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ABSTRACT INCOMPLETE DEGENERATE

DIFFERENTIAL EQUATIONS

By

Marko Kostić

Abstract. In this paper, we investigate the abstract incomplete

degenerate di¤erential equations in locally convex spaces, associated

with use of the modified Liuoville right-sided fractional derivatives

([21]). The existence of solutions of abstract incomplete degenerate

di¤erential equations of second order is proved by considering

the corresponding incomplete degenerate di¤erential equations of order

1=g (0 < g < 1=2) and using an approximation process when

g ! 1=2�.

1. Introduction and Preliminaries

The theory of abstract degenerate di¤erential equations is still an active field

of research (cf. [2], [5], [10], [12]–[16], [33]–[35], [40]–[41] and [43]–[45] for the

basic source of information). To the best of our knowledge, almost nothing

has been said about the abstract incomplete degenerate di¤erential equations

so far. That was a strong motivational factor that influenced us to write this

paper.

The organization and main ideas of paper can be briefly described as follows.

It is well known that semigroups of growth order r > 0 were introduced by

G. Da Prato [8] in 1966 (we refer the reader to [20, Section 1.2, Section 1.4]

and references cited there for more details concerning this topic); the class of

C-regularized semigroups of growth order r > 0 has been recently introduced in
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[6]. For the purpose of research of abstract degenerate incomplete Cauchy

problems, in this paper we introduce the concept of degenerate ðB;CÞ-regularized
semigroups of growth order r > 0 and clarify their most important structural

properties (the full analysis of introduced class is very non-trivial and falls

out from the framework of this paper; cf. Definition 2.1–Definition 2.2, Remark

2.3 and the paragraph following it). Our main results are Theorem 2.5 and

Theorem 2.6. In Theorem 2.5, we consider the following abstract incomplete

degenerate di¤erential equations with modified Liouville right-sided fractional

derivatives:

ðFPa1;b1;yÞ :

u A Cyðð0;yÞ : EÞ;
Da1

� BDb1� uðsÞ ¼ eiy=gAuðsÞ; s > 0;

lims!0þ BuðsÞ ¼ Cx;

the set fBuðsÞ : s > 0g is bounded in E

8>>><
>>>:

and

ðFPa1;b1;yÞ
0 :

u A Cyðð0;yÞ : EÞ;
Da1

� BDb1� uðsÞ ¼ eiy=gAuðsÞ; s > 0;

lims!0þ BuðsÞ ¼ Cx;

the sets fð1þ s�ðqþ1Þ=gÞ�1
uðsÞ : s > 0g

and fð1þ s�ðqþ1Þ=gÞ�1
BuðsÞ : s > 0g are bounded in E;

8>>>>>><
>>>>>>:

here, E is a Hausdor¤ sequentially complete locally convex space over the field

of complex numbers (the state space), 0 < g < 1=2, a1 b 0, b1 b 0, a1 þ b1 ¼ 1=g,

y A ðgp� ðp=2Þ; ðp=2Þ � gpÞ, A and B are closed linear operators acting on

E, C A LðEÞ is injective, A belongs to the class MB;C;q introduced below,

and q > �1, resp. �1� g < qa�1, in the case of consideration of problem

ðFPa1;b1;yÞ; resp. ðFPa1;b1;yÞ
0. On the other hand, in Theorem 2.6 we consider the

following abstract incomplete degenerate Cauchy problem of second order

ðP2;q;BÞ :

u A AðSðp=2Þ�ðo=2Þ : EÞ; Bu A AðSðp=2Þ�ðo=2Þ : EÞ;
Bu 00ðzÞ ¼ d 2

dz2
BuðzÞ ¼ AuðzÞ; z A Sðp=2Þ�ðo=2Þ;

limz!0; z ASd
BuðzÞ ¼ Cx; for every d A ð0; ðp=2Þ � ðo=2ÞÞ;

the sets fð1þ jzj�ð2qþ2ÞÞ�1
uðzÞ : z A Sdg and

fð1þ jzj�ð2qþ2ÞÞ�1
BuðzÞ : z A Sdg are bounded in E

for every d A ð0; ðp=2Þ � ðo=2ÞÞ;

8>>>>>>>>><
>>>>>>>>>:

where ð�3Þ=2 < q < ð�1Þ=2, AðSðp=2Þ�ðo=2Þ : EÞ denotes the set consisting of all

analytic functions from the sector Sðp=2Þ�ðo=2Þ ¼ fl A Cnf0g : jargðlÞj < ðp=2Þ�
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ðo=2Þg into E, and the condition (H) stated below holds with some number

o A ½0; pÞ. In doing so, we factically continue our previous researches raised in

[6]–[7] (cf. [21, Section 2.9, Addendum] for a detailed exposition of results, and

some mistakes made in previous investigations), and contribute to the theory of

abstract degenerate fractional di¤erential equations, which is in its very early

stage (cf. [17]–[18] and [23]–[29] for some recent results in this direction).

The proof of Theorem 2.5 leans heavily on our results from Theorem 2.4,

in which we analyze the qualitative properties of operator family ðWgðtÞÞt>0

(g A ð0; 1=2Þ) following the ideas of A. V. Balakrishnan [3] and C. Martinez,

M. Sanz, A. Redondo [31]. In contrast to the assertions of Theorem 2.4–Theorem

2.5, whose proofs can be regarded, more or less, as a technical modification of

the proof of [21, Theorem 2.9.48], the proof of Theorem 2.6 is essentially di¤erent

from that of [21, Theorem 2.9.51(iii)], where a non-degenerate analogon has

been considered. Speaking-matter-of-factly, the method used in the proof of last

mentioned theorem is based on the argumentation used in that of [3, Theorem

5.1] (cf. also [30, Theorem 5.5.2]), which does not work any longer in degenerate

case for proving the fact that the function z 7! W1=2ðzÞx is a solution of the

problem ðP2;q;BÞ (cf. the formulation and proof of Theorem 2.6 for more

details). To see this, we apply Theorem 2.5 and the approximation process when

g ! 1=2�.

It is clear that Theorem 2.5 and Theorem 2.6 provide generalizations of some

assertions from [21, Section 2.9]: we feel duty bound to say that some of these

generalizations are complete and some of them are only partial. For example,

our results on the abstract degenerate Cauchy problem ðFPa1;b1;yÞ basically

strengthens the corresponding results on the abstract non-degenerate Cauchy

problem ðFPbÞ (cf. [21, Theorem 2.9.48(ix.1)]) but we cannot conclude, as in

the formulation of this theorem, that the corresponding solution t 7! uðtÞ, t > 0

of problem ðFPa1;b1;yÞ satisfies the property that for each n A N the mapping

t 7! AnuðtÞ, t > 0 is well-defined and continuous. On the other hand, the

abstract Cauchy problem ðFPb;mÞ, appearing in the formulation of [21, Theorem

2.9.48(ix.2)], cannot be so easily considered in degenerate case because we do not

know what would be the fractional power ðAþ �Þgb in the newly arisen situation

(cf. also the problems ðFPa1;b1;yÞ and ðFPa1;b1;yÞ
0, in which we work with the

operator A, not with its fractional power Abg, as in [21, Theorem 2.9.48(ix.1)]).

In the case of consideration of abstract incomplete degenerate Cauchy problems

of second order, we are losing some valuable information, as well (see e.g. the

inclusion DðA1=2Þ [DðAÞ � W1=2, appearing in the formulation of [21, Theorem

2.9.51(iii.1)]). We apply Theorem 2.5 and Theorem 2.6 in the analysis of some
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incomplete degenerate Cauchy problems associated with abstract di¤erential

operators ([21], [46]). It should be finally observed that the furnished applications

as well as our obtained theoretical results on the well-posedness of problems

ðFPa1;b1;yÞ, ðFPa1;b1;yÞ
0 and ðP2;q;BÞ seem to be valuable only from the mathe-

matical point of view and do not have an important physical significance, for

now at least.

We use the standard notation throughout the paper. Unless specifed other-

wise, we assume that E is a Hausdor¤ sequentially complete locally convex space

over the field of complex numbers, SCLCS for short. By LðEÞ and l we denote

the space consisting of all continuous linear mappings from E into E and the

fundamental system of seminorms which defines the topology of E, respectively.

