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WEAKLY UU RINGS

By

Peter V. Danchev

Abstract. We introduce and give a comprehensive study of weakly

UU rings, calling them WUU rings. This notion is a natural gen-

eralization of the so-called UU rings, defined by Calugareanu

(Carpath. J. Math., 2015) and investigated in details by Danchev-

Lam (Publicat. Math. Debrecen, 2016). It also demarcates the

strength of recent results about these kind of rings by giving a strong

barrier between some of their crucial properties.

1. Introduction and Background

Throughout the present paper all rings considered, unless otherwise noted,

shall be assumed to be associative, containing identity element. As usual, UðRÞ
denotes the set of all invertible elements of R, IdðRÞ the set of all idempotents

of R and NilðRÞ the set of all nilpotents of R. When R is commutative,

NilðRÞ ¼ NðRÞ is just the nil-radical of R. Likewise, JðRÞ stands the Jacobson

radical of R. All other notions and notations, not explicitly defined herein, will be

the standard ones which may be found in [1] and [9], respectively. For instance,

referring to [10], a ring R is called clean if each element is the sum of a unit and

an idempotent. Likewise, a ring R is said to be exchange if, for any a A R, there

exists an idempotent e A aR such that 1� e A ð1� aÞR. Clean rings are always

exchange, while the converse is false; however for abelian rings these two con-

cepts are tantamount.

In [3], a ring R is called UU if all units are unipotents, that is, UðRÞ ¼
NilðRÞ þ 1, i.e., each unit can be presented as qþ 1, where q A NilðRÞ. This is

obviously tantamount to the equality UðRÞ ¼ NilðRÞ � 1, that is, each unit can

be presented as q� 1, where q A NilðRÞ. Although this could be showed directly,
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notice also that the element 2 A R is always a central nilpotent in a UU ring R,

and thus qþ 1 ¼ ðqþ 2Þ � 1 with qþ 2 A NilðRÞ. So, it is natural to ask when

any unit can be represented as either qþ 1 or q� 1, where q A NilðRÞ. In what

follows we call such units weak unipotents, and if all units are so the rings are

called WUU rings.

It was obtained in [7, Theorem A] that a UU ring R is precisely such a ring

R that charðRÞ is a power of 2 and UðRÞ is a 2-group. This characterization

helps to be obtained there in an easier form some principal well-known classical

results in that direction of ring theory.

The objective of this article is to generalize considerably almost all results

in [7] to this new point of view. In fact, we shall somewhat establish the

complete description of clean WUU rings (Corollary 2.14) as well as the

complete description of weakly nil-clean rings (Theorem 2.17) and weakly

nil-regular rings (Proposition 2.20). Moreover, a characterization of clean and

weakly nil-clean elements in abelian WUU rings with 6 A NilðRÞ is given too

(Theorem 2.21).

The work is organized as follows: Here, in the first section, we stated the

main instruments and principal known results needed for a good presentation.

In the second section we deal with WUU rings and establish their crucial prop-

erties. We close with a third section, containing a series of left-open challenging

problems.

2. WUU Rings

The following new concept is our starting point of view.

Definition 2.1. A ring R is called weakly UU, and abbreviated as WUU,

if UðRÞ ¼ NilðRÞG 1. This is equivalent to the condition that every unit can be

presented as either nþ 1 or n� 1, where n A NilðRÞ.

The following are non-trivial examples of WUU rings, thereby showing that

there is a plenty of them:

Example 2.2. (a) A ring R is said to be in [8], and generally in [2], weakly

nil-clean if each r A R can be written as r ¼ nþ e or r ¼ n� e, where

n A NilðRÞ and e A IdðRÞ. If ne ¼ en, then the weakly nil-clean ring is said

to have the strong property—see [6]. By [8, Corollary 1.16], commutative

weakly nil-clean rings are WUU rings. In particular, Z3 is a WUU ring.
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(b) Any UU ring is WUU. In particular, by [7], Z2 is a UU ring and so a

WUU ring.

(c) The ring TnðZ2Þ of all upper triangular n� n matrices being UU is also a

WUU ring, whereas the ring TnðZ3Þ is not (compare also with Corollary

2.28 stated below).

(d) The ring Z of all integers is WUU but not UU because UðZÞ ¼ f�1; 1g.
However, it is not an exchange ring.

We can now strengthen Example 2.2(a) a little bit. Recall that a ring R is

abelian provided all its idempotents are central.

Proposition 2.3. Abelian weakly nil-clean rings are WUU.

Proof. By [2, Theorem 12] such a ring R is precisely the ring R with

nil JðRÞ and R=JðRÞ is isomorphic to either a boolean ring, or to Z3, or to

the product of two such rings. Thus, either UðR=JðRÞÞG f1g or UðR=JðRÞÞG
f�1; 1g. Furthermore, because of the inclusion JðRÞ � NilðRÞ and the validity of

the isomorphism

UðRÞ=ð1þ JðRÞÞGUðR=JðRÞÞ;

we deduce that UðRÞ ¼G1þNilðRÞ, as wanted. r

Although homomorphic images of units, idempotents and nilpotents are

again units, idempotents and nilpotents, respectively, it follows in general that

even an epimorphic image of a WUU ring need not be WUU as well. For

instance, as showed in Example 2.2 (d), the ring Z is WUU, while Zp GZ=ðpÞ is

not so unless p ¼ 2 or p ¼ 3 (compare with Corollary 2.7 below). However, the

following is valid:

Lemma 2.4. Suppose R is a ring with I p JðRÞ. Then R=I is WUU, provided

that R is WUU.

