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ABSTRACT INCOMPLETE DEGENERATE
DIFFERENTIAL EQUATIONS

By

Marko KostiC

Abstract. In this paper, we investigate the abstract incomplete
degenerate differential equations in locally convex spaces, associated
with use of the modified Liuoville right-sided fractional derivatives
([21]). The existence of solutions of abstract incomplete degenerate
differential equations of second order is proved by considering
the corresponding incomplete degenerate differential equations of order
1/y (0<y<1/2) and using an approximation process when
y—1/2—.

1. Introduction and Preliminaries

The theory of abstract degenerate differential equations is still an active field
of research (cf. [2], [5], [10], [12]-[16], [33]-[35], [40]-[41] and [43]-[45] for the
basic source of information). To the best of our knowledge, almost nothing
has been said about the abstract incomplete degenerate differential equations
so far. That was a strong motivational factor that influenced us to write this
paper.

The organization and main ideas of paper can be briefly described as follows.
It is well known that semigroups of growth order r > (0 were introduced by
G. Da Prato [8] in 1966 (we refer the reader to [20, Section 1.2, Section 1.4]
and references cited there for more details concerning this topic); the class of
C-regularized semigroups of growth order r > 0 has been recently introduced in
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[6]. For the purpose of research of abstract degenerate incomplete Cauchy
problems, in this paper we introduce the concept of degenerate (B, C)-regularized
semigroups of growth order r > 0 and clarify their most important structural
properties (the full analysis of introduced class is very non-trivial and falls
out from the framework of this paper; cf. Definition 2.1-Definition 2.2, Remark
2.3 and the paragraph following it). Our main results are Theorem 2.5 and
Theorem 2.6. In Theorem 2.5, we consider the following abstract incomplete
degenerate differential equations with modified Liouville right-sided fractional

derivatives:
ue C*((0,00): E),
D* BDPru(s) = e Au(s), s> 0,
(FPOH’/;“(;) . . -
lim,_o; Bu(s) = Cx,
the set {Bu(s):s> 0} is bounded in E
and

ue C?((0,0): E),
D* BDPru(s) = e/ Au(s), s> 0,
(FP,, p,.0) ¢4 lims_o, Bu(s) = Cx,
the sets {(1 4+ s~@tD/") lu(s): 5 > 0}
and {(1+ s @/7)"'By(s) : s > 0} are bounded in E;

here, E is a Hausdorff sequentially complete locally convex space over the field
of complex numbers (the state space), 0 <y < 1/2, 00 >0, f;, >0, o1+, =1/,
0€ (yn— (n/2),(n/2) —yn), A and B are closed linear operators acting on
E, CeL(E) is injective, A belongs to the class .#p ¢, introduced below,
and ¢ > —1, resp. —1 —y < g < —1, in the case of consideration of problem
(FP,, p,.0), tesp. (FPy, g ¢)'. On the other hand, in Theorem 2.6 we consider the
following abstract incomplete degenerate Cauchy problem of second order

ue ﬂ(z(n/z),(w/z) : E), Bue &/(2@/2),@/2) : E),

Bu'(z) = %Bu(z) = Au(z), z€Zn/)-(w)2)

lim. o ez, Bu(z) = Cx, for every J e (0, (n/2) — (w/2)),
the sets {(1+ |2 ") 'u(z) : ze %s} and

{(1+|z| @) By(z) : z € 35} are bounded in E

for every 0 € (0, (n/2) — (w/2)),

(P2q.8) :

where (-3)/2 < q < (=1)/2, A (Zz/2-(w2) : E) denotes the set consisting of all
analytic functions from the sector X(;/2)_(w/2) = {4 € C\{0} : |arg(4)| < (n/2) —
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(w/2)} into E, and the condition (H) stated below holds with some number
w € [0,7). In doing so, we factically continue our previous researches raised in
[6]-7] (cf. [21, Section 2.9, Addendum] for a detailed exposition of results, and
some mistakes made in previous investigations), and contribute to the theory of
abstract degenerate fractional differential equations, which is in its very early
stage (cf. [17]-[18] and [23]-[29] for some recent results in this direction).

The proof of Theorem 2.5 leans heavily on our results from Theorem 2.4,
in which we analyze the qualitative properties of operator family (W, (1)),
(y € (0,1/2)) following the ideas of A. V. Balakrishnan [3] and C. Martinez,
M. Sanz, A. Redondo [31]. In contrast to the assertions of Theorem 2.4-Theorem
2.5, whose proofs can be regarded, more or less, as a technical modification of
the proof of [21, Theorem 2.9.48], the proof of Theorem 2.6 is essentially different
from that of [21, Theorem 2.9.51(iii)], where a non-degenerate analogon has
been considered. Speaking-matter-of-factly, the method used in the proof of last
mentioned theorem is based on the argumentation used in that of [3, Theorem
5.1] (cf. also [30, Theorem 5.5.2]), which does not work any longer in degenerate
case for proving the fact that the function z+— W (z)x is a solution of the
problem (P>, p) (cf. the formulation and proof of Theorem 2.6 for more
details). To see this, we apply Theorem 2.5 and the approximation process when
y—1/2—.

It is clear that Theorem 2.5 and Theorem 2.6 provide generalizations of some
assertions from [21, Section 2.9]: we feel duty bound to say that some of these
generalizations are complete and some of them are only partial. For example,
our results on the abstract degenerate Cauchy problem (FP, p ¢) basically
strengthens the corresponding results on the abstract non-degenerate Cauchy
problem (FPg) (cf. [21, Theorem 2.9.48(ix.1)]) but we cannot conclude, as in
the formulation of this theorem, that the corresponding solution ¢+ u(¢), t > 0
of problem (FP, g o) satisfies the property that for each ne N the mapping
t— A"u(t), t>0 is well-defined and continuous. On the other hand, the
abstract Cauchy problem (FPg ,,), appearing in the formulation of [21, Theorem
2.9.48(ix.2)], cannot be so easily considered in degenerate case because we do not
know what would be the fractional power (4 +¢),, in the newly arisen situation
(cf. also the problems (FP, s ¢) and (FP, s ¢)', in which we work with the
operator 4, not with its fractional power Ag,, as in [21, Theorem 2.9.48(ix.1)]).
In the case of consideration of abstract incomplete degenerate Cauchy problems
of second order, we are losing some valuable information, as well (see e.g. the
inclusion D(A4;/,) UD(A) C Q, ), appearing in the formulation of [21, Theorem
2.9.51(iii.1)]). We apply Theorem 2.5 and Theorem 2.6 in the analysis of some
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incomplete degenerate Cauchy problems associated with abstract differential
operators ([21], [46]). It should be finally observed that the furnished applications
as well as our obtained theoretical results on the well-posedness of problems
(FP,, p,.0), (FPy p,.0)" and (P>, p) seem to be valuable only from the mathe-
matical point of view and do not have an important physical significance, for
now at least.

