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QUOTIENTS AND HOPF IMAGES OF

A SMASH COPRODUCT

By

Julien Bichon

Abstract. We describe the Hopf algebra quotients and Hopf images

of the smash coproduct of a group algebra by the algebra of

functions on a finite group.

1. Introduction

The smash coproduct, associated to an action of a finite group on a discrete

group, is one of the most well-known constructions to produce non-commutative

and non-cocommutative Hopf algebras. The aim of this paper is to provide a

description of the Hopf algebra quotients of such a smash coproduct.

Let us first recall the construction. Let H 1 G be a finite group H acting by

automorphisms on a discrete group G. Then the smash coproduct Hopf algebra

k½G�z kH (k denotes an arbitrary field) is k½G�n kH as an algebra, where k½G�
denotes the (convolution) group algebra of G and kH is the algebra of k-valued

functions of H, and the comultiplication is given by

DðradhÞ ¼
X
l AH

radl n l�1:radl�1h ¼
X
l AH

radl�1 n l:radlh

for r A G, h A H (we denote by radh the element rn dh of k½G�z kH ). The Hopf

algebra k½G�z kH fits into an exact sequence of Hopf algebras (see [2])

k ! kH ! k½G�z kH ! k½G� ! k

Now if L is Hopf algebra quotient of k½G�z kH , some standard arguments show

that L fits into an exact sequence

k ! kG ! L! k½G� ! k
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where GHH is a subgroup and G is a quotient of G. Moreover, this exact

sequence is cleft, so the general theory of cleft extensions (see [2, 1, 13]) ensures

that L is isomorphic to a general bismash product kGtask½G�, involving com-

plicated cohomological data, that are known to be di‰cult to deal with in general

(see [12] for an illustration of a situation where it is better to forget about the

whole structure of the bismash product).

Instead of a bismash product, we propose to use the notion of quotient

datum to describe the quotients of k½G�z kH : a quotient datum is a triple

ðG;N;FÞ where G is a subgroup of H, N / G is a normal and G-stable subgroup

of G, and F : N ! ðkGÞ� is a group morphism satisfying some simple conditions.

To a quotient datum ðG;N;FÞ we associate a Hopf algebra k½G=N�zF kG, which

is a quotient of k½G�z kH , and show conversely that any Hopf algebra quotient

of k½G�z kH is isomorphic to k½G=N�zF kG for some quotient datum ðG;N;FÞ.
It seems that the notion is simple enough to allow concrete description of the

quotients of k½G�z kH , at least of course when the normal subgroup structure of

G is not too complicated, and we examine some examples to illustrate this.

The original motivation for this work came from the following problem.

First recall [5] that for a Hopf algebra representation p : A! EndðVÞ on a

vector space V , there exists a unique Hopf algebra L, called the Hopf image of p,

that produces a minimal factorization

A ������!p
EndðVÞ

L
 ���� ����!

When A ¼ k½G� is a group algebra, then L ¼ k½G=KerðpÞ�, and hence the problem

of computing the Hopf image amounts to computing the kernel of the group

representation, which of course can be quite di‰cult. Techniques for computing

Hopf images for several classes of Hopf algebras were developed in [5].

Now recall [7, 3] that to a complex Hadamard matrix H A MNðCÞ is

associated a representation pH : AsðNÞ !MNðCÞ of Wang’s quantum permuta-

tion algebra AsðNÞ [20] (the universal cosemisimple Hopf algebra coacting on the

diagonal algebra kN when k has characteristic zero [8]), whose Hopf image is

thought of as representing the quantum symmetry group of the Hadamard matrix

or of the corresponding subfactor (see [11]). It is in general very di‰cult to

compute the Hopf image of pH . The case H ¼ FM nQ FN of the tensor product of

Fourier matrices deformed by a matrix of coe‰cients Q ([9]) was studied in [6],

and a factorization of pH through a certain smash coproduct C½G�zCZM was
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found there, which was shown to be the Hopf image under a genericity as-

sumption on Q. However the general case remained unclear, and after analyzing

the situation, it became clear that it was in fact not more di‰cult to try to

describe all the possible quotients of the crossed coproduct and only after that,

try to identify the Hopf image. From these considerations we get a method to

compute the Hopf image of a smash coproduct in general, described in Section 4,

that enables us to make more precise some of the results of [6] in special situa-

tions. In particular we show that if M ¼ 2 and N is prime, or N ¼ 2 and M is

prime, the genericity assumption in [6] can be weakened to the assumption that

one of the coe‰cients of the parameter matrix Q is not a root of unity.

The paper is organized as follows. In Section 2 we define quotient data and

describe the Hopf algebra quotients of the smash coproduct of a group algebra

by the algebra of functions on a finite group in terms of Hopf algebras associated

to quotient data. In Section 3 we discuss some examples. In Section 4, after

having recalled the basic notions around Hopf images, we provide a general

method, based on the previous considerations, to compute Hopf images for smash

coproducts. The final Section 5 is devoted to examples of computations of Hopf

images, providing in particular cases refinements of some results of [6].

Notations and conventions. We work over an arbitrary field k. We

assume that the reader is familiar with the basic theory of Hopf algebras, see [15]

for example. If A is a Hopf algebra, as usual, D, e and S stand respectively for

the comultiplication, counit and antipode of A. If G is a group, we denote by k½G�
the (convolution) group algebra having its group-like elements identified with the

elements of G, and if H is a finite group, we denote by kH the Hopf algebra of

functions on H, i.e. kH ¼ k½H�� as Hopf algebras, see e.g. Chapter 1 in [15].
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2. Quotient Data

Let H 1 G be a finite group H acting by automorphisms on a discrete group

G. Recall that the smash coproduct Hopf algebra is k½G�z kH ¼ k½G�n kH as an

algebra, with comultiplication, counit and antipode given by
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DðradhÞ ¼
X
l AH

radl n l�1:radl�1h ¼
X
l AH

radl�1 n l:radlh

eðradhÞ ¼ dh;1; SðradhÞ ¼ h�1:r�1adh�1

for r A G, h A H.

The precise definition of a quotient datum for H 1 G is as follows.

Definition 2.1. Let H 1 G as above. A quotient datum for H 1 G is a

triple ðG;N;FÞ where

(1) GHH is a subgroup.

(2) N / G is a normal and G-stable subgroup of G.

(3) F : N ! ðkGÞ� is a group morphism such that

FðrÞðlhÞ ¼ Fðl�1:rÞðhÞFðrÞðlÞ; FðrÞ ¼ Fðsrs�1Þ

for any r A N, s A G, h; l A G.

We denote by QDðH 1 GÞ the set of quotient data for H 1 G.

Example 2.2. If GHH is a subgroup, N / G is a normal and G-stable

subgroup of G and F : N ! ĜG ¼ HomðG; k�Þ is a group morphism such that

FðrÞ ¼ Fðsrs�1Þ and Fðh:rÞ ¼ FðrÞ for any r A N, s A G, h A G, then ðG;N;FÞ A
QDðH 1 GÞ.

