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TAILS OF THE FIRST HITTING TIMES

OF LINEAR DIFFUSIONS

By

Yuji Kasahara

Abstract. The tail probability of the first hitting time is discussed

for linear di¤usions. We obtain the decay rates in terms of the

spectral functions and the scale functions. The result is a general-

ization of recent results of Hamana-Matsumoto for Bessel processes.

1. Introduction

The di¤usion process X ¼ ðXtÞtb0 with the local generator

Gr ¼
1

2

d 2

dx2
þ r� 1

x

d

dx

� �
; x > 0 ðr A RÞð1:1Þ

is called the r-dimensional Bessel process and

n :¼ r

2
� 1

is referred to as the order.

Let tb be the first hitting (or, the first passage) time to a point bð> 0Þ; i.e.,

tb :¼ infft > 0;Xt ¼ bg

with the convention that inf q ¼ y. By the general theory of di¤usions the

Laplace transform Ea½e�stb � can be expressed in terms of the modified Bessel

functions (see [2, p. 398]). In this sense the law of tb is completely known.

However, it might still be of interest to derive more concrete properties of the law

of tb through Ea½e�stb �.
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From this viewpoint Hamana-Matsumoto ([4]) recently gave a representa-

tion formula for the distribution function Pa½tb a x� and as its application they

obtained the following result. (See also [5] for a refinement.)

Theorem A. Let 0 < b < a < y.

(i) If n > 0, then

Paðtb > tÞ ¼ 1� b

a

� �2n
þ b2n 1� b

a

� �2n( )
1

Gð1þ nÞð2tÞn þ oðt�nÞ ðt ! yÞ:

(ii) If n ¼ 0, then

Paðtb > tÞ ¼ 2 logða=bÞ
log t

þ oð1=log tÞ ðt ! yÞ:

(iii) If n < 0, then

Paðtb > tÞ ¼ a2jnj 1� b

a

� �2jnj( )
1

Gð1þ jnjÞð2tÞjnj
þ oðt�jnjÞ ðt ! yÞ:

In fact Yamazato ([13]) has already discussed a similar problem for general

linear di¤usions under the natural scale. So Theorem A except the case (ii) may

also be derived from the results of [13] after a little calculus. On this subject

we should also mention the resent result of Uchiyama ([12]). He studied the

probability density of tb and gave the exact asymptotic forms that are valid

uniformly in the initial point a.

The aim of the present article is to generalize Theorem A for more general

linear di¤usions. So the problem and some of the results overlap with those of

Yamazato ([13]). However, our point of view is a little di¤erent from [13], [4],

and [12]: (1) We are mainly interested in the question how the infinitesimal orders

(such as t�n; log t; tn) and the coe‰cients can be described in terms of principal

characteristics of the di¤usion; (2) Another di¤erence (or improvement) is that

our argument do not need to exclude the case where n� 1
2 is an integer, which

case was somewhat exceptional in [13] and [4]; (3) The case n ¼ 0 is studied in

a general framework; (4) We shall also study the inverse problem.

Our main results will be given in Sections 5 and 6, where we shall see that

the infinitesimal order of the decay of Pa½t < tb < y� ðt ! yÞ comes from the

spectral function, while the coe‰cient will be specified by Feller’s scale function.

We postpone to state the details until Section 5 and here we give only a typical
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example, which will illustrate the outline of the results. Let X be the di¤usion

associated with

G ¼ 1

2

d 2

dx2
þ ðr� 1Þ x

x2 þ c2
d

dx

� �
; x > 0;

where cb 0. Then, for 0 < b < a < y we have

Paðt < tb < yÞ@

sða; bÞ
sðy; bÞ2

2�n�1

nGð1þ nÞ t
�n ðn > 0Þ;

sða; bÞ 2

log t
; ðn ¼ 0Þ;

sða; bÞ 2nþ1

Gð1� nÞ t
n; ðn < 0Þ;

8>>>>>>>>><
>>>>>>>>>:

where n ¼ ðr=2Þ � 1 as before and

sðx; yÞ ¼
ð x
y

ðu2 þ c2Þ�n�ð1=2Þ
du:

This article consists as follows: In Section 2 we prepare some Tauberian

theorems for Laplace transform. In Section 3 we quickly review some of the

spectral theory. In Sections 4 and 5 we discuss the case of general linear di¤usions

and prove some results on the tail probability of the first hitting time in terms

of Feller’s canonical form of the local generator. In Section 6 we study the case

of the di¤usion with local generator of the form

G ¼ 1

2

d 2

dx2
þ V 0ðxÞ d

dx

� �
; x > 0;

where V 0 is the derivative of an absolutely continuous function V .

2. Preliminaries from Tauberian Theorems

First we introduce the following notation, which will be used repeatedly

throughout the article.

Notation. We denote by RrðyÞ the totality of functions varying regularly

at infinity with index r. That is, f A RrðyÞ means that, for some A > 0,

f : ½A;yÞ ! ð0;yÞ is a measurable function such that

lim
l!y

f ðlxÞ
f ðlÞ ¼ xr; Ex > 0:

57First hitting times



Similarly, Rrð0Þ is the totality of functions varying regularly at 0 with index r:

lim
l!þ0

f ðlxÞ
f ðlÞ ¼ xr; Ex > 0:

When r ¼ 0, we say ‘slowly varying’ rather than ‘regularly varying’. Note that

f A RrðyÞ if and only if f ðxÞ ¼ xrLðxÞ for some slowly varying L. For the

properties of regularly varying functions we refer to [3] and [1].

Let mðdxÞ be a finite Borel measure on ½0;yÞ. Its Laplace transform is

defined by

f ðsÞ ¼
ð
½0;yÞ

e�sxmðdxÞ; s > 0:

The relationship between the asymptotic behavior of m½x;yÞ as x ! y and that

of f ðsÞ as s ! þ0 is well known when ð f ð0Þ � f ðsÞÞ=s diverges. But in the sequel

we need the case where it may converge. In order to handle such a case we need

the following two theorems. The author do not claim that they are new. But since

we do not know good references we shall prove them.