Proof. We claim that the group map UðRÞ ! UðR=IÞ, induced by the

canonical ring epimorphism R ! R=I , is a surjective group homomorphism. In

fact, that it is a homomorphism of groups follows easily. To treat the surjection,

if uvþ I ¼ ðuþ IÞðvþ IÞ ¼ ðvþ IÞðuþ IÞ ¼ vuþ I ¼ 1þ I for some u; v A R,

then uv A 1þ I � 1þ JðRÞ � UðRÞ as well as vu A 1þ I � 1þ JðRÞ � UðRÞ.
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These two inclusions manifestly show that u A UðRÞ, as claimed. Furthermore, by

what we have just shown, if w ¼ uþ I A UðR=IÞ, then u A UðRÞ ¼G1þNilðRÞ,
so that uþ I ¼Gð1þ IÞ þ ðqþ IÞ for some q A NilðRÞ whence w AGð1þ IÞþ
NilðR=IÞ, as needed. r

Proposition 2.5. Suppose I is a nil-ideal of a ring R. Then R is WUU if and

only if R=I is WUU.

Proof. Since I � JðRÞ always, in view of Lemma 2.4, we need to prove

only the ‘‘if ’’ part. To that goal, assume that r A UðRÞ. Hence rþ I A UðR=IÞ ¼
Gð1þ IÞ þNilðR=IÞ ¼G1þ I þNilðR=IÞ. But if z A NilðR=IÞ, then z ¼ aþ I

with a A NilðRÞ because I is nil. Therefore, one sees that rH 1� a A I � NilðRÞ,
which ensures that r AG1þNilðRÞ, as desired. r

All of the above facts manifestly demonstrate that there is an abundance

of WUU rings. So, it is rather natural to proceed with some of their special

properties. The first point of the following statement supersedes the same fact

for UU rings from [7].

Proposition 2.6. Let R be a WUU ring. Then the following hold:

(1) JðRÞ is a nil ideal.

(2) 3 A UðRÞ if and only if 2 A NilðRÞ and 2 A UðRÞ if and only if 3 A NilðRÞ.
In particular, if 3 A NilðRÞ, then IdðRÞ ¼ f0; 1g.

Proof. (1) Let x A JðRÞ and suppose that x B NilðRÞ. Since 1þ x A UðRÞ ¼
G1þNilðRÞ, it must be that 1þ x ¼ �1þ q for some q A NilðRÞ, so that

2þ x A NilðRÞ. Similarly, since 1þ x2 A UðRÞ, we deduce that x2 þ 2 A NilðRÞ.
Hence it follows that their di¤erence ðx2 þ 2Þ � ð2þ xÞ ¼ x2 � x ¼ �xð1� xÞ A
NilðRÞ. But 1� x A UðRÞ whence x A NilðRÞ, a contradiction. This substantiates

our claim.

(2) Write 3 ¼ n� 1 or 3 ¼ nþ 1 for some n A NilðRÞ, which yields that

4 ¼ 22 ¼ n or 2 ¼ n. In both cases, we have 2 A NilðRÞ. Conversely, since

1þNilðRÞ � UðRÞ, we have 1þ 2 ¼ 3 A UðRÞ whenever 2 A NilðRÞ.
Write 2 ¼ n� 1 or 2 ¼ nþ 1, which implies that 3 ¼ n or 1 ¼ n. Therefore,

3 A NilðRÞ. For the converse, since 1þNilðRÞ � UðRÞ, we have 1þ 3 ¼ 4 ¼ 22 A

UðRÞ, that is, 2 A UðRÞ whenever 3 A NilðRÞ.
As for the second part, let e be an idempotent in R. Clearly, 2e� 1 is a unit,

whence either 2e� 1 ¼ n� 1 or 2e� 1 ¼ nþ 1. In the first case, 2e ¼ n and thus
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e ¼ n
2 is a nilpotent which assures that e ¼ 0. In the second case, 2e ¼ nþ 2 and

so e ¼ n
2 þ 1 is a unit which ensures that e ¼ 1. r

Note that the above proof illustrates that if e is an arbitrary idempotent in a

WUU ring, then either 2e or 2ð1� eÞ is always a nilpotent. Likewise, in a WUU

ring, 6 cannot be a unit, because otherwise 2 and 3 will be both units which is

against Proposition 2.6.

Corollary 2.7. If R is a WUU ring of characteristic pt for some prime p

and t A N, then p ¼ 2 or p ¼ 3.

Proof. If we assume that p > 3, then it is plainly seen that ð2; ptÞ ¼ 1 and

ð3; ptÞ ¼ 1, so that 2 A UðRÞ and 3 A UðRÞ. But, furthermore, Proposition 2.6

applies to show that 2 and 3 are simultaneously nilpotents, which is a con-

tradiction. This gives our assertion. r

Theorem 2.8. A ring R is UU if and only if R is WUU and 2 A JðRÞ.

Proof. The necessity follows immediately by [7, Theorem 2.6(1)].

As for the su‰ciency, we process like this: First, if 2 A NilðRÞ, then we

observe that WUU rings and UU rings do coincide since for any unit u of R

we must have u ¼ nþ 1 or u ¼ n� 1 for some nilpotent n. Thus, u ¼ n� 1 ¼
ðn� 2Þ þ 1, where n� 2 is a nilpotent, as required.