See the end of the next section for an example of a quotient datum that is

not of the type of the previous example.

The proof of the following easy lemma, that we record for future use, is left

to the reader.

Lemma 2.3. Let H 1 G as above and let ðG;N;FÞ A QDðH 1 GÞ.

(1) For r; s A G with rs A N, we have sr A N and FðrsÞ ¼ FðsrÞ.
(2) For h A G and r A N, we have FðrÞð1Þ ¼ 1 and Fðh:rÞðhÞ ¼ Fðr�1Þðh�1Þ.

We now associate a quotient Hopf algebra of k½G�z kH to a quotient datum

for H 1 G.

Proposition 2.4. Let H 1 G as above and let ðG;N;FÞ A QDðH 1 GÞ.
Choose a section j : G=N ! G of the canonical projection u : G! G=N, with

juð1Þ ¼ 1. The following formulas
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ðuðrÞadhÞðuðsÞadkÞ ¼ uðrsÞadhdkFð juðrÞ juðsÞ juðrsÞ�1Þ

DðuðrÞadhÞ ¼
X
l AG

ðuðrÞadl�1Þn uðl:rÞadlhFðl:juðrÞ juðl:rÞ�1Þ

SðuðrÞadhÞ ¼ uðh�1:r�1ÞaFð juðh�1:r�1Þ�1h�1: juðrÞ�1Þdh�1

together with the obvious unit and counit define a Hopf algebra structure on

k½G=N�n kG, which, up to isomorphism, does not depend on the choice of j. We

denote by k½G=N�zF kG the resulting Hopf algebra. Moreover the map

q : k½G�z kH ! k½G=N�zF kG

radh 7! uðrÞaFðrjuðrÞ�1ÞdhjG

is a surjective Hopf algebra map.

Proof. It is of course possible to check the result directly by lengthy com-

putations. The referee proposed the following more conceptual proof. Choose a

section j as above, and consider the following linear isomorphism

x : k½G=N�n ðk½N�z kGÞ ! k½G�z kG ¼: L

uðrÞn saf 7! juðrÞsaFðsÞ�1f

The restriction of x to the Hopf subalgebra k½N�z kG is a Hopf algebra map by

(3) in Definition 2.1 and Lemma 2.3 (in fact that the restriction of x be a Hopf

algebra map is exactly the condition that dictates the first equation in condition

(3) of Definition 2.1). Thus since k½N�H k½N�z kG is a left coideal subalgebra,

it follows that K :¼ xðk½N�Þ is a left coideal subalgebra in L. Hence LKþ is a

coideal in L, and thus we form the quotient coalgebra A :¼ L=LKþ, together

with the canonical surjection p : L! A. It is easily checked that xðk½G=N�n
k½N�þn kGÞ ¼ LKþ, and hence x induces a linear isomorphism

h : k½G=N�z kG FA; hðuðrÞn f Þ ¼ pð juðrÞaf Þ

making the following diagram commutative

k½G=N�n ðk½N�z kGÞ ���!x L???yidnenid

???yp

k½G=N�n kG A�������!h
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Moreover, we have LKþ ¼ KþL by (1) in Lemma 2.3, and LþK is stable

under the antipode by (2) in Lemma 2.3, hence LKþ is a Hopf ideal in L and A

is a Hopf algebra, while p : L! A is a Hopf algebra map. It is then a direct

verification to check that the announced Hopf algebra structure on k½G=N�n kG

is the one transported using the linear isomorphism h. Since L and K are in-

dependent of the choice of j, so is the Hopf algebra A, hence the isomorphism

class of Hopf algebra structure just constructed on k½G=N�n kG is as well

independent of j.

Finally it is clear that q is surjective, and that hq : k½G�z kH ! A is a Hopf

algebra map, hence q is as well a Hopf algebra map. r

We are now going to show that all the quotients of k½G�z kH have the

above form. Before this, recall that a sequence of Hopf algebra maps

k ! B!i A!p L! k

is said to be exact [2] if the following conditions hold:

(1) i is injective, p is surjective and pi ¼ e1,

(2) ker p ¼ AiðBÞþ ¼ iðBÞþA, where iðBÞþ ¼ iðBÞVKerðeÞ,
(3)

iðBÞ ¼ Acop ¼ fa A A : ðidn pÞDðaÞ ¼ an 1g

¼ copA ¼ fa A A : ðpn idÞDðaÞ ¼ 1n ag:

It is known (see e.g. [2], Proposition 1.2.4) that for a sequence as above with A

faithfully flat as a (left or right) B-module, then the sequence is exact if (1) and

(2) hold.

As an example, it is easily verified that for H 1 G as above and

ðG;N;FÞ A QDðH 1 GÞ, the Hopf algebra k½G=N�zF kG fits into an exact

sequence of Hopf algebras

k ! kG !i k½G=N�zF kG !p k½G=N� ! k

where ið f Þ ¼ 1af and p ¼ idn e.

The following result is the main step towards the determination of the

quotients of a smash coproduct, and certainly the most useful in concrete

situations.

Proposition 2.5. Let p : k½G�z kH ! L be a surjective Hopf algebra map

with pjkH injective. Then there exists ðH;N;FÞ A QDðH 1 GÞ such that L is
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isomorphic with k½G=N�zF kH. More precisely, the subgroup N is defined by

N ¼ fr A G j bf A ðkHÞ� with pðra1Þ ¼ pð1af Þg

and for r A N, FðrÞ is the unique f A ðkHÞ� such that pðra1Þ ¼ pð1af Þ.

Proof. Step 1. Using well-known arguments, we check that there exists a

linear isomorphism k½G=N�n kH FL for some normal subgroup N / G. We start

with the previous exact sequence

k ! kH !i k½G�z kH !p k½G� ! k

Since pi is injective and the Hopf subalgebra piðkHÞ is central in L, we can

form the quotient Hopf algebra L ¼ L=ðpiðkHÞÞþL, and we get another exact

sequence:

k ! kH !pi L!q L! k

This sequence is indeed exact, because L is faithfully flat over kH since it is a

faithful module over a semisimple algebra. So we get the following commutative

diagram with exact rows, with the Hopf algebra map on the right surjective:

k ���! kH ���!i k½G�z kH ���!p k½G� ���! k���� ???yp

???y
k ���! kH L L k������!pi �������!q ����!

Since a quotient of a group algebra is still a group algebra, we get a commutative

diagram with exact rows as follows:

k ���! kH ���!i k½G�z kH ���!p k½G� k���� ???yp

???y
k ���! kH L k½G=N� ���! k

����!
������!pi �����!q 0

for a normal subgroup N / G, and where the vertical Hopf algebra map on the

right is induced by the canonical surjection u : G! G=N.