Theorem 2.1. Let j A R�bðyÞ ðb > 0Þ. Then the following two conditions are

equivalent for every n > b.

m½x;yÞ@ jðxÞ ðx ! yÞð2:1Þ

ð�1Þn d n

dsn
f ðsÞ@ bGðn� bÞs�njð1=sÞ ðs ! þ0Þð2:2Þ

The extreme case of Theorem 2.1 as b ! þ0 is

Theorem 2.2. Let L A R0ðyÞ. Then the following two conditions are

equivalent.

m½x; lxÞ
LðxÞ ! log l ðx ! yÞ; El > 1ð2:3Þ

�f 0ðsÞ@ ð1=sÞLð1=sÞ ðs ! þ0Þð2:4Þ

Both imply

m½x;yÞ@LaðxÞ :¼
ðy
x

LðuÞ
u

du ðx ! yÞ:ð2:5Þ
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Later, in the proof of the theorem, we shall see that the integrand in (2.5) is

integrable when (2.4) holds.

Note that La defined in (2.5) varies slowly. Indeed, for every c > 0,

LaðcxÞ ¼
ðy
cx

LðuÞ
u

du ¼
ðy
x

LðcuÞ
u

du:

So, since LðcuÞ=LðuÞ ! 1 ðu ! yÞ, we conclude that

LaðcxÞ@
ðy
x

LðuÞ
u

du ¼ LaðxÞ ðx ! yÞ;

namely, La A R0ðyÞ.
A typical example of Theorem 2.2 is the following:

Example 2.1. Let a > 1 and C > 0. If LðxÞ ¼ ðlog xÞ�a, then LaðxÞ ¼
ða� 1Þ�1ðlog xÞ1�a. Therefore, if

�f 0ðsÞ@ C

sðlogð1=sÞÞa ðs ! þ0Þ;ð2:6Þ

then

m½x;yÞ@ C

ða� 1Þðlog xÞa�1
ðx ! yÞ:ð2:7Þ

For the proofs of Theorems 2.1 and 2.2 we prepare a few lemmas. To begin

with consider the following function:

UrðxÞ ¼
ð x
0

urmðdxÞ; xb 0ð2:8Þ

so that

ÛUrðsÞ :¼
ð
½0;yÞ

e�sx dUrðxÞ ¼
ðy
0

e�sxxrmðdxÞ; s > 0:ð2:9Þ

Lemma 2.1. Let 0 < b < r and L A R0ðyÞ. Then the following two conditions

are equivalent.

m½x;yÞ@ x�bLðxÞ ðx ! yÞð2:10Þ

UrðxÞ@
b

r� b
xr�bLðxÞ ðx ! yÞð2:11Þ
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Proof. In fact more general results will be found in Theorem 2 of

Feller [3, p. 283]. However, we shall prove it here for the convenience of the

reader.

Suppose that (2.10) holds. Then by the definition (2.8) we have

UrðxÞ ¼ r

ðð
0<y<u<x

yr�1 dymðduÞ ¼ r

ð x
0

fm½y;yÞ � m½x;yÞgyr�1 dy

¼ r

ð x
0

m½y;yÞyr�1 dy� m½x;yÞxr

@
r

r� b
xr�bLðxÞ � xr�bLðxÞ ¼ b

r� b
xr�bLðxÞ ðx ! yÞ:

So (2.10) implies (2.11).

Similarly, suppose that (2.11) holds. Since mðdyÞ ¼ y�r dUrðyÞ, we see

m½x;yÞ ¼
ðy
x

y�r dUrðyÞ

¼ r

ðy
x

UrðuÞu�r�1 du� x�rUrðxÞ

@
r

r� b
x�bLðxÞ � b

r� b
x�bLðxÞ ¼ x�bLðxÞ;

proving (2.10). r

In Lemma 2.1 we studied the case where x ! y. The next lemma deals with

the case where x ! þ0.

Lemma 2.2. Let b > 0, b þ r > 0 and let L A R0ð0Þ. Then the following two

conditions are equivalent.

m½0; xÞ@ xbLðxÞ ðx ! þ0Þð2:12Þ

UrðxÞ@
b

rþ b
xrþbLðxÞ ðx ! þ0Þ:ð2:13Þ

Proof. The proof is essentially the same as that of Lemma 2.1: Suppose

that (2.12) holds. Since
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UrðxÞ ¼ r

ðð
0<y<uax

yr�1 dymðduÞ ¼
ð x
0

ð x
u

yr�1 dy

� �
mðduÞ

¼ m½0; x�xr � r

ð x
0

m½0; yÞyr�1 dy

@ xrþbLðxÞ � r

rþ b
xrþbLðxÞ ¼ b

rþ b
xrþbLðxÞ;

we have (2.13). To show the converse, interchange the role of Ur and m. r

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let

UnðxÞ ¼
ð x
0

unmðdxÞ; xb 0

as in (2.8). By Lemma 2.1, (2.1) is equivalent to

UnðxÞ@
b

n� b
xnjðxÞ ðx ! yÞ;

which is, by the usual Tauberian theorem for Laplace transform (see Theorem C

in Appendix), equivalent to

ÛUnðsÞ@
b

n� b
Gð1þ n� bÞs�njð1=sÞ ¼ bGðn� bÞs�njð1=sÞ ðs ! þ0Þ;

which can be written as (2.2) because

ÛUnðsÞ ¼
ðy
0

e�sxxnmðdxÞ ¼ ð�1Þnf ðnÞðsÞ: r

For the proof of Theorem 2.2 we prepare the next lemma, which is the

extreme case of Lemma 2.1 as b ! þ0.