Let B be the family consisting of all bounded subsets of E, and let pBðTÞ :¼
supx AB pðTxÞ, p Al, B A B, T A LðEÞ. Then pBð�Þ is a seminorm on LðEÞ and

the system ðpBÞðp;BÞ Al�B induces the Hausdor¤ locally convex topology on

LðEÞ. If E is a Banach space, then we denote by kxk the norm of an element

x A E. If A is a closed linear operator acting on E, then the domain and range

of A will be denoted by DðAÞ and RðAÞ, respectively. Since no confusion

seems likely, we will identify A with its graph. If C A LðEÞ is injective, then we

define the C-resolvent set of A, rCðAÞ for short, by rCðAÞ :¼ fl A C; l� A

is injective and ðl� AÞ�1
C A LðEÞg: If B is a closed linear operator with do-

main and range contained in E, then we define the set rCðB;AÞ by rCðB;AÞ :¼
fl A C; lB� A : DðAÞ \DðBÞ ! E is injective and ðlB� AÞ�1

C A LðEÞg. By I

we denote the identity operator on E. The fractional power ðAB�1Þ1=2, appear-
ing in the paragraph directly after the proof of Theorem 2.6, will be under-

stood in the sense of [21, Definition 2.9.24]; for further information concerning

fractional powers of almost C-sectorial operators, the reader may consult

[21, Section 2.9].

If V is a general topological vector space, then a function f : W ! V , where

W is an open subset of C, is said to be analytic if it is locally expressible in

a neighborhood of any point z A W by a uniformly convergent power series

with coe‰cients in V . We refer the reader to [21, Section 1.1] and references

cited there for the basic information about vector-valued analytic functions.

In our approach the space E is sequentially complete, so that the analyticity

of a mapping f : W ! E (q0W � C) is equivalent with its weak analyticity.

In the sequel of paper, we assume that A and B are two closed linear

operators acting on E, as well as that C A LðEÞ is an injective operator satisfy-

ing CA � AC and CB � BC. Sometimes we use the following condition on a

scalar-valed function Kð�Þ:
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(P1) Kð�Þ is Laplace transformable, i.e., it is locally integrable on ½0;yÞ and

there exists b A R so that

~KKðlÞ :¼ LðKÞðlÞ :¼ lim
b!y

ð b
0

e�ltKðtÞ dt :¼
ðy
0

e�ltKðtÞ dt

exists for all l A C with Re l > b.

By F and F�1 we denote the Fourier transform on Rn and its inverse

transform, respectively. Given y A ð0; p� and d A ð0; 1�, define Sy :¼ fl A C :

l0 0; jargðlÞj < yg. The set consisting of all analytic functions from Sy into

E is denoted by AðSy : EÞ. Further on, bbc :¼ supfn A Z : na bg and dbe :¼
inffn A Z : ba ng. The Gamma function is denoted by Gð�Þ and the principal

branch is always used to take the powers; the convolution like mapping �
is given by f � gðtÞ :¼

Ð t
0 f ðt� sÞgðsÞ ds. Set gzðtÞ :¼ tz�1=GðzÞ, 0z :¼ 0 (z > 0,

t > 0), g0ðtÞ :¼ the Dirac d-distribution and Cþ :¼ fz A C : <z > 0g.
Suppose b > 0 and b B N. Then the Liouville right-sided fractional deriva-

tive of order b (see [19, (2.3.4)] for the scalar-valued case) is defined for those

continuous functions u : ð0;yÞ ! E for which limT!y

Ð T
s
gdbe�bðt� sÞuðtÞ dt ¼Ðy

s
gdbe�bðt� sÞuðtÞ dt exists and defines a dbe-times continuously di¤erentiable

function on ð0;yÞ, by

Db
�uðsÞ :¼ ð�1Þdbe d

dbe

dsdbe

ðy
s

gdbe�bðt� sÞuðtÞ dt; s > 0:

We define the modified Liouville right-sided fractional derivative of order b,

Db
�uðsÞ shortly, for those continuously di¤erentiable functions u : ð0;yÞ ! E for

which limT!y

Ð T
s
gdbe�bðt� sÞu 0ðtÞ dt ¼

Ðy
s
gdbe�bðt� sÞu 0ðtÞ dt exists and defines

a db � 1e-times continuously di¤erentiable function on ð0;yÞ, by

Db
�uðsÞ :¼ ð�1Þdbe d

db�1e

dsdb�1e

ðy
s

gdbe�bðt� sÞu 0ðtÞ dt; s > 0;

if b ¼ n A N, then Dn
�u and Dn

�u are defined for all n-times continuously dif-

ferentiable functions uð�Þ on ð0;yÞ, by Dn
�u :¼ Dn

�u :¼ ð�1Þnd=d n, where d=d n

denotes the usual derivative operator of order n (cf. also [19, (2.3.5)]).

The Mittag-Le¿er function Eb; gðzÞ (b > 0, g A R) is defined by

Eb; gðzÞ :¼
Xy
k¼0

zk

Gðbk þ gÞ ; z A C:
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In this place, we assume that 1=Gðbk þ gÞ ¼ 0 if bk þ g A �N0. Set EbðzÞ :¼
Eb;1ðzÞ, z A C. For further information about the Mittag-Le¿er functions, frac-

tional calculus and non-degenerate fractional di¤erential equations, see [4], [11],

[19], [21], [36], [38] and references cited there. The basic information on abstract

Volterra integro-di¤erential equations in Banach and locally convex spaces can

be obtained by consulting [37] and [21].

Assume that n A N and iAj, 1a ja n are commuting generators of bounded

C0-groups on a Banach space E. Set A :¼ ðA1; . . . ;AnÞ, Ah :¼ A
h1
1 � � �Ahn

n for

any h ¼ ðh1; . . . ; hnÞ A Nn
0 , and denote by SðRnÞ the Schwartz space of rapidly

decreasing functions on Rn. Let k ¼ 1þ bn=2c. For every x ¼ ðx1; . . . ; xnÞ A Rn

and u A FL1ðRnÞ ¼ fFf : f A L1ðRnÞg, we set jxj :¼ ð
Pn

j¼1 x
2
j Þ

1=2, ðx;AÞ :¼Pn
j¼1 xjAj and

uðAÞx :¼
ð
Rn

F�1uðxÞe�iðx;AÞx dx; x A E:

Then uðAÞ A LðEÞ, u A FL1ðRnÞ and there exists a finite constant Mb 1 such

that

kuðAÞkaMkF�1ukL1ðRnÞ; u A FL1ðRnÞ:

Let N A N, and let PðxÞ ¼
P

jhjaN ahx
h, x A Rn be a complex polynomial. Then

we define

PðAÞ :¼
X
jhjaN

ahA
h and E0 :¼ ffðAÞx : f A SðRnÞ; x A Eg:

We know that the operator PðAÞ is closable and that the following holds:

(.) E0 ¼ E, E0 �
T

h AN n
0
DðAhÞ, PðAÞjE0

¼ PðAÞ and

fðAÞPðAÞ � PðAÞfðAÞ ¼ ðfPÞðAÞ, f A SðRnÞ.

Assuming that E is a function space on which translations are uniformly

bounded and strongly continuous, the obvious choice for Aj is �iq=qxj (notice

also that E can be consisted of functions defined on some bounded domain).

If PðxÞ ¼
P

jhjaN ahx
h, x A Rn and E is such a space (for example, LpðRnÞ with

p A ½1;yÞ, C0ðRnÞ or BUCðRnÞ), then it is not di‰cult to prove that PðAÞ is

nothing else but the operator
P

jhjaN ahð�iÞjhjqjhj=qxh1
1 � � � qxhn

n 1
P

jhjaN ahD
h,

acting with its maximal distributional domain. For further information concern-

ing the functional calculus for commuting generators of C0-groups, see [9], [21]

and [46].
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2. Degenerate C-Regularized Semigroups of Growth Order r > 0 and

Their Applications in the Study of Incomplete Degenerate Abstract

Cauchy Problems

In a joint paper with V. Fedorov [29], the author has recently analyzed

a class of abstract degenerate muti-term fractional di¤erential equations with

Caputo derivatives. The integral computation from [29, Remark 2.2(vii)]

has motivated us to introduce the following definition (cf. also the proof of

[39, Lemma 1.4] and the equation (2.5) below).

Definition 2.1. Suppose that B is a closed linear operator on E and

C A LðEÞ is an injective operator. An operator family ðTðtÞÞt>0 � LðEÞ is said to

be a pre-ðB;CÞ-regularized semigroup of growth order r > 0 i¤ RðTðtÞÞ � DðBÞ,
t > 0 and the following holds:

(a) Tðtþ sÞC ¼ TðtÞBTðsÞ for all t; s > 0,

(b) for every x A E, the mapping t 7! TðtÞx, t > 0 is continuous, and

(c) the family ftrTðtÞ : t A ð0; 1�g � LðEÞ is equicontinuous.