Furthermore, because 1þ JðRÞaUðRÞ, it must be that 3 A UðRÞ and so

3 ¼ nþ 1 or 3 ¼ n� 1 for some nilpotent n. Therefore, 2 ¼ n or 4 ¼ 22 ¼ n. In

both cases 2 is a nilpotent, and hence by what we have already shown above

WUU and UU are equivalent conditions. r

In [8, Proposition 1.12], and generally in [2], it was shown that if R is a

weakly nil-clean ring, then 6 A NilðRÞ. But whether or not this is true for WUU

rings is not known yet. However, for clean rings, we o¤er the following:

Lemma 2.9. If R is a clean WUU ring, then 6 A NilðRÞ.

Proof. Write 3 ¼ eþ u, where e A IdðRÞ and u A UðRÞ. We have two

possibilities, that are, u ¼ 1þ q or u ¼ �1þ q, which being substituting give

that 2 ¼ eþ q or 4 ¼ eþ q for some q A NilðRÞ. Hence, it is easily verified
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that eq ¼ qe and therefore either 2 ¼ 22 � 2 ¼ ðeþ qÞ2 � ðeþ qÞ ¼ 2eqþ q2 � q A

NilðRÞ or 12 ¼ 42 � 4 ¼ ðeþ qÞ2 � ðeþ qÞ ¼ 2eqþ q2 � q A NilðRÞ. In the first

case, it follows at once that 6 ¼ 2:3 A NilðRÞ or that 62 ¼ 12:3 A NilðRÞ. So, in

both cases, we get that 6 A NilðRÞ, as asserted. r

A ring R is called local if R=JðRÞ is a division ring, that is, every its element

lies in either UðRÞ or in JðRÞ. Equivalently, R is local exactly when it possesses a

unique maximal left (respectively, right) ideal. In addition, if R is commutative,

then R is local if and only if it has unique maximal ideal, say JðRÞ.
Note that any local ring is always a clean ring. In fact, R is a local ring if

and only if R is an indecomposable clean ring, and hence an abelian clean ring.

So, we derive the following consequence.

Proposition 2.10. Let R be a local WUU ring. Then 6 A NilðRÞ.

The following decomposition is essential.

Theorem 2.11. Suppose that R is a WUU ring for which 6 A JðRÞ. Then

RGR1 � R2, where R1 is a UU ring and R2 is either f0g or is an indecomposable

WUU ring with 3 A JðR2Þ.

Proof. Observe that for any n A N we have ð2n; 3nÞ ¼ 1, i.e., there exist

non-zero integers u; v such that 2nuþ 3nv ¼ 1. This, consequently, allows us to

write that R ¼ 2nRþ 3nR. Since 6 A JðRÞ, it follows that 5 A UðRÞ. Hence either

5 ¼ 1þ n or 5 ¼ �1þ n with n A NilðRÞ. Thus 4 ¼ 22 ¼ n, whence 2 A NilðRÞ, or
6 ¼ n A NilðRÞ. So, in both cases, 6 has to be a nilpotent element. This assures

that 6m ¼ 0 for some m A N, and so 2mR \ 3mR ¼ f0g; in fact, if x ¼ 2ma ¼ 3mb

for some a; b A R, then 2mau ¼ 3mbu. However, ð1� 3mvÞa ¼ 3mbu whence

3mðavþ buÞ ¼ a. Multiplying both sides by 2m, we derive that 0 ¼ 2ma ¼ x, as

needed.

Furthermore, we apply the classical Chinese Reminder Theorem to get that

RG ðR=2mRÞ � ðR=3mRÞ. So, we may put R1 ¼ R=2mR and R2 ¼ R=3mR. This

follows also directly, because R ¼ 2mRl 3mR and R=2mRG 3mR, R=3mRG 2mR.

Note that both R1 and R2 are WUU rings as special epimorphic images of

R being direct factors. Since 2 A JðR1Þ, Theorem 2.8 gives that R1 is a UU ring.

On the other hand, since 3 A JðR2Þ, it follows at once that 2 A UðR2Þ whence

Proposition 2.6(2) ensures that R2 is an indecomposable ring with 3 A NilðR2Þ, as
stated. r
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Let R be a ring. We recollect once again that, by [2, Theorem 12], R is an

abelian weakly nil-clean ring if and only if JðRÞ is nil and R=JðRÞ is isomorphic

to either a boolean ring, or to Z3, or to the product of two such rings.

Theorem 2.12. Suppose R is a ring. Then R is a clean WUU ring such that

2 A UðRÞ if and only if JðRÞ is nil and R=JðRÞGZ3.

Proof. The su‰ciency follows like this: Since �3 lies in JðRÞ and

1þ JðRÞ � UðRÞ, it follows at once that 2 belongs to UðRÞ. Also, it follows by

the aforementioned Theorem 12 from [2] that R is weakly nil-clean. But it was

established again in [2] that any weakly nil-clean ring is clean. Moreover,

UðRÞ=ð1þ JðRÞÞGUðR=JðRÞÞGUðZ3Þ ¼ f�1; 1g;

and since JðRÞ � NilðRÞ, one deduces that UðRÞ ¼ NilðRÞG 1, as required.