We use the standard notation throughout the paper. Unless specifed other-
wise, we assume that E is a Hausdorff sequentially complete locally convex space
over the field of complex numbers, SCLCS for short. By L(E) and ® we denote
the space consisting of all continuous linear mappings from E into E and the
fundamental system of seminorms which defines the topology of E, respectively.
Let # be the family consisting of all bounded subsets of E, and let pg(T) :=
sup,.g P(Tx), pe®, Be B, T € L(E). Then pg(-) is a seminorm on L(E) and
the system (pB)(p,B)e®><% induces the Hausdorff locally convex topology on
L(E). If E is a Banach space, then we denote by |/x|| the norm of an element
xe E. If A is a closed linear operator acting on E, then the domain and range
of A will be denoted by D(4) and R(A), respectively. Since no confusion
seems likely, we will identify 4 with its graph. If C € L(E) is injective, then we
define the C-resolvent set of A, p-(A4) for short, by p-(4):={AeC;1—4
is injective and (1 — A)"'Ce L(E)}. If B is a closed linear operator with do-
main and range contained in E, then we define the set p-(B, 4) by po(B, A4) :=
{AeC;AB—A4:D(A)ND(B) — E is injective and (AB— A) 'Ce L(E)}. By I
we denote the identity operator on E. The fractional power (4B~!), /2> appear-
ing in the paragraph directly after the proof of Theorem 2.6, will be under-
stood in the sense of [21, Definition 2.9.24]; for further information concerning
fractional powers of almost C-sectorial operators, the reader may consult
[21, Section 2.9].

If V' is a general topological vector space, then a function f : Q — V', where
Q is an open subset of C, is said to be analytic if it is locally expressible in
a neighborhood of any point ze Q by a uniformly convergent power series
with coefficients in 7. We refer the reader to [21, Section 1.1] and references
cited there for the basic information about vector-valued analytic functions.
In our approach the space E is sequentially complete, so that the analyticity
of a mapping f: Q — E (J #Q CC) is equivalent with its weak analyticity.

In the sequel of paper, we assume that 4 and B are two closed linear
operators acting on E, as well as that C € L(E) is an injective operator satisfy-
ing CAC AC and CB C BC. Sometimes we use the following condition on a
scalar-valed function K(-):
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(P1) K(-) is Laplace transformable, i.e., it is locally integrable on [0, o0) and
there exists f € R so that

K(2) :== L(K)(2) :== lim Jb e MK(t) dt == Jw e MK (1) dt

b— o0 0

exists for all Ae C with Re 4 > .

By # and # ! we denote the Fourier transform on R” and its inverse
transform, respectively. Given 60 e (0,7] and d e (0,1], define Z,:={1eC:
A #0,|arg(4)| < 0}. The set consisting of all analytic functions from X, into
E is denoted by ./(Zy: E). Further on, || :=sup{neZ:n<f} and [f]:=
inf{neZ:p <n}. The Gamma function is denoted by I'(-) and the principal
branch is always used to take the powers; the convolution like mapping *
is given by f*g(t) = [y f(t—s)g(s) ds. Set gg(t):=t""1/T({), 0°:=0 ({>0,
t > 0), go(?) := the Dlrac 0- dlstrlbutlon and C; :={zeC: Rz > 0}.

Suppose >0 and f ¢ N. Then the Liouville right-sided fractional deriva-
tive of order f (see [19, (2.3.4)] for the scalar-valued case) is defined for those
continuous functions u: (0,00) — E for which limy_ J’STQW,/;(I —s)u(t) dt =
7 gip—p(t — s)u(r) dr exists and defines a [f]-times continuously differentiable
function on (0, o), by

4P
DA u(s) = (_I)WWL gip-p(t — syu(t) dr, s> 0.
We define the modified Liouville right-sided fractional derivative of order f,
D’ u(s) shortly, for those continuously differentiable functions u : (0, 00) — E for
which limz_, L,Tgw, (t—s)u' = [ grp—p(t — s)u'(¢) dt exists and defines
a [p — 1]-times continuously dlﬂerentlable function on (0, ), by

[p-11
DPu(s) .= (—1) 5 4 J grp—p(t —s)u'(1) dt, s> 0;

dslP=11
if f=neN, then D"y and D"u are defined for all n-times continuously dif-
ferentiable functions u(-) on (0, 0), by D"u:= D"u:= (—1)"d/d", where d/d"
denotes the usual derivative operator of order n (cf. also [19, (2.3.5)]).
The Mittag-Leffler function Ez,(z) (f >0, y € R) is defined by

E/g} zeC.
ZOF (Pk+7yp)’
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In this place, we assume that 1/T(fk+y) =0 if fk+ye —Nj. Set Ep(z) :=
Eg1(z), ze C. For further information about the Mittag-Leffler functions, frac-
tional calculus and non-degenerate fractional differential equations, see [4], [11],
[19], [21], [36], [38] and references cited there. The basic information on abstract
Volterra integro-differential equations in Banach and locally convex spaces can
be obtained by consulting [37] and [21].

Assume that n e N and i4;, 1 < j <n are commuting generators of bounded
Co-groups on a Banach space E. Set A :=(Ay,...,4,), A":=A4"-- 4] for
any # = (ny,...,1,) € N§, and denote by &(R") the Schwartz space of rapidly
decreasing functions on R”. Let k =1+ |n/2]. For every ¢ = (¢y,...,&,) eR”
and ue FL'(R") ={7f: feL'(R")}, we set [&:= (3], sz)l/z, (&,4) =
21 ¢4; and

u(A)x = J F e Cx dé, xeE.

n

Then u(A) € L(E), ue ZL'(R") and there exists a finite constant M > 1 such
that

lu(A)| < MIF " ullpgny, e FLURY).

Let N eN, and let P(x) =}, _yayx", x€R" be a complex polynomial. Then
we define

P(4):= Y a,A" and Ey:={$(4)x:¢eSR"),xeE}.
[n|<N

We know that the operator P(A) is closable and that the following holds:

() Eo = E, Eo C(\,eny D(A7), P(A) 5 = P(4) and
$(A)P(4) € P(A)$(A) = (4P)(A4), ¢ € S (R").

Assuming that E is a function space on which translations are uniformly
bounded and strongly continuous, the obvious choice for 4; is —id/dx; (notice
also that E can be consisted of functions defined on some bounded domain).
If P(x) =3, <yax", xeR" and E is such a space (for example, L”(R") with
pe[l,o), Co(R") or BUC(R")), then it is not difficult to prove that P(A) is
nothing else but the operator EWSNa,?(—i)‘”la‘”‘/ﬁx?' X = Yy <n @y D,
acting with its maximal distributional domain. For further information concern-
ing the functional calculus for commuting generators of Cy-groups, see [9], [21]

and [46].
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2. Degenerate C-Regularized Semigroups of Growth Order r > 0 and
Their Applications in the Study of Incomplete Degenerate Abstract
Cauchy Problems

In a joint paper with V. Fedorov [29], the author has recently analyzed
a class of abstract degenerate muti-term fractional differential equations with
Caputo derivatives. The integral computation from [29, Remark 2.2(vii)]
has motivated us to introduce the following definition (cf. also the proof of
[39, Lemma 1.4] and the equation (2.5) below).

