We shall omit the proof.

3. Properties of a group with a root data

We shall give here some fundamental properties of a group G with a root data
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{T* Us*, Ma}acoser- We shall omit the proof of statements which can be seen in the
same way as [3] §6.1.

BY) U.#U-. for each ac®. UM U.NNU,)=¢ and in particular V_eNN(U,)=¢.
(3.2) For each root ae® and an element ucV?, for A€/, there exists an element
m(u) of M.* such that ue V.'m(u)V.A If mi(u) is an another such element, then
my(u)e Ulm(u) U2

Proor By (DRG-ii), we see ue V.AM,*V,%. Thus, u=u'mu’’ for some u',u’eV,2
and me M. If w=wmu'’ =u'mu," for w', w'’, u,, u,/'’ecV.* and m, m,e M, then
" =mym~(mu," ~'mY), where u, " 'u’ =u’ € U, muy'w’’ ~'m'e U_, and myym—'€ T*.
Therefore, by (DRG 6-ii), u)’ =mymu’ e T'U_,NU,cK‘NU,=U,. So we have
w,'=u’ modU,*. Further, mm,~=mu,"" '’ ~'meT*NU_.cK*NU_,=U-,. Thus, we
have "’ =u’"" modU,*. q.e.d.

(3.3) For each root ac® and an element ueV_,, there exsists a unique element n:(u)
of M. such that uwe V.m(n)V,.
(3.4) T mormalizes M, for all acd.
(3.5) If a/2¢®, then M,cM,,,.
(3.6) TUM, is a subgroup of G.
@7 V.M. U,=V_,TU, for each ac®.
(3.8) Let N be the subgroup of G generated by M, for all ac O(+#¢). Then there ex-
ists an onto homorphism v: N—W such that v(m)=c. for any meM,. N normalizes T.
(3.9) For each root a, let M. =m(V,)={m(u); ueV,} and T°=TN<M,°; aed >,
Thern T° is normal in T and also in N.
(3.10) Let G° be the subgroup of G generated by U, for all root ac® and T° =
T*NG* for each ieA. Then {T°, U, T°M, ) cocs is @ root data in G°. In general,
let XC T be a subgroup nomalized by M,° for all ae® and Gx be the group generated
by X and U. for all ae®. Then the system {XT°, U2, XT M, corcs is @ root data
in Gy.
(8.11) Let {T, Usy Maoboeo be a simple voot data in a group G. Let L, be the subgroup
generated by T,U, and U_,. Then

(1) L.=TU, VUM U,=TU,0U_-.TU,+U_,TU,

(ii) N(U)NL.,=TU,, NNUJNNU-)NL,=T

(iii) Ma={xe€L,; xUx*=U_,, 2U_.x*=U,L}.
In particular, M, is completely determined by T, U, and U-_,.
(3.12) Let @=U®; be the decomposition of © into irreducible components, and G.° be
the subgroup oflG generated by U. for all ae®s. Then {T*NG:, Ud, MaN Gi®}uco,re
is a root data in G°,G," is a normal subgroup of G° and G*NG,° is contained in
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the center of G° if i#j. G° is a centrval product of Gis.
(3.13) U™ is a nilpotent subgroup of G. Let ¥ be a subset of @+ closed under ad-
dition of roots and let ¥,.a={ac¥; a/2¢¥}. For each ac¥, let Y, be a subgroup of
U. and we set X.=Y, if 2ae¥ and X.=Y.Y,. if 20¢¥. Let X, be the subgroup
of G generated by X, for all a€¥ .. Assume,

(i) For each linearly independent roots a,B in ¥, the commutator subgroup
[Y., Y] contained in the subgroup gemerated by Ypaiqs D,q>0 and pa+qBe¥.

Then, there exists a bijection from || X, onto X, under some fixed order of
W roa. e

(ii) For each veE™,{Y.Duer,aw)20 N Yapacw,ay<o=1{1}.

