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PARTIALLY ORDERED RINGS 11

By

Yoshimi KitTaAMURA and Yoshio TANAKA

Abstract. This paper is a continuation of [6]. We study partially
ordered rings in terms of non-negative semi-cones and convex ideals,
considering order-preserving homomorphisms, residue class rings,
and certain product rings, etc.

1. Introduction

Partially ordered rings have been considered by several authors. Especially,
the systematic foundation of lattice-ordered rings has been given by Birkhoff and
Pierce [2]. Recently, an interesting result of a lattice-ordered skew field has been
obtained in [10].

In this paper, we assume that all rings are non-zero commutative rings with
identity. The symbol R means such a ring with the identity element denoted by 1,
and / means an ideal of R (similar, for R’ and I’), unless otherwise stated.

We shall consider commutative, partially ordered rings. As is well-known, for
a ring R, there is a bijection between the set of partial orders of R which make
it into a partially ordered ring and the set of those S of R having properties:
SN—8={0}; S+ S =S (S is closed under addition); SS = S (S is closed under
multiplication). In the previous paper [6], we call a subset S of R satisfying these
three conditions a non-negative semi-cone as a generalization of ““positive cones”
of integral domains, as well as, “non-negative cones” of rings. For a partially
ordered ring R, in order that the residue class ring R/I be a partially ordered ring
with the canonical order induced from R, I is precisely a convex ideal, as is well-
known ([4]). The concepts of “non-negative semi-cones” and the “‘convex ideals”
play important roles in the theory of partially ordered rings (see [1], [2], [3] and
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[4], etc.). In view of these concepts, we shall study partially ordered rings,
considering order-preserving homomorphisms, idempotents, residue class rings,
and certain product rings, etc. Also, we give characterizations for typical subsets
of the product rings to be non-negative semi-cones, and a characterization for
non-negative cones of a certain product ring of a field.

2. Non-negative Semi-cones and Convex Ideals

Let 4, B be subsets of R. Define —4 = {—x|xe A}, A+ B={x+ y|xe A,
veB}, AB={xy|xeA,yeB}, aB=Ba={a}B for aeR, and A\{0} =
{x|x€Ad,x+#0}. Also, for a subset C of R’, define 4 x C={(x,y)|x€A,
yeC}.

First, let us recall some basic definitions used in this paper. For other
terminologies, see [4], [6], etc.

DerFINITION 2.1. A subset S of a ring R is a non-negative semi-cone ([6])
(resp. non-negative cone ([5])) of R if S satisfies the following (i), (ii), and (iii)
(resp. (i), (ii), (iii), and (iv)):

(i) SN(-S)={0}.

(i) S+Scs.

(iii) SS < S.

(iv) R=SU(-=S).

A subset S of R is a positive cone ([5], [9]) of R if S satisfies the above (ii) and
(iii), and SU (—S) = R\{0}. For a positive cone S, SU {0} is a non-negative cone.

We recall that (R, <) is a partially ordered ring (resp. ordered ring) if < is a
partial order (resp. total order) on R such that ¢ < b implies a + x < b + x for
all x, and ¢ < b and 0 < x implies ax < bx. Also, (R, <) is an ordered integral
domain if it is an ordered ring which is an integral domain.

We note that for a non-negative semi-cone S of a ring R, we induce a
canonical partial order <g in R by defining x <g y by y —x€ S, and (R, <g) is a
partially ordered ring. Conversely, for a partially ordered ring (R, <), we induce
a canonical non-negative semi-cone S = {x|0 < x} of R with < = <g. These are
also valid for the relationship between ‘‘non-negative cones (resp. positive cones)”
and “ordered rings (resp. ordered integral domains)”. (A non-negative semi-cone
S of a ring R is the set RT of all positive elements* of a po-ring (or partly
ordered ring) (R, <g) in [2]).

*For a partially ordered ring (R, <), elements x of R satisfying x > 0 are called positive in [2], [10],
and other references.
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DErFINITION 2.2. Let R, R’ be rings. As is well-known, R x R’ is a ring
under component-wise addition and multiplication (i.e., for (x, y), (z,w) € R x R/,
(x,y)+ (z,w) = (x+z,y+w), and (x,y) - (z,w) = (xz, yw)). Let us call such a
ring R x R’ the direct product ring.

Norations. (1) The brief terminology “semi-cone” (resp. “cone”) is used
as an abbreviation of “non-negative semi-cone” (resp. ‘‘non-negative cone”).

(2) The symbol (R, <) (or simply, R) means a partially ordered ring, and
S means the canonical semi-cone of R, and similar to the symbols (R’, <’) (or
simply, R’) and S’, unless otherwise stated.

(3) The symbol R x R’ means the direct product ring, unless otherwise
stated.

An element e of a ring R is called an idempotent if > = e. For an idempotent
e of R, f=1—¢ is also an idempotent of R with ¢f =0, e+ f = 1.

The symbol Z denotes the ring of integers, and Z* denotes the set of non-
negative integers.

REMARK 2.3. Let S be a semi-cone of a ring R. Let a,be SUZ". Then
aS+bS (= 8) is obviously a semi-cone of R (here, aS+bS =S for a=1 or
b =1). However, we have the following (1) and (2).

(1) S+ S’ need not be a semi-cone of R for a semi-cone S’ of R, and
similar to Se for an idempotent ¢ of R (indeed, let R=7Z x Z. Let S =
((Z*\{0}) x Z)U{(0,0)}, S'=(Z x (Z*\{0}))U{(0,0)}. Then S and S’ are
semi-cones of R. But, S+ S =R, and for an idempotent e = (0,1), Se=
{0} x Z. Then neither S+ S’ nor Se is a semi-cone of R).