Choose a section of u, j : G=N ! G, with jð1Þ ¼ 1. It is easily checked

that the map g : k½G=N� ! L, uðrÞ 7! pð juðrÞa1Þ, is left k½G=N�-colinear, with L

being given the left k½G=N�-comodule algebra structure induced by q 0. More-

over g is convolution invertible, with convolution inverse given by g�1ðuðrÞÞ ¼
pð juðrÞ�1a1Þ. Hence the extension kH ¼ coq 0LHL is k½G=N�-cleft. It therefore

follows from the Doi-Takeuchi Theorem ([10], see Chapter 7 in [15] for an
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exposition) that the map

h : k½G=N�n kH ! L

uðrÞn f 7! pð juðrÞa1Þpð1af Þ ¼ pð juðrÞaf Þ

is a linear isomorphism.

Step 2. We now construct the quotient datum. For r A N, we have pðra1Þ A
coq 0L, hence the exactness of the previous sequence ensures that there exists

f A kH such that pðra1Þ ¼ pð1af Þ. The function f is unique since pjkH is

injective and is invertible (otherwise there would exist a non-zero f 0 A kH such

that ff 0 ¼ 0, and pðra1Þ ¼ pð1af Þ would be a zero divisor in L). Thus we have

a map F : N ! ðkHÞ� such that for any r A N, we have pðra1Þ ¼ pð1aFðrÞÞ.
For r A G such that pðra1Þ ¼ pð1af Þ for some f A kH , we have f ð1Þ1 ¼
q 0pð1af Þ ¼ q 0pðra1Þ ¼ uðrÞ, so r A N, and hence N has indeed the description of

the statement of the proposition. It is clear, again from the injectivity of pjkH , that

F : N ! ðkHÞ� is a group morphism and that FðrÞ ¼ Fðsrs�1Þ for any r A N,

s A G. It remains to check that N is H-stable and that the first equation in (3) of

Definition 2.1 is satisfied. For r A N, we have

Dpðra1Þ ¼
X
l AH

pðradlÞn pðl�1:ra1Þ ¼
X
l AH

pð1adlÞpðra1Þn pðl�1:ra1Þ

¼
X
l AH

pð1adlFðrÞÞn pðl�1:ra1Þ ¼
X
l AH

FðrÞðlÞpð1adlÞn pðl�1:ra1Þ

On the other hand we have

Dpð1aFðrÞÞ ¼ Dp
X
h AH

FðrÞðhÞ1adh

 !
¼
X
h; l AH

FðrÞðhÞpð1adlÞn pð1adl�1hÞ

Hence, by the injectivity of pjkH , we have, for any l A H,

FðrÞðlÞpðl�1:ra1Þ ¼
X
h AH

FðrÞðhÞpð1adl�1hÞ ¼
X
h AH

FðrÞðlhÞpð1adhÞ

¼ p 1a
X
h AH

FðrÞðlhÞdh

 !

It follows that l�1:r A N and that FðrÞðlhÞ ¼ Fðl�1 � rÞðhÞFðrÞðlÞ for any h A H.

Therefore ðH;N;FÞ A QDðH 1 GÞ. Notice that the H-stability of N also follows

from the analysis in the structure theory of bicrossed products [13] (essentially we

have reproduced the argument, and this gave simultaneously the desired equation

for F).
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Step 3. It remains to check that h is a Hopf algebra morphism k½G=N�zF

kH ! L, with k½G=N�zF kH as in Proposition 2.4, which is done in a straight-

forward manner. Of course, what was done to find the Hopf algebra structure

of Proposition 2.4 was to transport the Hopf structure of L, which is straight-

forward as well, the inverse of h in the Doi-Takeuchi Theorem being completely

explicit. r

We arrive at the general description of the Hopf algebra quotients of a smash

coproduct.

Theorem 2.6. Let H 1 G be a finite group H acting by automorphisms on

a discrete group G, and let L be a Hopf algebra quotient of the smash coproduct

k½G�z kH. Then there exists a quotient datum ðG;N;FÞ A QDðH 1 GÞ such that

L is isomorphic to k½G=N�zF kG.

Proof. Let p : k½G�z kH ! L be a surjective Hopf algebra map. Then

pðkHÞ is a Hopf algebra quotient of kH , and hence there exists a (unique)

subgroup GHH such that p induces an isomorphism j : pðkHÞF kG and such

that jpð1af Þ ¼ fjG for any f A kH . Endowing G with the restricted G-action,

there exists a factorization of Hopf algebra maps

k½G�z kH �������������!p
L

k½G�z kG

 �����
 ����idnres p 0

with p 0ðraf Þ ¼ pðra1Þj�1ð f Þ and p 0jkG is injective, and we conclude by the

previous proposition. r

We end the section by a lemma, which is a generalization of Lemma 4.5 in

[6], and will be used in Section 4.

Lemma 2.7. Let H 1 G as above and let ðG;N;FÞ A QDðH 1 GÞ. Let

p : k½G=N�zF kG ! L be a surjective Hopf algebra map, such that pjkG is

injective, and such that for r A G and f A kG, we have:

pðuðrÞa1Þ ¼ pð1af Þ ) uðrÞ ¼ 1

where u : G! G=N is the canonical surjection. Then p is an isomorphism.
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Proof. Consider the surjective Hopf algebra map q : k½G�z kG !
k½G=N�zF kG of Proposition 2.4, of which we retain the notation, and the

composition pq : k½G�z kG ! L. Let

N 0 ¼ fr A G j bf A ðkHÞ� with pqðra1Þ ¼ pqð1af Þg

It is clear that NHN 0, while for r A N 0, we have pqðra1Þ ¼ pðuðrÞaFðrjuðrÞ�1ÞÞ
¼ pqð1af Þ ¼ pð1af Þ for some f A ðkHÞ�, and hence pðuðrÞa1Þ ¼
pð1aFðrjuðrÞ�1Þ�1f Þ, so our assumption gives uðrÞ ¼ 1 and r A N. Hence N ¼ N 0

and for r A N we have pqðra1Þ ¼ pð1aFðrÞÞ ¼ pqð1aFðrÞÞ. Thus Proposition

2.4 and its proof yield a Hopf algebra isomorphism h : k½G=N�zF kG ! L,

hðuðrÞaf Þ ¼ pqð juðrÞaf Þ ¼ pðujuðrÞaFð juðrÞ jujuðrÞ�1Þ f Þ ¼ pðuðrÞaf Þ, and p is

an isomorphism. r

3. Examples

In order to illustrate the results of the previous section, we now examine a

series of examples.

3.1. First Example. We assume in this subsection that charðkÞ0 2.

Let

G ¼ Dy ¼ Z2 � Z2 ¼ hg0; g1 j g20 ¼ 1 ¼ g21i

with the Z2 ¼ hhi-action defined by h:g0 ¼ g1 and h:g1 ¼ g0. The Hopf *-algebra

quotients of C½Z2 � Z2�zCZ2 have been determined in [4], where this Hopf

algebra is denoted Ahð2Þ. The methods of the previous paragraph enables us to

get without too much e¤ort the description of all the Hopf algebra quotients,

over any field of characteristic0 2.

For mb 1, let Nm ¼ hðg0g1ÞmiFZ: this is a normal and H-stable subgroup

of Z2 � Z2. We get a family of quotients of k½Z2 � Z2�z kZ2 :

AðmÞ ¼ k½ðZ2 � Z2Þ=Nm�z kZ2 F k½Dm�z kZ2

of dimension 4m, with Að1ÞF kZ2�Z2 , Að2ÞF kD4 and AðmÞ non-commutative

and non-cocommutative if mb 3.

