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ON THE CAUCHY PROBLEM FOR A CLASS OF
HYPERBOLIC OPERATORS WHOSE COEFFICIENTS
DEPEND ONLY ON THE TIME VARIABLE

By

Seiichiro WAKABAYASHI

Abstract. In this paper we investigate the Cauchy problem for
hyperbolic operators with double characteristics and hyperbolic
operators of third order whose coefficients depend only on the time
variable. And we give sufficient conditions for C* well-posedness.

1. Introduction

We say that a (partial differential) operator is an operator with time-
dependent coefficients if the coefficients of the operator depend only on the time
variable. In [16] we studied the Cauchy problem for hyperbolic operators of
second order with time-dependent coefficients. And we gave sufficient conditions
for the Cauchy problem to be C* well-posed, assuming that the coefficients of
the principal parts are real analytic functions of the time variable. These con-
ditions are also necessary conditions if the space dimension is less than 3, or if the
coefficients of the principal parts of the operators are semi-algebraic functions
(e.g., polynomials) of the time variable (see, also, [17]).

In this paper we shall deal with hyperbolic operators with time-dependent
coefficients and double characteristics and give sufficient conditions for the
Cauchy problem to be C* well-posed, imposing some conditions on the sub-
principal symbols. Our conditions are generalizations of the conditions given
in [16]. If one considers the Cauchy problem for hyperbolic operators of m-th
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order, then one must impose some conditions not only on the subprincipal
symbols but on the lower order symbols of order k£ (1 < k < m —2), in general.
So one needs to define the symbols of order k (1 <k <m —2) corresponding
to the subprincipal symbols in order to describe the conditions for C* well-
posedness. To clarify the situation we consider hyperbolic operators of third
order with time-dependent coefficients in this paper. In doing so, we shall define
symbols of first order for operators of third order with time-dependent coef-
ficients, which are called the sub-sub-principal symbols. We should note that
Jackson [8] showed that the sub-sub-principal symbol can not be defined
invariantly under canonical transformations. We shall prove C* well-posedness
of the Cauchy problem for hyperbolic operators of third order with time-
dependent coefficients, imposing some conditions on the subprincipal symbols
and the sub-sub-principal symbols.

Let meN and P(t,7,&) ="+ 3" 30,2 a,()7"7E" be a polynomial
of r and & = (&),...,¢&,) of degree m whose coefficients a; ,(f) are C* functions
of 1€0,00). Here o= (a,...,%,) € (Zy)" is a multi-index, [of =377 % and
Er=¢n &, where Z, =NU{0} (={0,1,2,3,...}). We consider the Cauchy
problem

(CP) P(t,D;, Dy)u(t,x) = f(t,x) in [0,00) x R",
Dlu(t,x)|,_g=uj(x) inR" (0<j<m—1)
in the framework of the space of C* functions, where D, = —id/dt (= —id,),

D= (Dy,...,D,) =—i(d/0x1,...,0/0x,), f(t,x)e C*([0,0) x R") and wu;(x) €
C*R") (0<j<m-—1).

DeriNiTION 1.1, The Cauchy problem (CP) is said to be C* well-posed if
the following conditions (E) and (U) are satisfied:

(E) For any fe C”([0,0) xR") and uje C*(R") (0 <j<m—1) there
is ue C*([0,00) x R") satisfying (CP).

(U) If s>0, ueC*([0,0) xR"), D/u(t,x)|,_o=0 (0<j<m—1) and
P(t,D;, Dy)u(t,x) vanishes for ¢<s, then u(f,x) also vanishes for
r<s.

We assume throughout the paper that

(A-1) aj,(t) (1 <j<m, |o|=j) are real analytic on [0, ), ie., the coef-
ficients of the principal part of P(z,D,, D.) are real analytic on
[0, c0).
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From (A-1) there are a complex neighborhood Q of [0, ) (in C) and ¢ > 0
such that [—0,00) = Q and a;,(f) (1 <j<m, |a| = j) are regarded as analytic
functions defined in Q. Put

p(t,1,8) ="+ ), (= Pult,7,9)),
j=1
a; (1,8) = Z‘Clj,u(l)f“,

P(t,1,8) = Y > a0t (0<k<m-—1).