As for the necessity, by Proposition 2.6(2), R is indecomposable. Hence, each

element x is the form uþ 1 or u, where u is a unit. If firstly x ¼ uþ 1, then,

because either u ¼ nþ 1 or u ¼ n� 1, where n is nilpotent, we obtain that

x ¼ nþ 2 or x ¼ n. Since 2 A UðRÞ, clearly nþ 2 is also a unit, and hence

x ¼ tþ 1 or x ¼ t� 1, where t is a nilpotent. Finally, x is either the sum or

the di¤erence of a nilpotent and an idempotent. Secondly, if x ¼ u, we deduce

x ¼ qþ 1 or x ¼ q� 1, where q is a nilpotent. Hence x has again the same

property. Whence R is an abelian weakly nil-clean ring and, in view of the listed

above [2, Theorem 12], JðRÞ is nil and R=JðRÞ has to be isomorphic to Z3

because in conjunction with Proposition 2.6(2) the element 3 lies in JðRÞ and so

the factor-ring R=JðRÞ is of characteristic 3. r

Corollary 2.13. A local WUU ring R is exactly a ring R for which JðRÞ is

nil and R=JðRÞ is isomorphic to either a boolean ring or to Z3.

Proof. It follows that either 2 A UðRÞ or 2 A JðRÞ. In the first case, we just

appeal to Theorem 2.12 to conclude the claim. In the second case, Theorem 2.8

applies to get that R is a UU ring and hence [7, Theorem B] guarantees that

R=JðRÞ has to be boolean, as asserted. r

As a valuable consequence, in parallel to Theorem 2.12, we yield its gen-

eralization (note that by Proposition 2.6(2) it must be that 3 A NilðRÞ and hence

3 A JðRÞ whenever 2 A UðRÞ):
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Corollary 2.14. Let R be a ring. Then R is a clean WUU ring if and only

if JðRÞ is nil and R=JðRÞ is isomorphic to either a boolean ring B, or to Z3, or to

B� Z3.

Proof. Combining Lemma 2.9 and Theorem 2.11, we observe that the first

factor R1 must be a clean UU ring while the second factor R2 must be an

indecomposable clean WUU ring and hence a local WUU ring. We next just

combine [7] with Corollary 2.13 to conclude the claim.

For the converse implication we can argue as in Proposition 2.3, seeing

trivially that R is WUU clean. r

Remark. The above Lemma 2.9 can now be successfully deduced directly

from Corollary 2.14.

In [7], it was established that a clean UU ring is strongly nil-clean, and vice

versa. We are now ready to improve that to the following:

Corollary 2.15. The next four points are equivalent:

(i) R is an exchange WUU ring;

(ii) R is a clean WUU ring;

(iii) R is a weakly nil-clean ring having the strong property;

(iv) JðRÞ is nil and R=JðRÞ is isomorphic to either a boolean ring B, or to Z3,

or to B� Z3.

Proof. The equivalence (ii) , (iv) follows from Corollary 2.14. The

implication (iii) ) (ii) follows by [2, Corollary 8] and the fact that R must

be a WUU ring. In fact, given u A UðRÞ, we have u ¼ nþ e or u ¼ n� e,

where n A NilðRÞ and e A IdðRÞ. Since en ¼ ne, we obtain that un ¼ ðnG eÞn ¼
n2 G en ¼ n2 G ne ¼ nðnG eÞ ¼ nu, so that u� n is always a unit. Hence so is

Ge and thus e ¼G1. That is why R is a WUU ring, as expected.

To show that (iv) ) (iii), it is a plain technical matter to check that R ¼
JðRÞ þ L � NilðRÞ þ L, where all elements of the set L are central idempotents

due to the fact that R=JðRÞ is commutative, as required.

What remains to prove is that (i) , (ii). The implication (ii) ) (i) being

trivial, we deal with the (i) ) (ii) one. Utilizing Propositions 2.6(1) and 2.5, we

may assume that JðRÞ ¼ 0. Furthermore, using the same idea as in [7], in view

of Proposition 2.23, we conclude that NilðRÞ ¼ 0, so that R has to be abelian.

Hence R is clean by virtue of [10], as needed. r
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Remark. For another verification of the equivalence (ii) , (iii), we refer

also to [6].

The following technicality is our crucial tool.

Lemma 2.16. Suppose u is a unit and e is an idempotent of a ring R such

that u2e ¼ eu2 ¼ e and u ¼ eþ q or u ¼ �eþ q, where q is a nilpotent. Then

e ¼ 1.

Proof. Letting u ¼ eþ q, for some e A IdðRÞ and q A NilðRÞ with qt ¼ 0,

t A N say, we obtain that u2 ¼ eþ eqþ qeþ q2 and hence u2e ¼ e ¼ eþ eqeþ
qeþ q2e which forces that ðqþ q2Þe ¼ �eqe, Similarly, eu2 ¼ e insures that

eðqþ q2Þ ¼ �eqe. Thus e commutes with the nilpotent ðqþ q2Þn ¼ ½qð1þ qÞ�n ¼
qnð1þ qÞn for all n A N, and therefore the same is valid for u. Furthermore,

u� ðqþ q2Þ ¼ e� q2 with u� ðqþ q2Þ ¼ uð2Þ ¼ e� q2 being a unit, one sees

that uð2Þ � ð2q3 þ q4Þ ¼ e� ðq2 þ 2q3 þ q4Þ ¼ e� ðqþ q2Þ2. Putting uð3Þ ¼ uð2Þ þ
ðqþ q2Þ2, we observe that uð3Þ is a unit since uð2Þ commutes with ðqþ q2Þ2 and

that uð3Þ ¼ eþ q3ð2þ qÞ. Repeating the same procedure t-times, we will find a unit

uðtÞ such that uðtÞ ¼ eþ qt:a ¼ e for some element a A R depending on q; actually

a ¼ �1 ¼ �q0 when t ¼ 2. This yields that e ¼ 1, which exhausts this case.