(2) SS need not be a semi-cone of R (indeed, let R =Z, and S = 27" + 3Z".
Then S is a semi-cone of R, but SS is not a semi-cone, because 4,9 € SS, but
44+9=13¢S9).

PrROPOSITION 2.4, Let S be a semi-cone of a ring R, and let e and f=1—¢
be idempotents of R with e, f # 0. Then the following hold.

(1) Se is a semi-cone of Re iff SeN (—Se) ={0}. In particular, for Se = S,
Se is a semi-cone of Re.

(2) If S1 and S, are semi-cones of Re and Rf respectively, then Sy + S, is a
semi-cone of R.

(3) S =Se+ Sf is a semi-cone of R iff so are Se of Re and Sf of Rf.
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Proor. (1) is obvious. (2) is routinely shown, noting (Re)(Rf) = ReNRf =
{0}. For (3), the if part holds by (2). For the only if part, noting S’e = Se = §’,
Se is a semi-cone of Re by (1). Similarly, Sf is a semi-cone of Rf. ]

Let 7: R— R’ be a map with R and R’ rings. We recall that s is an
epimorphism if it is a ring homomorphism with 4(R) = R’. For semi-cones S of
R and S’ of R', h is called order-preserving if h(S) = S’.

Let R be a ring. An ideal I of R is proper if I # R. For a proper ideal / of
R, R/I denotes the residue class ring consisting of elements [a] =1+ a (a € R).

DerINITION 2.5 ([4]). For a proper ideal I of (R,<), I is convex in R
if whenever 0 < x <y and yel, then xel. We induce a canonical ordering
relation on R/I as follows: For a € R, define [q] > 0 if [¢] = [x] for some x > 0
in R (we use the same symbol < in R/I without confusion).

We recall that a proper ideal I of (R, <) is convex iff (R/I, <) is a partially
ordered ring; equivalently, S’ = {[x]|[x] >0} is a semi-cone of R/I ([4], etc.).

We assume that R/I has the semi-cone S’, unless otherwise stated.

Let ¢ : (R, <) — (R/I, <) be the natural map defined by ¢(x) = [x] for x € R.
Then ¢ is an order-preserving, epimorphism with ¢(S) = S".

The convexity of an ideal I of a partially ordered ring R is usually defined
under / being proper in R. But, for convex ideals / and J of R, I + J need not
be proper in R (see Example 2.11(1)). Moreover, for some partially ordered ring
R x R, ideals I = 0 x R and I; = R x 0 are convex (see Remark 3.20 later), but
Iy + Ij is not proper in R x R, and also for an idempotent e = (0,1), Iye is not
proper in Re.

In view of the above, let us introduce the following terminology.

DEerINITION 2.6.  Let J be an ideal of a ring R (including J = R), and S be a
semi-cone of R. Let us say that J is S-convex in R if whenever xe S, y —xe S
and yeJ imply xeJ. When J # R, we shall call such an S-convex ideal J
convex for S. For (R, <), obviously J is S-convex in R iff J is convex (for S),
or J =R

PROPOSITION 2.7. Let S be a semi-cone of a ring R, and let e and f=1—e¢
be idempotents of R with e, f # 0. Then the following hold.

(1) Let Sec S. If I is S-convex in R, then Ie is Se-convex in Re.

(2) Let Sec S and Sf < S. I is S-convex iff Ie is Se-convex and If is
Sf'-convex.
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Proor. For (1), Se is a semi-cone of Re by Proposition 2.4(1). To see le
is Se-convex in Re, let xe,y —xee Se (xeS), and yele. Since Se < S and
lec I, xe,y—xeeS, and yel. Since I is S-convex in R, xe € I, hence xe € le.
For (2), the only if part holds by (1). For the if part, let x,y —x€ S, and yeI.
Then xe, ye — xe € Se, and ye € le. Since Ie is Se-convex in Re, xe € le. Similarly,
If is Sf-convex, so xf € If. Hence x = xe + xf € le+ If = I. Thus [ is S-convex.

U

RemMARK 2.8. In (1) of Proposition 2.7, “Se = §” is essential. Also, it is
impossible to replace “Se-convex” by ‘“convex for Se” even if I is convex for S
in R. We have similar mattes in (2) there. For these, see Example 2.20 later.

The following is a classical result, but let us give a proof for the readers.

THEOREM 2.9. Let 0: (R, <) — (R',<') be an epimorphism with o(S) = S,
and let J = Ker(c). Then there exists a bijection ® between the class of convex
ideals I of R containing J and the class of convex ideals I' of R', defining by
®(I) = o(I) and ® '(I') = ' (I'). Especially, J is a convex ideal of R.

PrOOF. Let I be a convex ideal of R containing J. Evidently, I = ¢~!(a(1)),
hence a(I) # R’. To see o(I) is convex in R’, let 0 <'o(x) <'o(y) and yel.
Since 0 <'o(y — x) and S’ = a(S), there exists s € S such that o(y — x) = a(s).
Thus y —x —s=a for some aeJ. Since 0 <'o(x), there exists similarly ze S
such that o(x) = o(f). Thus x —t = b for some beJ. Hence s+t=y— (a+b).
Since J < I, this implies that s+ e /. Since I is convex in R, s,1€I. Hence
a(x) = o(t) e a(I). Then o(I) is convex in R’'. Conversely, let I’ be a convex ideal
of R'. Bvidently, o(¢~!(I')) =1' and ¢ !(1') o J. To see that I = o~ '(I')(# R)
is convex in R containing J, let 0 <x <y and yel. Since o(S) =S, 0 <’
a(x) <'a(y). Since a(y) eI’ and I’ is convex in R, o(x) € I’, then x € I. Thus
I is convex in R. |

For convex ideals / and J of R, I +J need not even be S-convex (see
Example 2.20(4) later). While, for R being an ordered ring, the following holds.