ðTðtÞÞt>0 � LðEÞ is said to be a ðB;CÞ-regularized semigroup of growth order

r > 0 i¤, in addition to (a)–(c), we have that:

(d) for every x A E, the mapping t 7! BTðtÞx, t > 0 is continuous, and

(e) the family ftrBTðtÞ : t A ð0; 1�g � LðEÞ is equicontinuous.

The notion of an analytic (pre-)ðB;CÞ-regularized semigroup of growth order

r > 0 is introduced in the following definition.

Definition 2.2. Suppose that B is a closed linear operator on E and

C A LðEÞ is an injective operator.

(i) Suppose 0 < ga p=2, ðTðtÞÞt>0 is a pre-ðB;CÞ-regularized semigroup of

growth order r > 0, and the mapping t 7! TðtÞx, t > 0 has an analytic

extension to the sector Sg, denoted by the same symbol (x A E). If

there exists o A R (o ¼ 0) such that, for every d A ð0; gÞ, the family

fjzjre�o<zTðzÞ : z A Sdg � LðEÞ is equicontinuous, then ðTðzÞÞz ASg
� LðEÞ

is said to be an (equicontinuous) analytic pre-ðB;CÞ-regularized semi-

group of growth order r.

(ii) Suppose 0 < ga p=2, ðTðtÞÞt>0 is a ðB;CÞ-regularized semigroup of

growth order r > 0, the mappings t 7! TðtÞx, t > 0 and t 7! BTðtÞx, t > 0

admit analytic extensions to the sector Sg, denoted by the same symbols

(x A E), and there exists o A R (o ¼ 0) such that, for every d A ð0; gÞ, the
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families fjzjre�o<zTðzÞ : z A Sdg � LðEÞ and fjzjre�o<zBTðzÞ : z A Sdg �
LðEÞ are equicontinuous. Then ðTðzÞÞz ASg

� LðEÞ is said to be an

(equicontinuous) analytic ðB;CÞ-regularized semigroup of growth order r.

Remark 2.3. (i) Our assumption RðTðtÞÞ � DðBÞ, t > 0 immediately implies

that BTðtÞ is a closed linear operator for all t > 0. In the case that E is

a webbed bornological space (this, in particular, holds if E is a Fréchet

space; cf. [32]), then the above implies by the closed graph theorem that

BTðtÞ A LðEÞ for all t > 0.

(ii) If ðTðtÞÞt>0 is a ðB;CÞ-regularized semigroup of growth order r > 0

satisfying additionally that the preassumption BTðtÞx ¼ 0, t > 0 implies

x ¼ 0, then ðBTðtÞÞt>0 � LðEÞ is a C-regularized semigroup of growth

order r > 0 (in the sense of [6, Definition 3.4]). A similar statement can

be formulated for the class of analytic ðB;CÞ-regularized semigroups.

The notion of integral generator of ðTðtÞÞt>0 and the notion of complete

infinitesimal generator of ðTðtÞÞt>0 can be very simply introduced provided that

B ¼ I ([6]). Unfortunately, the situation is much more complicated in the case

that B0 I , where we probably should observe, before doing anything else,

that AB :¼ fðx; yÞ A E � E : BTðtÞx� BTðsÞx ¼ B
Ð t
s
TðrÞy dr for all t; s > 0 with

tb sg is a multivalued linear operator in the sense of [13, Definition, p. 21]; after

that, we can try to define the integral generator of ðTðtÞÞt>0 and the complete

infinitesimal generator of ðTðtÞÞt>0 as some appropriately chosen single-valued

branches of AB (cf. [13, p. 22, l. 13–14] and [33, Proposition 1.6.4]). In our

opinion, the ideal option to define generators of ðTðtÞÞt>0 does not really exists

in degenerate case and, because of that, we shall skip all related details con-

cerning these questions for the sake of brevity and better exposition.

We need to introduce the following condition

(H): A and B are closed linear operators on E, C A LðEÞ is injective,

0ao < p, q A R, CnSo � rCðB;AÞ, the families

fðjlj�1 þ jljqÞ�1ðlB� AÞ�1
C : l B So 0 g � LðEÞ and

fðjlj�1 þ jljqÞ�1
BðlB� AÞ�1

C : l B So 0 g � LðEÞ

are equicontinuous for every o < o 0 < p, as well as the mappings

l 7! ðlB� AÞ�1
Cx, l A CnSo and l 7! BðlB� AÞ�1

Cx, l A CnSo are

continuous for every fixed element x A E.
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Since we have assumed that CA � AC and CB � BC, the analysis con-

tained in [29, Remark 2.2(vii)] shows that the validity of condition (H) im-

plies that the mappings l 7! ðlB� AÞ�1
Cx, l A CnSo and l 7! BðlB� AÞ�1

Cx,

l A CnSo are analytic, indeed, for every fixed element x A E. By MB;C;q

we denote the class consisting of all closed linear operators A 0 on E, satisfy-

ing that the families fðjlj�1 þ jljqÞ�1ðlB� A 0Þ�1
C : l A ð�y; 0Þg � LðEÞ and

fðjlj�1 þ jljqÞ�1
BðlB� A 0Þ�1

C : l A ð�y; 0Þg � LðEÞ are equicontinuous, as well

as that the mappings l 7! ðlB� A 0Þ�1
Cx, l A ð�y; 0Þ and l 7! BðlB� A 0Þ�1

Cx,

l A ð�y; 0Þ are continuous for every fixed element x A E.

Following A. V. Balakrishnan [3], we introduce the function ft; gðlÞ by

ft; gðlÞ :¼
1

p
e�tlg cos pg sinðtlg sin pgÞ

¼ 1

2pi
ðe�tlge�ipg � e�tlge ipgÞ; l > 0 ðt > 0; g A ð0; 1=2ÞÞ:

This function enjoys the following properties ([31]):

1. j ft; gðlÞja p�1e�lg�t; g , l > 0, where �t; g :¼ t cos pg > 0.

2. j ft; gðlÞja gtlge�tlg sin �t; g , l > 0.

3.
Ðy
0 lnft; gðlÞ dl ¼ 0, n A N0.

Set

Hnðo; zÞ :¼
d n

dzn
expð�ozgÞ; o A C; z A Cnð�y; 0�;

and, if that makes any sense,

WgðtÞx :¼
ðy
0

ft; gðlÞðlBþ AÞ�1
Cx dl; t > 0; x A E ðg A ð0; 1=2ÞÞ:

Then the function Hnðo; zÞ is analytic in Cnð�y; 0� for every fixed number o,

and entire in C for every fixed number z (cf. also the proof of [31, Proposition

3.5]).

Our next task will be to enquire into the possibility to transmit the assertion

of [21, Theorem 2.9.48] to abstract degenerate di¤erential equations (it is clear

that some parts of this theorem cannot be so simply formulated for degenerate

di¤erential equations because we do not know what would be the fractional

power Az (z A Cþ) in the newly arisen situation). Concerning this question, we

will state and prove two theorems, Theorem 2.4 and Theorem 2.5. In Theorem
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2.4, we will investigate the properties of operator family ðWgðtÞÞt>0 in more

detail.

Theorem 2.4. Let 0 < g < 1=2, and let A A MB;C;q where qþ g > �1.

Suppose that CA � AC and CB � BC. Then the families fð1þ t�ðqþ1Þ=gÞ�1
WgðtÞ :

t > 0g � LðEÞ and fð1þ t�ðqþ1Þ=gÞ�1
BWgðtÞ : t > 0g � LðEÞ are equicontin-

uous, and there exists an operator family ðWgðzÞÞz ASðp=2Þ�gp
� LðEÞ, resp.,

ðWg;BðzÞÞz ASðp=2Þ�gp
� LðEÞ, such that, for every x A E, the mapping z 7! WgðzÞx,

z A Sðp=2Þ�gp, resp., z 7! Wg;BðzÞx, z A Sðp=2Þ�gp, is analytic as well as that

WgðtÞ ¼ WgðtÞ, t > 0, resp., Wg;BðtÞ ¼ BWgðtÞ, t > 0 (in the sequel, we will not

make any di¤erence between Wgð�Þ and Wgð�Þ, Wg;Bð�Þ and Wg;Bð�Þ). Furthermore,

the following holds:

(i) Wgðz1ÞBWgðz2Þ ¼ Wgðz1 þ z2ÞC for all z1; z2 A Sðp=2Þ�gp.