Lemma 2.3. Let r > 0 and L A R0ðyÞ. Then the following three conditions

are equivalent.

UrðxÞ@
1

r
xrLðxÞ ðx ! yÞð2:14Þ

ÛUrðsÞ@GðrÞs�rLð1=sÞ ðs ! þ0Þð2:15Þ

lim
x!y

m½x; lxÞ
LðxÞ ¼ log l; El > 1ð2:16Þ
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Proof. The equivalence of the first two is immediate from Karamata

Tauberian theorem. In order to see that they are also equivalent to (2.16), notice

that

m½x; lxÞ ¼
ð lx
x

u�r dUrðuÞ:

Combining this with

u�r dUrðuÞ ¼ ru�r�1UrðuÞ duþ dðu�rUrðuÞÞ;

we see that

m½x; lxÞ ¼ r

ð lx
x

UrðuÞu�r�1 duþ fðlxÞ�r
UrðlxÞ � x�rUrðxÞg:

So (2.14) implies

m½x; lxÞ@
ð lx
x

LðuÞ du
u
þ 1

r
fLðlxÞ � LðxÞg

¼
ð l
1

LðxuÞ du
u
þ 1

r
fLðlxÞ � LðxÞg:

Therefore, it holds that

m½x; lxÞ
LðxÞ ¼

ð l
1

LðxuÞ
LðxÞ

du

u
þ 1

r

LðlxÞ
LðxÞ � 1

� �
! log l ðx ! yÞ:

Thus (2.14) implies (2.16).

Conversely, suppose that (2.16) holds. Since

UrðxÞ ¼ r

ð x
0

m½y; xÞyr�1 dy ¼ r

ð1
0

m½xx; xÞðxxÞr�1
x dx;

we have

rUrðxÞ
xrLðxÞ ¼ r2

ð 1
0

m½xx; xÞ
LðxÞ xr�1 dx ! r2

ð1
0

log
1

x

� �
xr�1 dx ¼ 1;

which implies (2.14). r

Proof of Theorem 2.2. Since

�f 0ðsÞ ¼ ÛUrðsÞ
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with r ¼ 1, the equivalence of the first two is immediate from the equivalence of

(2.16) and (2.15) in Lemma 2.3.

Let us next prove the latter half of Theorem 2.2. Suppose that (2.3) holds.

Then we have

m½en; enþ1Þ
LðenÞ ! 1 ðn ! yÞ;

which implies

m½en;yÞPy
k¼n LðekÞ

! 1 ðn ! yÞ:

Now using the slowly varying property of L, we can deduce

m½ex;yÞÐy
x
LðeuÞ du

! 1; ðx ! yÞ;

proving (2.5). The above argument also shows that

ðy
ex

LðuÞ
u

du ¼
ðy
x

LðeuÞ du
� �

< y;

for su‰cietly large x. r

3. Preliminaries from Spectral Theory

By a (Krein) string we mean a function

m : ½0;þyÞ ! ½0;þy�

which is nondecreasing and right-continuous. We exclude the trivial case where

m is a constant.

For a string m let us review a little on the spectral theory of the generalized

Sturm-Liouville operator

L ¼ � d

dmðxÞ
d

dx
; 0 < x < l;

where

l ¼ supfx;mðxÞ < yg ðA ð0;y�Þ:
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We define jlðxÞ and clðxÞ ð0a x < lÞ, for every l A C, as the unique solutions

of the following integral equations:

jlðxÞ ¼ 1� l

ð x
�0

ðx� yÞjlðxÞ dmðyÞ; 0a x < l;

clðxÞ ¼ x� l

ð x
�0

ðx� yÞclðxÞ dmðyÞ; 0a x < l:

Later we shall use the fact that jlðxÞ and clðxÞ are entire functions of l for

every fixed x A ½0; lÞ.
The characteristic function of m is defined by

hðsÞ ¼" lim
x"l

c�sðxÞ
j�sðxÞ

¼
ð l�0

0

dx

j�sðxÞ
2

 !
; s > 0:

Note that j�sðxÞ ! 1 and c�sðxÞ ! x as s ! þ0, and hence

hðþ0Þ ¼ l:ð3:1Þ

As is well known, for every s > 0,

uðs; xÞ :¼ j�sðxÞ �
1

hðsÞc�sðxÞð3:2Þ

is the nonnegative, nonincreasing solution of

LuðxÞ ¼ �suðxÞ; uð0Þ ¼ 1; uðl� 0Þ ¼ 0:

(This fact can easily be seen from the definition of hðsÞ.) So the Green kernel

(with respect to dmðxÞ) is given by

Gsðx; yÞ ¼ Gsðy; xÞ ¼ hðsÞj�sðxÞuðs; yÞ; 0a xa y < l;

and, therefore,

Gsð0; 0Þ ¼ hðsÞ; s > 0:

It is also well known that hðsÞ has the following representation:

hðsÞ ¼ aþ
ðy
�0

dsðlÞ
sþ l

; s > 0;

where

a ¼ inffx > 0;mðxÞ > 0g
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and s : ð�y;yÞ ! ½0;yÞ is a right-continuous nondecreasing function vanishing

on ð�y; 0Þ such that ðy
�0

dsðlÞ
1þ l

< y:

The function s is called the spectral function.