LemMA 2.10. Let (R, <) be an ordered ring. If I; (i =1,2,...,n) are convex
ideals of R, then I =1, + 1+ ---+ 1, is convex in R.

Proor. It suffices to show that I’ =1 + I, is convex. To see I’ is proper,
suppose not. Then 1 =a+ b for some ael; and b e l,. We can assume a < b.
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Then 0< 1 <2bel,. Thus, 1 el, by the convexity of I, so I, =R, a con-
tradiction. Thus, I’ is proper. Similarly, the convexity of I’ is shown. Hence,
I’ is convex. O

ExampLE 2.11. (1) For a partially ordered ring R = (Z, <gs) with S =nZ"
(n>1),if I and J are convex ideals of R, then I+ J is S-convex (by means of
[6, Proposition 3.4]). But, it is impossible to replace “S-convex” by “convex”
(indeed, let 7 = 2Z and J = 3Z, and let S = 6Z" in Z. Then I and J are convex
ideals of a partially ordered ring (Z, <s), but I +J = Z).

(2) For an ordered integral domain D, let D[x] be the polynomial ring over
D, and for f=ay+ajx+---+a,x" in D[x], 0 <, f means the first nonzero
coefficient a; is positive in D. Then R = (D]x], <;) is an ordered integral domain
(see [6], etc.). Thus, for any convex ideals I and J of R, I 4+ J is convex in R by
Lemma 2.10.

COROLLARY 2.12. Let 6: (R, <) — (R, <') be an epimorphism with o(S) =
S’, and I be an ideal of R, and let J = Ker(a). Then I+ J is a convex ideal of R
iff so is o(I). For (R, <) being an ordered ring, if I is convex, then so is o(I).

Proof. This is shown in view of Theorem 2.9, noting that o({ +J) = a({)
with I +J = J, and o7 !(a(I)) =1 +J. The latter part holds by Lemma 2.10.
O

REMARK 2.13. In the first half of Corollary 2.12, for I being convex in R,
o(I) need not be S’-convex in R’; see Example 2.20(6) later. Also, the converse
of the latter part need not hold (indeed, let R = (Z[x], <,). Then every ideal
A = (x") (generated by x" (n>0)) is convex in R (by [6, Remark 3.8]). Let
I=(x>+x), I'=(x), J = (x?). Then I’ and J are convex, but  is not convex
in R (actually, 0 <, x> <, x> + x eI, but x> ¢ I). Let ¢ : R — R/J be the natural
map. Then ¢(I) (= ¢(I')) is convex in R/J, but I is not convex).

COROLLARY 2.14. Let J be a convex ideal of R. For the natural map
¢p: (R, <)— (R/J,<) and an ideal I of R, I +J is a convex ideal of R iff so is
I'=op(I) of R/J. For (R, <) being an ordered ring, if I is convex, then so is ¢(I).

Let us show that the (direct product) ring R x R’ is never an ordered
ring. While, there exists a certain product ring which is an ordered ring; see
[5, Example 1] (or Proposition 3.21 later).
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THEOREM 2.15. (1) Every ordered ring R has the largest convex ideal.

(2) The following (a) and (b) hold. Moreover, (a) and (b) are equivalent.

(a) For any rings R, R', the ring R x R’ can not be an ordered ring (i.e.,
R X R’ has no cones).

(b) Any ordered ring R has no idempotents except e =0 or e = 1.

Proor. For (1), let {I;| 21 € A} be the collection of all convex ideals in R.
Then the sum L =), , I; is the largest convex ideal of R. Indeed, to see L
is proper, suppose not. Then, for some I, (i=1,2,...,n), le >/’ I}, so R=
Sy I, But, Y, I, is proper by Lemma 2.10, a contradiction. Hence L is
proper. The convexity of L is obvious by Lemma 2.10.

For (2), to see (a), suppose (R x R’, <) is an ordered ring. We will show that
I=Rx0andJ=0x R are convex in R x R’, which implies I +J # R x R’ by
Lemma 2.10, but 7 +J = R x R’, a contradiction. To see [ is convex, let (0,0)
<(x,y) <(r,0)el. For f=(0,1)eRxR', (0,0)<f?>=f. Then (0,0)f <
(x,»)f < (r,0)f. Thus (0,0) < (0, ) <(0,0), so y=0. Then (x,y) = (x,0) e [.
Hence I is convex. Similarly, J is convex, using e = (1,0). Next, to see
(a) = (b), suppose some ordered ring R has an idempotent e with e # 0 and
e# 1. Then 0: R— Re x R(1 —e) defined by o(r) = (re,r(l —e¢)) is a (ring)
isomorphism (actually, if y = (re,r'(1 — e)), then for x =re +r'(1 —e), a(x) = y.
Also, if a(r) = (0,0), then re=r(1 —e) =0, thus r=re+r(l —e) =0). Then,
Re x R(1 —e) is an ordered ring by the cone ¢(S), a contradiction to (a). For
(b) = (a), e=(1,0) is an idempotent in R X R’, but e # (0,0) and e # (1,1).
Hence R x R’ is not an ordered ring. O

LEMMA 2.16. For S-convex ideas I, I' of aring R, S+I1=S+1"iff I=1".