Now let Fm : Nm ¼ hðg0g1ÞmiFZ! cZ2Z2 ¼ hwi be the unique group mor-

phism with Fmððg0g1ÞmÞ ¼ w. We have Fmðh:ðg0g1ÞmÞ ¼ Fmððg0g1Þ�mÞ ¼ w�1 ¼ w,

so ðZ2;Nm;FmÞ A QDðZ2 1 Z2 � Z2Þ. We get a family of quotients of

k½Z2 � Z2�z kZ2 :

BðmÞ ¼ k½ðZ2 � Z2Þ=Nm�zFm
kZ2
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of dimension 4m, with Bð1ÞF kZ4 , and BðmÞ non-commutative and non-

cocommutative if mb 2. The Hopf algebras AðmÞ and BðmÞ were studied by

Masuoka in [14], Nikshych [16], Suzuki [18], Vainerman [19], and probably

others.

Proposition 3.1. The non trivial Hopf algebra quotients of k½Z2 � Z2�z kZ2

are:

(1) k½Dm�, mb 1, k½Dy�,
(2) AðmÞ ¼ k½ðZ2 � Z2Þ=Nm�z kZ2 F k½Dm�z kZ2 , mb 1,

(3) BðmÞ ¼ k½ðZ2 � Z2Þ=Nm�zFm
kZ2 , mb 1.

Proof. Let p : k½Z2 � Z2�z kZ2 ! L be a surjective Hopf algebra map

with dimðLÞ > 1. If pjkZ2 is not injective, then it is trivial, and L is

quotient of k½Z2 � Z2�, and hence is isomorphic to k½Dm� for some mb 1

or m ¼y. Now assume that pjkZ2 is injective. It is not di‰cult to check

that the non-trivial Z2-stable normal subgroups of Z2 � Z2 are precisely the

Nm ¼ hðg0g1Þmi, mb 1. Let F : Nm ! ðkZ2ÞÞ� be a group morphism such

that ðZ2;Nm;FÞ A QDðZ2 1 Z2 � Z2Þ. Let l A k � be such that Fððg0g1ÞmÞ ¼
d1 þ ldh. We have

Fððg0g1ÞmÞ ¼ Fðg0ðg0g1Þmg0Þ ¼ Fððg1g0ÞmÞ ¼ Fððg0g1Þ�mÞ ¼ Fððg0g1ÞmÞ�1

Hence l ¼ l�1, and either F si trivial or F ¼ Fm as above. We conclude by

Proposition 2.5. r

A rough version of the previous result is as follows.

Corollary 3.2. The only non-trivial infinite-dimensional quotient of

k½Z2 � Z2�z kZ2 is k½Z2 � Z2�.

3.2. A first generalization of the previous example is given by

G ¼ Z�n2 ¼ hg0; g1; . . . ; gn�1 j g20 ¼ 1 ¼ g21 ¼ � � � g2n�1i

with the Sn-action given by permutation of the generators. The Hopf algebra

k½Z�n2 �z kSn is considered in [17], where the ‘‘easy’’ quotients are described.

Using Theorem 2.6, we get that a Hopf algebra quotient of k½Z�n2 �z kSn is

isomorphic to k½Z�n2 =N�zF kG where ðG;N;FÞ A QDðSn 1 Z�n2 Þ. As pointed out

in [17], there are many normal Sn-stable subgroups NHZ�n2 .
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3.3. The Main Example. We now come to the examples that motivated

this study. Let M;Nb 2 and consider the group

GM;N ¼ hg0; . . . ; gM�1 j gN
0 ¼ � � � ¼ gN

M�1 ¼ 1; ½gi1 � � � giN ; gj1 � � � gjN � ¼ 1i

endowed with the cyclic action of ZM ¼ hhi on the generators. If M ¼ N ¼ 2,

we are in the situation of the first example.

The Hopf algebra k½GM;N �z kZM arose in [6] from certain representations of

Wang’s quantum permutation algebra. The following description of GM;N is given

in [6].

Lemma 3.3. We have a group isomorphism

GM;N FZðM�1ÞðN�1ÞzZN

More precisely, for 0a iaM � 1, 0a caN � 1, put aic ¼ gc�1
0 gig

�c
0 , and let T

be the subgroup of GM;N generated by the elements aic. Then T is a free abelian

group of rank ðM � 1ÞðN � 1Þ, with basis faic; 1a iaM � 1; 1a caN � 1g,
and there is a split exact sequence

1! T ! GM;N ! ZN ! 1

where the group morphism on the right GM;N ! ZN ¼ hti is defined by gi 7! t.

The ZN ¼ hti-action on T is given by t � aic ¼ g0aicg
�1
0 ¼ ai; cþ1, while the ZM ¼

hhi-action on GM;N is given by h � aic ¼ aiþ1; ca
�1
1; c, h � g0 ¼ g0a10.

Proof. Let T be the kernel of the above group morphism GM;N ! ZN ¼
hti. It is clear that T is generated by the elements of type gi1 � � � giN , and hence is

abelian. The elements aic belong to T , and let T0 be the subgroup generated by

these elements. Using the relations

giajcg
�1
i ¼ aj; cþ1; g�1i ajcgi ¼ aj; c�1

we see that T0 is normal in GM;N . The elements ai0 ¼ g�10 gi belong to T0, and

hence we have ½GM;N : T0�aN. But then N ¼ ½GM;N : T �a ½GM;N : T0�aN, and

thus T0 ¼ T . That T is generated by faic; 1a iaM � 1; 1a caM � 1g follows
from the identities

a0c ¼ 1; for any c; and
YN�1
c¼0

aic ¼ 1 for any i

and to prove that T is indeed free one considers a certain representation of GM;N ,

see [6], or the examples in the last section. The last assertion about the actions is

immediate. r
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Our main result on the Hopf algebra quotients of k½GM;N �z kZM is the

following generalization of Corollary 3.2.

Theorem 3.4. Let f : k½GM;N �z kZM ! A be surjective Hopf algebra map

with A infinite-dimensional and non-cocommutative. Assume that one of the fol-

lowing conditions holds.

(1) N ¼ 2 and M is prime.

(2) M ¼ 2 and N is prime.

Then f is an isomorphism.

In other words, the only non-trivial infinite-dimensional quotients of

k½GM;N �z kZM are group algebras.

To prove Theorem 3.4, we will need a couple of lemmas.

Lemma 3.5. Assume that N is a prime number and that V HZðM�1ÞðN�1Þz

ZN is a normal subgroup. If V QZðM�1ÞðN�1Þ, then the quotient group

ðZðM�1ÞðN�1ÞzZNÞ=V is finite and abelian.