Then, X, is nilpotent. In particular, if we apply the result for Y,=U.* we de-
note X, by Uk.
(3.14) Let ¥ be a subsystem of @, II, a base of ¥. For each a€ll,, let N, be a
non-empty subset of M.,, let N, be the subgroup generated by N, for all acll, and
let X be a subgroup of T normalized by N, such that N2c X for each aell,. Then,
there exists a homomorphism p: N\ X—W such that p(n)=oc. for all neXN, and
(N X)) is isomorphic to the Weyl group W, of ¥ and Ker p=2X.
(3.15) Let N={M,; a€lld, then v*1)=T=NNTU*.
(3.16) Let {T, U,, M.}eeo be a simple root data in a group G and S={u(M,); acll}
be the subset of W=N|T. Then, {G,TU*,M,S} is a Tits system with the Weyl
group W.

4. Coverings of a group with a root data

We shall construct a covering of a group with a strongly generative, strict
root data assuming further some conditions. (As for coverings of a group, see M.
Stein [6])

Let @ be an irreducible root system of rank>1 and let /7={a;, ---, @} be a base
of @. For any integers i,j(1=i,j=mn), set

Vij={pa;+qa;e®; p,qeZ}
U= Uqfij .
)

Then the following lemma is well known.

LEMMA 4,1 For any root ac®, there exists a closed subset W, of @ such that
ac¥, and w¥.)cO*NY¥;; for some we W and for some ¥; and w(a)¢ll.

PropoSITION 4.2 Let {T?*, Us*, Mu}aco,ica be a generative root data in a group
G. Assume
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(DRG 10) For any root ac® and Aed, Ut is contained in the subgroup of G gene-
rated by Ug* for any Be¥. linearly independent to a.
Then, K* is the subgroup generated by U,* for all ac®.

Proor Since the root data is generative, it is sufficient to show that 7" and
U, normalize the subgroup L* generated by U,* for all fe®. If j is linearly inde-
pendent to « and weU,, then by (DRG 2), uUsu"'cL* Now, assume a,f are
linearly dependent. Let L,* be the subgroup of L*‘ generated by U,* for all ye¥;
which is linearly independent to 8. Then, by (DRG 10), U *c Ls* and we have that
uLgu'c L* for any ueU,. Therefore, «Ugu~'c L* for any ueU.. q.e.d.

Note that (DRG 10) is true for Chevalley groups over a commutative ring of
type @ which is irreducible of rank>1.

THEOREM 4.3 Let G be a group with a strongly gemerative root data {T?, U.%,
M) eco.2cs Where @ is irreducible of rank>1. Assume that the root data satisfies (DRG
10). Let G be the group generated by U, for all ae¥ which is isomorphic to U,
together with relations (DRG 2) for all roots B,7€¥s; for all i,j (1=i,j=n) such that
pe —Q'y. Then, G isa group with a root data of type ®.

(4.3.1) From (3.3), for each root ac¥ and an element ueV_., there exists a unique
element m(u) of M, such that ue V.m(u)V,. In (3.8), we denote by M.=M.,"=m(V.,)
={m(u); ueV.}, where m(u)=u"uw'’ for some u', w'’' eV, We define in(u) the element
of G expressed by 0'a0’’, and let M., be the set of all elements m(u) for all 4€V _,.
If m, is an element of M ., then v(z(i.)) =0, and for any elements «, €W s;, we have

r’r‘zaUpﬁza“= Uou(p)

where w is the natural homomorphism of G onto G.

Proor First, let a,8 be linearly independent roots of ¥';;N®,a. We set @' =
{pa+qBe®; p,q>0}. Then,

WL,UleQ“C (74,, and Uaa(ﬁ)c (74): .
Since U, =U, and the expression of an element of U, as a product of elements of
X. (€@ ND,.q) is unique (cf. (3. 13)), we have
o Usita™' = Ao.,(ﬂ) .

Next, let a, 8 be linearly dependent. From the assumption (DRG 10), U, is con-
tained in the subgroup Uy, where ¥’ is the set of roots ye¥; linearly independent
to g and we have

Mg Usits™ C Usyrs -
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By the uniqueness of the expression, we see
f’flﬁUﬂﬁ’l\g—le_ﬂ. q.e.d.
4.3.2) Let a€¥,ea=¥ N@ra. Define
To={a 1 k=1,2, -, M. PeM,>
Tij:<Ta; aewij> ’
Nij:<Tij; M.; ael;;>.