Proor. This is shown by the proof of [6, Lemma 4.14], replacing “convex”’
by “S-convex” (actually, R =S+ I’ implies I’ = R). O

In [6], we obtain the following result by means of the above lemma: Let
o : R — R’ be an epimorphism, and I (resp. /') be a convex ideal of R (resp. R’).
Assume that (*) o() is convex in R’ or R is an ordered ring. If a(S+1) =
S'+1I'" and o(S)=S’, then o(I) =1I'. The convexity of I (or I') is essential
([6, Remark 4.16]), but let us consider the question whether the assumption (*)
is essential. Namely,

QuesTION 2.17. Let 0: R — R’ be an epimorphism, and I (resp. I') be a
convex ideal of R (resp. R'). If 6(S+ 1) =S’ + I’ and o(S) = §’, then o(I) = I"?



188 Yoshimi KiTaMURA and Yoshio TANAKA

For this question, we have the following by Corollary 2.12 and Lemma 2.16.

PROPOSITION 2.18. Let o: R — R’ be an epimorphism with o(S) =S Let
J = Ker(o). For convex ideals I of R and I' of R', o(I) =1' iff I + J is convex in
Rand o(S+1)=S"+1T'.

The following holds by Proposition 2.18.

COROLLARY 2.19. Let J be a convex ideal of R. Let ¢ : (R, <) — (R/J, <)
be the natural map. For convex ideals I of R and I' of R' =R/J, o(I)=1"iff
I+J is convex in R and o(S+1)=S"+1".

The convexity of I+ J in Proposition 2.18 and Corollary 2.19 is essential,
which shows that Question 2.17 is negative. Indeed, we have the following.

ExaMpPLE 2.20. Let R=Z x Z. Then ¢=(0,1) and f = (1,0) are idem-
potents of R. Let 1 <neZ, and let I = {0} x 2nZ, I' = {0} x nZ, J = Z x {0}.
For a semi-cone 4 =nZ" of Z, let S={(k,m)e R|0 <,m <, k}. Then S is a
semi-cone of R, and the following (1)~(6) hold.

(1) Se, Sf, and Se+ Sf =S x S are semi-cones of the ring R, but Se & S,
Sf<S, and S & Se+ Sf.

(2) I, I', J are convex ideals of (R, <s), and Jf = Rf.

(3) I (=Ie) is not Se-convex, and I’ (=1I'e) is convex in (Re, <s.).

(4) I+J =7 x2nZ is not S-convex in (R, <g) (indeed, (0,0) <g (n,n) <s
(2n,2n) e (I +J), but (n,n) ¢ (I+J)).

(5) (S+1I)e=Se+1', but le#1'

(6) Let ¢: (R, <s) — (R/J,<s/) be the natural map with S’ = ¢(S).

(a) For the convex ideal I, ¢(I) is not S’-convex in R/J.

(b) There holds that ¢(S+1)=S"+ ('), but o(I) # ¢(I').

Indeed, note that ¥ : (R/J,<s) — (Re, <s.) by ¥([r]) =re is an isomor-
phism with (S’) = Se. Then (a) follows from (3), and (b) holds by (5), since
Wop)(S+1)=op)(S)+ (hop)I'), but (Yop)()# (og)l).

3. Products of Partially Ordered Rings

Let R and R’ be partially ordered rings, but assume S # {0} and S’ # {0} in
this section. Let Sy = S\{0} and S; = S"\{0}.
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In what follows, let us also use the symbol “0” instead of the set “{0}”.
We will consider the following typical subsets of the product set R x R’.

T=SxS"

To=Sx0 (: (SO X O) U {(Ov O)})>

Ty = (So x S5) U{(0,0)},

T, = (Sy x S")U{(0,0)}, and

T3 = (So x RN U{(0,0)} (= (So x R") U Tp).

Ty=0x 58 (= (0x 5)U{(0,0)}),
T/ =T,

T, = (S x S§)U{(0,0)}, and

Tj = (R x SpU{(0,0)}(= (R x S})UT).

REMARK 3.1. Obviously, the following (a), (b), and (c) hold, here we define
the lexicographic sets L and L' in (c). Also, we have the diagram below.

(a) ToCTz, T1CT2CT3, T2CT; and TOICTzl, TIIZTICT2/CT3{,
T,cT.

(b) Ty =ToUTy, Tj=TiUT}; and T=ToUT UT, = ToUT) = T,UT] =
T,UT;.

() L=T:UT=T3UT;=T;UT{; and L' = TUT] =T,UT; =ToyUTj.

L L'

T, T T3

T, T

T
To T,

ReMARK 3.2. (1) Obviously, the sets T, T;, T/ (i=0,1,2,3), L, and L’
satisfy (i) and (ii) in Definition 2.1 (with respect to these sets). But, neither S x R’
nor R x S’ satisfies (i) (cf. T3 or Tj).

(2) None of sets ToUT;, T3UT;, L, and L' are semi-cones of R x R’
(indeed, let se Sy and s’ e€S;. Then (s,0)+ (0,s") =(s,s") ¢ ToUTy; (s,—1)-
(0,5") =(0,—s") ¢ T3UT{UL; and (s,0)-(—1,5") = (—s,0) ¢ L').
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(3) Let € ={Ty,T1,T>,T3,T;,T,,T5,T}. Let F be the collection of finite
unions of % (containing the sets in (6) but except unions which are never semi-
cones of R x R'. Then # =&, thatis, # = {Ty, T1,T», T3, T, Ty, T4, T'}. Indeed,
let (< 2) be the collection of unions of at most two sets in %, and let €(> 2)
be the collection of unions of more than two sets in 4. Using Remark 3.1, we
show that (< 2) =%U%", where ¢* = {TyUT;, T3UT;, L, L'}, and 4(>2) c
%(< 2). But, any set in " is never a semi-cone of R x R' in view of (2). Thus
ZF =%. (Actually, when R and R’ are integral domains, all sets in % are semi-
cones; see Corollary 3.4(1) below).