Jj=m—k |u|=k+j—m
We also assume that
(A-2) p(t,7,&) is hyperbolic with respect to 9 = (1,0,...,0) e R"*! for te
[0, ), Le.,

p(t,t—1i,&) #0 for any (¢,7,¢) € [—0,0) x R x R".

Let T'(p(t,-,-),9) be the connected component of the set {(z,&) e R""1\{0};
p(t,7,&) # 0} which contains 9, and define the generalized flows K{fa ) for

p(t,7,¢) by

K= o ={(t(s),x(s)) € [0,00) x R"; +5>0 and {(t(s),x(s))} is

(0,x°)
a Lipschitz continuous curve in [0, 00) x R" satistying
(d/ds)(1(s), x(s)) € T(p(t,-,-),9)" (ae. s) and (£(0),x(0)) = (t0,x")},
where  (f0,x°) €[0,0) x R" and T*={(t,x)eR"™;tr+x-&>0 for any

(1,€) eT}. To describe conditions on the lower order terms we define the
polynomials #;(t,7,&) (= hi(t,7,¢&; p)) of (1,€) by
m

Ip(t, T — iy, &) Z Yhy_i(t,7,8) for (t,7,) € [0,00) x R x R” and y e R.
=0

Since |p(t,7 — iy, &)|? =12 ((r = 4(x, )% +72), we have

I (1,8) = > H L(LEN (1 <k <m),

I<ji<p<-<jr<ml=1
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where p(t,7,&) = [/ (r — %(1,€)). Let #(¢) be a set-valued function, whose

values are discrete subsets of [0,00), defined for ¢e S"! satisfying the
following:

(i) 2(8) <[0,00) for (e s ={EeR"|¢ =1}
(i) For any T > 0 there is Ny € Z, such that

#{R(E)N0,T]} < Np for EesS" .

Here #A denotes the number of the elements of a set 4. First we consider the
case where the characteristic roots are at most double, ie.,

(D) If (t,7,&)e[0,00) x Rx S and p(t,7,&) = 0, p(t,7,&) =0, then
a2p(t,7,8) #0.

We assume that the following condition (D-L) is satisfied, which is corre-
sponding to a so-called Levi condition:

(D-L) For any T > 0 there is C > 0 satisfying

i in |t —s|,1 s|sub o(P)(t
m‘“{sﬁ‘}}&ﬂ sl, }lsu a(P)(1,7,¢)|
< C/’Zm—l(ly‘hi)lﬂ for (z,7,£) €[0,T] x R x sl

where minge »¢) |t — 5| = 1 if #(&) = .

Here sub a(P)(t,7,¢) denotes the subprincipal symbol of P(z,D,, D,), i.e.,

sub a(P)(t,7,&) = Pp_1(t,7,8) + (i/2)0,0.p(1, 7, &).

Then we have the following

THEOREM 1.2.  We assume that the conditions (A-1), (A-2), (D) and (D-L) are
satisfied. Then the Cauchy problem (CP) is C* well-posed. Moreover, if (ty,x°)
€(0,00) xR" and ue C*([0,0) x R") satisfies (CP), uj(x) =0 near {xeR";
(0,x) € K(;O,xﬂ)} O0<j<m-—1) and f=0 near K ) (in [0,00) x R"), then
(to,x°) ¢ supp u.

REMARK. The condition (D-L) is necessary for C* well-posedness if
p(t,7,8) = p(r,&) (see [12]). Moreover, (D-L) is the same condition as given
in [16] if m = 2.
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Next we consider the third order case, ie.,
(T) m=3.
We define the sub-sub-principal symbol sub? a(P)(t,1,&) of P(t,D;, Dy) by
(1.1) sub® o(P)(1,7,&) = Pi(1,7,&) + (1/6)0;0; p(1,7, &)
+(i/12)0; Pa(t,7,€) - 0,07 p(1, 7, &),
and assume that the following condition (T-L) is satisfied:

(T-L) For any T > 0 there is C > 0 satisfying

min{ min |t — s|, 1}|sub o(P)(1,7,8)| < Cha(t,7,6)"?,

A‘E;%(QV)

(1.2) min{ min | — 5|, 1}|sub2 a(P)(t,7,¢)]

seR(E)
< Chi(1,7,&)"* for (1,7,6) [0, T] x R x 8"

Now we can state our main result.