DrerFINITION 2.1. Suppose that B is a closed linear operator on E and
C e L(E) is an injective operator. An operator family (7(¢)),., € L(E) is said to
be a pre-(B, C)-regularized semigroup of growth order r > 0 iff R(T(¢)) C D(B),
t >0 and the following holds:

(@) T(t+s)C = T(t)BT(s) for all 7,5 >0,

(b) for every x e E, the mapping ¢+— T(f)x, t > 0 is continuous, and

(c) the family {#"T'(z): 1€ (0,1]} C L(E) is equicontinuous.
(T(t)),50 € L(E) is said to be a (B, C)-regularized semigroup of growth order
r >0 iff, in addition to (a)-(c), we have that:

(d) for every x € E, the mapping ¢+— BT (f)x, ¢t > 0 is continuous, and

(e) the family {¢"BT(¢):te (0,1]} C L(E) is equicontinuous.

The notion of an analytic (pre-)(B, C)-regularized semigroup of growth order
r > 0 is introduced in the following definition.

DEerFINITION 2.2. Suppose that B is a closed linear operator on E and
C e L(E) is an injective operator.

(i) Suppose 0 <y <m/2, (T(t))~, is a pre-(B, C)-regularized semigroup of
growth order r > 0, and the mapping ¢+— T(f)x, ¢t > 0 has an analytic
extension to the sector X, denoted by the same symbol (x e E). If
there exists w € R (w =0) such that, for every J € (0,y), the family
{|z]"e="T(z) : z € £5} C L(E) is equicontinuous, then (7'(z)),.x C L(E)
is said to be an (equicontinuous) analytic pre-(B, C)-regularizéd semi-
group of growth order r.

(ii) Suppose 0 <y <mn/2, (T(t)),., is a (B,C)-regularized semigroup of
growth order r > 0, the mappings ¢ — T'(f)x, t >0 and ¢t — BT (t)x, t >0
admit analytic extensions to the sector X,, denoted by the same symbols
(x € E), and there exists @ € R (w = 0) such that, for every 0 € (0,7), the
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families {|z|"e™ % T(z) : zeXs} C L(E) and {|z|"e BT (z) : zeXs} C
L(E) are equicontinuous. Then (7'(z))..y C L(E) is said to be an
(equicontinuous) analytic (B, C)-regularized semigroup of growth order r.

REMARK 2.3. (i) Our assumption R(7'(¢)) C D(B), t > 0 immediately implies
that BT () is a closed linear operator for all # > 0. In the case that E is
a webbed bornological space (this, in particular, holds if E is a Fréchet
space; cf. [32]), then the above implies by the closed graph theorem that
BT (t) € L(E) for all t> 0.

(ii) If (7(f)),~o is a (B, C)-regularized semigroup of growth order r >0
satisfying additionally that the preassumption BT (f)x =0, ¢ > 0 implies
x =0, then (BT(f)),., € L(E) is a C-regularized semigroup of growth
order r > 0 (in the sense of [6, Definition 3.4]). A similar statement can
be formulated for the class of analytic (B, C)-regularized semigroups.

The notion of integral generator of (7(¢))., and the notion of complete
infinitesimal generator of (7(¢)),., can be very simply introduced provided that
B =1 ([6]). Unfortunately, the situation is much more complicated in the case
that B # I, where we probably should observe, before doing anything else,
that /g :={(x,y) € E x E: BT (t)x — BT (s)x = BL’ T(r)y dr for all t,s > 0 with
¢t > s} is a multivalued linear operator in the sense of [13, Definition, p. 21]; after
that, we can try to define the integral generator of (7'(¢)),., and the complete
infinitesimal generator of (7()).., as some appropriately chosen single-valued
branches of .«/p (cf. [13, p. 22, 1. 13-14] and [33, Proposition 1.6.4]). In our
opinion, the ideal option to define generators of (7'()),., does not really exists
in degenerate case and, because of that, we shall skip all related details con-
cerning these questions for the sake of brevity and better exposition.

We need to introduce the following condition

(H): A and B are closed linear operators on E, Ce L(E) is injective,
0<w<m geR, C\Z, Cpc(B,A), the families

{(A" + 14 (AB—4)"'C: A ¢2,} CL(E) and
{47 + 149" BB - 4)7'C: L ¢ 20} C L(E)

are equicontinuous for every w < w’ <=, as well as the mappings
i (AB—A)"'Cx, 1eC\Z, and i+ B(JB— A) 'Cx, 1€ C\Z, are
continuous for every fixed element x € E.
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Since we have assumed that C4 C AC and CB C BC, the analysis con-
tained in [29, Remark 2.2(vii)] shows that the validity of condition (H) im-
plies that the mappings A — (AB— A)'Cx, 4 e C\Z, and A+ B(AB— A) ' Cx,
ZeC\Z, are analytic, indeed, for every fixed element xe E. By .,
we denote the class consisting of all closed linear operators 4’ on E, satisfy-
ing that the families {(|A| ™' +[4|9) '(AB—4')"'C: /e (-0,0)} C L(E) and
{047 + 129 'BB—A4")"'C: 2 e (—0,0)} C L(E) are equicontinuous, as well
as that the mappings A — (1B — A') ' Cx, A€ (—0,0) and 4 +— B(JB— A') "' Cx,
/€ (—00,0) are continuous for every fixed element x € E.

Following A. V. Balakrishnan [3], we introduce the function f;,(4) by

1 Y COSTY o a1y
Sip(2) = —e ™ ST sin(A7 sin 1y)
' n

1 e
— (e
2mi

- —e ) >0 (1>0,7€(0,1/2))
This function enjoys the following properties ([31]):
1. |fiy(A)| < mle# s, ) >0, where ¢, :=tcos my > 0.
2. | fiy (W) S ptalem snas ) > 0.
3. [y A iy(2) dA =0, neNo
Set
dﬂ

H,(w,z) := y exp(—wz’), weC, zeC\(—w,0],

and, if that makes any sense,
W, (t)x == J fi()UB+A)"'Cxdl, t>0,xeE (y€(0,1/2)).

Then the function H,(w,z) is analytic in C\(—o0,0] for every fixed number w,
and entire in C for every fixed number z (cf. also the proof of [31, Proposition
3.5)).

Our next task will be to enquire into the possibility to transmit the assertion
of [21, Theorem 2.9.48] to abstract degenerate differential equations (it is clear
that some parts of this theorem cannot be so simply formulated for degenerate
differential equations because we do not know what would be the fractional
power A. (ze C,) in the newly arisen situation). Concerning this question, we
will state and prove two theorems, Theorem 2.4 and Theorem 2.5. In Theorem
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2.4, we will investigate the properties of operator family (W,(f)),., in more
detail.