We give characterizations for the sets in the collection % to be semi-cones of
the ring R x R’.

THEOREM 3.3. Let R and R’ be partially ordered rings. Then the following
P y
hold.
(1) T, Ty, and T; are semi-cones of R x R'.
2) T, is a semi-cone of R x R iff (i) SoSo = So and S}S}, = S}, otherwise (ii
0°0 0
S()S() =0 and SéSé =0.
(3) T, is a semi-cone of R x R" iff SoSy = Sy or S}S; = 0.
(4) T, is a semi-cone of R x R" iff SoSo =0 or S|S; < S|.
(5) Ts is a semi-cone of Rx R’ iff SoSo < So.
(6) T5 is a semi-cone of R x R' iff S{S; < S

Proor. (1) is obvious. It is routine to see the if parts in (2)~(6). So, we will
see their “only if” parts. For (2), assume SySy # 0. Then S;S; = S;. Indeed, take
some a,b € Sy with ab # 0. Suppose S;S; & S;. Take ¢,d € S with ¢d = 0. Thus
(a,c) - (b,d) = (ab,0) ¢ Ty, a contradiction. Hence S;S; < S;. Similarly, S;Sj # 0
implies SpSp = Sp. Therefore, the following are equivalent: SypSy < So; SoSo # 0;
S;Sy = Si; and ;S| #0. Hence (i) or (ii) holds. For (3) and (4), assume
S§Sg # 0. Take c,d e S with cd #0. Suppose SpSo ¢ So. Take a,be Sy with
ab=0. Thus (a,c) - (b,d) = (0,cd) ¢ T>, a contradiction. Thus SypSy = Sp. (4) is
similarly shown. For (5) and (6), (x,1)-(y,1) = (xp,1) € T3 implies SySp = So.
(6) is similarly shown. m

COROLLARY 3.4. Let R and R’ be partially ordered rings. Then the following
hold.

(1) T, Ty, and T; are semi-cones of R x R'. For R and R’ being integral
domains, the other sets in F are also semi-cones of R x R’
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(2) Let 1 €S and 1 €S'. Then the following hold.

(@) T is a semi-cone of R x R' iff SoSo = Sy and S|S; < S;.
(b) Ty is a semi-cone of Rx R' iff SoSo = So.

(¢) T, is a semi-cone of R x R’ iff S{S; < Sj.

REMARK 3.5. For a partially ordered ring R, (a) SySy = Sy need not hold,
and (b) SpSp = Sy need not imply that R is an integral domain. Indeed, for (a),
take a semi-cone S” =T of R” = R x R’, and for (b), take a semi-cone S” = T
of R” with R and R’ integral domains, in view of Corollary 3.4(1). Then the
partially ordered ring (R”, <s) is a desired one.

For convenience, henceforth let us assume that all sets in # are semi-cones
of the ring R x R" (cf. Corollary 3.4), unless otherwise stated.

Let Pr: Rx R’" — R and Pr : R x R" — R’ be the projections (i.e., Pr(x, y)
=x, Pr(x,y) = y). These projections are obviously epimorphisms.

REMARK 3.6. Pr or Pr need not be order-preserving, and also need not
preserve the convexity of an ideal. Indeed, let us see these for Py (similar for Pg/).
Evidently, Pr(T3) = R, hence Py is not order-preserving. Let R=R'=Z, and
l<neZ. Let S'"=nZ", and S" = {(k,m) e Z x Z|0 <5 k <g» m}. Then, S is
a semi-cone, and I” = 2nZ x 0 is a convex ideal, but Pg(I") = 2nZ is not convex
in (Z,<g) (cf. Example 2.20).

The following is well-known or routinely shown.

LemMA 3.7. For a subset A of the ring Rx R', A is an ideal of R x R iff
A = Pr(A) x Pri(A), Pr(A) is an ideal of R, and so is Pr/(A) of R

PropoSITION 3.8. For T =S x S’, and an ideal J of R x R, J is T-convex iff
Pr(J) is S-convex in R and Pg/(J) is S’-convex in R’

Proor. For the if part, to see J is T-convex, let (0,0) <7 (x,y) <r
(a,b)eJ. Then 0 <gx <gsae Pgr(J), so x e Pg(J). Similarly, y € Pg/(J). Then
(x, y) € J by Lemma 3.7. Hence J is T-convex. For the only if part, to see Pr(J)
is S-convex in R, let 0 <gx <gae Pgr(J). Then (0,0) <7 (x,0) <7 (4,0), and
(a,0) e J by Lemma 3.7. Since J is T-convex, (x,0) eJ, so x € Pg(J). Hence
Pr(J) is S-convex. Similarly, Pg/(J) is S’-convex in R’. O
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The following holds by Proposition 3.8 and Lemma 2.16, related to Question
2.17.

PROPOSITION 3.9. Let J be a T-convex ideal of Rx R’, and let J' be an
S-convex ideal of R. Then Pr(T +J)=S+J' iff Pr(J)=J".