Analogously, ðq2 � qÞe ¼ eðq2 � qÞ and ðq2 � qÞu ¼ uðq2 � qÞ. Hence u� q2

¼ ðq� q2Þ � e. The same trick as above successfully works to conclude the claim

after all. r

Remark. This lemma improves an assertion from [11] which states that if v

is an involution, that is, v2 ¼ 1, with the property that v ¼ eþ q, where e is an

idempotent and q is a nilpotent, then e ¼ 1, i.e., v is a unipotent. However, his

method is not applicable in the current situation because u2ð1� eÞ ¼ u2 � u2e ¼
u2 � e ¼ 1� e provided a priori that u2 ¼ 1. But this cannot be deduced au-

tomatically, namely the fact that u is an involution and so u2 ¼ 1 will follow after

certain arguments.

We are now ready to describe completely arbitrary weakly nil-clean rings.

Specifically, the following holds:

Theorem 2.17. A ring R is weakly nil-clean if and only if R is either a nil-

clean ring, or R=JðRÞ is isomorphic to Z3 with JðRÞ nil, or R is a direct product of

two such rings.
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Proof. Firstly, let us assume that R is weakly nil-clean. According to

[2, Theorem 7], we consider only the case where 2 inverts in R. Letting e be

an arbitrary idempotent in R, we observe that 2e� 1 is a weakly nil-clean

involution in R because ð2e� 1Þ2 ¼ 1, so that with Lemma 2.16 at hand, applied

to u ¼ 2e� 1, we deduce that either 2e� 1 ¼ 1þ q or 2e� 1 ¼ �1þ q for some

nilpotent q. In the first case, 2ð1� eÞ is always a nilpotent whence so has to

be 1� e which gives that e ¼ 1. In the second case, 2e is a nilpotent and hence

so is e which implies that e ¼ 0. (Compare also with the note after the proof of

Proposition 2.6.) Thus R being indecomposable must be abelian and we next just

employ [2, Theorem 12] to infer the claim.

Conversely, if the formulated conditions from the text of the theorem are

satisfied, then we just apply a combination of [2, Theorem 2(3), Proposition 3] to

get the wanted result. r

Remark. For another full description of weakly nil-clean rings the inter-

ested reader can see also [11].

Another nontrivial example of a WUU ring is the following one:

Corollary 2.18. Any weakly nil-clean ring in which 2 inverts is WUU.

Proof. The proof of Theorem 2.17 enables us that such a ring has to be

abelian, so that Proposition 2.3 applies to conclude the implication. r

We shall say that a ring R satisfies the nil-involution property if, for every

r A R, there exist a nilpotent q and an involution v such that r ¼ qþ 1þ v or

r ¼ q� 1þ v.

The following result completely describes these rings.

Proposition 2.19. A ring has the nil-involution property if and only if it is

weakly nil-clean with 2 invertible.

Proof. ‘‘Necessity’’. Let a A R, where R satisfies the nil-involution property.

We first claim that 2 A UðRÞ. To prove that, we observe that the record

1 ¼ qþ 1þ v is impossible, because otherwise q ¼ �v, a contradiction. Thus

1 ¼ q� 1þ v whence 2 ¼ qþ v. Hence, multiplying by v both sides from the left

and from the right, respectively, we conclude that vq ¼ 2v� 1 ¼ qv. This yields

at once that 2 is a unit, as claimed.
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Furthermore, one writes that �2a ¼ uþ v where u A NilðRÞG 1 and v2 ¼ 1.

If u ¼ bþ 1 with b A NilðRÞ, then a ¼ ð�b=2Þ � ð1þ vÞ=2 with �b=2 A NilðRÞ
and ð1þ vÞ=2 A IdðRÞ. In the remaining case, if u ¼ b� 1 with b A NilðRÞ, then
a ¼ ð�b=2Þ þ ð1� vÞ=2 with �b=2 A NilðRÞ and ð1� vÞ=2 A IdðRÞ. So, R is

weakly nil-clean, indeed.

‘‘Su‰ciency’’. Suppose now R is weakly nil-clean with 2 A UðRÞ. Note that in

conjunction with [2] one has that JðRÞ is nil and 3 A JðRÞ. Let a A R. Then there

exist b A NilðRÞ and e2 ¼ e A R such that a ¼ bþ e or a ¼ b� e. If a ¼ bþ e,

then a ¼ ððbþ 3eÞ � 1Þ þ ð1� 2eÞ with ð1� 2eÞ2 ¼ 1. Moreover, as bm ¼ 0 for

some m > 0 and 3 A JðRÞ, we obtain that ðbþ 3eÞm A JðRÞ, so bþ 3e is a

nilpotent as JðRÞ is nil. If a ¼ b� e, then a ¼ ððb� 3eÞ þ 1Þ þ ð�1þ 2eÞ with

ð�1þ 2eÞ2 ¼ 1. Moreover, as bm ¼ 0 for some m > 0 and 3 A JðRÞ, we deduce

that ðb� 3eÞm A JðRÞ, so b� 3e is a nilpotent as JðRÞ is nil. Hence, R satisfies

the nil-involution property. r

Remark. In view of the last two assertions, we infer that all rings possessing

the nil-involution property are WUU rings.