Notation. When a string mðxÞ is given, its right-continuous inverse m�ðxÞ
:¼ m�1ðxÞ is called the dual string. We denote by h� the characteristic function

of m�. Similarly, l� and s� are defined in the obvious manner:

l� ¼ supfx > 0;m�ðxÞ < yg ð¼ supfmðxÞ; x > 0gÞ

and

h�ðsÞ ¼ a� þ
ðy
�0

ds�ðlÞ
sþ l

; s > 0:

Also throughout we define ĥhðsÞ ¼ 1=hðsÞ and denote

hðnÞðsÞ ¼ d n

dsn
hðsÞ; ĥhðnÞðsÞ ¼ d n

dsn
ĥhðsÞ:

The well-known relationship between h� and h is

h�ðsÞ ¼ 1

shðsÞ ; s > 0:ð3:3Þ

(See e.g. [11]). So it holds that

ĥhðsÞ ¼ sh�ðsÞ;

and therefore di¤erentiating the both sides, we see

ĥh 0ðsÞ ¼ h�ðsÞ þ sðh�ðsÞÞ0 ¼
ðy
0

ds�ðlÞ
lþ s

�
ðy
0

s ds�ðlÞ
ðlþ sÞ2

¼
ðy
0

l ds�ðlÞ
ðlþ sÞ2

and hence we have the following representation formula:

ð�1Þn�1
ĥhðnÞðsÞ ¼ n!

ðy
0

l ds�ðlÞ
ðlþ sÞnþ1

; nb 1:ð3:4Þ

For our later use we prepare
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Lemma 3.1. Let 1a k < n. If jĥhðnÞðsÞj ! y ðs ! þ0Þ, then

ĥhðkÞðsÞ ¼ oðjĥhðnÞðsÞjÞ ðs ! þ0Þ:

Proof. First recall (3.4). Since

ðy
0

ds�ðlÞ
1þ l

< y;

we have

sup
s>0

ðy
1

l ds�ðlÞ
ðsþ lÞkþ1

¼
ðy
1

l ds�ðlÞ
lkþ1

a

ðy
1

ds�ðlÞ
l

< y:

So we need only to evaluate ð1
0

l ds�ðlÞ
ðsþ lÞkþ1

:

Apply Hölder’s inequality to

ð1
0

l ds�ðlÞ
ðsþ lÞkþ1

¼
ð1
0

l ds�ðlÞ
ðsþ lÞ1�ðk=nÞ � ðsþ lÞðnþ1Þk=n

with 1=p ¼ 1� ðk=nÞ and 1=q ¼ k=n. Then, we have

ð1
0

l ds�ðlÞ
ðsþ lÞkþ1

a

ð1
0

l ds�ðlÞ
sþ l

� �1�ðk=nÞ ð1
0

l ds�ðlÞ
ðsþ lÞnþ1

 !k=n

a

ð1
0

ds�ðlÞ
� �1�ðk=nÞ ðy

0

l ds�ðlÞ
ðsþ lÞnþ1

 !k=n

¼ const� jĥhðnÞðsÞjk=n ¼ oðjĥhðnÞðsÞjÞ ðs ! þ0Þ: r

The next lemma is Proposition 3.1 of [7]. The proof is based on Lemma 3.1

but we omit it and refer to [7].

Lemma 3.2. Suppose l < y and let nb 1. If jhðnÞðþ0Þj ¼ y or

jĥhðnÞðþ0Þj ¼ y, then

ĥhðnÞðsÞ@� 1

l2
hðnÞðsÞ ðs ! þ0Þ:
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Proposition 3.1. Let nb 1 and suppose that j A Rbð0Þ ð0 < b < nÞ. Then

the following two conditions are equivalent.

s�ðsÞ@ jðsÞ ðs ! þ0Þð3:5Þ

ð�1Þn�1
ĥhðnÞðsÞ@ bGðn� bÞGð1þ bÞs�njðsÞ ðs ! þ0Þð3:6Þ

Proof. By Lemma 2.2, (3.5) is equivalent to

ð l
0

x ds�ðxÞ@ b

1þ b
jðlÞl ðl ! þ0Þ;

which is also equivalent to

ðy
0

l ds�ðlÞ
ðlþ sÞnþ1

@
bGðn� bÞGð1þ bÞ

n!
jðsÞs�n ðs ! þ0Þð3:7Þ

by Tauberian theorem for Stieltjes transform (apply Theorem C in Appendix

with a ¼ b þ 1). Keeping (3.4) in mind we see that (3.7) may be rewritten as

(3.6). r

4. First Hitting Time of the Di¤usion d
dmðxÞ

d
dx

Let m : ½0;yÞ ! ½0;y� be a string in the sense of Section 3 and let

X ¼ ðXtÞtb0 be a generalized di¤usion associated with

G ¼ �L :¼ d

dmðxÞ
d

dx
; 0a x < l;

with reflecting boundary condition at 0 and absorbing boundary condition at

l when lþmðl� 0Þ < y. The state space is Suppfdmg. As is well known, X

is recurrent if and only if l ¼ y and is positive recurrent if and only if

mðþyÞ < y.

Let b A Suppfdmg and let tb be the first hitting time of b;

tb ¼ infft > 0;Xt ¼ bg

as before and we are interested in the decay rate of Paðtb > tÞ as t ! y.

The main tool is the following well-known formula:

Ex½e�stb � ¼ uðs; xÞ
uðs; bÞ 0a b < x < l;ð4:1Þ

67First hitting times



where uðs; xÞ is defined in (3.2). Note that, if b ¼ 0, then we have uðs; bÞ ¼ 1 and

therefore,

Ex½e�st0 � ¼ uðs; xÞ ¼ j�sðxÞ �
1

hðsÞc�sðxÞ; 0 < x < l;ð4:2Þ

namely,

Ea½e�st0 � ¼ j�sðaÞ � ĥhðsÞc�sðaÞ; s > 0:ð4:3Þ

An easy consequence of this formula is the following: Since j�sðxÞ ! 1 and

c�sðxÞ ! x, hðsÞ ! l as s ! þ0, letting s ! þ0 in (4.2), we deduce the well-

known formula

Pxðt0 < yÞ ¼ 1� x

l
; 0 < x < l;ð4:4Þ

or, equivalently,

Pxðt0 ¼ yÞ ¼ x

l
; 0 < x < l

(with the convention that 1=y ¼ 0). Considering the translated string mbðxÞ :¼
mðxþ bÞ �mðbÞ ðxb 0Þ, we have