From (3.2), for each root ae¥? and an element % of V2, there exists an element
m.*(u) of M,* such that wue V.'m, (u)V.:. Therefore, m.(u)=u'un'’ for some u',
w’eV,.. For any ae¥, we define

M =@ u)y=0'00" ; @/, 4" eV .3, 4eV 2}
A=A A S f=1,2, -, maz(i>eMax>

T =<7A‘,,* ; acl>

~»

We shall show that for each ae¥ there exists a subgroup U, of & isomorphic to
U.and M. can be defined as above and that the system {T%, U, M alaco,:es 1S @ TroOOt
data in the group G.

(4.3.3) T =T, for any a, Be¥s;N Drea.

Proor We have s ema(VV _sVma =V, V- eVo.cor Since
n(ﬁ’laﬁlﬁﬁ%“l)e Vaa(ﬁ) V—ga(ﬂ) Vg"(ﬁ)nN and U(ﬁ(ﬁlamﬂmg_l))zﬂ'ga(p), we have mnmpﬁ\’la_le
M,, . Therefore, m.T g 'cT, 4. By symmetry,

f}\’laT,sma_l =Tq:‘(5) .
(4.34) T;<|N;j and the natural homomorphism
¢ Nej/T1;—>Nij/ T
is an isomorphism.
PrRoOOF  Set . =T ;;/. and M2 =1, MaiMsih.=1M, - SO we have that ¢ is an

isomorphism by (3.14). ,
(4.35) Lot N=(T o, Mo, (1=i=n)y and T =(T.,; 1=i=nd. Then TN and N|T=W.

Proor By definition, we see T<]IV. For any a,ﬁel’fijn@,ed,fzaf‘ﬂha‘]‘:f‘ﬁ for

h.eT.. Thus, ff‘a<]Tij. Now, we shall show that T‘i,——-(T%, T,.].> which shows that
T=<T%.,1§i§_n>. Let Be¥;; be linearly independent from a;,a; and assume that
ilgl€<Tai,i‘aj for any p’<8. Then, since a.,(B8)=p"<B, we have

7 o~ -~ 7 oA T —ir/7T o~ ~7 T A
s ME =Ml hy (hgMl)) =i, b

=, AL hmPe T o T 5 T o,
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Therefore, hie{Ta; Ta;>- N|T=N|T follows from (4.3.4).

(4.3.6) For any ac®@*, there exists subgroup U, of G satisfying

(i) =(U,)=U..

(ii) T normalizes U..

(i) U.=U., if a=ai

(iv) Ma Ut} =Usyar if a,a; are linearly independent.

Proor The proof is the same as the proof of step (c), 14-08 [4]. We shall give
here the proof for convenience of the reader. If a¢®@/4, then a/2€@,.q and U,SEU.,».
Therefore, we may set U.=U.5U.,,.. Therefore, we assume that ae®;,,. We shall
construct subgroups U, by induction of the lexicographic order of the roots. As-
sume that we have already constructed the subgroups U, for each 8 such that 0<
B<a which satisfy (i)~(iii) and (iv) for any root a; such that 0<o:i(p)<a, 0< ;e
We shall construct the subgroup U.. If aell and a=a;, we may take Uasz%.
Now, assume a4/l and 0<o;(a)a. We take Uazihaiai(a)r’r‘z;i‘, then U, satisfies
(i)~(iii). We shall claim that if 0<loja)=a,

;U7 = Ul jay -
If ae¥;;, then this follows from (4.3.1). Assume a¢¥':j, then for any ge<ai, 0>, o(a)
>0 and ola)=a. If i=j, then @, U.m:=m2,U, M=U,wm. If i#j, we shall
divide the proof into the following two cases.