ReEmArRk 3.10. Let us give analogues to Propositions 3.8 and 3.9 for
the sets in . For an ideal I of Rx R’, let us consider conditions (p;)
PR(I)NSy # &, and (p2) Prr(I)NS; # . We note that (p;) (resp. (p2)) holds
if R (resp. R’) is an ordered ring. Then the following hold for ideals 7 and J of
R xR

(1) (a) Pr(Z) is S-convex in R if I is A-convex for A =1T; (i =0,2,3), T/
(i=1,2,3), but assume (p,) for 7/ (i=1,2,3). Also, Pg/(I) is S’-convex in R
if I is A-convex for A=1; (i=1,2,3), T/ (i=0,2,3), but assume (p;) for
T; (i=1,2,3). Conversely,

(b) J is A-convex in R x R’ for A =1T,,T5, or T, if Pg(J) is S-convex and
Pri(J) is S’-convex. Also, J is Ty-convex if Pg(J) is S-convex. Similarly, J is
T;-convex if Pg/(J)) is S’-convex.

(2) Proposition 3.8 remains true for 7', 7>, and T, but for T (resp. T>; T}),
assume (p;) and (pz) (resp. (p1); (p2)). Also, J is Ty-convex iff Pg(J) is
S-convex. Similarly, J is Tj-convex iff Py(J) is S’-convex.

(3) Proposition 3.9 remains true for 7; (i =0,2,3), 7|, T,, but assume (p,)
for T, T;. Also, for Pgs, the similar result holds for T, Ty, T», T} (i =0,2,3),
but assume (p;) for T, T>. While, Proposition 3.9 need not hold for 4 = T
or Tj.

Indeed, (1) is shown as in the proof of Proposition 3.8. (For example, for (a),
to see Pgr(I) is S-convex in R for 75 = (R x Sj)U{(0,0)}, let 0 <sx <gae
Pr(I), and take pe Pr(I)NS; by (p2). Then (0,0) <7/ (x,p) <7y (a,2p) €
Pr(I) x PR(I) =1. Thus, (x,p)el, so xe Pr(I)). (2) and (3) hold in view of
(1). For the last part of (3), let J' be a convex ideal and S>1 in R. Then
J=J"x0 is convex for A, and Pgr(J)=J'. But, Pr(4+J)#S+J'. To
see this, suppose Pr(4+J)=S+J'. Then, for A=T}, J'=S+J 31, so
J' =R, a contradiction. For 4 =T;, R=S+J', so R=J' by Lemma 2.16, a
contradiction).

ExaMpPLE 3.11. In Proposition 3.9, the convexity of the ideals J and J' is
essential for J and J’ being proper. Indeed, let R = (Z[x], <;). Let I = (x), and
A = (2x). Then I is convex in R. But, 4 is not convex in R (indeed, 0 <, x <»
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2x€ A, but x¢ A). Also, (*) S+1=S+4 holds. For R"=R, I* =1 x 1 and
A* = A x A, the following hold.

(1) I* is convex in Rx R’ for T, but 4 is not convex in R. While,
Pr(T+1*)=S+ A by (*), but Pr(I*) # A.

(2) A* is not convex in Rx R’ for T, but I is convex in R. While,
Pr(T+ A4*) =S +1 by (*), but Pg(4*) # 1.

Let us recall the following ring on the product set P = R x R of ring R
with itself.

DrrFiniTION 3.12. Let R be a ring. For (a,b) € P, let P(a,b) = (P,+,*) be
the commutative ring defined by the following addition (i) and multiplication (ii):

For (x,y),(z,w) e P, let

() (6, 0) + (2 w) = (x+ 2,y +w).

(i) (x,y)* (z,w) = (xz + ayw, xw + yz + byw).

Then e = (1,0) is the identity element, and for u = (0,1), uxu = (a,b), and
(x,¥) = (x,0)xe+ (y,0)xu in P(a,b).

The ring P(0,0) is an algebra over R which has a basis {e,u} with u*u =
(0,0), and it is called the frivial extension of R by itself (see [8], etc.). This ring
gives useful examples related to ring structures and order structures, or exten-
sions. We investigate order structures of the ring P(0,0) in terms of semi-cones or
cones. (We consider P(a,b) in [7] in terms of ring structures).

NotaTioN. For a ring R, the symbol R X R denotes the ring P(0,0).

RemaArk 3.13. (1) Let R[x] be the polynomial ring over a ring R, and
I = (x?). Then R X R is (ring) isomorphic to R[x]/I by a map (a,b) — [a + bx].
(2) For a subset 4 of R R, let A* ={(x,—y)|(x,y) € A}. Then A4 is a
semi-cone of R X R iff so is A%, and also for a semi-cone 4 of RX R, [ is a
convex ideal of R R for A iff so is I* for A*, by a (ring) isomorphism

(X, y) = (X, _y)'

Let us consider the sets 7, 7;, 7} (i,j=0,1,2,3) in R R, putting R' = R
and S’ =S.

RemMARK 3.14. (1) ToUT| is not a semi-cone of R X R by Remark 3.2(2).
Also, T is not a semi-cone of R X R, and any union of 7, T;, Tj’ (i,7j=0,1,2,3)
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containing 7} is not a semi-cone of R X R (indeed, for s e Sy, (—1,s)* (0,5) =
(0,—s) ¢ T5. The latter part holds by (0,—s) ¢ TUT;UT)).

(2) Let € ={To,T1,T>, T3, T3, T, T3, T}. Let Zp be the collection of finite
unions of % (containing the sets in %), but except unions which are never semi-
cones of R R. Then, p = {Ty,T,T>,15, 13, T,,T,L} by (1), reviewing the
poof of Remark 3.2(3). (Actually, when R is an integral domain, all sets in Zp
are semi-cones of R X R; see Corollary 3.17(1) later).