Pxðtb ¼ yÞ ¼ x� b

l� b
; 0a b < x < lðayÞ:ð4:5Þ

We next evaluate Paðt < tb < yÞ as t ! y. By Theorem 2.1 the problem is

reduced to the study of d n

dsn
Ea½e�stb �. So we need to study the n-th derivative

of (4.3). Since jlðaÞ and clðaÞ are entire functions of l, we see that, for every

fixed n > 1,

d n

dsn
j�sðaÞ and

d n

dsn
c�sðaÞ

remain bounded as s ! þ0. So the first term of the right-hand side of (4.3) plays

no role. As for the derivatives of the last term of the right-hand side of (4.3),

we have

d n

dsn
ðĥhðsÞc�sðaÞÞ ¼ ĥhðnÞðsÞc�sðaÞ þ

Xn�1

k¼0

nCkĥh
ðkÞðsÞ �Oð1Þ:ð4:6Þ

Therefore, keeping c�sðaÞ ! a ðs ! þ0Þ in mind, we can deduce the next result

from (4.6) and Lemma 3.1.
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Proposition 4.1. Let nb 1. If jĥhðnÞðþ0Þj ¼ y, then

d n

dsn
Ea½e�st0 �@�ĥhðnÞðsÞa ðs ! þ0Þ:

In what follows s� denotes the spectral function of the dual string m�ðxÞ ¼
m�1ðxÞ as before.

Theorem 4.1 (recurrent case). Let 0a b < a < l and let j A Rbð0Þ ðb > 0Þ.
Then,

Paðtb > tÞ@ ða� bÞGð1þ bÞjð1=tÞ ðt ! yÞð4:7Þ

if and only if

s�ðlÞ@ jðlÞ ðl ! þ0Þ:ð4:8Þ

Before we proceed to the proof we explain the reason why Theorem 4.1

corresponds to the recurrent case (i.e., l ¼ y). The condition (4.7) implicitly

claims Paðtb ¼ yÞ ¼ 0 so that l ¼ y (see (4.5)). Also (4.8) implies s�ðþ0Þ ¼ 0

so that sh�ðsÞ ! s�ðþ0Þ ¼ 0 and therefore lð¼ hðþ0ÞÞ ¼ y.

Proof of Theorem 4.1. To begin with we remark that the problem is

reduced to the case b ¼ 0. To see this fact consider the translated string

mbðxÞ ¼ mðxþ bÞ �mðbÞ; xb 0

and let s�
b be the spectral function of the dual string m�

b of mb. Since the

asymptotic behavior of the spectral function around 0 depends only on that of

m� as x ! l� (see [10] and [6]), we know that s�ðlÞ@ s�
b ðlÞ as l ! þ0 provided

that s� A Rbð0Þ for some b > 0. Thus it is su‰cient to consider the case b ¼ 0

only.

By Proposition 3.1, (4.8) is equivalent to

ð�1Þn�1
ĥhðnÞðsÞ@ bGðn� bÞGð1þ bÞs�njðsÞ ðs ! þ0Þ:ð4:9Þ

Since

� d n

dsn
Ea½e�st0 �@ aĥhðnÞðsÞ ðs ! þ0Þ;
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by Proposition 4.1, (4.9) may be written as

ð�1Þn d
n

dsn
Ea½e�st0 �@ abGðn� bÞGð1þ bÞs�njð1=sÞ ðs ! þ0Þ:ð4:10Þ

Now by Theorem 2.1, (4.10) is equivalent to (4.7) (when b ¼ 0). r

In Theorem 4.1 the assumption is stated in terms of s�, but when 0 < a < 1,

it may also be written in terms of s, because the relationship between s� and s

is the following;

Lemma 4.1. Let 0 < a < 1. Then, s A Rað0Þ if and only if s� A R1�að0Þ. Both
imply

s�ðlÞ@ 1

GðaÞGð1þ aÞGð1� aÞGð2� aÞ
l

sðlÞ ðl ! þ0Þ:

This is just an easy consequence of (3.3) and the Tauberian theorem. So we

omit the proof.

By Lemma 4.1, Theorem 4.1 may be written as

Theorem 4.2 (null recurrent case). Suppose that s A Rað0Þ ð0 < a < 1Þ so

that l ¼ y. Then, for 0a b < a < y,

Paðtb > tÞ@ a� b

GðaÞGð1þ aÞGð1� aÞ
1

tsð1=tÞ ðt ! yÞ:ð4:11Þ

We next study the case where s A Rað0Þ ða > 1Þ. In this case it holds that

lð¼ hðþ0ÞÞ < y so that the process is transient.

Theorem 4.3 (transient case). Suppose that l < y and c A Rað0Þ ða > 1Þ.
Then, for 0a b < a < l,

Paðtb ¼ yÞ ¼ a� b

l� b
:ð4:12Þ

Furthermore,

sðlÞ@cðlÞ ðl ! þ0Þð4:13Þ

if and only if

Paðt < tb < yÞ@ a� b

ðl� bÞ2
Gðaþ 1Þ
a� 1

tcð1=tÞ ðt ! yÞ:ð4:14Þ
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Proof. For the proof of (4.12) see (4.5). The proof of the latter half can be

carried out as that of Theorem 4.1: As we explained before, we may assume that

b ¼ 0. Now assume (4.13) and choose an n > a. Then by Tauberian theorem

(see Theorem C in Appendix), (4.13) is equivalent to

ð�1ÞnhðnÞðsÞ@Gðnþ 1� aÞGð1þ aÞs�n�1cðsÞ ðs ! þ0Þ:ð4:15Þ

By Lemma 3.2, (4.15) is equivalent to

ð�1Þn�1
ĥhðnÞðsÞ@ 1

l2
Gðnþ 1� aÞGð1þ aÞs�n�1cðsÞ ðs ! þ0Þ;ð4:16Þ

and by Proposition 4.1 this can be written as

ð�1Þn d n

dsn
Ea½e�st0 �@ a

l2
Gðnþ 1� aÞGðaþ 1Þs�n�1cðsÞ:

Applying Theorem 2.1 with b ¼ a� 1 and jð1=sÞ ¼ a

l2
Gðaþ 1Þ
a� 1

s�1cðsÞ, we

obtain the assertion. r

We next turn to the case s A Rað0Þ with a ¼ 1. Note that

l ¼ hðþ0Þ ¼
ðy
�0

dsðlÞ
l

¼
ðy
�0

sðlÞ
l2

dl:

So both l ¼ y and l < y are possible under the assumption s A R1ð0Þ. For

an example of the case l ¼ y, see Example 2.1.

Theorem 4.4 (critical case). Let 0a b < a < l. Suppose that s A R1ð0Þ and

define LðxÞ and LaðxÞ by

Lð1=sÞ ¼

sðsÞ
s

ðl� bÞ�2 ðl < yÞ;

sðsÞ
s

ðy
s

sðuÞu�2 du

� ��2

ðl ¼ yÞ;

8>>><
>>>:

ð4:17Þ

and

LaðxÞ ¼
ðy
x

LðuÞ
u

du:ð4:18Þ

Then LðxÞ and LaðxÞ are slowly varying at y and it holds that

Pbðt < ta < yÞ@ ða� bÞLaðtÞ ðt ! yÞ:ð4:19Þ
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Proof of Theorem 4.4. It is almost trivial that LðxÞ is slowly varying and

we omit the details. For the proof that LaðxÞ varies slowly see the comment after

Theorem 2.2. So we shall prove (4.19) only.

Since this case is only the extreme case of Theorem 4.1 as b ! þ0, the proof

can be carried out in a similar way. The only di¤erence is that we use Theorem

2.2 in place of Theorem 2.1: When l < y, then hðþ0Þ ¼ l provided that b ¼ 0.

(When b > 0 we need to consider the translated string and hence hðþ0Þ ¼ l� b

if l corresponds to the original m.)

By the Tauberian theorem the condition s A R1ð0Þ implies

�h 0ðsÞ@ sðsÞs�2 ðs ! þ0Þð4:20Þ

and hence, as s ! þ0,

hðsÞ@
Ðy
s
sðuÞu�2 du ðl ¼ yÞ;

l� b ðl < yÞ:

(
ð4:21Þ

(Precisely speaking, in the case l ¼ y we used the fact that hðyÞ ¼ 0, which

can be verified as follows: In general hðyÞ ¼ inffx > 0;mðbþ xÞ �mðb� 0Þ > 0g
but in the present case the right-hand side vanishes because b should be chosen

from the support of dm.)

Now (4.20) and (4.21) imply

ĥh 0ðsÞ ¼ �h 0ðsÞ
hðsÞ2

@ sðsÞs�2

� ðy
s

sðuÞu�2 du

� �2
ðs ! þ0Þð4:22Þ

when l ¼ y. The case where l < y can be shown in a similar way.

Next recalling the definition (4.17) of L, (4.22) may be written as

ĥh 0ðsÞ@ 1

s
L

1

s

� �
ðs ! þ0Þ:

On the other hand we have

d

ds
Ea½e�st0 �@ quðs; aÞ

qs
@�ĥh 0ðsÞa ðs ! þ0Þ

as before (see Proposition 4.1). So combining the above two we have

� d

ds
Ea½e�st0 �@ as�1L

1

s

� �
ðs ! þ0Þ:

So by Theorem 2.2 we have the assertion. r
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5. First Hitting Time of the Di¤usion DmD
þ
s

We next study the case of di¤usions on an interval I ¼ ðc; rÞ � R with local

generator with Feller’s canonical form

G ¼ DmD
þ
s :¼ d

dmðxÞ
d

dsðxÞ ; x A I ;ð5:1Þ

where sðxÞ, the scale function, is a strictly increasing continuous function and

dm, the speed measure, is a positive Radon measure on I . (Here, Dþ
s denotes the

right-derivative with respect to the scale function sðxÞ.)
This case can easily be reduced to the case we studied in the previous section

by changing the scale. Indeed, the local generator of ~XXðtÞ :¼ sðXðtÞÞ is

d

d ~mmðxÞ
d

dx
; sðcþ 0Þ < x < sðr� 0Þð5:2Þ

where ~mmðxÞ ¼ mðs�1ðxÞÞ, and the first hitting time of XðtÞ to b corresponds to

that of ~XXðtÞ ð¼ sðX ðtÞÞÞ to sðbÞ. We need not to care about the left boundary,

because the destination bð< aÞ should be chosen from the regular point and the

law of the first hitting time does not depend on the values of mðxÞ and sðxÞ for

x < b. So in what follows, the spectral function s means that of (5.2) restricted

on ½sðb 0Þ; sðyÞÞ for some regular point b 0ða bÞ with reflecting boundary condition

there. The asymptotic behavior of the spectral function s does not depend on the

choice of b 0 (as long as s is regularly varying). So, for example, in the case of

Bessel process, we consider only on ½�;yÞ ð� > 0Þ. We stress that this under-

standing is crucial when ra 0. (Otherwise the ‘spectral function’ does not make

sense in general.) Since sðxÞ allows linear transform, we may and do assume that

sðb 0Þ ¼ 0 without generality.