(ii) Let �1� g < qa�1. If ðlB� AÞ�1
CA � AðlB� AÞ�1

C, l A rCðA;BÞ
and x A DðAÞ, then

lim
z!0; z ASðp=2Þ�gp��

BWgðzÞx ¼ Cx; � A ð0; ðp=2Þ � gpÞ;ð2:1Þ

if, in addition to this, the condition (H) holds, then we can extend the

operator family Wgð�Þ to the sector Sp=2�og and the limit equality (2.1)

remains true for each x A DðAÞ, with the number ðp=2Þ � gp replaced by

ðp=2Þ � og.

(iii) Let q > �1. Then ðWgðzÞÞz ASðp=2Þ�gp
is an equicontinuous analytic ðB;CÞ-

regularized semigroup of growth order ðqþ 1Þ=g. If, additionally, the

condition (H) holds, then ðWgðtÞÞt>0 can be extended to an equicontinuous

analytic ðB;CÞ-regularized semigroup ðWgðzÞÞz ASðp=2Þ�go
of growth order

ðqþ 1Þ=g. Suppose that the operator B is injective, x A DððB�1AÞbqþ2cÞ
\ DðBÞ and ðlB� AÞ�1

CB � BðlB� AÞ�1
C ðl A rCðA;BÞÞ. Then

limz!0; z ASðp=2Þ�gp��
BWgðzÞx ¼ Cx, � A ð0; ðp=2Þ � gpÞ; if, in addition to

this, the condition (H) holds, then the above limit equality remains true

with the number ðp=2Þ � gp replaced by ðp=2Þ � og.

(iv) Suppose that q < 0 and x A DðAÞ \DðBÞ. Then limz!0; z ASðp=2Þ�gp��
WgðzÞBx

¼ Cx, � A ð0; ðp=2Þ � gpÞ; if, in addition to this, the condition (H) holds,

then the above limit equality remains true with the number ðp=2Þ � gp

replaced by ðp=2Þ � og.

(v)(v.1) Let qþ gb 0, z0 A Cþ, let B be injective, x A DððB�1AÞbqþgcþ2Þ \
DðBÞ, and let ðlB� AÞ�1

CB � BðlB� AÞ�1
C ðl A rCðA;BÞÞ. Then
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lim
z!0; z ASðp=2Þ�gp��

BWgðzÞx� Cx

z
ð2:2Þ

¼ �z
g
0Cxþ

Xbqþgcþ2

k¼2

ð�1Þk�1

ðk � 1Þ!Hk�1ð0; z0Þðz0 � B�1AÞk�1
Cx

� sinðpgÞ
ðy
0

lg Bðlþ AÞ�1
Cðz0 � B�1AÞbqþgcþ2

x

ðlþ z0Þbqþgcþ2
dl;

� A ð0; ðp=2Þ � gpÞ;

if the condition (H) holds, then the formula (2.2) remains true with

the number ðp=2Þ � gp replaced by ðp=2Þ � og.

(v.2) Let qþ g < 0, z0 A Cþ and x A DðAÞ \DðBÞ. Then

lim
z!0; z ASðp=2Þ�gp��

WgðzÞBx� Cx

z
ð2:3Þ

¼ �z
g
0Cx� sinðpgÞ

ðy
0

lg ðlþ AÞ�1
Cðz0B� AÞx

ðlþ z0Þ
dl;

� A ð0; ðp=2Þ � gpÞ;

if the condition (H) holds, then the formula (2.3) remains true with

the number ðp=2Þ � gp replaced by ðp=2Þ � og.

Proof. The existence of operator families ðWgðzÞÞz ASðp=2Þ�gp
and

ðWg;BðzÞÞz ASðp=2Þ�gp
, satisfying the properties stated in the first part of formulation

of theorem, before the assertion (i), follows similarly as in the case that B ¼ I .

Suppose d A ð0; ðp=2Þ � pgÞ and r Al. Arguing as in the proof of [21, Theorem

2.9.48], we obtain that there exist r 0 Al and m > 0 such that, for every x A E

and z A Sd, we have

rðWgðzÞxÞamð1þ jzj�ðqþ1Þ=gÞr 0ðxÞ andð2:4Þ

rðBWgðzÞxÞamð1þ jzj�ðqþ1Þ=gÞr 0ðxÞ:

The semigroup property stated in (i) can be proved by using the resolvent

equation

ðzBþ AÞ�1
C2x� ðz 0Bþ AÞ�1

C2xð2:5Þ

¼ ðz 0 � zÞðzBþ AÞ�1
CBðz 0Bþ AÞ�1

Cx; z; z 0 A rCðA;BÞ; x A E;

and direct computations, similar to those appearing in [3, Section 3]. Therefore,

ðWgðzÞÞz ASðp=2Þ�gp
is an equicontinuous analytic ðB;CÞ-regularized semigroup of
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growth order ðqþ 1Þ=g, provided that q > �1. Suppose temporarily that the

operator B is injective and BðlB� AÞ�1
C � ðlB� AÞ�1

CB (l A rCðA;BÞ). Then
the following equality holds

ðlþ B�1AÞ�1
Cx ¼ BðlBþ AÞ�1

Cx; l > 0; x A DðBÞ:ð2:6Þ

Combined with the identity [31, p. 212, l. 8], (2.6) implies that, for every l > 0

and z0 A Cþ, we have

BðlBþ AÞ�1
Cx

¼
Xbqþ2c

j¼1

ðz0 � B�1AÞ j�1
Cx

ðlþ z0Þ j
þ BðlBþ AÞ�1

Cðz0 � B�1AÞbqþ2c
Cx

ðlþ z0Þbqþ2c ;

so that the proof of limit equality in (iii), on proper subsectors of Sðp=2Þ�gp,

follows in almost the same way as in the proof of [31, Proposition 3.5]. Using

the proof of [21, Theorem 2.9.48(v)], we obtain similarly that the limit equality

in (v.1) holds on proper subsectors of Sðp=2Þ�gp. We continue the proof of

(iii). Suppose that � > 0 is su‰ciently small. Let q > �1, and let the condition

(H) hold. Then one can take numbers y1 A ð0; p� oÞ and y2 A ðo� p; 0Þ such

that ðp=2Þ � go > ðp=2Þ � gpþ gy1 > ðp=2Þ � go� � and og� ðp=2Þ þ � > gp �
ðp=2Þ þ gy2 > og� ðp=2Þ. Set, for every y A ðo� p; p� oÞ,

Wy; gðzÞx :¼
ðy
0

fz; gðlÞðlBþ eiyAÞ�1
Cx dl; x A E; z A Sðp=2Þ�gp:

Then it can be simply verified that ðWy; gðzÞÞz ASðp=2Þ�gp
is an equicontinuous ana-

lytic ðB;CÞ-regularized semigroup of growth order ðqþ 1Þ=g. Define, for every

x A E,

WgðzÞx :¼
WgðzÞx; if z A Sðp=2Þ�gp;

Wy1; gðze�iy1gÞx; if z A eiy1gSðp=2Þ�gp;

Wy2; gðze�iy2gÞx; if z A eiy2gSðp=2Þ�gp:

8><
>:

An elementary application of Cauchy’s formula shows that WgðzÞ ¼Wy1; gðze�iy1gÞ,
if z A Sðp=2Þ�gp \ eiy1gSðp=2Þ�gp, and WgðzÞ ¼ Wy2; gðze�iy2gÞ, if z A Sðp=2Þ�gp \
eiy2gSðp=2Þ�gp, whence we may conclude that the operator family ðWgðzÞÞz ASp=2�og

� LðEÞ is well defined. We define the operator family ðBWgðzÞÞz ASp=2�og
� LðEÞ

similarly. Then it is checked at once that ðWgðzÞÞz ASp=2�og
is an equicontinuous

analytic ðB;CÞ-regularized semigroup of growth order ðqþ 1Þ=g. The way of
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construction of ðWgðzÞÞz ASp=2�og
� LðEÞ shows that the limit equality stated in

(iii) continues to hold for each x A DððB�1AÞbqþ2cÞ \DðBÞ, with the number

ðp=2Þ � gp replaced by ðp=2Þ � go (if qa�1, then we define ðWgðzÞÞz ASp=2�og
�

LðEÞ and ðBWgðzÞÞz ASp=2�og
� LðEÞ in the same way as above, showing also

that any considered limit equality from (ii)–(v) continues to hold with the

number ðp=2Þ � gp replaced by ðp=2Þ � go). The proof of (iii) is therefore

completed. Suppose now that �1� g < qa�1. Then an insignificant modifi-

cation of the proof of [30, Theorem 5.5.1(iv)] shows that limt!0þ BWgðtÞx ¼
Cx, provided that x A E satisfies liml!þy lBðlBþ AÞ�1