As an other concrete application of the results above, we shall completely

characterize a proper subclass of the class of unit-regular rings: Recall that a ring

R is said to be unit-regular if for each r A R there exists u A UðRÞ such that

r ¼ rur. It was established in [4] that each unit-regular ring is clean. In [5] we

defined the so-called nil-regular rings as those rings R having the property that,

for every r A R, there is n A NilðRÞ such that r ¼ rð1þ nÞr. At first glance these

are unit-regular UU rings. However, surprisingly, it was shown there that in such

rings we must have n ¼ 0 and thus they are precisely the classical boolean rings

in which any element is an idempotent.

Generalizing them, we call a ring R weakly nil-regular if, for each r A R,

there exists q A NilðRÞ such that either r ¼ rð1þ qÞr or r ¼ rð�1þ qÞr. Clearly,

if 2 A NilðRÞ, then �1þ q ¼ 1þ ðq� 2Þ with q� 2 A NilðRÞ, so that weakly nil-

regular rings will coincide with nil-regular rings.

So, we are now ready to proceed by proving the following:

Proposition 2.20. A ring R is weakly nil-regular if and only if either RGB

or RGZ3 or RGB� Z3, where B is a boolean ring.

Proof. ‘‘)’’. First of all, it is not hard to check that JðRÞ ¼ 0 because

weakly nil-regular rings are themselves unit-regular and so regular rings.
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Next, given u A UðRÞ, we either have u�1 ¼ u�1ð1þ qÞu�1 or u�1 ¼
u�1ð�1þ qÞu�1. Hence u ¼ 1þ q or u ¼ �1þ q, so that UðRÞ ¼G1þNilðRÞ
and thus R is a WUU ring.

Moreover, one can write that 2 ¼ 2ð1þ qÞ2 or that 2 ¼ 2ð�1þ qÞ2. The first

equality ensures that 2 ¼ 4þ 4q, i.e., 2 ¼ �4q A NilðRÞ, whereas the second one

assures that 2 ¼ �4þ 4q, i.e., 6 ¼ 4q A NilðRÞ. Therefore, in both cases, it must

be that 6 A NilðRÞ, whence 6 A JðRÞ being a central nilpotent. Furthermore, since

R is obviously unit-regular, and hence clean, being the elements G1þ q units,

Corollary 2.14 applies to conclude the claim.

‘‘(’’. One observes that for any idempotent b the presentations b ¼
bð1þ 0Þb and �b ¼ ð�bÞð�1þ 0Þð�bÞ hold, which guarantee our assertion.

r

We will now consider the element-wise behavior of clean elements in WUU

rings. Specifically, the following is true:

Theorem 2.21. In any abelian WUU ring R with 6 A NilðRÞ, an element is

clean if and only if it is weakly nil-clean.

Proof. By Proposition 2.5, working in the quotient R=6R, we without loss

of generality may assume that 6 ¼ 0.

Suppose R is a WUU ring and a A R is clean, saying that a ¼ uþ e, where

u A UðRÞ and e A IdðRÞ. Next, writing u ¼ qG 1, where q A NilðRÞ, it follows that
a ¼ qG 1þ e and so either a ¼ qþ 1þ e or a ¼ q� 1þ e. In the first case,

a ¼ ð2eþ qÞ þ ð1� eÞ while in the second one a ¼ q� ð1� eÞ. Since 1� e is an

idempotent, it su‰ces to show that 2eþ q is a nilpotent. To that goal, as noted

above, either 2e or 2ð1� eÞ is a nilpotent. In the first situation it follows at

once that 2eþ q is again a nilpotent, and hence we are finished. In the latter one,

we write a ¼ ð2ðe� 1Þ þ qÞ þ ð3� eÞ ¼ ð2ðe� 1Þ þ qÞ � ð3þ eÞ bearing in mind

that �3 ¼ 3. Now, one sees that 2ðe� 1Þ þ q is a nilpotent and ð3þ eÞ2 ¼
9þ 6eþ e2 ¼ 9þ 7e ¼ 3þ e is an idempotent, so we are set.

Next, suppose that R is a WUU ring and r A R is weakly nil-clean, setting

that r ¼ qþ e or r ¼ q� e, where q A NilðRÞ and e A IdðRÞ. In the second case,

r ¼ ðq� 1Þ þ ð1� eÞ, where q� 1 is a unit and 1� e is an idempotent, so we are

done. In the first case, r ¼ ðq� 1þ 2eÞ þ ð1� eÞ. Since 1� e is an idempotent, it

needs to show that q� 1þ 2e is a unit. If 2e is a nilpotent, this is so because

qþ 2e is a nilpotent, provided 2e is a nilpotent. If now 2ð1� eÞ is a nilpotent, we

have that r ¼ ðq� 1þ 2ðe� 1ÞÞ þ ð3� eÞ ¼ ðq� 1þ 2ðe� 1ÞÞ � ð3þ eÞ because
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3 ¼ �3. Since qþ 2ðe� 1Þ is a nilpotent, whence q� 1þ 2ðe� 1Þ is a unit, and

as above 3þ e is a nilpotent, we conclude the wanted claim. r

Since any local ring is indecomposable, and thus abelian, as a direct con-

sequence, we derive the following:

Corollary 2.22. In any local WUU ring, an element is clean if and only if it

is weakly nil-clean.

Proof. It follows by a simple combination of Proposition 2.10 and Theorem

2.21. r

We will now deal with the corner and matrix questions for WUU rings.

Proposition 2.23. For any e A IdðRÞ, if the ring R is WUU, then the corner

ring eRe is also WUU.