With the understanding above, let sðlÞ and s�ðlÞ be the spectral functions of

the string ~mmðxÞ ¼ mðs�1ðxÞÞ and its dual ~mm�ðxÞ :¼ ~mm�1ðxÞ ¼ sðm�1ðxÞÞ, respec-

tively. Notice that, if s corresponds to (5.1), then s� corresponds to

G� :¼ d

dsðxÞ
d

dmðxÞ :ð5:3Þ

Let a; b ðb < aÞ be regular points in the state space I ¼ ðc; rÞ, then from

Theorem 4.2 we immediately have

Theorem 5.1 (null recurrent case). If s A Rað0Þ ð0 < a < 1Þ, then

Paðtb > tÞ@ sðaÞ � sðbÞ
GðaÞGð1þ aÞGð1� aÞ

1

tsð1=tÞ ðt ! yÞ:
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Similarly, we have

Theorem 5.2 (transient case). If s A Rað0Þ ða > 1Þ, then

Paðtb ¼ yÞ ¼ sðaÞ � sðbÞ
sðr� 0Þ � sðbÞð5:4Þ

and

Paðt < tb < yÞ@ sðaÞ � sðbÞ
ðsðr� 0Þ � sðbÞÞ2

Gðaþ 1Þ
a� 1

tsð1=tÞ ðt ! yÞ:

Theorem 5.3 (critical case). Suppose that s A Rað0Þ ða ¼ 1Þ.
(i) If sðr� 0Þ < y, then (5.4) holds and

Paðt < tb < yÞ@ sðaÞ � sðbÞ
ðsðr� 0Þ � sðbÞÞ2

ð1=t
0

sðuÞ
u2

du ðt ! yÞ:

(ii) If sðr� 0Þ ¼ y, then,

Paðtb > tÞ@ ðsðaÞ � sðbÞÞLaðtÞ ðt ! yÞ;

where

LaðxÞ ¼
ðy
x

LðuÞ
u

du where Lð1=uÞ ¼ sðuÞ
u

� ðy
u

sðvÞv�2 dv

� �2
:

Remark 5.1. In (5.1), sðxÞ and mðxÞ are not uniquely determined by G; i.e.,

if we replace sðxÞ and dmðxÞ by AsðxÞ þ B and ð1=AÞ dmðxÞ, respectively, then
we have the same G. However, under such a transformation, s (or s�) will be

changed to As (or ð1=AÞs�) simultaneously and hence the right-hand sides of the

results in Theorems 5.1–5.4 do not depend on the choice of sðxÞ.

A typical example of Theorem 5.3 is the following: If sðlÞ@Clðlog 1=lÞb,
then, it is easy to see that, as x ! y,

Lð1=sÞ@

ðb þ 1Þ2

C
ðlogð1=sÞÞ�b�2; ðb þ 1 > 0Þ;

C

l2
ðlogð1=sÞÞb; ðb þ 1 < 0Þ;

8>>>><
>>>>:

and therefore,
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LaðxÞ@

b þ 1

C
ðlog xÞ�ðbþ1Þ; ðb þ 1 > 0Þ;

�C

l2ðb þ 1Þ
ðlog xÞbþ1; ðb þ 1 < 0Þ

8>>><
>>>:

(cf. Example 2.1). Thus we have

Corollary 5.1. Let b0�1 and C > 0. If sðsÞ@Csflogð1=sÞgb ðs ! þ0Þ,
then, for c < b < a < r,

Paðtb ¼ yÞ ¼
0; ðb > �1Þ;
sðaÞ � sðbÞ

sðr� 0Þ � sðbÞ ; ðb < �1Þ

8><
>:

and

Paðt < tb < yÞ@
ðsðaÞ � sðbÞÞ b þ 1

C
ðlog tÞ�ðbþ1Þ; ðb > �1Þ;

sðaÞ � sðbÞ
ðsðr� 0Þ � sðbÞÞ2

�C

b þ 1
ðlog tÞbþ1; ðb < �1Þ:

8>>><
>>>:

As a special case b ¼ 0 we have the following: If sðsÞ@Cs ðs ! þ0Þ, then,

Paðtb > tÞ@ ðsðaÞ � sðbÞÞ 1

C log t
ðt ! yÞ:

The above three theorems do not include the case of positive recurrent

di¤usions. But next theorem, which follows immediately from Theorem 4.1, is

also applicable to positive recurrent di¤usions.

Theorem 5.4 (recurrent case). If s� A Rbð0Þ ðb > 0Þ, then,

Paðtb > tÞ@ ðsðaÞ � sðbÞÞGð1þ bÞs�ð1=tÞ ðt ! yÞ:

6. Di¤usions with Bessel-like Drifts

In the previous section we studied the case of general linear di¤usions. Now

let us apply the results to the following special case.

Let X ¼ ðXtÞtb0 be a di¤usion on I ¼ ½0;yÞ with local generator of the

form

G ¼ �L ¼ 1

2

d 2

dx2
þ V 0ðxÞ d

dx

� �
; x > 0;ð6:1Þ
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VðxÞ being an absolutely continuous function on ð0;yÞ. The Bessel process

corresponds to VðxÞ ¼ ðr� 1Þ log x.

Put WðxÞ ¼ C exp VðxÞ so that W 0ðxÞ=WðxÞ ¼ V 0ðxÞ (C > 0 is arbitrary).

Then (6.1) may be written as

G ¼ 1

2WðxÞ
d

dx
WðxÞ d

dx

� �
; x > 0:

Thus Feller’s canonical form of G is the following:

G ¼ d

dmðxÞ
d

dsðxÞ ;

where

mðxÞ :¼ 2

ð x
0

WðuÞ du; sðxÞ ¼ sðx0; xÞ :¼
ð x
x0

du

WðuÞ ; xb 0:

Here, x0 A ð0;yÞ is arbitrary. x0 ¼ 0 and x0 ¼ y are also allowed as long as

the integral makes sense. Recall that, as we pointed out in Remark 5.1, this

choice of x0 does not a¤ect our results.