Cx ¼ Cx. Since we

have assumed that A commutes with ðlBþ AÞ�1
C (l A rCðA;BÞ), and that

lBðlBþ AÞ�1
Cx� Cx ¼ AðlBþ AÞ�1

Cx ¼ ðlBþ AÞ�1
CAx, x A DðAÞ, l > 0,

one has limt!0þ BWgðtÞx ¼ Cx, x A DðAÞ. Using (2.4), it readily follows that

limt!0þ BWgðtÞx ¼ Cx, x A DðAÞ, so that the limit equality (2.1) follows from

an application of [22, Theorem 3.4(ii)]. The limit equalities stated in (iv) and

(v.2), on proper subsectors of Sðp=2Þ�gp, can be proved by using the equality

ðlBþ AÞ�1
CBx ¼ Cx

lþ z0
þ ðlBþ AÞ�1

C

lþ z0
ðz0Bx� AxÞ;

which holds for z0 A Cþ, l > 0, x A DðAÞ \DðBÞ, and a slight modification of

the proofs of [31, Lemma 3.4, Proposition 3.5]. The proof of the theorem is

thereby complete. r

In Theorem 2.5, we use the same terminology as in the formulation and

proof of Theorem 2.4. We continue our previous analysis by investigating the

existence of solutions of abstract degenerate Cauchy problems ðFPa1;b1;yÞ and

ðFPa1;b1;yÞ
0.

Theorem 2.5. Let 0 < g < 1=2, and let A A MB;C;q where qþ g > �1.

Suppose that CA � AC, CB � BC, a1 b 0, b1 b 0, a1 þ b1 ¼ 1=g and y A

ðgp� ðp=2Þ; ðp=2Þ � gpÞ. Then the following holds:

(i) Let q > �1. Denote by Wy; g, resp. Cg, the set consisting of those elements

x A E for which lims!0þ BWgðseiyÞx ¼Cx, resp., limz!0; z ASðp=2Þ�gp��
BWgðzÞx

¼ Cx for all � A ð0; ðp=2Þ � gpÞ. Then, for every x A Wy; g, the incomplete

abstract degenerate Cauchy problem ðFPa1;b1;yÞ has a solution uðsÞ ¼
WgðseiyÞx, s > 0, which can be analytically extended to the sector

Sðp=2Þ�gp�jyj. If, additionally, x A Cg, then for every d A ð0; ðp=2Þ � gp� jyjÞ
and j A N0, we have that the set fz jBuð jÞðzÞ : z A Sdg is bounded in E.
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Assume that the condition (H) holds. Then the solution s 7! uðsÞ, s > 0

can be analytically continued to the sector Sðp=2Þ�go; if, in addition to

this, limz!0; z ASðp=2Þ�go��
BWgðzÞx ¼ Cx for all � A ð0; ðp=2Þ � goÞ, then

for every d A ð0; ðp=2Þ � go� jyjÞ and j A N0, we have that the set

fz jBuð jÞðzÞ : z A Sdg is bounded in E.

(ii) Let �1� g < qa�1, ðlB� AÞ�1
CA � AðlB� AÞ�1

C, l A rCðA;BÞ,
and let x A DðAÞ. Then the incomplete abstract degenerate Cauchy pro-

blem ðFPa1;b1;yÞ
0
has a solution uðsÞ ¼ WgðseiyÞx, s > 0, which can be

analytically extended to the sector Sðp=2Þ�gp�jyj. Moreover, for every

d A ð0; ðp=2Þ � gp� jyjÞ and j A N0, the sets fjzj jð1þ jzj�ðqþ1Þ=gÞ�1
uð jÞðzÞ :

z A Sdg and fjzj jð1þ jzj�ðqþ1Þ=gÞ�1
Buð jÞðzÞ : z A Sdg are bounded in E. If,

additionally, the condition (H) holds, then the above statements remain

true with the number ðp=2Þ � gp replaced by ðp=2Þ � og.

Proof. The proof of theorem almost completely follows from the argu-

ments used in those of [21, Theorem 2.9.48] and [6, Theorem 3.5(i)/b 0], and the

only non-trivial thing that should be explained here is the way how we can

prove that, for every d A ð0; ðp=2Þ � gp� jyjÞ and j A N0, the solution s 7! uðsÞ,
s > 0 has the property that the sets fjzj jð1þ jzj�ðqþ1Þ=gÞ�1

uð jÞðzÞ : z A Sdg and

fjzj jð1þ jzj�ðqþ1Þ=gÞ�1
Buð jÞðzÞ : z A Sdg are bounded in E (cf. (ii)). In order to

show this, observe first that for each x A E, z A Sp=2�gp and j A N we have

d j

dz j
WgðzÞx ¼ 1

2pi

ðy
0

ð�lge�ipgÞ je�zlge�ipgðlBþ AÞ�1
Cx dlð2:7Þ

� 1

2pi

ðy
0

ð�lgeipgÞ je�zlge ipgðlBþ AÞ�1
Cx dl:

Hence, B d j

dz j WgðzÞx ¼ d j

dz j BWgðzÞx (x A E, z A Sp=2�gp, j A N), which implies

that Buð jÞðzÞ ¼ ðBuÞð jÞðzÞ (z A Sp=2�gp, j A N). Having in mind this equality,

the boundedness of sets fjzj jð1þ jzj�ðqþ1Þ=gÞ�1
uð jÞðzÞ : z A Sdg and fjzj jð1 þ

jzj�ðqþ1Þ=gÞ�1
Buð jÞðzÞ : z A Sdg can be proved by using (2.7) and a direct com-

putation involving the estimates used in the proof of [20, Theorem 1.4.15].

r

The interested reader may try to reconsider the assertions of [21, Theorem

2.9.39, Theorem 2.9.40, Theorem 2.9.58, Theorem 2.9.60] for degenerate

di¤erential equations. Now we will focus our attention on the assertion of

[21, Theorem 2.9.51(iii)].
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Theorem 2.6. Suppose that the condition (H) holds, as well as that CA � AC

and CB � BC.

(i) Let �1 < q < ð�1Þ=2, and let ðlB� AÞ�1
CA � AðlB� AÞ�1

C ðl A

rCðA;BÞÞ. Then, for every x A DðAÞ, the incomplete abstract degenerate

Cauchy problem ðP2;q;BÞ has a solution uðzÞ ðz A Sðp=2Þ�ðo=2ÞÞ. Moreover,

for every d A ð0; ðp=2Þ � ðo=2ÞÞ and j A N0, we have that the sets

fjzj jð1þ jzj�ð2qþ2ÞÞ�1
uð jÞðzÞ : z A Sdg and fjzj jð1þ jzj�ð2qþ2ÞÞ�1ðBuÞð jÞðzÞ :

z A Sdg are bounded in E.

(ii) Let �1b q > ð�3Þ=2, and let ðlB� AÞ�1
CA � AðlB� AÞ�1

C ðl A

rCðA;BÞÞ. Then, for every x A DðAÞ, the problem ðP2;q;BÞ has a solution

uðzÞ ðz A Sðp=2Þ�ðo=2ÞÞ. Moreover, for every d A ð0; ðp=2Þ � ðo=2ÞÞ and

j A N0, we have that the sets fjzj jð1þ jzj�ð2qþ2ÞÞ�1
uð jÞðzÞ : z A Sdg and

fjzj jð1þ jzj�ð2qþ2ÞÞ�1ðBuÞð jÞðzÞ : z A Sdg are bounded in E.