Case 1 a>oj(a): Since o(a)a for each oe{ai,0;> and o;(a)=(0ci0;)" ¥ 'oi(a), We
have 0<(gi0;)oi(a)a and 0<o;(0:0,)0i(a)<a. Therefore,

U, jcay = tafta )" 15 Ul o (Pl e ) "9 1
:(@“i@“j)nij_lﬁ;i%mﬂiUvi(a)m;;)ﬁ\’lni(maiﬁaj)—niﬁ1
=Ma; U3}

Case 2 a=oa): Let P=Ra;+ Ra; and Q= P*. Since a=o,(a), for each o€{a;,
07>, The restriction of ¢ to @ is the identity and (a,a;)=0. Therefore, the ortho-
gonal projection a’ of @ on P is orthogonal to a; and for any oe€{gi,0,), o(a)=a if
and only if o(a’)=a’; if o(a)=a, then the restrictions of ¢ and ¢; on P are coincide.
Thus, we have g(a)<a for each o€{gi,o;> such that a1, s#0;. Now, we set

TL-:(Tj(O'i(fj)l_lO'i, p;=(aiaj)l01; .
Then, r; and p, are #1 and also +#a; for all ! (1=/=n;;). So we have t(a)<a, pi(a)
<a(l=l=n;;). By induction assumption,
Uaj(a) =(maimaj)nij_l Uai(n)(mnimaj)_nij o
= (PPl )~ T Py Uy PO VP (P P )09
=Ma; UMz g.e.d.
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(4.3.7) For any ac®-, there exists a subgroup U, of G such that (), (i) and (iv)
hold.

Proor For a given root ac®, let ¢ be an element of W such that o(a)e®”,
and define U, the subgroup 7u(c) " U,7(s). Now, we shall prove that the group
U, is independent of the choice of ¢. It is sufficient to show that if ¢(@)>0 and
o’(a)>0, then (o) U,cuyit(c)=(c") U, cyii(a’). Let o'07'=0;0;, 0, be a reduced
expression, then o;0;,,,::+,0;(0(2))>0 (1=i=s). Therefore, by (4.3.6), we have

Y -~

Mgy My Uscar g My = Usiare q.e.d.

(4.3.8) a;Uaitt;}=U, c for all asell and all acd.

J

Proor If ae®* and a;+a, then this is (4.3.6). If a=«; then, (7_”:7%‘;(7”1’;'2,,,-.
If we®-, then there exists g€ W such that ¢(a)>0. Therefore,

—~

ﬁ;} Uam“]’ :ﬁ'l;]lm(o-)—l Ua(a)”/\/l(o-)maj .
Since a(o;(05(a)))>0, we have
qu(a) ZWZ;;WZ(O')“] ﬁg((}j(ﬂj(a)))m(g)ma‘i :Wl;!Uanaj . q-E.d.

(4.3.9) Define U=U.NK* and U is a proper normal subgroup of U. isomorphic
to Ul. For any linearly independent roots a, BeD,
[Uﬂl} Uﬂ]c n ﬁ%aﬂlﬁ .
0,2<0
DPa+qBEP
Proor For any linearly independent roots a, €@, there exists an element o€ W
such that o(a), o(8)e¥;; for some i,j. So that by hypothesis, we have our assertion.

(4.310) TUO+nU-={1}, TR U+ N K U-=K* for any ie/,.

Proor Let ha=0eTU N U-, where heT,2eU+ and e U-. Then, n(htd)=n(d)e
TU*NU-={1}. Since z|y- is a bijection, we have #=1 and A2=1. Thus TUnO-
={1}. Now, let ha=FEoecK*T*U*NK*U-. Then Ek-hii=0 and z(®)eK* So we
have seU-N K+ and koeK* Therefore, we have K T:U+n K U-=K* q.e.d.
(4.3.11) If the root data (T, U, Miyaco is simple, then (TU*,N,S} is a Tits system

with the Weyl group W.
This completes the proof of Theorem 4.3.