Proof. First note that it is clear from the definition of GM;N that an abelian

quotient is finite, hence we just have to show that ðZðM�1ÞðN�1ÞzZNÞ=V is

abelian. There exists, by the assumption, a A ZðM�1ÞðN�1Þ and 1a kaN � 1

such that atk A V . Working in the quotient group, the assumption that N is

prime enables us to assume that k ¼ 1, and hence at A V . Hence the quotient

group ðZðM�1ÞðN�1ÞzZNÞ=V is generated by the image of the abelian group

ZðM�1ÞðN�1Þ, and is abelian. r

Lemma 3.6. Let p be a prime number and let f : Q p�1 ! Q p�1 be a Q-linear

map whose matrix in the canonical basis is

0 0 � � � 0 0 �1
1 0 � � � 0 0 �1
0 1 � � � 0 0 �1
..
. ..

. ..
. ..

. ..
. ..

.

0 0 � � � 1 0 �1
0 0 � � � 0 1 �1

0BBBBBBBB@

1CCCCCCCCA
or

�1 �1 � � � �1 �1 �1
1 0 � � � 0 0 0

0 1 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 � � � 1 0 0

0 0 0 � � � 1 0

0BBBBBBBB@

1CCCCCCCCA
Then for any non-zero u A Q p�1, the elements u; f ðuÞ; . . . ; f p�2ðuÞ A Q p�1 are

Q-linearly independent.
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Proof. As usual we view Q p�1 as a Q½X �-module by letting X :v ¼ f ðvÞ, for
any v A Q p�1 The first matrix is the companion matrix of the cyclotomic

polynomial

PðXÞ ¼ 1þ X þ � � � þ X p�2 þ X p�1 A Q½X �

and hence PðX Þ is the characteristic polynomial of f , as well as its minimal

polynomial since P is irreducible in Q½X �. Then since P is irreducible, it is the

only invariant factor of f and the structure theory of modules of a principal ideal

domain then gives that, as a Q½X �-module, one has Q p�1 FQ½X �=ðPÞ and Q p�1

is a simple Q½X �-module. In particular any non zero u A Q p�1 generates Q p�1 as

a Q½X �-module. Hence since the Q-subspace generated by u; f ðuÞ; . . . ; f p�2ðuÞ is
also a Q½X �-submodule, we have that these elements generate Q p�1 and hence

also are linearly independent. The proof for the second matrix is the same as

soon as we know that the minimal polynomial of f is P, which is easily seen,

using that f p ¼ 1 and that 1 is not an eigenvalue of f , so that the minimal

polynomial of f divides the irreducible polynomial P. r

Proof of Theorem 3.4. Let p : k½GM;N �z kZM ! A be surjective Hopf

algebra map, with A infinite-dimensional. Then, by Theorem 2.6, p induces an

isomorphism

k½GM;N=V �zF kG FA

for ðG;V ;FÞ A QDðZM 1 GM;NÞ. Since M is prime, either G is trivial or

G ¼ ZM , and hence G ¼ ZM since A is assumed to be non-cocommutative. We

get

k½GM;N=V �zF kZM FA

Then Lemma 3.5 gives V HZðM�1ÞðN�1Þ, since N is prime and A is infinite-

dimensional. Moreover V is ZN -stable (since normal) and ZM -stable. The ZN and

ZM actions are, in additive notation, implemented by the matrices of Lemma 3.6,

and hence it follows that if V 0 0, then V contains a free abelian subgroup of

rank N � 1 and a free abelian subgroup of rank M � 1. The quotient of finite

rank free abelian group by a subgroup of the same rank is finite, hence if M ¼ 2

or N ¼ 2, we have that if V 0 0, then A is finite-dimensional, a contradiction.

Hence V ¼ 0 and we are done. r

3.4. A Quotient Datum That Is Not of the Type of Example 2.2. We

assume that charðkÞ0 3, we put M ¼ 3 ¼ N and consider the crossed coproduct
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of the previous subsection

k½G3;3�z kZ3 F k½Z4 zZ3�z kZ3

We retain the previous notation (see Lemma 3.3):

� Z4 is seen as the free multiplicative abelian group on 4 variables a11, a12,

a21, a22.
� The first Z3 ¼ hti-action is given by

t:a11 ¼ a12; t:a12 ¼ a�111 a
�1
12 ; t:a21 ¼ a22; t:a22 ¼ a�121 a

�1
22

� The second Z3 ¼ hhi-action is given by

h � a11 ¼ a�111 a21; h � a12 ¼ a�112 a22; h � a21 ¼ a�111 ;

h � a22 ¼ a�112 ; h � t ¼ ta�111 a
�1
12

For mb 2, let Nm ¼ ham
11; a

m
12; a

m
21; a

m
22iHZ4. The group Nm is free abelian of

rank 4, hence for a; b A k�, there exists a unique group morphism

F : Nm ! ðkZ3Þ�

am
11; a

m
12 7! d1 þ adh þ abdh2

am
21; a

m
22 7! d1 þ b�1dh þ adh2

It is a tedious but straightforward verification to check that for a3 ¼ 1 ¼ b3,

then ðZ3;Nm;FÞ A QDðZ3 1 Z4 zZ3Þ (in fact any F such that ðZ3;Nm;FÞ A
QDðZ3 1 Z4 zZ3Þ has the above form). However F has values into cZ3Z3 only

when a ¼ b. This therefore furnishes the announced example.

4. Hopf Image of a Smash Coproduct

In this section we show how to describe the Hopf image of a representation

of a smash coproduct as above.

4.1. Hopf Images. We begin by recalling the basic facts on Hopf images

[4].

Let A be Hopf algebra, let R be an algebra and let r : A! R be an algebra

map.

A factorization of r is a triple ðL; q; jÞ where L is a Hopf algebra, q : A! L

is a surjective Hopf algebra map and j : L! A is an algebra map, with the
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decomposition r ¼ jq. The category of factorizations of r is defined in the

obvious manner and the Hopf image of r is defined to be the final object in this

category (hence we can also say that this is a minimal factorization), which is

easily shown to exist (see [4]).

In other words, the Hopf image of r is a factorization ðAr; p; ~rrÞ having the

following property: if ðL; q; jÞ is another factorization of r, there exists a unique

Hopf algebra map f : L! Ar such that fq ¼ p and ~rrf ¼ j.

A ����������!r
R

Ar
�
�
!

f

L

 ����� �����!p ~rr

q j

The algebra map r : A! R is said to be inner faithful if ðA; idA; rÞ is the Hopf

image of r: this is equivalent to saying that KerðrÞ does not contain any non-zero

Hopf ideal, see [4].

Computing a Hopf image is in general a di‰cult problem. The following

cases are well understood, at least from the theoretical viewpoint.

(1) If A ¼ k½G� is a group algebra, then the Hopf image of r is k½G=N� where
N ¼ KerðrjGÞ, and the representation is inner faithful if and only if

N ¼ f1g.
(2) If A ¼ kH , with H a finite group, R ¼ kn and the algebra map r is given

by

kH ! kn

f 7! ð f ðh1Þ; . . . ; f ðhnÞÞ

for h1; . . . ; hn A H, then the Hopf image of r is khh1;...;hni and r is inner

faithful if and only if H ¼ hh1; . . . ; hni, see [4]. Note that by the

semisimplicity and commutativity of kH , this example enables one to

describe the Hopf image for any representation kH !MnðkÞ.