Proof. Suppose first that q ¼ �1 and ðlB� AÞ�1
CA � AðlB� AÞ�1

C

(l A rCðA;BÞ); cf. (ii). Let 0 < d 0 < d < ðp� oÞ=2, 1=2 > g0 > d=ðp� oÞ and

y A ðo� p; ð�dÞ=g0Þ. Then, for every g A ðg0; 1=2Þ, we have y A ðo� p; ð�dÞ=gÞ
and g > d=ðp� oÞ. Suppose that � A ð0;o=2Þ is su‰ciently small. Define, for

every g A ðg0; 1=2Þ and x A E,

FgðlÞxð2:8Þ

:¼
e iyg sin gp

p

Ðy
0

v gðvBþe iyAÞ�1Cx dv

ðle iygþv g cos pgÞ2þv2g sin2 gp
; if argðlÞ A ð��; ðp=2Þ þ dÞ;

e�iyg sin gp

p

Ðy
0

v gðvBþe�iyAÞ�1Cx dv

ðle�iygþv g cos pgÞ2þv2g sin2 gp
; if argðlÞ A ð�ðp=2Þ � d; �Þ:

8>><
>>:

If x A E and argðlÞ A ð��; ðp=2Þ þ dÞ, resp., argðlÞ A ð�ðp=2Þ � d; �Þ, then it is

very simple to prove that

ðy
0

e�le iygtWy; gðtÞx dt ¼ sin gp

p

ðy
0

vgðvBþ eiyAÞ�1
Cx

ðleiyg þ vg cos pgÞ2 þ v2g sin2 gp
dv;ð2:9Þ

resp.,

ðy
0

e�le�iygtW�y; gðtÞx dt ¼ sin gp

p

ðy
0

vgðvBþ e�iyAÞ�1
Cx

ðle�iyg þ vg cos pgÞ2 þ v2g sin2 gp
dv;ð2:10Þ

where we use the notation from the proof of Theorem 2.4. Define GQ :¼
fteiQ : tb 0g (Q A ð�p; p�). Since, for every x A E,
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eiyg
ðy
0

e�le iygtWy; gðtÞx dt ¼
ð
Gyg

e�lvWy; gðve�iygÞx dv

¼
ð
Gyg

e�lvWgðvÞx dv

and

e�iyg

ðy
0

e�le�iygtW�y; gðtÞx dt ¼
ð
G�yg

e�lvW�y; gðveiygÞx dv

¼
ð
G�yg

e�lvWgðvÞx dv

(cf. the construction of ðWgðzÞÞz ASðp=2Þ�og
, and observe that jygj A ðd; gðp� oÞÞ),

the Cauchy formula yields that

eiyg
ðy
0

e�le iygtWy; gðtÞx dt ¼ e�iyg

ðy
0

e�le�iygtW�y; gðtÞx dt; l A S�:ð2:11Þ

This, in turn, implies that the function l 7! FgðlÞx, l A Sðp=2Þþd is well defined,

analytic and bounded by Constd 0 jlj
�1 on Sðp=2Þþd 0 (x A E). Speaking-matter-of-

factly, it is not di‰cult to prove with the help of [22, Theorem 3.4] (cf. also

[1, Theorem 2.6.1] for the Banach space case) and the uniqueness theorem for

the Laplace transform that

WgðzÞx ¼ 1

2pi

ð
Gd 0 ; z

elzFgðlÞx dl; x A E; z A Sd 0 ; g A ðg0; 1=2Þ;

where Gd 0; z :¼ Gd 0; z;1 [ Gd 0; z;2, Gd 0; z;1 :¼ freiððp=2Þþd 0Þ : rb jzj�1g [ fjzj�1
eiQ :

Q A ½0; ðp=2Þ þ d 0�g and Gd 0; z;2 :¼ fre�iððp=2Þþd 0Þ : rb jzj�1g [ fjzj�1
eiQ : Q A

½�ðp=2Þ � d 0; 0�g are oriented counterclockwise. Applying the dominated con-

vergence theorem, we get that

lim
g!1=2�

WgðzÞx ¼ eiy=2

2p2i

ð
Gd 0 ; z; 1

elz
ðy
0

v1=2ðvBþ eiyAÞ�1
Cx

l2eiy þ v
dvdlð2:12Þ

þ e�iy=2

2p2i

ð
Gd 0 ; z; 2

elz
ðy
0

v1=2ðvBþ e�iyAÞ�1
Cx

l2e�iy þ v
dvdl

:¼ W1=2ðzÞx; x A E; z A Sd 0 :

Define F1=2ðlÞ by replacing the number g with the number 1=2 in definition of

WgðlÞ. Then, for every x A E, the function l 7! F1=2ðlÞx, l A Sðp=2Þþd is well
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defined and analytic on Sðp=2Þþd because F1=2ðlÞx ¼ limg!1=2� FgðlÞx, l A Sðp=2Þþd

and the convergence is uniform on compacts of Sðp=2Þþd (cf. [22, Lemma 3.3]).

Furthermore, we can argue as in the proof of estimate [21, (334)] so as to conclude

that for each q Al there exists rq Al such that qðF1=2ðlÞxÞa rqðxÞ Constd 0 jlj�1,

l A Sðp=2Þþd 0 , x A E. Now it becomes apparent that we can define the operator

family ðW1=2ðzÞÞz ASðp�oÞ=2
� LðEÞ by W1=2ðzÞx :¼ limg!1=2� WgðzÞx, z A Sðp�oÞ=2,

x A E; this operator family is equicontinuous on any proper subsector of

Sðp�oÞ=2 and satisfies additionally that the mapping z 7! W1=2ðzÞx, z A Sðp�oÞ=2
is analytic for all x A E. Let us prove that for each x A DðAÞ the function

uðzÞ :¼ W1=2ðzÞx, z A Sðp�oÞ=2 is a solution of problem ðP2;q;BÞ with q ¼ �1.

Suppose first that x A DðAÞ. Then the condition ðlB� AÞ�1
CA � AðlB� AÞ�1

C

(l A rCðA;BÞ) in combination with the closedness of A shows that W1=2ðzÞAx ¼
AW1=2ðzÞx, z A Sðp�oÞ=2. By the foregoing, we also have that the operator

family ðBW1=2ðzÞÞz ASðp�oÞ=2
� LðEÞ is equicontinuous and the mapping z 7!

BW1=2ðzÞx, z A Sðp�oÞ=2 is analytic (x A E), as well as that ðd 2=dz2ÞBW1=2ðzÞx ¼
Bðd 2=dz2ÞW1=2ðzÞx, z A Sðp�oÞ=2, x A E and BW1=2ðzÞ A LðEÞ, ðd 2=dz2ÞBW1=2ðzÞ
A LðEÞ, Bðd 2=dz2ÞW1=2ðzÞ A LðEÞ for z A Sðp�oÞ=2. Furthermore, the dominated

convergence theorem yields that

lim
g!1=2�

BW ðnÞ
g ðzÞ ¼ BW

ðnÞ
1=2ðzÞx; z A Sðp�oÞ=2; x A E; n A N0:

By Theorem 2.5(ii) and definition of modified Liouville right-sided fractional

derivatives, we get that

d 2

ds2

ðy
0

g3�1=gðtÞBW 0
g ðtþ sÞx dt ¼ �WgðsÞAx; s > 0; g A ðg0; 1=2Þ;ð2:13Þ

i.e., ðy
0

g3�1=gðtÞBW 000
g ðtþ sÞx dt ¼ �WgðsÞAx; s > 0; g A ðg0; 1=2Þ:

The integration by parts leads us to the following

�
ðy
0

g4�1=gðtÞBW ðivÞ
g ðtþ sÞx dt ¼ �WgðsÞAx; s > 0; g A ðg0; 1=2Þ:

Using again the dominated convergence theorem, we obtain by letting g ! 1=2�
that ðy

0

tBW
ðivÞ
1=2 ðtþ sÞx ds ¼ W1=2ðsÞAx; s > 0;
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which clearly implies after an application of the partial integration that

BW 00
1=2ðsÞ ¼ AW1=2ðsÞx, s > 0. By the uniqueness theorem for analytic functions,

this equality continues to hold for all z A Sðp�oÞ=2. The foregoing arguments also

imply that we can compute FgðlÞx for l > 0 (g A ðg0; 1=2Þ) by plugging y ¼ 0 in

any of two terms appearing in (2.8). Taking the limit as g ! 1=2�, we get that

F1=2ðlÞx ¼ p�1
Ðy
0 v1=2ðl2 þ nÞ�1ðvBþ AÞ�1

Cx dv, l > 0. Now we will prove that

BW1=2ðzÞx� Cx ! 0 as z ! 0, z A Sðp=2Þþd 0 . Due to [22, Theorem 3.4], it su‰ces

to show that liml!þy lBF1=2ðlÞx ¼ Cx. This follows by applying the dominated

convergence theorem on the integral appearing on the right-hand side of the

equality

lBF1=2ðlÞx� Cx ¼ 1

p

ðy
0

v1=2l

l2 þ v
BðvBþ AÞ�1

Cx� Cx

v

� �
dv;

and by observing that

q BðvBþAÞ�1
Cx� Cx

v

� �
¼ 1

v
qððvBþAÞ�1

CAxÞ ¼ Oðv�2Þ; q Al; v> 1ð2:14Þ

and

q BðvBþ AÞ�1
Cx� Cx

v

� �
¼ Oðv�1Þ; q Al; v A ð0; 1Þ:ð2:15Þ

Keeping in mind the Cauchy integral formula, the proof of (ii) follows im-

mediately in the case that q ¼ �1 and x A DðAÞ. The proof of (ii) in the case

that q ¼ �1 and x A DðAÞ follows from the standard limit procedure. If

ð�3Þ=2 < q < �1, then for each e > 0 the condition (H), with the operators A

and B replaced respectively by Aþ eB and B, holds with q ¼ �1 and the same

spectral angle o; in this case, the proof of (ii) can be deduced by slightly

modifying the corresponding part of the proof of [21, Theorem 2.9.51(iii.2)]. The

proof of (i) is very similar to that of (ii); for the sake of completeness, we

will include almost all relevant details. As in the proof of (ii), it will be assumed

that 0 < d 0 < d < ðp� oÞ=2, 1=2 > g0 > d=ðp� oÞ, y A ðo� p; ð�dÞ=g0Þ and that

� A ð0;o=2Þ is su‰ciently small. Due to the proof of [21, Theorem 2.9.48]