THEOREM 4.4 Let G be a group with a root data of type @ which is strongly
generative, strict and satisfies (DRG 10) and @ is irrveducible of rank >1. If the
group G defined in Theovem 4.3 is also a group with a strict root data, then Gisa
central extension of G.
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(4.4.1) Let G, G’ be groups with root data {T* U.*,

G Mo} cozens (T3, Uy Mo} weo.:en OF the same type @ which

_, is irreducible of rank >1 and over the same set .

l N Let ¢: GG’ be a homomorphism of groups such that

HUH=UY for all ac® and iec/, then there exists a

o homorphism ¢: G—G' such that $(U.=0" for all ac®
and e/ and that ¢on=n'od.

Proor The restriction ¢, of ¢ to U. induces a homomorphism @, of U, into
U.. Now, let #,,2,eG where a, 8 are such that g¢—@Q." and

[#a, As] = =L H uparqﬂ

If n(#t.)=u. then by definition of G, [u,,,u,g]— ﬂ upa+qﬂ Also if ¢(u,)=u,’, then
we have [« ,uﬁ’]- ﬂ upcH 03 Therefore, [¢a,(uu),¢ﬁ(up)]— ﬂ Gpat i @ipasgs)y Where

P is the homomorph1sm of U, into U.’ induced by Da. Thus, ¢ }.eo can be extended
to a natural homomorphism ¢: G—G’ such that gor=r’ . q.e.d.

(44.2) (GChr=(G)"

Proor Let ¢*: G—>G/K*=G; be the natural homomorphism. Then by (4.4.1),
there exists a homomorphism ¢*: G—(G,)" such that Pplor=m,0h* where r,: (G,) "—
G; is the natural homomorphism. Since K*c Ker ¢*, ¢* induces a homomorphism of
G/K*=(G), into (G,)~ which we denote by the same symbol .. By (DRG 4-i), U.N
K*=U,. So the restriction of @, to U.n K* is an isomorphism onto U,N K*=U,*
Therefore, ¢* induces an isomorphism $.*: U./U.N K*>(U,)JU.NK*) =U.JU.N K.
The inverses of ¢,* for all ae® induce a homomorphism P (G;)"—(G); which is
the inverse of q’b“. Thus we have (G);"=(6);. q.e.d.

(44.3) The natural homomorphism @/K *>GIK* is a central extension.
Proor G/K*? is a group with a simple root data. It is well known that (G/K*)"
is a central extension which can be proved using the Bruhat decomposition.

(4.4.4) The natural homorphism G|K—G|K is a central extension.

Proor Since G/K (resp. G/K) can be imbedded in I (6= JL G (resp.
[1 G:) naturaly and by (4.4.3), the homomorphism ﬂ (G)— H G, 1s central, we
€4
have that G/K—G/K is central. q.e.d.
(44.5) If G and G are groups with a strongly genmerative, strict root data, then r:
G—G is a central extension.
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Proor Since, by (4.4.4), the homomorphism #: @/K' —G/K is a central exten-
sion, Ker FCXGQOT‘K‘/R' Therefore, Ker nclgof‘ll@ which coincides with TK by
(DRG 9) for the group G and further Ker xc U*TU- by (DRG 8) for the group
G. First, we shall show that Ker zc7. The map of U+xT xU- into G defined
by (&, h, 0)—ahd is a monomorphism. For, if #Ad=a,ho,, then h~'d"‘ah=0,0""¢
TU-NnU-={1}. Thus, we have #,=9 and 4,"‘a=mh'eT NU+={1}. Therefore, we
have also #,=# and A, =h. Let 2= ﬁizﬁeKer r. Then n(2)=uhv=1 and we see u=
h=v=1. Thus, #=p=1. So that 2=heT. Now, let heKer . Then n:(hu,, N=n(t,)
for all #,eU, and ae®. Since the restruction of = onto U, is an isomorphism, we
have h#.h'=d, for all #,eU, and ae®. Since G is generated by U, for all ac®,
heZ(G).

This completes the proof of Theorem 4.4.

CoLLORALY 4.5 Let G be a group with a strongly generative, strict voot data
of type @ satisfying (DRG 10), where @ is irreducible of rank >1. Assume that G
is perfect and also assume that the root data in G is strict. Let p: G—G be a
covering of G. If, for any root a€W, there exists a subgroup U, of G isomorphic to
U. such that

(1) i, [7',,771“-[7,, o Jor any ae¥y,

(ii) [UJ,U,S]C H bpawﬁ for any «, Be¥;; such that p¢— Q.+ and for any A€ .