For a semi-cone S of R, let us consider the following conditions around
condition (*) SpSp = Sy on R.

(c1) For x,z€ Sy, if xz€ Sy (ie., xz # 0), then xSy = Sy or zSy = Sp.

(c2) For x,z€ Sy, if xz¢ Sy (i.e. xz=0), then xSy =0 and zS; = 0.

We can replace “xSy = Sy or zS) = Sy by “xSp+zSy #0” in (¢1). Also,
we can replace “xSp =0 and zS) =0 by “xSp+2zSy=0 (or xS+z5=0)"

in (c).

RemMARK 3.15. (1) None of (*) (i.e., SoSo = Sy), (¢1), and (¢z) hold for
some partially ordered ring R.

(2) Obviously, (*) implies (¢;) and (c,). But, (¢;) and (¢;) need not imply (*)
by the following (3) and (4).

(3) (c2) implies (c;). But, the converse does not hold for some ordered ring R.

(4) For Sp>1, (¢2) implies (*). But, (¢2) need not imply (*) without Sp > 1.

Indeed, (1) is shown by the proof of Remark 3.5(a), but assume SS # 0 in 7.
For (3), assume (cz) holds. If xz € Sy for x,z € Sy, then xSy = Sy and zS) = Sp.
To see this, suppose xSy ¢ Sy, then xy =0 for some y e Sy. Thus xSy =0 by
(c2), hence xz =0, a contradiction. Thus xSy = Sy (similarly, zSy = Sp). Then
(c1) holds. For the latter part, let (R, <) be the ordered ring in [5, Example 1].
Then we may consider the ordered ring (R,<) as the ring RF =K X K =
{(a,b)|a,be K} with K an ordered field, where R’ has a cone S'=1L
(cf. Corollary 3.17(1) below). Then u = (0,1) e S; and u*u = (0,0). But, e =
(1,0) € S;, then uS] # {(0,0)}. Hence (c2) does not hold (also, S;S) & S;). For
x=(a,b), z=(c,d) e S} with x*z+#(0,0). Then a#0 or ¢#0, so a>0
or ¢>0 in K. Hence xS, = S) or zS, = S;. Then (c;) holds. Hence, R’ is a
desired one (for S’). For (4), suppose SoSo & So, then xz =0 for some x,z € S.
But, x = x1 € xSy = 0 by (c2), so x =0, a contradiction. Hence, SySy = Sy. For
the latter part in (4), let R"=RXR, A=T; (=0xS), and 49=0x Sp.
Then AA4 = {(0,0)}. Thus, (¢;) holds, but 494y & Ag. Then R’ is a desired one
(for A).



Partially ordered rings 11 195

We give characterizations for the sets in the collection Zp to be semi-cones
of R R, in comparison with Theorem 3.3 for R x R'.

THEOREM 3.16. Let R be a partially ordered ring. Then the following hold.
(1) T, To, and T are semi-cones of R R.

(2) Ty is a semi-cone of R R iff (¢2) holds.

(3) T, is a semi-cone of R R iff (¢2) holds.

(4) Ty is a semi-cone of R R iff (¢;) holds.

(5) Ts is a semi-cone of R R iff SpSo < So.

(6) T3UT; (= L) is a semi-cone of RX R iff SoSy < So.

Proor. For (1), the result is obviously shown.

For (2), to see the if part, let (x,y),(z,w)e Spx Sy. By (c2) with
Remark 3.15(3), for xz =0, xw+ yz=0, and for xz #0, xw+ yze Sy. Thus
(x,y) * (z,w) = (xz,xw+ yz) € T;. For the only if part, suppose (c;) does
not hold. Then we assume that for some x,z,weS;, xz=0, but xw #0.
Let y €Sy, then xw+ yz # 0. Thus (x,y),(z,w) € Sy x Sy, but (x,y)* (z,w) =
(xz,xw+ yz) = (0,xw+ yz) ¢ T}, a contradiction. Then (c¢;) holds.

For (3), the result is shown as in the proof of (2).

For (4), to see the if part, let (x, y), (z,w) € S x Sp. If x2 =10, (x,») * (z,w) =
(0,xw+ yz) e T;, so assume xz # 0. Then xw+ yze Sy by (ci), hence (x,y)*
(z,w) = (xz,xw+ yz) € T,. For the only if part, suppose that (c¢;) doesn’t hold.
Then for some x,z, y,w e Sy, xz # 0, xw=0, and yz =0. Thus, (x,y) * (z,w) =
(xz,xw+ yz) = (xz,0) ¢ Ty, a contradiction. Then (¢;) holds.

For (5) and (6), their if parts are routine. For their only if parts, suppose
S0So & So, and take x, y € Sy with xy = 0. Then (x,—1),(,0) € T3, but (x,—1)x
(»,0) = (0,—y) ¢ T3U Ty, a contradiction. Hence, SySy = So. O

The following holds by Theorem 3.16 and Remark 3.15.

COROLLARY 3.17. Let R be a partially ordered ring. Then the following hold.

(1) T, Ty, and T; are semi-cones of R < R. For R being an integral domain,
the other sets in Fp are also semi-cones of R X R.

(2) For S=1, T\ (or T,) is a semi-cone of R R iff SoSo < So.

In view of the previous corollary, for an ordered integral domain R, the
lexicographic set L is a cone of R X R, though L is not even a semi-cone of the
ring R x R (by Remark 3.2(2)).
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It is well-known (or routinely shown) that for a field K, any non-zero, proper
ideal of K X K (resp. K x K) is 0 x K (resp. 0 x K or K x 0). We note that
Iy=0x R is an ideal in RX R, but /[; = R x 0 is not an ideal (/) and I; are
ideals in R x R). Let us consider the convexity of Iy in R X R (or Iy, Ij in R x R).