(cf. also the estimate (2.4)), we have that, for every y 0 A ðo� p; p� oÞ and

g A ðqþ 1; 1=2Þ, the mapping t 7! Wy 0; gðtÞx, tb 0 (x A E) satisfies the condition

(P1), as well as that

LðWy 0; gðtÞxÞðmÞ ¼
sin gp

p

ðy
0

vgðvBþ eiy
0
AÞ�1

Cx

ðmþ vg cos pgÞ2 þ v2g sin2 gp
dv; m A Cþ; x A E;
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and that for each q Al there exists rq Al such that

qðLðWy 0; gðtÞxÞðmÞÞ

¼ rqðxÞOðjmj�1 þ jmjðqþ1Þ=g�1Þ; m A Sp=2�e; x A E ðe A ð0; p=2ÞÞ:

This implies that, for every g A ðmaxðg0; qþ 1Þ; 1=2Þ and x A E, we can define

FgðlÞx through (2.8). If x A E and argðlÞ A ð��; ðp=2Þ þ dÞ, resp., argðlÞ A
ð�ðp=2Þ � d; �Þ, then the equality (2.9), resp., (2.10), continues to hold for those

values of parameter g. Furthermore, (2.11) holds for any l A S�; hence, the

function l 7! FgðlÞx, l A Sðp=2Þþd is well defined, analytic and bounded by

Constd 0 ðjlj
�1 þ jljððqþ1Þ=gÞ�1Þ on Sðp=2Þþd 0 (x A E, g A ðmaxðg0; qþ 1Þ; 1=2Þ). If

x A E, z A Sd 0 , g A ðmaxðg0; qþ 1Þ; 1=2Þ and zb 0, then we define

W ð�zÞ
g ðzÞx :¼ 1

2pi

ð
Go 0
d 0 ; z

elzl�zFgðlÞx dl;

where o 0 > 0 is taken arbitrarily, Go 0

d 0; z :¼ Go 0

d 0; z;1 [ Go 0

d 0; z;2, Go 0

d 0; z;1 :¼ fo 0 þ
reiððp=2Þþd 0Þ : rb jzj�1g [ fo 0 þ jzj�1

eiQ : Q A ½0; ðp=2Þ þ d 0�g and Go 0

d 0; z;2 :¼ fo 0 þ
re�iððp=2Þþd 0Þ : rb jzj�1g [ fo 0 þ jzj�1

eiQ : Q A ½�ðp=2Þ � d 0; 0�g are oriented coun-

terclockwise. By [22, Theorem 3.4], we get that LðW ð�1Þ
g ðtÞxÞðlÞ ¼ l�1FgðlÞx,

l > 0, x A E; using this fact, as well as the equality LðWgðtÞxÞðlÞ ¼ FgðlÞx,
l > 0, x A E, the uniqueness theorem for Laplace transform and the uniqueness

theorem for analytic functions, we obtain that ðd=dzÞW ð�1Þ
g ðzÞx ¼ WgðzÞx, x A E,

z A Sd 0 (g A ðmaxðg0; qþ 1Þ; 1=2Þ). On the other hand, the dominated con-

vergence theorem yields that ðd=dzÞW ð�1Þ
g ðzÞx ¼ W

ð0Þ
g ðzÞx, so that W

ð0Þ
g ðzÞx ¼

WgðzÞx, x A E, z A Sd 0 (g A ðmaxðg0; qþ 1Þ; 1=2Þ). Define F1=2ðlÞ (l A Sðp=2Þþd) and

ðW1=2ðzÞÞz ASd 0
� LðEÞ in exactly the same way as in the proof of (ii). As before,

we have that, for every x A E, the function l 7! F1=2ðlÞx, l A Sðp=2Þþd is well

defined and analytic on Sðp=2Þþd because F1=2ðlÞx ¼ limg!1=2� FgðlÞx, l A Sðp=2Þþd

and the convergence is uniform on compacts of Sðp=2Þþd; furthermore, for each

q Al there exists rq Al such that qðF1=2ðlÞxÞa rqðxÞ Constd 0 ðjlj�1 þ jlj2qþ1Þ,
l A Sðp=2Þþd 0 , x A E. Then the limit equality (2.12) continues to hold (with the

replacements of contours Gd 0; z;1, Gd 0; z;2 with Go 0

d 0; z;1, Go 0

d 0; z;2, respectively), the

operator families ðW1=2ðzÞÞz ASðp�oÞ=2
� LðEÞ and ðBW1=2ðzÞÞz ASðp�oÞ=2

� LðEÞ can

be defined in the very obvious way, and we have that limg!1=2� BW
ðnÞ
g ðzÞx ¼

BW
ðnÞ
1=2ðzÞx for all x A E, z A Sðp�oÞ=2 and n A N0. Arguing as in the proof of [21,

Theorem 2.9.51(iii.1)], we can show that, for every j A N0, the families fjzj jð1þ
jzj�ð2qþ2ÞÞ�1

W
ð jÞ
1=2ðzÞ : z A Sd 0 g � LðEÞ and fjzj jð1þ jzj�ð2qþ2ÞÞ�1ðBW1=2Þð jÞðzÞ :
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z A Sd 0 g � LðEÞ are equicontinuous. Suppose now that x A DðAÞ. Then AW1=2ðzÞx
¼ W1=2ðzÞAx, z A Sðp�oÞ=2 and for each q Al there exist cq; d 0 > 0 and rq Al

such that (cf. (2.14)–(2.15) with y ¼ 0):

q
eiy=2

p

ðy
0

v1=2BðvBþ eiyAÞ�1
Cx

l2eiy þ v
dv� Cx

l

 !

a cq; d 0 ½rqðxÞ þ rqðAxÞ�
ð1
0

v1=2

jlj2 þ v

1

v
þ vq

� �
dvþ

ðy
1

v1=2

jlj2 þ v

1

v

1

v
þ vq

� �
dv

" #

a cq; d 0 ½rqðxÞ þ rqðAxÞ�jlj�1; argðlÞ A ð��; ðp=2Þ þ d 0Þ:

If argðlÞ A ð�ððp=2Þ þ d 0Þ;��Þ, then we can estimate the term

q
e�iy=2

p

ðy
0

v1=2BðvBþ e�iyAÞ�1
Cx

l2e�iy þ v
dv� Cx

l

 !

in the same way as above, from which we may conclude that qðBF1=2ðlÞAxÞ ¼
ðrqðxÞ þ rqðAxÞÞOðjlj�1Þ, l A Sðp=2Þþd 0 . A similar line of reasoning as performed in

the case that q ¼ �1 and x A DðAÞ enables us to deduce that

l
eiy=2

p

ðy
0

v1=2BðvBþ eiyAÞ�1
Cx

l2eiy þ v
dv� Cx

l

" #
! 0; l ! þy:ð2:16Þ

Applying [22, Theorem 3.4] and (2.16), we get that LðBW1=2ðtÞxÞðlÞ ¼ BF1=2ðlÞx,
l > 0 and limz!0; z ASd 0 BW1=2ðzÞx ¼ Cx. In the proof of Theorem 2.5, we have

proved that B d j

dz j WgðzÞx ¼ d j

dz j BWgðzÞx (z A Sp=2�gp, j A N). As a consequence of

this equality and the Cauchy integral formula, we have that q
�
B d j

dt j
WgðtÞx

�
¼

Oðt�jÞ, t > 0. On the other hand, the proof of [21, Theorem 2.9.48] shows that

the equation (2.13) continues to hold, which simply implies that BW 00
1=2ðzÞx ¼

AW1=2ðzÞx, z A Sðp�oÞ=2. This completes the proof of theorem. r

The main problem in application of Theorem 2.5–Theorem 2.6 to incomplete

abstract degenerate di¤erential equations lies in the fact that, in many concrete