Then there exzsts a unique group homomorphism o : G—G such that o0 =T7.

In particular, applying the corollary for G=G and n=id, we have a sufficient
condition for G to be universal.

5. Application to Chevalley groups over commutative rings.

THOREM 5.1 Let G be the elementary subgroup of a Chevally group over a com-
mutative ring R with 1 of type @, where @ is irreducible of rank >1.

(i) Assume Z[R*]=R, then the root data in G satisfies (DRG 8).

(ii) Assume R is semi-local, then the root data in G satisfies (DRG 9).

Note that the assumption of (i) is fullfiled by semi-local rings with at most one
vesidue field isomorphic to Fs.

Proor (i) Let @,beR* and denote

Wo(@) =24(@) 2ol — @) Zal@), D@, b) =Da(@)Do(—D).
Then,
ho(a, b)=2@) %o —a ") Eo(@)Wa( —b)
=2(@—b)2u(D)Z o — @'+ 1) B — D) Ba(D)B o — b V)2 o(B)Zo(@—b)D o — b)
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= 2u(@—b)*«®F_,(—a~ + ") PO 2 (g —b).*
Therefore,
2 (—a b ) =2 —a+ D@, b)Z_o(b~Ha—b)).
For any beR* and we/,b-'—wu=aecR*. Hence, u=b-'—a for some acR*. Since
1+bueR*, we see (bu—1)"'eR*. Thus, b—a ' =b+bbu—1)"' = b1 +(bu—1)"*)=
b*(bu—1)"'ueJ and we have
2—a® 2 () =2 _o(b—ah_a !, b)Z(b~Ha ' —b))
is an element of U-(R,J)T(R)U+(R,J), where
hoa(@t, b) =2 _.(@=' — b)F—=® 3 (b —a)Z, (b~ b—a™))
is an element of KCE‘(R,]), namely h_.(a',0)eT NK=Tx If Z[R*¥]=R, then
—a® 3 (u)e Ux~TxUx* for all be R. Thus we see UxTxUx*<G.
(i) Let Ao={2, -, A} and xe F\T‘iK’ %, Then x can be expressed by x=#A%4k%" where
n - i=1
hi=T] h(ts, u)eT™, t;,use R—m,, and t;u;=1 (mod m,,) for 1=<i=#n and ke K 4. By
1=1
Chinese remainder theorem, for each #;, ;e R, there exist elements #;/, #;/ of R such
that
t'=t; (mod m;]), t/=1 (mOd mzj) (7>1),
u/ =w;(mod m,,), u/ =1(mod m,;) (i>1).
Therefore, we can replace 21t u;) by A2, u’) which is an element of 7 and

- N oA A P A —1 -
hi'ze N TuRun KA, By induction, there exist A%, ---, hineT such that A -.-h4 'z
i=1

e N K4=K. Since hn ---hii eT,zeTK. qed.

[

ios

COROLLARY 52 Let G be the elementary subgroup of a wumniversal Chevalley
group over a commutative ring R with 1. Under the assumption of theorem 5.1, x:

G—G is a central extension.

THEOREM 5.3 Let G be the elementary subgroup of Chevalley group over a com-
mutative ring with an identity of type @ where @ is irreducible of rank =3. Assume
R is semi-local, Z[R*]=R and further

(i) {u®—1: uecR*} genevates a unit ideal if ® is of type (As), (Bs) or (D,).

(ii) There exists no maximal ideal m such that Rim=F, if @ is of type (Cs)
or (F,).

Then G and G satisfy the assumption of Corollary 4.5 and G is a universal cover-

* For any elements x, y of a group, we denote zy—=xyx~1.
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ing of G.

Proor We shall omit the detailed proof, for we can prove this by the same
way as those of M. Stein [6]. We can only simplify the proof by Corollary 4.5.