4.2. Hopf Images and Smash Coproducts. As before, let H 1 G be a finite

group H acting by automorphisms on a discrete group G, and let R be an

algebra. Our aim is to describe the Hopf image of an algebra map r : k½G�z kH

! R, therefore unifying the descriptions given at the end of the previous sub-
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section. In fact, to simplify the set-up, we will always assume that rjkH is inner

faithful (otherwise, we can factorize r by an algebra map r 0 : k½G�z kH 0 ! R

with H 0 a subgroup of H and r 0jkH 0 inner faithful, thanks to the last item in the

previous subsection). If ðH;N;FÞ A QDðH 1 GÞ, then we simply denote ðN;FÞ
the corresponding element of QDðH 1 GÞ.

Proposition 4.1. Let H 1 G as above and let r : k½G�z kH ! R be an

algebra map such that rjkH is inner faithful. Let

EðrÞ ¼ fðH;N;FÞ ¼ ðN;FÞ A QDðH 1 GÞ j Er A N; rðra1Þ ¼ rð1aFðrÞÞg

For any ðN;FÞ A EðrÞ, there exists a factorization

k½G�z kH ��������������!r
R

k½G=N�zF kH

 �����
 ����q ~rr

where if j : G=N ! G is a section of the canonical projection u : G! G=N with

juð1Þ ¼ 1, qðradhÞ ¼ uðrÞadhFðrjuðrÞ�1Þ and ~rrðuðrÞadhÞ ¼ rð juðrÞadhÞ.
Endow EðrÞ with the partial order defined by ðN;FÞa ðM;CÞ , NHM

and CjN ¼ F. Then EðrÞ admits a maximal element. For any maximal element

ðN;FÞ A EðrÞ, the above factorization is universal and k½G=N�zF kH is isomorphic

to the Hopf image of r.

Proof. Let ðN;FÞ A EðrÞ. The Hopf algebra map q is defined in Propo-

sition 2.4. We have

~rrqðradhÞ ¼ rð juðrÞadhFðrjuðrÞ�1ÞÞ ¼ rð1aFðrjuðrÞ�1ÞÞrð juðrÞadhÞ

¼ rðrjuðrÞ�1a1Þrð juðrÞadhÞ ¼ rðradhÞ

Hence ~rrq ¼ r and ~rr is an algebra map, and we have our factorization. It

immediate that EðrÞ is non empty, that a defined above is indeed a partial

order on EðrÞ, and it is an easy verification to check that EðrÞ, endowed with

this partial order, is inductively ordered. By Zorn’s Lemma we can pick a

maximal element ðN;FÞ in EðrÞ. Let us show that the previous factoriza-

tion realizes the Hopf image of r. So let ðL; p; rÞ be the universal factorization

of r: the universal property of the Hopf image yields a Hopf algebra map

p : k½G=N�zF kH ! L such that the following diagram and all its subdiagrams

commute.
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k½G�z kH �������������������!r
R

L

�
�
!

p

k½G=N�zF kH

 ��������
��

���������
!

p r

q ~rr

By construction p is surjective, and pjkH is injective since p is (by the inner

faithfulness of rjkH ). Let

M ¼ fr A G j bf A kH with pðuðrÞa1Þ ¼ pð1af Þg

and

M 0 ¼ fr A G j bf A kH with pðra1Þ ¼ pð1af Þg

For r A M, we have

pðra1Þ ¼ pqðra1Þ ¼ pðuðrÞaFðrjuðrÞ�1ÞÞ ¼ pð1aFðrjuðrÞ�1Þ f Þ

¼ pð1aFð1arjuðrÞ�1Þ f Þ

for some f A kH , hence r A M 0. For r A M 0, we have

pðuðrÞa1Þ ¼ pqðraFð juðrÞr�1ÞÞ ¼ pð1aFð juðrÞr�1Þ f Þ ¼ pð1aFð juðrÞr�1Þ f Þ

for some f A kH , and r A M. Hence M ¼M 0. We know, by Proposition 2.5, that

M is an H-stable normal subgroup of G and that there exists C : M ! ðkHÞ�

such that ðM;CÞ A QDðH 1 GÞ and pðra1Þ ¼ pð1aCðrÞÞ for r A M. For r A M,

we have

rðra1Þ ¼ rpðra1Þ ¼ rpð1aCðrÞÞ ¼ rð1aCðrÞÞ

and hence ðM;CÞ A EðrÞ. It is clear from the first description of M that NHM.

For r A N, we have

pðra1Þ ¼ pqðra1Þ ¼ pð1aFðrÞÞ ¼ pð1aCðrÞÞ

hence ðN;FÞa ðM;CÞ, and we have N ¼M by maximality of ðN;FÞ. It then

follows from Lemma 2.7 that p is injective, and hence is an isomorphism.

r

Remark 4.2. It is possible to avoid the use of Zorn’s Lemma in the

previous proof, using the existence of the Hopf image. We found the use
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of Zorn’s Lemma more convenient to formulate the proof. A drawback is that

the description is not very explicit (but this would not be more explicit without

Zorn’s Lemma).

We now present two situations where the Hopf image has a more explicit

description.

Corollary 4.3. Let H 1 G as above and let r : k½G�z kH ! R be a

representation such that rjkH is inner faithful. Consider the H-stable normal

subgroup of G

N ¼ fr A G j Eh A H; bf A ðkHÞ� with rðh � ra1Þ ¼ rð1af Þg

and assume that there exists F : N ! ðkHÞ� such that ðN;FÞ A EðrÞ. Then the

Hopf image of r is isomorphic with k½G=N�zF kH.

Proof. For ðM;CÞ A EðrÞ, we have MHN. Hence if ðN;FÞa ðM;CÞ,
then N ¼M and F ¼ C. This shows that ðN;FÞ is maximal, and the previous

result finishes the proof. r

Corollary 4.4. Let H 1 G as above and let r : k½G�z kH ! R be a

representation such that rjkH is faithful. Let

N0 ¼ fr A G j bf A kH with rðra1Þ ¼ rð1af Þg

This is a normal subgroup of G, and the faithfulness assumption on rjkH yields a

group morphism F : N0 ! ðkHÞ� such that rðra1Þ ¼ rð1aFðrÞÞ for any r A N0.

Now put

N ¼ fr A N0 j Eh; k; l A H; h:r A N0 and Fðk:rÞðlhÞ ¼ Fððl�1hÞ:rÞðhÞFðk:rÞðlÞg

Then N a normal and H-stable subgroup of G, ðN;FÞ A EðrÞ and the Hopf image

of r is isomorphic with k½G=N�zF kH.