Proof. Let u A UðeReÞ with inverse v A UðeReÞ, that is uv ¼ vu ¼ e, whence

uþ ð1� eÞ A UðRÞ with inverse vþ ð1� eÞ because uð1� eÞ ¼ ð1� eÞu ¼ vð1� eÞ
¼ ð1� eÞv ¼ 0. Thus we can write uþ 1� e ¼ qþ 1 or uþ 1� e ¼ q� 1 where

q A NilðRÞ. In the first case, q ¼ u� e A eRe \NilðRÞ � NilðeReÞ, so that u ¼
qþ e is a unipotent unit in eRe.

In the second case, multiplying both sides of the equality uþ 1� e ¼ q� 1

by e from the left and from the right, respectively, we deduce that eu ¼ eq� e

and ue ¼ qe� e. But it is easily seen that eu ¼ ue ¼ u which guarantees that

eq ¼ qe is a nilpotent. In addition, again multiplying the last equality by e, we

obtain that eqe ¼ eq ¼ qe. Consequently, u ¼ eq� e is the di¤erence of a nil-

potent and identity in eRe. Finally, u is a weak unipotent, as required. r

As a valuable consequence, we derive:

Corollary 2.24. For any nonzero ring R and an arbitrary natural nb 2, the

full matrix n� n ring MnðRÞ is not a WUU ring.

Proof. Since M2ðRÞ is isomorphic to a corner ring of MnðRÞ, in con-

junction with Proposition 2.23 it su‰ces to show that M2ðRÞ is not a WUU ring.

So, consider the matrix unit
0 1

1 1

� �
with inverse

�1 1

1 0

� �
. But

0 1

1 1

� �
þ
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1 0

0 1

� �
¼ 1 1

1 2

� �
cannot be a nilpotent, because it is a unit with inverse

2 �1

�1 1

� �
. Moreover,

0 1

1 1

� �
� 1 0

0 1

� �
¼ �1 1

1 0

� �
is also a non-nilpotent

being a unit with inverse
0 1

1 1

� �
. We, consequently, conclude that M2ðRÞ is

not WUU, indeed. r

Proposition 2.25. Any subring of a WUU ring containing the same identity

is also a WUU ring.

Proof. Suppose SaR. Letting u A UðSÞ we have u A UðRÞ and hence u A

1þNilðRÞ or u A �1þNilðRÞ. Thus uG 1 A NilðRÞ \ S � NilðSÞ, as required.

r

The next assertion contrasts with the corresponding one from [7].

Proposition 2.26. Every finite direct product R1 � � � � � Rn with n A N is a

WUU ring if and only if there exists an index 1a ja n such that Rj is a WUU

ring and Ri is a UU ring for each 1a i0 ja n.

Proof. Notice firstly that if R ¼ R1 � � � � � Rn, then it is readily checked

that UðRÞ ¼ UðR1Þ � � � � �UðRnÞ.
‘‘Necessity’’. Since all Ri aR, i A ½1; n�, an appeal to Proposition 2.25 gives

that these Ri are WUU rings. Since UðRÞ ¼G1þNilðRÞ, that is, UðR1Þ � � � � �
UðRnÞ ¼Gð1; . . . ; 1Þ þNilðR1Þ � � � � �NilðRnÞ, by considering units of the kind

ð�1; . . . ; 1; . . .� 1Þ, ð1; . . . ;�1; . . . 1Þ etc., we detect that 2 A NilðRiÞ for almost all

indices i A ½1; n� with the exception of exact one index j A ½1; n�. So, according to

Theorem 2.8, these Ri have to be UU rings, as promised.

‘‘Su‰ciency’’. We have UðRjÞ ¼G1þNilðRjÞ for some 1a ja n, and for

all other i0 j from ½1; n� we have UðRiÞ ¼ 1þNilðRiÞ. Furthermore, if UðRjÞ ¼
1þNilðRjÞ, then UðRÞ ¼ 1þNilðRÞ and so we are set. Otherwise, if UðRjÞ ¼
�1þNilðRjÞ, then we may also write UðRiÞ ¼ �1þNilðRiÞ for all i0 j and

hence UðRÞ ¼ �1þNilðRÞ, as needed. r

As an immediate consequence, we yield:

Corollary 2.27. For any nb 2 the ring Rn is WUU if and only if Rn is UU

if and only if R is UU.
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Proof. The first equivalence follows directly from Proposition 2.26. The

second one follows from [7]. r

Standardly, TnðRÞ will denote the ring of n� n upper triangular matrices

over the ring R, where nb 1 is an integer.

As a consequence, we deduce:

Corollary 2.28. For any nb 2 the ring TnðRÞ is a WUU ring if and only

if R is a UU ring.

Proof. Consider the set I ¼ fðaijÞ A TnðRÞ : Eaii ¼ 0g. It is not too hard to

verify that I is a nil ideal of TnðRÞ such that TnðRÞ=I GRn. We next apply

Proposition 2.5 and Corollary 2.27 to get the wanted assertion. r

Remark. In conjunction with [7], it follows the surprising fact that TnðRÞ
is WUU if and only if TnðRÞ is UU. Moreover, owing to Corollary 2.28, the

ring TnðZ3Þ is not WUU, because in accordance with [7] the ring Z3 is not

UU.

We shall now give a more direct and a slightly simpler proof of Theorem A

from [7] in the case of characteristic 2.

Proposition 2.29. A ring R of charðRÞ ¼ 2 is a UU ring if and only if UðRÞ
is a 2-group.