We shall show only the case of type 4; (/=3). Let the following is the Dynkin
deagram of the fundamental roots of @.

o e [e]

a, a3 a3

Let p: G—G be a covering of G. We shall show that there exists a unique homo-
morphism of groups ¢: G—G such that pca=n. Take

Fay(8)=[Ta,+ay(8); T-ay(Neytagy —a5)]
Boyrag(lt) =MagZoa(Nuyand Wiz}
= [Zay(— Noagraysast)s Fay(NayagNay g ap)]
Zag(8) = Mo, Tay+ay(NayayNay,ar+anl iz}
= [Z—ay(N-apaysasN-ay.aycagh)s Bay vy Ny ag,—ag)]
and for any fe®, Z4(¢) can be defined as a conjugate of #.,(#) for some #€R. These
are independent of the choice of representatives. We shall show that these elements

satisfy the relations in the root subgroup and the commutator relations as in G.
(56.3.1) Set

Zlo)={re®; ar+71¢®P, 7+ —ai}
={a1+az, a1 +az+as, —az, —az—as, tas, -}
Zlaz)={re®@; as+714®, r+ —as}

={as+az, az+as, —a1, —as, (a1 +as+as), -}

and define Z(U.,)=<U,; reZ(a:)y and Zy(U.,;)=<U,; treZl(as:), i=1,2. For a root
a€Z(a;) the map

¢: ZUN—ZG)

defined by ¢(z)=[%.,, #] is a homomorphism. Since Z(&) is abelian, [Z(U,), Z(U,)]
cKer ¢. Therefore, ¢(z)=1 if ze[Z(U.), Z(U)]. Since Zu +ay(#)€[Usjtagrag U_agls
we have

e Uapiagd=1 and [U.,, Uapia]=1.

If /=3, then Zo(Ua1)=<[7i,,3> is perfect if {#?*—1; ue R*} generates the unit ideal.
If />3, then rank Z(U.;)=2 and Zy(U.,) is perfect. In this case, we have

[ﬁai, 0a3] =1 (i—_—l, 2) .

By definition, if />3, we can see that [[7“,[7,9]=1 for any «, 8e® such that a4 3¢Q.
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(532)  Fu,(t+ 1) =[Fay- oyt +1), B—ny(Noyoay-ay)]
=[Fa s ax(E)Fay an(#)y Toay(Nay i ag,—ay)]
=Tt @O[Fy 0 (), Beay( Ney s ags—ag) [Bay +ag(l)y Foag(Na, s ag—ag)]
=[Zay ap(t)s T-ay(Naysag—ap)Ta (£ Nayag—ag T ay+ag()s T-ay(Najsag,—ap)]
=[Za;+ap(2)y Toay(Nayrag,—ag) [ Fays 8,(8)s Toay(Nay agi—ay)]
).

= Fu, (D)
From the definition, we see that the above relation holds for any root ac®.
(5.3.3) Ty ap(Najad ) =" 3F . o ( Ny o %)

=702 35 (NuyayNay- agi-agt ), Fay(Naiap N, ags ~ap)]

x1a2

- [-i.al Tag n3( _an—‘ a3,a1N(xl - a2,—a2Nala2tu)y j‘—aa( _N—az—as,nzNalazNal+a2,-—a2)]
= ['f'“x tagd "3(N“1r“2+"3tu)’ ‘i'”"s(Naz f “3,—02)]

for N, Nal+a2,__a2=1, Na”9=—N_,,,-/;.

122
On the other hand,
[‘i.ﬂ'l(t)’ jcrz(Z‘)] = [j’;al(t)? [fa24'a3(u)) j—tl;;(-zvcr2+013,—03)]]
- [[-f'al(t); j’;az-!-as(u)]y i—ag(Na2~%a3,—a3)]
:[jal“a2+ tzs(-Nal,aZ 4 a3tu), j—"3(Na2']'“31_“3)] .

Thus, we have [#.,(?), £ap(%)] =Fa, ay(Naja,tt). From the definition, we see that the
above relation holds for any roots a, 83€® such that a+pge®. Therefore, the map
Za(t)—Z.(¢t) defines a unique homomorphism o: G—G such that pco=x under the
assumption of the theorem.