THEOREM 1.3.  We assume that the conditions (A-1), (A-2), (T) and (T-L) are
satisfied. Then the conclusion of Theorem 1.2 also holds.

RemARK. If p(t,7,&) = p(1,&), then the condition (T-L) is necessary for C*
well-posedness (see [12]).

We should note that Colombini-Orru [1], D’Ancona-Kinoshita [3], Colombini-
Taglialatela [2] and Ishida [7] investigated the Cauchy problem for higher-order
hyperbolic operators with time-dependent coefficients and gave sufficient con-
ditions for C* well-posedness. In their sufficient conditions they also imposed
restrictions on

(104 (1, O + 10,4k (1, ) /12(2, &) — 2 (2, £

This means that the principal parts of the operators must satisfy some conditions
in general. On the other hand, one believes that the Cauchy problem for hy-
perbolic operators with time-dependent coefficients is C* well-posed with suitable
choices of the lower order terms if, for example, the coefficients of the principal
parts are real analytic.
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The remainder of this paper is organized as follows. In §2 we shall give
preliminary lemmas. Theorem 1.2 will be proved in §3. Theorem 1.3 will be
proved in §4. In §5 some remarks and examples will be given.

2. Preliminaries

We begin with a simple lemma concerning polynomials with real analytic
coefficients.

LemMma 2.1.  Let f(t,{) be a polynomial of { = ((y,...,C4) whose coefficients
are real analytic functions of t in [0,00). Then, for any T >0 there is Ny € Z,
such that

Nt

N 1ok f (01 £ 0 for 1€[0,T),
k=0

#{te[0,T); f(t,{) =0} < Nr

if CeRY and f(1,0)#0 in t.

Proor. Write

[0 =" £
\

al<m
where meN and o= (a,...,00) € Z?. We put L=#{aecZ% o <m}, ie.,
L= ("), and
F(t,Z)= Y f1)Z,,
Jo| <m
where Z = (Z,),, -,, € R". Define

V={ZeRYF(t,Z)=0 in t}.

Then V is a subspace of RY. So there are re Z, and an L x L non-singular
matrix Q such that

V={Z0;Z'=0eR"},
where Z' = (Z,,...,Z,)eR" for Z=(Zy,...,Z;)eR*, and Z' =0 and VV = R"

if » =0. Then we can write

Fu2) = F1,2) = S f(0Z,
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where Z = ZQ. Note that
F(t,0Z") = AF(t,Z') for JeR,
7' #0eZ (=Z0)¢V & F(t,Z) 0 in t.

Let 7 > 0 and (ty, Z%) € [0, T] x S"~'. From the Weierstrass preparation theorem
it follows that there are dy >0, a neighborhood Uy of Z” in R", yy€Z,, a
real analytic function ¢(z, 7' ) defined in [ty — Jo, fo + o] X Uy and real analytic
functions g 4 (Z') defined in Uy (1 <k < ) such that co(¢,Z") # 0,

F(t,Z") = co(t, Z){(t — 10)" + ap 1 (Z")(t — 10)" ™" + -+ + a0, (Z')}
for (t,Z') € ([to — o, to + 0] N[0, T]) x Uy, and
ak(Z) =0 (1 <k <p),
where F(t,Z') = co(t,Z') if py=0. Then we have
OF(t,Z")],_,, = toco(t0, Z°) # 0.
So we may assume that

OF(1,Z')#0 for (t,Z') € ([to — o, to + 0] N[0, T]) x Uy,

modifying dy and Uj if necessary. Since [0, 7] x S™~! is compact and F (¢, z ) is
homogeneous of degree 1 in Z', there is Ny € Z, satisfying

(2.1) iw,"ﬁ(z,Z’)\ #0 for (t,Z') €[0,T] x (R"\{0}),
k=0

(2.2) #{te[0,T];F(t,Z") =0} < Ny for Z' e R"\{0}.