situation, any of conditions ðlB� AÞ�1
CA � AðlB� AÞ�1

C (l A rCðA;BÞ) and

ðlB� AÞ�1
CB � BðlB� AÞ�1

C (l A rCðA;BÞ) is not satisfied. Suppose, for ex-

ample, that q0W � Rn is an open bounded set with Cy-boundary, E :¼ L2ðWÞ,
A :¼ D with the Dirichlet boundary conditions, aðxÞ A LyðWÞ, aðxÞa 0 on W,

aðxÞ < 0 almost everywhere in W, and Bf ðxÞ :¼ aðxÞ�1
f ðxÞ with maximal domain
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(cf. [13, Example 3.8, pp. 81–83]). Then B�1 A LðEÞ and the operator AB�1 is

closed. Suppose, in addition, that a�1 A LrðWÞ for some rb 2 (resp., r > 2, r > n),

if n ¼ 1 (resp., n ¼ 2, nb 3). Then it has been proved in the above-mentioned

example that the condition [21, (HQ), p. 207] holds with the number o ¼ 0,

C ¼ I , m ¼ �1þ ðn=2rÞ A ð�1; ð�1=2ÞÞ, and with the operator A replaced by

AB�1 therein. This implies by [21, Theorem 2.9.51(i.3)] that the operator

�ðAB�1Þ1=2 is the integral generator of an exponentially bounded, analytic ðn=rÞ-
times integrated semigroup of angle p=2 on E, and that the abstract incomplete

Cauchy problem [21, (P2;m)], which corresponds to the equation uttðt; xÞ ¼
DfaðxÞuðt; xÞg, t > 0, has a unique solution that is analytically extensible to the

right half plane. It is clear that Theorem 2.6 cannot be applied here directly, by

regarding the problem uttðt; xÞ ¼ DfaðxÞuðt; xÞg, t > 0 as a problem of the form

ðP2;q;BÞ considered above.

Now we would like to illustrate the abstract theoretical results established in

this paper with the following example.

Example 2.7. Assume that n A N and iAj, 1a ja n are commuting gen-

erators of bounded C0-groups on a Banach space E; let us recall that A :¼
ðA1; . . . ;AnÞ. Assume, further, that 0 < d < 2, P1ðxÞ and P2ðxÞ are non-zero

complex polynomials, N1 ¼ dgðP1ðxÞÞ, N2 ¼ dgðP2ðxÞÞ, b > n
2

ðN1þN2Þ
minð1; dÞ (resp. bb

n
��1
p
� 1

2

�� ðN1þN2Þ
minð1; dÞ , if E ¼ LpðRnÞ for some 1 < p < y), P2ðxÞ0 0, x A Rn and

sup
x AR n

< P1ðxÞ
P2ðxÞ

� �1=d !
a 0:

Define

RdðtÞ :¼ Ed td
P1ðxÞ
P2ðxÞ

� �
ð1þ jxj2Þ�b=2

� �
ðAÞ; tb 0; GdðtÞ :¼ P2ðAÞ�1RdðtÞ; tb 0;

A 0 :¼ P1ðAÞ, B 0 :¼ P2ðAÞ and C :¼ Rdð0Þ. Then we know that kRdðtÞkþ
kGdðtÞk ¼ Oð1þ tmaxð1; dÞn=2Þ, tb 0 (kRdðtÞk þ kGdðtÞk ¼ Oð1þ tmaxð1; dÞnj1=p�1=2jÞ,
tb 0, if E ¼ LpðRnÞ for some 1 < p < y),

ld�1ðldB 0 � A 0Þ�1
Cx ¼

ðy
0

e�ltGdðtÞx dt; <l > 0; x A E;

and

ld�1B 0ðldB 0 � A 0Þ�1
Cx ¼

ðy
0

e�ltB 0GdðtÞx dt ¼
ðy
0

e�ltRdðtÞx dt; <l > 0; x A E;
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cf. [23]–[24] for more details. This implies

kðlB 0 � A 0Þ�1
Ck þ kB 0ðlB 0 � A 0Þ�1

Ck

¼ Oðjlj�1 þ jlj�1�ðmaxð1; dÞnÞ=ð2dÞÞ; l A Sdp=2;

in the case of a general space E, and

kðlB 0 � A 0Þ�1
Ck þ kB 0ðlB 0 � A 0Þ�1

Ck

¼ Oðjlj�1 þ jlj�1�ðmaxð1; dÞnj1= p�1=2jÞ=dÞ; l A Sdp=2;

in the case that E ¼ LpðRnÞ for some 1 < p < y (cf. also [23, Remark 4.4(ii)]

and [23, Remark 4.5], which enables us to consider the wellposedness of re-

lated degenerate Cauchy problems in El-type spaces [42]). Setting A :¼ �A 0 and

B :¼ B 0, we have that the condition (H) holds wih o ¼ p� ðdp=2Þ as well as that

C�1AC ¼ A, C�1BC ¼ B, ðlB� AÞ�1
CA � AðlB� AÞ�1

C and ðlB� AÞ�1
CB �

BðlB� AÞ�1
C (l A rCðA;BÞ), which implies that Theorem 2.5(ii), resp., Theorem

2.6(ii) is susceptible to applications in the case that E ¼ LpðRnÞ for some

1 < p < y satisfying

maxð1; dÞn
��1
p
� 1

2

��
d

< g < 1=2; resp:;
maxð1; dÞn

��1
p
� 1

2

��
d

< 1=2:

Before proceeding further, we would like to mention in passing that the oper-

ator B is injective (cf. [23, Remark 4.4(i)]) and that the operator B�1A is

closable because rC 0 ðB�1AÞ0q (C 0 :¼ CðBþ AÞ�1
C), which follows from

the equality ðlþ B�1AÞ�1
CðBþ AÞ�1

Cx ¼ BðlBþ AÞ�1
CðBþ AÞ�1

Cx, l > 0,

x A E (cf. (2.6)). It is also worth noting that the operator AB�1 is closable

because rCðAB�1Þ0q; this is a consequence of the equality ðlþ AB�1Þ�1
Cx ¼

BðlBþ AÞ�1
Cx, l > 0, x A E. Now we will prove the uniqueness of solution

of problem ðP2;q;BÞ in our particular case; recall that E ¼ LpðRnÞ for some

1 < p < y satisfying z :¼ maxð1; dÞn
��1
p�1

2

��
d

< 1=2. Denote by MC;q;o the class which

consists of all closed linear operators D acting on E such that CnSo � rCðDÞ,
DC � CD and the family

fðjlj�1 þ jljqÞ�1ðl�DÞ�1
C : l B So 0 g

is equicontinuous for every o < o 0 < p; here q A R and o A ½0; pÞ. Then we have

z A ½0; 1=2Þ and our previous considerations show that AB�1 A MC;�1�z;p�ðdp=2Þ.
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If z 7! uðzÞ, z A Sðp�oÞ=2 is a solution of problem ðP2;q;BÞ with x ¼ 0, then

vðzÞ :¼ BuðzÞ, z A Sðp�oÞ=2 is a solution of problem

ðP2;qÞ :

v A AðSðp=2Þ�ðo=2Þ : EÞ;
d 2

dz2
vðzÞ ¼ AB�1vðzÞ; z A Sðp=2Þ�ðo=2Þ;

limz!0; z ASd
vðzÞ ¼ 0; for every d A ð0; ðp=2Þ � ðo=2ÞÞ;

the set fð1þ jzj�ð2qþ2ÞÞ�1
vðzÞ : z A Sdg is bounded in E

for every d A ð0; ðp=2Þ � ðo=2ÞÞ:

8>>>>>><
>>>>>>:

An application of [21, Theorem 2.9.51(iii.2)] yields vðzÞ ¼ 0, z A Sðp�oÞ=2, so that

uðzÞ ¼ 0, z A Sðp�oÞ=2 by the injectiveness of B.

The analysis contained in Example 2.7 shows that there exists at most one

solution of problem ðP2;q;BÞ stated in Theorem 2.6(i), resp., Theorem 2.6(ii),

provided that the operator B is injective, the operator AB�1 is closable and

AB�1 A MC;q;o for some q A ð�1; ð�1Þ=2Þ and o A ½0; pÞ, resp., q A ðð�3=2Þ;�1�
and o A ½0; pÞ. Finally, we would like to raise the following issue: In which other

cases the uniqueness of solutions of problem ðP2;q;BÞ can be proved (B0 I )?
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[26] Kostić, M., D-Hypercyclic and D-topologically mixing properties of degenerate multi-term

fractional di¤erential equations, Azerbaijan J. Math. 5 (2015), 77–94.
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