Similarly, we can prove the theorem for groups of types Es, E+, Es and D; (I=5),
and for the groups of type D, under the assumption that {#2—1; xecR*} generates
the unit ideal.

As for the groups of type Bi, C; ({=3) or F,, first define #.(¢) for a long or short
root a and then &s(#) for a short or long root 5. Then, we can define #,(v) for any
7€® as a conjugate of #.(¢) or #su). Among the root subgroups, we can prove the
same relations as in the groups G under the assumption of the theorem.

THEOREM 5.4 Let G be the elementary subgroup of a twisted Chevalley group
over a commutative ring R with an identity and with an involution ¢ and of type P,
where @ is irreducible of rank >1. Assume that the intersection of all s-invariant
maximal ideals of R coincides with its Jacobson radical, R is semi-local and Z[R*]
=R. If @ is of type A (n>1), we assume further the following: R*=+¢. Let

S={beR*; b+b=aa for some aeR}
Si=1{beS: b=1 (mod J)}
S:={ccb; ce R*, beS,}
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and let {(S,) be the set of all b-components of the subgroup of R* (with respect to

4-) generated by the elements whose b-components are contained in S,.  Assume <{S:)>
=S.

Then, G is a group with a strict root data.

Poor We shall prove (DRG 8) for the group of type A... As for the other
statement, we can prove in the same way as the case of Chevalley groups.
Let é¢=(a,b)e R*. By definition,

Wal(&) = 2ol £)2—ay(— b——E)B(bD——E)
Da(£)™) = (Db ——5%).
Now, we define %.(&, n) =@a(&)Da(y) for £=(a,b), n=(c,d)e R*, Then
D8, )= 8o(§)8 o —b—E)D(bb——E)10u(1)
= 8§ +dd——1)2(dd——1)2 (= b F(=d—1)
£uldd =) Ad ) = A2 )y 0B i)

_L B . Aﬂ( >_ . ~—1
x.(dd ”*)z_a((—b—»f)ﬂ—d——»v))w nfra(vﬂ“(bb_’*f))-

1

= 2. Fdd—p)
Thus, we have
. =—1 _ . -
2oldd—=7")z_ (—b—&) 4 (—d—p))
= 2_o((dd=—7*)+ E)Nu(€, 1) B-al(— A1 dbO——E%) +(— d—2d—7%))
In other words,

Z-a(y) .
Z.(E+( —d‘liz——w}*))

= Zuln F(— b8 Nh_o(— b=, d-1d—>7¥)2,(d*db~2b—E*) +(—d—1)) .
Now, for any p=(c,d)e R* and y=(u,v)e R where u,ve], the equation
(u,v)=(a+d"'d%c, b+dd*+dcd-'d?)
has a solution (a,b)e R*. In fact,
a=u—d'd*ceR, b=v—iicd-'d*+d*deR*
and we see ad=b+b. Here, b=d*d (mod J), a=—d-'d%* (mod J) and
hoo—b' g, d'd—p*)e K ¢<(dd *=1 (mod J)

Apply the above equation for »=(c,d),d=1 (mod J) and y=(u,v)e R, where u,ve],
and we have

2-a 2, (e UrTxU% .
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Thus we have (DRG 8) from the assumption of the theorem.
The following theorem can be proved similarly and we shall omit the proof.

THEOREM 5.5 Let G be the elementary subgroup of the twisted Chevalley group
over a comwmutative ving with an identity and with an involution. Assume the same
condition as in Theorem 54. Then G is a universal covering of G if the rank @,
=5.

If rank ©,=4, when G is of the first type, assume further {u—1; ue R*} gene-
vate the unit ideal R and when G is of the second type, assume further there exists
a unit wu€ R* such that u—1, uic—1eR*; if rank ®,=3, when G is of the first type,
assume further {u—1; ueR*} genevates the wunit ideal R, and when G is of the
second type, assume further there exists a unit ue R* such that w=bd for some b,
deS* and u'i*—1, ui—1 are units of R, then G is also a universal covering of G.
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