Proof. ‘‘)’’. Given u A UðRÞ, it follows that u ¼ 1þ d, where d A NilðRÞ
with d k ¼ 0 for some k A N. Hence d 2 s ¼ 0 for some su‰ciently large natural

2s b k and the Frobenius’ law implies that u2
s ¼ 1, as required.

‘‘(’’. If v A UðRÞ, then v2
i ¼ 1 for some positive integer i and, therefore, by

the Frobenius’ law we have ðv� 1Þ2
i

¼ 0. Thus v� 1 A NilðRÞ and v A 1þNilðRÞ,
as needed to get that UðRÞ � 1þNilðRÞ. The reverse inclusion is obvious.

r

Remark. Since in UU rings we have �1 ¼ 1þ q for some q A NilðRÞ, we
obtain that 2 A NilðRÞ. So, charðRÞ ¼ 2k for some k A N. So, in the proof of

[7, Theorem 2.6(1)] the fact that 2 t ¼ 0 for some tb 1 follows directly from

the containment 2 A NilðRÞ.
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Proposition 2.30. If R is a WUU ring of characteristic p for some prime,

then UðRÞ is a 2p-group, especially a 2-group or a 6-group.

Proof. For any u A UðRÞ, we can write either u ¼ qþ 1 or u ¼ q� 1, where

q is a nilpotent. It must be that up j ¼ 1 or up j ¼ �1 for some j A N. If both

cases we have u2p
j ¼ uð2pÞ

j ¼ 1, as required. The final part follows at once by

applying Corollary 2.7. r

We now possess all the ingredients to prove the following assertion.

Theorem 2.31. Suppose R is a WUU ring of characteristic 6. Then UðRÞ is

a 6-group.

Proof. By virtue of Theorem 2.11, we write that UðRÞGUðR1Þ �UðR2Þ,
where R1 is a UU ring and R2 is an indecomposable WUU ring with 3 A JðR2Þ.
Since charðR1Þ ¼ 2, in view of Proposition 2.29, UðR1Þ is a 2-group. Since in

R2 we must have 6 ¼ 0 and 22 ¼ 1þ 3 A UðR2Þ, i.e., 6 ¼ 0 and 2 A UðR2Þ, we

deduce that 3 ¼ 0 and charðR2Þ ¼ 3. We now apply Proposition 2.30 to get

that UðR2Þ is a 6-group. Finally, we conclude that UðRÞ is also a 6-group, as

stated. r

As usual, R½X � denotes the polynomial ring over an arbitrary ring R. The

following extends Corollary 2.2 from [3] and somewhat clarifies its proof.

Theorem 2.32. Suppose R is a commutative ring. Then R½X � is a WUU ring

if and only if R is a WUU ring.

Proof. The necessity follows at once by Proposition 2.25 taking into

account that R is a subring of R½X �.
As to begin with the su‰ciency, recall the following basic facts: Let f ¼

a0 þ a1X þ � � � þ anX
n A R½X � be a polynomial with n A N. Then f is a unit in

R½X � if and only if a0 is a unit in R and a1; a2; . . . ; an A NðRÞ are nilpotents

in R as well as f is a nilpotent of R½X � if and only if all the coe‰cients

a0; a1; a2; . . . ; an are nilpotents of R. Furthermore, for any invertible polyno-

mial g, we have that g ¼ b0 þ b1X þ � � � þ bnX
n ¼ ðG1þ a0Þ þ b1X þ � � � þ bnX

n

¼G1þ ða0 þ b1X þ � � � þ bnX
nÞ, where a0 is a nilpotent. Thus, it follows im-

mediately from the stated above facts that a0 þ b1X þ � � � þ bnX
n is a nilpotent

polynomial, as required. r
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3. Open Questions

In closing, we pose the following unanswered problems of interest:

Problem 1. Describe the group UðRÞ of a WUU ring R.

A reasonable question is whether or not it is a 6-group, and eventually

the ring R is of characteristic 6, provided that R is not UU of positive char-

acteristic. However, it looks like there exist some ‘‘unexpected’’ examples of

WUU rings with a strange group of units. For example, take the ring consisting

of all matrices
a b

0 a

� �
, where a; b A Z. The unit group of this ring has infinite

order, although it is a subring of T2ðZÞ.

Problem 2. Does it follow that a WUU ring R which is not UU can be

decomposed as R ¼ R1 � R2, where R1 is a UU ring and R2 is a local WUU

ring?

Problem 3. For a ring R describe when the rings RðXÞ and RhXi are UU

rings, respectively WUU rings.

Problem 4. Describe when group rings are UU rings, respectively WUU

rings.

Problem 5. If R is a WUU ring, does it follow that R=JðRÞ is abelian?

Problem 6. Describe all UI rings that are rings in which each involution is

a unipotent.

Notice that in [11] it was established that any nil-clean involution is a

unipotent and thus each nil-clean ring is an UI ring. This extends Diesl’s result

that every strongly nil-clean unit is a unipotent and thereby each strongly nil-

clean ring is a UU ring.

Problem 7. Describe all WUI rings that are rings in which every involution

is either a unipotent or minus a unipotent, i.e., is a weak unipotent.

More generally, we demonstrated in Lemma 2.16 that weakly nil-clean

involutions are weak unipotents and so weakly nil-clean rings are WUI rings.
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An element w is called a weak involution if either w2 ¼ 1 or w2 ¼ �1. So,

we come to the final

Problem 8. Describe exchange rings with weak involutions.
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