THEOREM 2.4. Let 0<y<1/2, and let A€ Ml c, where q+y>—1
Suppose that CA C AC and CB C BC. Then the families {(1 + ¢t~ @+1/7)~! W, (1) :
t>0} CL(E) and {(1+ t‘("“)/"/)_lBWy(t) :t>0} C L(E) are equicontin-
uous, and there exists an operator family (W},(z))zez(ﬂ/z)% CL(E), resp.,
(W%B(Z))zez(n/z),m C L(E), such that, for every x € E, the mapping z — W,(2)x,
Z€X(n/2)—yn> Tesp., z+> W, B(2)X, z€Z(rj2)_yr, IS analytic as well as that
W, (1) = W,(t), t >0, resp., W, p(t) = BW,(t), t >0 (in the sequel, we will not
make any difference between W, (-) and W,(-), W, p(-) and W, g(-)). Furthermore,
the following holds:

(i) Wy(ZI)BI/Vy(Zz) = Wy(Zl —i—Zz)C fOV all zy,z, 62(,[/2),771.
(i) Let —1—y<q<—1. If (AB—A)"'CAC AJB—A)"'C, Jep.(4,B)

and x € D(A), then

(2.1) lim BW,(z)x = Cx, €€(0,(n/2)— yn);

2—0,2€Z(z/2)—yn—e

if, in addition to this, the condition (H) holds, then we can extend the
operator family W,(-) to the sector X ., and the limit equality (2.1)

remains true for each x € D(A), with the number (1/2) — yr replaced by
(7/2) — wy.

(iii) Let g > —1. Then (W,(z))
regularized semigroup of growth order (q+1)/y. If, additionally, the

€3, I8 an equicontinuous analytic (B, C)-
condition (H) holds, then (W,(t)),., can be extended to an equicontinuous
analytic (B, C)-regularized semigroup (W./(Z))ZGZ(H/ZHU} of growth order
(g+1)/y. Suppose that the operator B is injective, x € D((B~'A4)"?))
ND(B) and (JB—A)"'CBC B(JB—A)"'C (iepc(4,B)). Then
im0 ez, .. BW)(2)x = Cx, €€ (0,(n/2) —yn); if, in addition to
this, the condition (H) holds, then the above limit equality remains true
with the number (7/2) — yn replaced by (n/2) — wy.

(iv) Suppose that ¢ <0 and x € D(A) N D(B). Then lim; ¢ :cs,,, . . W,(2)Bx
= Cx, €€ (0,(n/2) — yn); if, in addition to this, the condition (H) holds,
then the above limit equality remains true with the number (n/2) —yn
replaced by (n/2) — wy.

(V)(v.1) Let q+7>0, zoeCy, let B be injective, xe D((B~'4)47 )

D(B), and let (JB— A)"'CBC B()B— A)"'C () epc(A,B)). Then
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(2.2) im  BEx = Cx

2—0,2€Z(7/2) yn—e z

lg+y]+2 k-1
= —z/Cx + qz/: Sl (0,20)(z0 — B14)* ' Cx
0 k—1)! k=1{Y; Z0)(Z0

o0
A

B A -1 _ B4 lg+7]+2
—Sin(nV)J A7 4 Co T2 ) a
0 (;H_ZO)MHH
€€ (0, (n/2) - ym);
if the condition (H) holds, then the formula (2.2) remains true with
the number (n/2) — yn replaced by (n/2) — wy.
(v.2) Let g+y <0, zoe Cy and x e D(A) N D(B). Then
W(z)Bx —

(23) im (e Bx — Cx

2—0,2€Z(7/2)—yn—c V4

da,

) . © (A4 A4) ' C(z0B— A)x
= —z{ Cx — sin(ny) L A7 Gtz

c€(0,(n/2) = ym);

if the condition (H) holds, then the formula (2.3) remains true with
the number (n/2) — yn replaced by (n/2) — wy.

dA,

Proor. The existence of operator families (W,(z)), X and
(W,, B(Z»zez(n/z),,n’ satisfying the properties stated in the first part of formulation
of theorem, before the assertion (i), follows similarly as in the case that B = 1.
Suppose 0 € (0, (n/2) — ny) and r € ®. Arguing as in the proof of [21, Theorem
2.9.48], we obtain that there exist r' € ® and m > 0 such that, for every xe E
and z e X;, we have

(2.4) F(Wy(2)x) < m(1+ 12|77 (x) and
r(BW,(2)x) < m(1 + 2| =47 (x).

The semigroup property stated in (i) can be proved by using the resolvent
equation

(2.5)  (zB+A4)'C*x—(z/B+4)'Cx
= (' —z2)(zB+ A) 'CB(z'B+ A) ' Cx, z,2' €p-(4,B), xeE,

and direct computations, similar to those appearing in [3, Section 3]. Therefore,
(Wy(z))zez(nmw is an equicontinuous analytic (B, C)-regularized semigroup of
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growth order (¢+ 1)/y, provided that g > —1. Suppose temporarily that the
operator B is injective and B(AB— A)'C C (JB— A)"'CB (J € p¢(4, B)). Then
the following equality holds

(2.6) (A+B'4) 'Cx=B(AB+A4)'Cx, 1>0,xeD(B).

Combined with the identity [31, p. 212, 1. 8], (2.6) implies that, for every 4 > 0
and zop e C., we have

BB+ A)'Cx

B % (20~ B 4)"'Cx | BB+ A4)'Clag - B14) " Cx
= G+ (3+20)"*

)

~

so that the proof of limit equality in (iii), on proper subsectors of X(z/2)_;n,
follows in almost the same way as in the proof of [31, Proposition 3.5]. Using
the proof of [21, Theorem 2.9.48(v)], we obtain similarly that the limit equality
in (v.1) holds on proper subsectors of X(;/_,,. We continue the proof of
(iil). Suppose that € > 0 is sufficiently small. Let ¢ > —1, and let the condition
(H) hold. Then one can take numbers 6, € (0,7 — w) and 6, € (w — =,0) such
that (n/2) —yw > (n/2) —yn+y0; > (n/2) — yw — € and wy — (n/2) + € > yn —
(/2) 4+ y0>, > wy — (n/2). Set, for every 0 e (w— 7,7 — ),
w0

Wy, (z)x := J S=y(A)(AB + e?4)'Cxdi, xeE, ze Z(n/2)—yn-
0

Then it can be simply verified that (Wj,(z)).cy , . is an equicontinuous ana-
lytic (B, C)-regularized semigroup of growth order (¢ + 1)/y. Define, for every

xekE,

W,(z)x, if z€Zpm)—ym,
W,(2)x == Wy, ,(ze7)x, if z€eP7Z ;) 0,

7
—iyy : i0
Wo, ,(ze7%7)x, if z€e™Z(r/2)_pn.