Proof. It is a direct verification to check that N is a normal and H-stable

subgroup of G, that ðN;FÞ A QDðH 1 GÞ and hence that ðN;FÞ A EðrÞ. For

ðM;CÞ A EðrÞ, we have MHN. Hence if ðN;FÞa ðM;CÞ, then N ¼M and

F ¼ C. This shows that ðN;FÞ is maximal, and Proposition 4.1 finishes the

proof. r
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5. Examples

We illustrate the results of the previous section using the examples of Section

3. We assume that k has characteristic zero here.

5.1. Construction of the Representations. Let M;Nb 2. As in [6], we fix a

matrix Q ¼ ðQicÞ ¼A MMNðk�Þ with Q0c ¼ 1 ¼ Qi0 for any i, c (the indices are

taken modulo M, N, respectively). To Q we associate the matrix y ¼ ðyicÞ A
MMNðk�Þ defined by yic ¼ Qi�1; cQi; c�1

QicQi�1; c�1
. We have

YN�1
c¼0

yic ¼ 1 ¼
YM�1
j¼0

yjd ; 0a iaM � 1; 0a daN � 1

We denote by �0; . . . ; �N�1 the canonical basis of kN . We consider the Hopf

algebra k½GM;N �z kZM of Subsection 3.3 and we will be interested in the

representation

rQ : k½GM;N �z kZM ! EndðkNÞ

defined as follows: for 0a iaM � 1, we have

rQðgia1Þð�cÞ ¼ yic�c�1

and for f A kZM , we have

rQð1af Þ ¼ f ðhÞ id; where ZM ¼ hhi

The representation rQ is a constituent of the representation pQ in [6], to which

we will restrict here (note however that inner faithfulness of rQ implies inner

faithfulness of pQ).

It is clear that rQjkZM
is inner faithful, so we can use the statements of the

previous section.

Recall [6] that we say that p1; . . . ; pm A k� are root independent if for any

r1; . . . ; rm A Z:

pr1
1 � � � p

rm
m ¼ 1) r1 ¼ � � � ¼ rm ¼ 0

It is shown in [6] that if the elements Qic, 1a iaM � 1, 1a caN � 1 are root

independent, then the representation rQ is inner faithful. Our main aim is to show

that, at least in some situations, the root independence assumption can be

weakened, as follows.
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Theorem 5.1. Assume that M ¼ 2 and N is prime, or that M is prime and

N ¼ 2. If one the elements Qic is not a root of unity, then the representation rQ is

inner faithful.

5.2. Preliminaries and Notation. We now develop some preliminary ma-

terial. We retain the previous notation. For R ¼ ðRicÞ, 1a iaM � 1, 1a ca

N � 1, Ric A Z, put Sjc ¼ Rjc þ
PM�1

i¼1 Ric,

aðR; 0Þ ¼
YM�1
j¼1

YN�1
c¼1

y
Sj; c

j; c

 !

and for 1a daN � 1,

aðR; dÞ ¼
YM�1
j¼1

y
�Sj;�d
j;�d

 ! YM�1
j¼1

YN�1
c¼1; c0�d

y
Sj; c�d�Sj;�d
j; c

 !

The following result is a direct verification.

Lemma 5.2. For any 0a daN � 1, the map

að�; dÞ : ZðM�1ÞðN�1Þ ! k�

R 7! aðR; dÞ

is a group morphism.

There is moreover an action of ZM ¼ hhi on ZðM�1ÞðN�1Þ given on the

standard basis �ic, 1a iaM � 1, 1a caN � 1, by h � �ic ¼ �i; cþ1 � �1; c (the

indices are taken modulo M, N). This is in fact the same action as the one

in Lemma 3.3, but written additively. For 0a laM � 1 and R ¼ ðRicÞ A
ZðM�1ÞðN�1Þ, we note l � R ¼ hl � R.

Definition 5.3. For 0a laM � 1, the groups E l
Q HZðM�1ÞðN�1Þ and

I lQ H ðk�ÞN�1 are the respective kernel and image of the group morphism

ZðM�1ÞðN�1Þ ! ðk�ÞN�1

R 7! ðaðl � R; 0Þaðl � R; dÞ�1Þ1adaN�1

and we put EQ ¼7M�1
l¼0 E l

Q.
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Lemma 5.4. (1) If the elements Qic, 1a iaM � 1, 1a caN � 1 are root

independent, then E 0
Q ¼ ð0Þ ¼ EQ.

(2) If one of the elements Qic is not a root of unity, then the group I 0Q is

infinite.

Proof. (1) One checks first that if the elements Qic, 1a iaM � 1,

1a caN � 1 are root independent, then so are the elements yic, 1a iaM � 1,

1a caN � 1, and then the verification that E0
Q ¼ ð0Þ is immediate using the

root independence of those elements.

(2) Using the standard basis of the free abelian group ZðM�1ÞðN�1Þ, we see

that I 0Q is the subgroup of ðk�ÞN�1 generated by the elements

ðyicy�10c y
�1
i; cþdy0; cþdÞ1adaN�1; 1a iaM � 1; 1a caN � 1

Denote by my the group of roots of unity in k� and assume that I 0Q is finite.

Then for any 1a iaM � 1 and 1a c; daN � 1 we have

yicy
�1
0c y

�1
i; cþdy0; cþd A my

and in particular for any 1a c; daN � 1, we have

YN�1
i¼1

yicy
�1
0c y

�1
i; cþdy0; cþd ¼ y�N0; c y

N
0; cþd A my ) y0; cþdy

�1
0; c A my

Then we have for any 1a caN � 1

YN�1
d¼1

y0; cþdy
�1
0; c ¼ y�N0; c A my ) y0; c A my

From this we deduce easily that yic A my for any i, c, and then that Qic A my for

any i, c as well. r

5.3. We come back to the study of the representation rQ. According to

Proposition 4.1 and Corollary 4.3, we need to study the group

NQ ¼ fr A GM;N j Ey A ZM ; bf A ðkZM Þ� with rQðy � ra1Þ ¼ f ðhÞ1g

¼ fr A GM;N j Ey A ZM ; bl A k � with rQðy � ra1Þ ¼ l1g

Lemma 5.5. The subgroup NQ is the subgroup of T ¼ haic; 1a iaM � 1;

1a caN � 1i formed by elements

a ¼
YM�1
i¼1

YN�1
c¼1

aRic

ic
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for which we have R ¼ ðRicÞ A EQ. Moreover the Hopf image of rQ is isomorphic to

k½T=U zZN �zF kZM

for some quotient datum ðU ;FÞ, where U HNQ.

Proof. One sees easily that an element in NQ belongs to T , and we have

rQðaica1Þð�dÞ ¼ yi; cþdy
�1
0; cþd�d . From this we see that for a as above, we have

rQðaa1Þð�dÞ ¼ aðR; dÞ�d , and hence NQ is indeed the announced subgroup. By

Proposition 4.1, the Hopf image of rQ is isomorphic to k½GM;N=U �zF kZM for

some subgroup U HNQ, with GM;N=U ¼ T=U zZN by the first assertion. r

From this, choosing Q such that EQ ¼ ð0Þ, we see that T is indeed free

abelian on the elements aic, 1a iaM � 1, 1a caN � 1 (Lemma 3.3). In

general we also see that the groups EQ and NQ are isomorphic, and that

ZðM�1ÞðN�1Þ=EQ FT=NQ.