Let pr: RX R (or Rx R) — R be the projection defined by pr(x,y) = x.
Then pr is an epimorphism.

LemMa 3.18. Let A be a semi-cone of R>< R (or R X R). Then Iy =0 x R is
a convex ideal for A iff pr(A)N —pr(4) =0.

Proor. Let <=<,. For the if part, let (0,0) < (x,y) < (0,b) € I. Then
(0,0) < (—x,b—y), hence xe pr(4)N—pr(4), so x=0. Thus, (x,y)=(0,y) €
Iy. For the only if part, let xe pr(4)N—pr(4). Then for some y,y'€R,
(0,0) < (x,y) and (0,0) < (—x,)'). Then, (0,0) < (x,y) <(x,»)+ (—x,)) =
(0,y+ y") e Iy. Since I is convex in R R (or R X R), (x,y) € Iy, hence x = 0.

O

Obviously, Iy = 0 x R is convex in R X R for the semi-cones in Fp. Also, the
following holds (hence, for R being a field, Iy is the only non-zero, convex ideal).

ProposITION 3.19.  For an integral domain R, Iy is convex for any semi-cone
A of RX R

Proor. To see pr(A)N—pr(4d) =0, let xe pr(4)N—pr(A). Then x=
pr(x, y) = —pr(z,w) for some (x,y),(z,w) € A. Then x = —z, and hence (x, y)+
(z,w)=(x+z,y+w)=(0,y+w)e A. Thus (x,y)* 0,y +w)=(0,x(y+w)) e
A, and similarly, (0,z(y+w)) e A. Hence (0,x(y+w))=—(0,z(y +w)) e AN
—A. Thus x(y+w) =0. Since R is an integral domain, x=0 or y+w =0. If
y+w=0, then y=—-w, so (x,y)=(—z,—w)=—(z,w) e AN —A, thus x=0.
Then pr(A4)N—pr(A) =0, which implies that I is convex in R X R by Lemma
3.18. O

REMARK 3.20. For the ring R X R, Iy = 0 x R is obviously a convex ideal of
R x R for the semi-cones in %, but remove T3 even if R is an integral domain.
Also, for an integral domain R, Iy is convex for a semi-cone 4 of R x R if
A > (a,0) for some a #0 (indeed, let x e pr(A)N—pr(A4), and (a,0) € A with
a #0. Then (ax,0),(—ax,0) € A. Thus (ax,0) e AN —A, hence x =0. Thus, I
is convex for 4 by Lemma 3.18). Also, for I; = R x 0, similarly the analogous
results hold.
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ProposiTION 3.21. (1) For an ordered (resp. partially ordered) integral do-
main R, L and L* = {(x,—y)|(x,y) € L} are cones (resp. semi-cones) of R X R.

(2) For an ordered field K and a cone A of KX K, the following are
equivalent.

(@) A>Ty (=S x0).

(b) pr(4d) > S.

() pr(4) =S

(d) A=L or A=L"

Proor. (1) holds in view of Corollary 3.17(1) and Remark 3.13(2).

For (2), obviously, the implication (d) = (c) = (b) holds. (a) = (d) holds by
putting a = (a,0), b = (b,0), and e = (1,0), u = (0,1) in the proof of Example 1
in [5]. Indeed, A4 is a cone, so u€ A or ue —A. In case of ue A4, let (a,b) € L.
If a=0, then be S, so (b,0) e A by (a), thus (a,b) = (0,b) = (b,0) xuec 4. If
a#0,then ae S, and (a,0) € A by (a), thus (a,b) = (a,0) * (1,b/2a)* € A. Hence,
Lc A, s0 A=L. In case of ue —A4 (i.e., —u=(0,—1) € A), let (a,—b) e L*.
Then, similarly (a,—b) € A. Thus, A = L*. For (b) = (a), let s € S. Then (s,s') € 4
for some s’ € K by (b). Thus, for s #0, (5,0) = (s,5') * (1, —s'/2s)* € A. Hence,
Ty < A. O

COROLLARY 3.22. Let K be an ordered field such that (*) for each ac€ S,
there exists b e K with a = b* (in particular, K is the field of real numbers, or the
field of algebraic real numbers over the rational number field). Then for a cone A
of KK, A=L or A=L"

Proor. To see A>Ty, let (a,0) e Ty. Then for some be K, (a,0)=
(b2,0) = (h,0)* € A. Then 4 = L or L* by Proposition 3.21. The parenthetic part
implies (*), as is well-known. O

For a field K, we will give a characterization for cones of K X K. The
following lemma is obvious.

LemMA 3.23. For a subring R' and cone of A of R, ANR' is a cone
of R

THEOREM 3.24. For a field K, let & be the collection of all cones of K, and
let & be the collection of all cones of K < K. Then & = {L(S),L(S)"|S e ¥},
where L(S) = (So x K)U (0 x S).
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PrOOF. For a cone S of K, L(S) and L(S)" are cones of K X K in view of
Proposition 3.21(1). Conversely, let 4 be a cone of K X K, and let K' = K X 0.
Since K’ is a subring of K X K, S=ANK’ is a cone of K' by Lemma 3.23.
But, we can consider S as a cone in K by a (ring) isomorphism K' — K,
(x,0) — x. Since 4 >8x0, 4=L(S) or A=L(S)" by Proposition 3.21(2).
Thus, & = {L(S),L(S)"|S e ¥}. O
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