An elementary application of Cauchy’s formula shows that W,(z) = Wp, ,(ze=7),
if ze 2(7:/2)7771 N emlyZ(ﬂ/z),ym and W/(Z) = W(;z,y(zefmzy), if ze Z(ﬂ/z),yn N
e”’”’Z(n/z),yn, whence we may conclude that the operator family (W,(z))
C L(E) is well defined. We define the operator family (BW,(z))
similarly. Then it is checked at once that (W,(z))
analytic (B, C)-regularized semigroup of growth order (¢ + 1)/y. The way of

zZe Zn/Z—w;‘

CL(E)

zZ€ Zn/Z—w'/ -

zex,,.,, 1S an equicontinuous
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construction of (W},(z))zezn/zm C L(E) shows that the limit equality stated in
(ili) continues to hold for each xeD((B’lA)L‘”zJ)ﬂD(B), with the number
(n/2) — yn replaced by (n/2) —yw (if ¢ < —1, then we define (W,(z))
L(E) and (BW,(2))..y., .
that any considered limit equality from (ii)—(v) continues to hold with the
number (7/2) — yn replaced by (n/2) — yw). The proof of (iii) is therefore
completed. Suppose now that —1 —y < ¢ < —1. Then an insignificant modifi-
cation of the proof of [30, Theorem 5.5.1(iv)] shows that lim, .o BW,(t)x =
Cx, provided that xe E satisfies lim, ., AB(AB+ A) ' Cx = Cx. Since we
have assumed that 4 commutes with (AB+A)"'C (A€ po(4,B)), and that
IBAB+A)'Cx— Cx=A(JB+A)'Cx= (AB+A4)"'CAx, xeD(A4), i>0,
one has lim,_o. BW,(t)x = Cx, x € D(A4). Using (2.4), it readily follows that
lim, .o, BW,(t)x = Cx, xe D(A4), so that the limit equality (2.1) follows from
an application of [22, Theorem 3.4(ii)]. The limit equalities stated in (iv) and

Z€Xnn 0y —
C L(E) in the same way as above, showing also

(v.2), on proper subsectors of X(;/5_,., can be proved by using the equality

Cx  (AB+4)'C
- +
A+ 2o A+ zo

(AB+ A4) ' CBx = (zoBx — Ax),

which holds for zoe C;, 41 >0, xe D(4)ND(B), and a slight modification of
the proofs of [31, Lemma 3.4, Proposition 3.5]. The proof of the theorem is
thereby complete. |

In Theorem 2.5, we use the same terminology as in the formulation and
proof of Theorem 2.4. We continue our previous analysis by investigating the
existence of solutions of abstract degenerate Cauchy problems (FP, g ) and
(FPy, 5,.0)".

THEOREM 2.5. Let 0<y<1/2, and let Ae .llgc, where q+y>—1
Suppose that CAC AC, CBC BC, o1 >0, >0, oy +p,=1/y and O€
(yn — (7/2),(n/2) — yr). Then the following holds:

(i) Let g > —1. Denote by Qq,, resp. \¥,, the set consisting of those elements
 BW,(z)x
= Cx for all €€ (0,(n/2) — yn). Then, for every x € Qy,, the incomplete

x € E for which lim;_,y, BWy(seiH)x = Cx, resp., lim. o zex,)
abstract degenerate Cauchy problem (FP, g ) has a solution u(s) =
W,(se')x, s>0, which can be analytically extended to the sector
Z(n/2)—yn—o- 1f, additionally, x € ¥,, then for every ¢ € (0, (n/2) — yn — |0])
and je Ny, we have that the set {z/Bul/)(z):zeXs} is bounded in E.
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Assume that the condition (H) holds. Then the solution s— u(s), s >0

can be analytically continued to the sector Xz/»)_,w; if, in addition to

woe BWy(2)x = Cx for all €€ (0,(n/2) —yw), then
for every 0¢€(0,(n/2) —yw —1|0]) and je Ny, we have that the set
{z/Buli)(z) : z € Z5} is bounded in E.

(i) Let —1—yp<qg<-—1, (AB—A)'CACAUB—A)"'C, Jrep.(4,B),
and let x € D(A). Then the incomplete abstract degenerate Cauchy pro-
blem (FP,, 4 ¢9)" has a solution u(s) = W,(se”)x, s> 0, which can be
analytically extended to the sector X3 _,._jp. Moreover, for every
5€(0,(n/2) — ym — |0]) and j e Ny, the sets {|z|’(1 + |z| /"1y (z) :
ze%s} and {|27(1 + |2|" VN Bu (2) : z € 35} are bounded in E. I,
additionally, the condition (H) holds, then the above statements remain

[/’liS, limzﬁo‘ ey

true with the number (n/2) — yn replaced by (n/2) — wy.

Proor. The proof of theorem almost completely follows from the argu-
ments used in those of [21, Theorem 2.9.48] and [6, Theorem 3.5(i)/b’], and the
only non-trivial thing that should be explained here is the way how we can
prove that, for every J € (0,(n/2) —yn — |0|) and j € Ny, the solution s — u(s),
s> 0 has the property that the sets {|z|/(1+ |z|"“"V/")"uU)(2) : ze %5} and
{271 + 2|~/ Bul)(2) : z e 55} are bounded in E (cf. (ii)). In order to
show this, observe first that for each xe E, zeX;/_,, and je N we have

d’ 1 [ T .
(2.7) S = JO (—i7e ™) e~ (1B + A)'Cx di
- %J (—A7e™) e~ <™ (1B + 4)~ Cx d.
0

Hence, BjTj, Wy(z)x:%BWy(z)x (xeE, ze€Zypn_y jeN), which implies
that Bul/)(z) = (Bu)(j)(z) (z€Zzp-yr» jEN). Having in mind this equality,
the boundedness of sets {|z/(1+ |z|"“"V/")"uU)(z):ze %5} and {|zJ/(1 +
|2~/ 1By (z) : z € 55} can be proved by using (2.7) and a direct com-
putation involving the estimates used in the proof of [20, Theorem 1.4.15].

O

The interested reader may try to reconsider the assertions of [21, Theorem
2.9.39, Theorem 2.9.40, Theorem 2.9.58, Theorem 2.9.60] for degenerate
differential equations. Now we will focus our attention on the assertion of
[21, Theorem 2.9.51(iii)].



Abstract incomplete degenerate differential equations 43

THEOREM 2.6.  Suppose that the condition (H) holds, as well as that CA C AC
and CB C BC.

(i) Let —1<qg<(=1)/2, and let (AB—A)'CACAUB—A)'C (e
pc(A4,B)). Then, for every x € D(A), the incomplete abstract degenerate
Cauchy problem (P 4 ) has a solution u(z) (z € L(zj2)—(wy2)). Moreover,
for every o€ (0, (n/Z) —(w/2)) and jeNy, we have that the sets
(o1 2702 02 2 €35} and {]27(1+ |22+ (B (2)
z € Xs} are bounded in E.

(i) Let —1>gq>(=3)/2, and let (JB—A)'CAC AUB—A)"'C (e
pc(A,B)). Then, for every x € D(A), the problem (P, ,p) has a solution
u(z) (z€Znj2)—(w/2)). Moreover, for every 9 € (0,(n/2) — (w/2)) and
j €Ny, we have that the sets {|z|’(1+ |z|” 2“2) 1u(j)(z) :zeXs} and
{lz)7(1 + |z~ 2"”) (Bu)(j)(z) :ze X5} are bounded in E.