The relationship between the asymptotic behavior of WðxÞ and s (or s�)

will be found in the following Theorem B: (i) is an easy consequence of

[7, Theorem 4.2] and (ii) is proved in [8, Proposition 5.1].

Theorem B. Let Wð�Þ A Rr�1ðyÞ.
(i) If r > 0, then

sðlÞ@ 1

2ðr=2Þ�1rGðr=2Þ2

ffiffiffi
l

p

Wð1=
ffiffiffi
l

p
Þ
A Rr=2ð0Þ:

(ii) If r < 2, then

s�ðlÞ@ 2ðr=2Þþ1

ð2� rÞGð1� ðr=2ÞÞ2
ffiffiffi
l

p
Wð1=

ffiffiffi
l

p
Þ A Rð2�rÞ=2ð0Þ:

So, if Wð�Þ A Rr�1ðyÞ, then s A Rr=2ð0Þ ðr > 0Þ and s� A R1�ðr=2Þð0Þ ðr < 2Þ.
(Both are applicable when 0 < r < 2.) Therefore, we can apply Theorems 5.2

with a ¼ r=2 or Theorem 5.4 with b ¼ 1� ðr=2Þ according as r > 2 or r < 2;

Theorem 6.1. Suppose that Wð�Þ A Rr�1ðyÞ and let 0 < b < a < y. We put

n ¼ ðr=2Þ � 1 as before.
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(i) If r > 2 ðn > 0Þ, then

Paðt < tb < yÞ@ sðaÞ � sðbÞ
ðsðyÞ � sðbÞÞ2

2�n�1

nGð1þ nÞ

ffiffi
t

p

Wð
ffiffi
t

p
Þ

ðt ! yÞ:ð6:2Þ

(ii) If r < 2 ðn < 0Þ, then

Paðtb > tÞ@ ðsðaÞ � sðbÞÞ 2nþ1

Gð�nÞ
1ffiffi
t

p Wð
ffiffi
t

p
Þ ðt ! yÞ:

Remark 6.1. A necessary and su‰cient condition for Wð�Þ A Rr�1ðyÞ is

that V 0ð�Þ is of the form

V 0ðxÞ ¼ r� 1þ oð1Þ
x

þ hðxÞ; ðx ! yÞ

for some hðxÞ such that

b lim
A!y

ðA
1

hðxÞ dx A R:

This is an easy consequence of the canonical representation of a slowly varying

function (see [3, p. 282]).

The case r ¼ 2 is rather complicated. So we give here only a typical case:

Theorem 6.2. Suppose that WðxÞ@Cxðlog xÞ�b ðb > �1Þ. Then,

Paðtb > tÞ@ ðsðaÞ � sðbÞÞðb þ 1Þ2bþ1Cðlog tÞ�ðbþ1Þ ðt ! yÞ:

Proof. By Theorem B WðxÞ@Cxðlog xÞ�b implies

sðlÞ@ 1

2

ffiffiffi
l

p

Wð1=
ffiffiffiffiffi
lÞ

p @
1

2C
ðlog 1=

ffiffiffi
l

p
Þb ¼ 1

2bþ1C
ðlog 1=lÞb ðl ! þ0Þ:

So we have the assertion by Corollary 5.1. r

Finally, let us see that Theorems 6.1 and 6.2 include Hamana-Matsumoto’s

result we mentioned in Introduction (Theorem A).

In the case of Bessel process, we may put WðxÞ ¼ xr�1ð¼ x2nþ1Þ. So, as is

well known (see e.g. page 133 of [2]), the scale function is
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sðxÞ ¼

srð0; xÞ :¼
1

2� r
x2�r ¼ � 1

2n
x�2n ðr < 2; n < 0Þ;

srð1; xÞ :¼ log x ðr ¼ 2; n ¼ 0Þ;

srðy; xÞ :¼ � 1

r� 2
x2�r ¼ � 1

2n
x�2n ðr > 2; n > 0Þ:

8>>>>><
>>>>>:

Since the condition that W A Rr�1ðyÞ is trivial, we can apply Theorems 6.1 and

6.2 to deduce the assertion of Theorem A.

7. Appendix

In this section we briefly sum up some results on Tauberian theorems for

Laplace transform and Stieltjes transform.

For a nondecreasing, right-continuous function s : ð�y;yÞ ! ½0;yÞ such

that sð�0Þ ¼ 0, we define the Laplace-Stieltjes transform and the generalized

Stieltjes transform by

F½s�ðtÞ :¼
ð
½0;yÞ

e�tl dsðlÞ; t > 0

and

Hnðs; sÞ :¼
ð
½0;yÞ

dsðlÞ
ðsþ lÞnþ1

; s > 0 ðnb 0Þ

provided that the integral converges.

If

sðlÞ ¼ A

Gð1þ aÞ l
a; l > 0;

then

F½s�ðtÞ ¼ At�a; t > 0;

and

Hnðs; sÞ ¼ A
Gðnþ 1� aÞ

n!
sa�n�1;

provided that 0 < a < nþ 1.

The well-known Karamata’s extension of Hardy–Littlewood Tauberian the-

orem is that the constant A may be replaced by slowly varying functions:
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Theorem C. Let 0a a < nþ 1, Ab 0, and LðxÞ A R0ðyÞ. Then, the fol-

lowing three conditions are equivalent.

sðlÞ@ laLð1=lÞ ðl ! þ0Þ

F½s�ðtÞ@Gð1þ aÞt�aLðtÞ ðt ! yÞ

Hnðs; sÞ@
Gðnþ 1� aÞGð1þ aÞ

n!
sa�n�1Lð1=sÞ ðs ! þ0Þ

For the proof of the equivalence of the first two see Feller [3, p. 446] and for

the other part we refer to [9, Appendix] and [1, p. 40].
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