From this, we first recover Theorem 4.6 from [6] in the case of cyclic groups.

Corollary 5.6. If EQ ¼ ð0Þ, then the representation rQ is inner faithful.

Proof. If EQ is trivial, so is NQ, and the result follows from Lemma 5.5.

r

Corollary 5.7. If I 0Q is infinite, then the Hopf image of the representation

rQ is infinite-dimensional.

Proof. Again the Hopf image of rQ is isomorphic to k½T=U zZN �zF kZM

for some subgroup U HNQ. We have I 0Q FZðM�1ÞðN�1Þ=E0
Q, so ½ZðM�1ÞðN�1Þ : EQ�

¼ ½T : NQ� is infinite, as well as ½T : U �, and we are done. r

We can also prove Theorem 5.1 now.

Proof of Theorem 5.1. The group I 0Q is infinite by Lemma 5.4, hence by

the previous corollary the Hopf image of rQ, isomorphic to k½GM;N=U �zF kZM ,

is infinite-dimensional. By Theorem 3.4, either U is trivial, and we are done,

either k½GM;N=U �zF kZM is cocommutative. In this case the ZM -action on

GM;N=U is trivial, and since it permutes cyclically the generators, the quotient

group GM;N=U is finite cyclic, and k½GM;N=U �zF kZM is finite-dimensional, a

contradiction. r
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5.4. Example at Small Indices. We end the paper with some precise results

at small indices M and N. We begin by the case M ¼ 2 ¼ N. We have then

Q ¼ 1 1

1 q

� �
and y ¼ q�1 q

q q�1

� �
for some q A k �, and we simply denote rQ by rq. We retain the notation of the

beginning of Section 3.

Proposition 5.8. Let Aq denote the Hopf image of rq : k½G2;2�z kZ2 !
Endðk2ÞFM2ðkÞ, and let m ¼ oðqÞ.

(1) If m ¼y, then Aq F k½G2;2�z kZ2 .

(2) If m B 2N, then Aq FAðmÞ.
(3) If m A 2N and m B 4N, then Aq FA m

2

� �
.

(4) If m A 4N, then Aq FB m
4

� �
.

In particular, we have dimðAqÞ ¼ 4oðq4Þ.

Proof. (1) follows from Corollary 5.6. We assume now that q is a root of

unity. We have, in matrix form

rqða11a1Þ ¼ q�2 0

0 q2

� �
Thus the subgroup NQ in Lemma 5.5 is formed by the elements

fak
11; k A Z;m j 4kg.
(2) Assume that m B 2N. Then NQ ¼ ham

11i. For F the trivial map, we easily

see that ðNQ;FÞ A EðrqÞ, and hence we have Aq FAðmÞ by Corollary 4.3.

(3) Assume that m A 2N and m B 4N. Then NQ ¼ ham=2
11 i. For F the trivial

map, we see that ðNQ;FÞ A EðrqÞ, and hence we have Aq FA m
2

� �
by Corollary

4.3.

(4) Assume that m A 4N. Then NQ ¼ ham=4
11 i. Consider, as in the beginning

of Section 3, Fm=4 : hða11Þm=4iFZ! cZ2Z2 ¼ hwi, the unique group morphism

with Fmðam=4
11 Þ ¼ w (recall that g0g1 ¼ a11). It is immediate to check that

ðNQ;Fm=4Þ A EðrqÞ, and hence we have Aq FB m
4

� �
by Corollary 4.3.

The last assertion is immediate. r

As a last example, we consider the case M ¼ 3, N ¼ 2. We then have

Q ¼
1 1

1 p

1 q

0B@
1CA and y ¼

q�1 q

p p�1

qp�1 pq�1

0B@
1CA
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If p or q is not a root of unity, we know from Theorem 5.1 that rQ is inner

faithful. In the root of unity case, we have the following particular result.

Proposition 5.9. Assume that p and q are roots of unity, and let m ¼ oðp2Þ
and n ¼ oðq2Þ. Denote by AQ the Hopf image of rQ.

(1) If GCDðm; nÞ ¼ 1 ¼ GCDðm; 3Þ ¼ GCDðn; 3Þ, then AQ is isomorphic to a

smash coproduct

k½ðZmn � ZmnÞzZ2�z kZ3

(2) If p2 ¼ q2 and GCDðm; 3Þ ¼ 1, then AQ is isomorphic to a smash

coproduct

k½ðZm � ZmÞzZ2�z kZ3

(3) If p2 ¼ q2 and 3jm, then AQ is isomorphic to a smash coproduct

k½ðZm � Zm=3ÞzZ2�z kZ3

Proof. In matrix form, we have

rqða11a1Þ ¼ p�2 0

0 q2

� �
; rqða21a1Þ ¼ p2 0

0 q4

� �

Hence the group NQ consists of elements aa
11a

b
21 for which we have

ðp2Þ�aþb ¼ ðq2Þaþ2b; ðp2Þ2aþb ¼ ðq2Þa�b

(1) Our assumptions imply that NQ consists of elements aa
11a

b
21 with

a; b A mnZ. Taking F : NQ ! kZ3 the trivial map, we see that ðNQ;FÞ A EðrÞ,
and we conclude by Corollary 4.3.

(2) Our assumptions imply that NQ consists of elements aa
11a

b
21 with

a; b A mZ, and we conclude as in the previous case.

(3) Here our assumption imply that NQ consists of elements aa
11a

b
21 with

a; b A �2k m
3
þml; k

m

3

� �
; k; l A Z

� �
¼ Zðm; 0Þ þ Z �2m

3
;
m

3

� �
¼ EQ HZ2

We then have T=NQ FZ2=EQ FZm � Zm=3 (by the standard theory of finitely

generated abelian groups), and we conclude as in the previous cases. r

309Quotients and Hopf images of a smash coproduct



References

[ 1 ] N. Andruskiewitsch, Notes on extensions of Hopf algebras, Canad. J. Math. 48 (1996), no. 1,

3–42.

[ 2 ] N. Andruskiewitsch and J. Devoto, Extensions of Hopf algebras, St. Petersburg Math. J. 7,

no. 1, (1996), 17–52.

[ 3 ] T. Banica, Quantum permutations, Hadamard matrices, and the search for matrix models,

Banach Center Publ. 98 (2012), 11–42.

[ 4 ] T. Banica and J. Bichon, Quantum groups acting on 4 points, J. Reine Angew. Math. 626

(2009), 74–114.

[ 5 ] T. Banica and J. Bichon, Hopf images and inner faithful representations, Glasg. Math. J. 52

(2010), no. 3, 677–703.

[ 6 ] T. Banica and J. Bichon, Random walk questions for linear quantum groups, Int. Math. Res.

Not. IMRN 2015, no. 24, 13406–13436.

[ 7 ] T. Banica and R. Nicoara, Quantum groups and Hadamard matrices, Panamer. Math. J. 17

(2007), no. 1, 1–24.

[ 8 ] J. Bichon, Algebraic quantum permutation groups, Asian-Eur. J. Math. 1 (2008), no. 1, 1–13.
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