PROOF. Suppose first that ¢=—1 and (AB—A) 'CAC A(JB—A)"'C
(Aepc(A,B)); cf. (ii). Let 0<d' <5< (n—w)/2, 1/2>79,>35/(n—w) and
0 € (w—m(=0)/yy). Then, for every ye (yy,1/2), we have 0 e (v —mn, (-9)/y)
and y > J/(n — w). Suppose that ee (0,w/2) is sufficiently small. Define, for
every y € (yy,1/2) and x € E,

(2.8)  F,(A)x

e sin yn (oo v (vB+e4) ™ Cx dv .
_ s IO (}.8’07’4»07 cos TZ}))Z‘H)Z"' sin2 }’7[7 lf arg(ﬂ‘) € (76? (7[/2) + 5)?
e~ sin yn oo v7(vB+e " A) ' Cx dv .
T J‘O (e~ 0747 cos n}')ZJrvz“" sin? yn’ if arg(i) € (—(7[/2) a 57 6).

If xe E and arg(l) € (—¢,(n/2) +0), resp., arg(d) € (—(n/2) —J,¢), then it is
very simple to prove that

0 _— : 0 ’(vB i()A *IC
(2.9) J e Wy (1) di = V”J _vBrend) Cx
0 . Jo (Ae +v7 cos my)” + v¥ sin” yn
resp.,
o0 iy : o0 ?(vB ﬂHA -1
210) [ e xan =TI PEBEETD O,
0 ' 0 (e~ 4+ v7 cos my)” + v¥ sin” yx

where we use the notation from the proof of Theorem 2.4. Define I'y:=
{te" : t >0} (Y€ (—n,n)). Since, for every x € E,
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0
. it v —i
e’OVJ e W, ()X dt = J e Wy, (ve™ ) x dv
0 Ty,

= J e W, (v)x dv
I‘()y
and

e

i0y =ity A .

e—l(?, J e Je ”W,QJ(Z)X di = J e v W,g,y(ve“gy)x dv
0 Iy,

= J e W, (v)x dv
T,

(cf. the construction of (W,(z))
the Cauchy formula yields that

, and observe that |6y| € (0, y(r — w))),

2€X(n/2)-ay

o) 0
ity —ith —Je~ir
e Wy (n)x di = e ’Q’J e Wy, (x di, deX.
0

(2.11) e"f’“f‘J

0
This, in turn, implies that the function A F,(1)x, 4 € (/246 is well defined,
analytic and bounded by Const(;rw_] on Xy (x€ E). Speaking-matter-of-
factly, it is not difficult to prove with the help of [22, Theorem 3.4] (cf. also
[1, Theorem 2.6.1] for the Banach space case) and the uniqueness theorem for
the Laplace transform that

1

W,(z)x = =

| e Rowan xekzesnen)

F:5l.<

where Ty :=Ty_ UTy ., Ty o= {re/ @2 > 27y U {1z e
3e0,(n/2) +5']} and Ty .pi= {re @2+ p > 2|y U {jz] e 9 e
[~(n/2) —6',0]} are oriented counterclockwise. Applying the dominated con-
vergence theorem, we get that

i0/2 w0 1/2 i0 4\—1
(2.12) lim W, (2)x = J eMJ veBtetd) Cx
rfs’,,l

y—1/2— 27l 0 22ei0 4 p

CX god

ei0/2J . J~Oc UI/Z(UB+671'0A)71
A e -
2% Jr, o 2e=i0 4 p

= Wiplz)x, xekE, zeZy.

Define F/;(4) by replacing the number y with the number 1/2 in definition of
W,(4). Then, for every xe E, the function A Fj;(A)x, A€ Xz is well
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defined and analytic on X(;/5); s because Fj(4)x = lim, ;- F,(A)X, 2 € Z(z/2)45
and the convergence is uniform on compacts of X(;/5).s (cf. [22, Lemma 3.3]).
Furthermore, we can argue as in the proof of estimate [21, (334)] so as to conclude
that for each ¢ € ® there exists r, € ® such that ¢(Fy/»(4)x) < r,(x) Consty |4 ",
4 €Z(z2)46'» X € E. Now it becomes apparent that we can define the operator
family (W1/2(2)).c5,, ,,, © L(E) by Wip(2)x :=lim,_; . Wy(2)x, 2€Zizo)p,
x € E; this operator family is equicontinuous on any proper subsector of
Z(z-w)2 and satisfies additionally that the mapping z +— W))5(2)x, z € Zr )2

is analytic for all xe E. Let us prove that for each xe D(4) the function
u(z) := Wip(2)x, z€Zz_)2 is a solution of problem (P, p) with ¢= —1.
Suppose first that x € D(A4). Then the condition (AB— A)"'CA C A(JB— 4)"'C
(A€ pc(4,B)) in combination with the closedness of A shows that W, (z)Ax =
AW13(2)X, z€Z(n_w)2. By the foregoing, we also have that the operator
family (BW), /2(2))252%}))/2 C L(E) is equicontinuous and the mapping z—
BW1)5(2)x, z € Z(n_w)> i analytic (x € E), as well as that (d*/dz?)BW,p(z)x =
B(d*/dz*)W15(2)X, 2z €Z(n_i)p, x€E and BW,)(z) € L(E), (d*/dz*)BW)(z)
€ L(E), B(d*/dz*)W,(z) € L(E) for z€ZX(;_4),. Furthermore, the dominated
convergence theorem yields that
ylil%— BW.},(") (z) = BW1(72)(z)x, Z2€Z(r w2, XEE, neN.

By Theorem 2.5(ii) and definition of modified Liouville right-sided fractional
derivatives, we get that

d2 o
(2.13) EJ{) ga 1, (O)BW(t+s)x dt = —W,(s)Ax, s> 0, 7€ (yy,1/2),
1e.,
o
J G3-17,(OBW)" (1 + s)x dt = =W, (s)Ax, s> 0, 7€ (y9,1/2).
0
The integration by parts leads us to the following

‘J Ga 1 (DBWI (e 4 s)x di = ~W(s)Ax, s> 0, 7€ (3,1/2).
0

Using again the dominated convergence theorem, we obtain by letting y — 1/2—
that

© .
Jo z‘BWl%)(t +s)x ds = Wyp(s)Ax, s> 0,
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which clearly implies after an application of the partial integration that
BWI”/z(s) = AW »(s)x, s > 0. By the uniqueness theorem for analytic functions,
this equality continues to hold for all z € (,_,,>. The foregoing arguments also
imply that we can compute F,(A)x for 1 > 0 (y € (y5,1/2)) by plugging 0 =0 in
any of two terms appearing in (2.8). Taking the limit as y — 1/2—, we get that
Fip()x =" [ v'2(0% +v) ' (vB+ 4) ' Cx dv, 2> 0. Now we will prove that
BWj(z)x — Cx — 0 as z — 0, z€ X)), 5. Due to [22, Theorem 3.4], it suffices
to show that lim;_. .., ABF;>(4)x = Cx. This follows by applying the dominated
convergence theorem on the integral appearing on the right-hand side of the

equality
1 (* v'/22 _1 Cx
ABF (M) x —Cx=—| —— |B(vB+A) Cx ——| dv,
2(2) | sy €
and by observing that
-1 Cx 1 -1 -2
(2.14) ¢q(B(wvB+A4)" Cx— :;q((vB—i—A) CAx)=0(v""), qe®,v>1
and
—1 Cx -1
(2.15) q| B(vB+ A) Cx—T =0 ), qe®,ve(0,1).

Keeping in mind the Cauchy integral formula, the proof of (ii) follows im-
mediately in the case that ¢ = —1 and x e D(A4). The proof of (ii) in the case
that ¢ = —1 and xe D(4) follows from the standard limit procedure. If
(—3)/2 < g < —1, then for each ¢ > 0 the condition (H), with the operators A4
and B replaced respectively by 4 + &B and B, holds with ¢ = —1 and the same
spectral angle w; in this case, the proof of (ii) can be deduced by slightly
modifying the corresponding part of the proof of [21, Theorem 2.9.51(iii.2)]. The
proof of (i) is very similar to that of (ii); for the sake of completeness, we
will include almost all relevant details. As in the proof of (ii), it will be assumed
that 0 <d' <o < (m—w)/2, 1/2 >y, >d/(n— w), 0 € (w—m,(—0)/y,) and that
e€ (0,w/2) is sufficiently small. Due to the proof of [21, Theorem 2.9.48]
(cf. also the estimate (2.4)), we have that, for every 0'e (w—m,n —w) and
y€(q+1,1/2), the mapping t+— Wy (f)x, t >0 (x € E) satisfies the condition
(P1), as well as that

LWy ,(0)x) (1)

. 0 y B i0/A 71C
:smynJ v'(wB+e" A) Cx dv, ueC,, xekE,

mJo (u+v7cosmy)?+ v¥ sin’ yn
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and that for each g e ® there exists r, € ® such that

(L Wy, (0)x) (1))

= r,()O(g| ™ + [ TN, peSyn ., xeE (ce(0,7/2)).

This implies that, for every ye (max(yy,¢+1),1/2) and x € E, we can define
F,()x through (2.8). If xeE and arg(l) e (—¢, (n/2) +0), resp., arg(l)e
(—(m/2) —d,€), then the equality (2.9), resp., (2.10), continues to hold for those
values of parameter y. Furthermore, (2.11) holds for any 1e€Z.; hence, the
function A+ F,(A)x, 4 €ZXp/)4s is well defined, analytic and bounded by
Consty (|4~ + |4V on B, 55 (xeE, ye(max(yy,q+1),1/2)). If
xeE, zeZy, ye (max(yy,q+1),1/2) and { >0, then we define

R
A

_t 1 z9—¢
W}’( é)(z)x = %Jr:;l e ;u Fy(l)x dl’

where o’ >0 1is taken arbitrarily, gffz = Fg?j“ U ?:;,2, Fgsz’l ={o'+
rel@2+0) > 12TV U’ + 2] e - 9 €0, (r/2) +6']}  and gl’f:_z ={o'+
re= (@240 p > 21T U {w’ +|2| e s e [~ (n/2) —',0]} are oriented coun-
terclockwise. By [22, Theorem 3.4], we get that J(W;il)(l)x)(/l) = 7'F,(A)x,
4 >0, xeE; using this fact, as well as the equality Z(W,(1)x)(1) = F,(4)x,
A >0, x € E, the uniqueness theorem for Laplace transform and the uniqueness
theorem for analytic functions, we obtain that (d/dz) Wy(_l) (z2)x = Wy(z)x, x € E,
zeXZy (ye (max(yy,q+1),1/2)). On the other hand, the dominated con-
vergence theorem yields that (d/dz) Wyg_l)(z)x: W,(O)(z)x, so that Wy(o)(z)x:
W,(z)x, xe E, ze Xy (y € (max(yg,q + 1),1/2)). Define Fy/5(4) (4 € Z(z/2)+s) and
(W1)2(2)).e5,, € L(E) in exactly the same way as in the proof of (ii). As before,
we have that, for every x e E, the function 4+ Fy;(A)x, A€ Xz is well
defined and analytic on X(;/5), 5 because Fj(4)x = lim,_; /- F,(A)X, 4 € Z(z/2)45
and the convergence is uniform on compacts of X ), s; furthermore, for each
g € ® there exists r, € ® such that q(F),(4)x) <ry(x) Consty (2] 7"+ 22T,
% €Z(z2)4s> X € E. Then the limit equality (2.12) continues to hold (with the

o'

replacements of contours I'y ., [y ., with 1"‘3:5‘1, I'§7 . 5, respectively), the
C L(E) and (BW);(:))..y, . € L(E) can

Z€X(-w)2 — )2 =
be defined in the very obvious way, and we have that lim, ./, BWy(”) (z)x =

(n)
BW172

Theorem 2.9.51(iii.1)], we can show that, for every j e Ny, the families {|z|/(1 +
2 ) W (z) ey} CL(E) and {21+ [z %) T (BW0) V() -

N
A

operator families (W) (z))

(z)x for all xe E, z € X(;_y)» and n e Ny. Arguing as in the proof of [21,
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ze Xy} C L(E) are equicontinuous. Suppose now that x € D(A). Then AW, 5(z)x
= Wi)2(2)Ax, z€ZX(r_)2 and for each e ® there exist ¢, 5 >0 and r,€®
such that (cf. (2.14)—(2.15) with 8 =0):

eiﬁ/zjwUl/zB(vB—i—emA)_le g Cx
A 0 Jeil 4y A

112 w12
Jvz—(l+vq>dv+J Uz—l<l+v‘1)dv
0]A"+v\Y 1 A"+v v \Y

< ¢uurlrg(x) +rg(An)I217",  arg(2) € (e (1/2) +').

< ¢ lry(x) + 7y (A)

If arg(1) € (—((m/2) + '), —¢), then we can estimate the term

0 Jle=i0 4y A

(e‘ie/z Jw v!2B(wB+e "4)" Cx d CX)
n

in the same way as above, from which we may conclude that ¢(BF;;(4)Ax) =
(rg(x) + rq(Ax))O(|/1|71), 4 € X(z2)44'- A similar line of reasoning as performed in
the case that ¢ = —1 and x € D(A) enables us to deduce that

i0/2 (oo 1/2 0 4\-1
¢ J v B(UB;J"_e A4) dev—g —0, A— +4o0.
T Jo Ael +p

(2.16) ,1[

Applying [22, Theorem 3.4] and (2.16), we get that Z(BW(1)x)(4) = BF|)2(4)x,
4 >0 and lim; o .c5,, BW);(z)x = Cx. In the proof of Theorem 2.5, we have
proved that B;% W,(z)x = %BWy(z)x (z€XZz2-yn j€N). As a consequence of
this equality and the Cauchy integral formula, we have that q(B<: W,(1)x) =
O(t™), t > 0. On the other hand, the proof of [21, Theorem 2.9.48] shows that
the equation (2.13) continues to hold, which simply implies that BWI’;Z(z)x:

AW15(2)X, z € Z(z_),2. This completes the proof of theorem. O

The main problem in application of Theorem 2.5-Theorem 2.6 to incomplete
abstract degenerate differential equations lies in the fact that, in many concrete
situation, any of conditions (AB— A)'CAC A(JB— A)"'C (A€ pc(A4,B)) and
(AB—A)"'CBC B(JB— A)"'C (hepc(4,B)) is not satisfied. Suppose, for ex-
ample, that ¢J # Q C R" is an open bounded set with C*-boundary, E := L*(Q),
A := A with the Dirichlet boundary conditions, a(x) e L*(Q), a(x) <0 on Q,
a(x) < 0 almost everywhere in Q, and Bf(x) := a(x) '/ (x) with maximal domain
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(cf. [13, Example 3.8, pp. 81-83]). Then B~' € L(E) and the operator 4B~
closed. Suppose, in addition, that a~' € L"(Q) for some r > 2 (resp., r > 2, r > n),
if n=1 (resp.,, n =2, n>3). Then it has been proved in the above-mentioned
example that the condition [21, (HQ), p. 207] holds with the number w =0,
C=1I m=—-1+(n/2r)e (—1,(—1/2)), and with the operator A replaced by
AB~! therein. This implies by [21, Theorem 2.9.51(i.3)] that the operator
—(4B7Y), ) is the integral generator of an exponentially bounded, analytic (n/r)-
times integrated semigroup of angle n/2 on E, and that the abstract incomplete
Cauchy problem [21, (P,,)], which corresponds to the equation u,(t,x) =
A{a(x)u(t,x)}, t > 0, has a unique solution that is analytically extensible to the
right half plane. It is clear that Theorem 2.6 cannot be applied here directly, by
regarding the problem u, (¢, x) = A{a(x)u(t,x)}, t >0 as a problem of the form
(P2,4,8) considered above.

Now we would like to illustrate the abstract theoretical results established in
this paper with the following example.

ExampLE 2.7. Assume that neN and id;, 1 <j<n are commuting gen-
erators of bounded Cy-groups on a Banach space E; let us recall that A :=
(4y,...,A,). Assume, further, that 0 <J <2, Pi(x) and P,(x) are non-zero
complex polynomials, Ny = dg(Pi(x)), N» =dg(P»(x)), f >4 rﬁﬂNg)) (resp. f =
|l — 1 WtN) e B pp(R”) for some 1 < p < ), Py(x) #0, xeR” and

P 2| min(1,9)
P (X))l/ﬁ
sup & <0.
reR" ((Pz(x)

Rs(1) := (E,;<t5 i (x)> (1+ x|2)ﬂ/2) (A), >0, Gs(1) := Po(A)'Rs(1), 1 >0,

A" :=Pi(A), B':=P,(A) and C:= R;(0). Then we know that |Rs(?)||+
1G5l = O(1 + tm&x-m2) 1 >0 (||Rs(0)]| + 1G5 (1) | = O(1 + mex(homit/p=172]),
t>0, if E=L?(R") for some 1< p < o),

< o "

1B -4 'ox = J e "Gs(t)xdt, RA>0,x€ekE,
0

and

;L(g—lBl(}VJB/ o A/)71CX _ J

e M B'Gs(t)x dt = J e “Rs(H)xdt, Ri.>0,xekE;
0
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cf. [23]-[24] for more details. This implies
I(2B"— 4") ' C|| + |B'(2B' = 4") "' C||

/]» -1 + |/1|—l—(max(l,ﬁ)n)/(Z()‘))’

=0/

4 € T 2,
in the case of a general space E, and
I(2B" = 4")7'C|| + | B'(2B' — 4')~'C|
— 0(|l|_1 + |j“—1—(maX(1.(5)”‘1/])—1/2”/6)’ /1 = Z&n/27

in the case that E = L?(R") for some 1 < p < oo (cf. also [23, Remark 4.4(ii)]
and [23, Remark 4.5], which enables us to consider the wellposedness of re-
lated degenerate Cauchy problems in Ej-type spaces [42]). Setting 4 := —A’ and
B := B’, we have that the condition (H) holds wih w = 7 — (d7/2) as well as that
C'AC=A,C'BC=B, (JB—A)"'CAC AJB—A)"'C and (AB—A)"'CBC
B(AB— A)"'C (% € po(A4, B)), which implies that Theorem 2.5(ii), resp., Theorem
2.6(ii) is susceptible to applications in the case that E = L?(R") for some
1 < p < oo satisfying

max(1,5)n|L — 1| max(1,0)n|L —1

5 <y<1/2, resp., +< 1/2.

Before proceeding further, we would like to mention in passing that the oper-
ator B is injective (cf. [23, Remark 4.4(i)]) and that the operator B~'A4 is
closable because po (B~ 'A) # @ (C':= C(B+ A)"'C), which follows from
the equality (A4 B'A)"'C(B+A4)'Cx=BUB+A)'C(B+A4)'Cx, 1>0,
xeE (cf. (2.6)). It is also worth noting that the operator AB~' is closable
because p(4B~') # ¥; this is a consequence of the equality (1 + AB~')"'Cx =
B(/IB+A)71Cx, A>0, xe E. Now we will prove the uniqueness of solution

of problem (P, p) in our particular case; recall that E = L?(R") for some
max(1,6)n|1

11
1 < p < oo satisfying { := % < 1/2. Denote by .#c 4 the class which
consists of all closed linear operators D acting on E such that C\Z, C p(D),
DC C CD and the family

{7 1217 (A =D)7'C: 2 ¢ 20}

is equicontinuous for every w < @’ < x; here ¢ € R and w € [0, 7). Then we have
(e0,1/2) and our previous considerations show that AB~! e M e, \—t 7 (57)2)-
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zu(z), z€ZZ(z_w)2 is a solution of problem (P, p) with x =0, then

= Bu(z), z€X(_u)» is a solution of problem
V€ A (Zn2)—(wp) : E),
5?22”(2) =AB'(z), z€ZX(n2)-(w2)

(Pa,q) : 4 lim._ -cx, v(z) =0, for every d € (0,(n/2) — (w/2)),

the set {(1+4 |z ®*?)u(z) : ze 5} is bounded in E
for every J € (0, (n/2) — (w/2)).

application of [21, Theorem 2.9.51(iii.2)] yields v(z) =0, z € Z(;_)/2, so that

) =0, zeX(z_,)» by the injectiveness of B.

The analysis contained in Example 2.7 shows that there exists at most one

solution of problem (P, p) stated in Theorem 2.6(i), resp., Theorem 2.6(ii),
provided that the operator B is injective, the operator AB~! is closable and

AB~'e Ml ¢ 4 for some ge (—1,(—1)/2) and w € [0,n), resp., g€ ((—3/2),—1]
and w € [0, 7). Finally, we would like to raise the following issue: In which other
cases the uniqueness of solutions of problem (P, z) can be proved (B # I)?
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