Put

Since f(t,{) = F(t,Z'(¢)), and Z'({) # 0 if f(£,{) £0 in ¢, (2.1) and (2.2) prove
the lemma. |
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Write
@) =1[=-4),
pe(t) = (1 +&(d/dr)) p(x),

m
Ip(t —iy)|* = Zyzjhm_j(r; p) for teR and yeR,
=0

where ;€ R (1 < j<m) and eeR. Then we have the following

LemMMmA 2.2. For t1eR, eeR and 1 < j <m we have

(%5 pe) = {3 (}T | ) }_lhm-j(r;p)-

Proor. Lemma 2.1 of Svensson [11] gives
(2.3) (m =)k —r)l/(mk!)
< k(%3 ) [hnie (7 P)
<k =1=-nk=0/((k=1DWKYH) O=<r<k<m),
where p)(t) = 0!p(z). In particular, we have
(24) (m = i+ 1)) < By (53 )1 (5:97)
<l/(rMr+ DY (0<r<m).
Therefore, it suffices to show that
(2.5) B (T; pe) = h—1(z; p)/3 for e R and ¢eR,

in order to prove the lemma. Indeed, (2.4) and (2.5) with p replaced by p!)
yield

h—r—1(t5 pe) = (M — 1)y 1 (15 pgr))/(m!(r + 1))
> (m — P)Whyer1 (73 p7) /Bl (r 4 1))

> (m =)y (7; p)/(3ml)
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(0 <r<m). Put g; = 7 — 4;. Since

—tlim Im{p(z —iy) - Pz + i} /y =3[ ot = hmr (@ ),
! j=lk#j

a simple calculation yields

(2.6) —1(T5 ) = — lyif{)l Im{(p(z — iy) + ep"V (z — iy))

x (pW(r +iy) + ep@(x +ip))} )y

2 &
I o |

I<j<k<l<m |\ l<pu<m,
u#j,k,l

where
I,ifk-,/ = 282{20_/2 + 20,3 + 20,2 + gjo + gjo; + oror}
+ 26{aj-20k + ajza] + a0} + 6to; + 007 + o107}
+ 0'_/20/3 + 0'_/»2012 + a,%alz.

Indeed, for example, we have

~ lim Im{p"(z — iy) p? (z + i)} /7
i

:—1yig)12lm{in(av—iy)- Z H(o,ﬁriy)}/y

j=1v#j 1<k<Ii<mpu#k,l

+ Z }(—akol + gjok + gj01) H aﬁ

- 2{ +
I<j<k<l<m 1<k<j<l<m 1<k<I<j<m n#j k1

+4 Z Hlai

1<k<I<mu#k,

=2 Z ((gjor + gjo;1 + oror) + 2(0_/2 + o} +a})) H aﬁ
I<j<k<l<m w#jk,l

Let 1 <j<k<!<m, and put
Ejk1=3(0] + 0} +0]) + (0; + 0 + o)’

(= 2{2(7j2 + 20,3 + 2012 + 0j0k + gjo1 + 001 }).
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If 5 s, =0, then g; = ox = 0; = 0. Therefore, we have
(0=)3If; , = ajza,% + ajzo',2 + ot} (=0) if B4, =0.
Now assume that Z;;; # 0. Then we have
27) Ity =Ejuife+ (07 (ok + 01) + 0f (07 + 01) + 07 (0 + 04)) [ Zser}
+Jj 1/ Bkt = Tk, 1/ k1
where
ik = {0} (ok + a1) + o} (0; + @1) + 07 (07 + 0%}
+ Ej,h/(ajza,% + ajzalz + 01%02).
A simple calculation yields
Sk =0t ox — 01)’ + 0f(0; — 01)’ + 0} (af — o)’
+ 20;‘(0;% +a7) + 202(@-2 +a?) + 2(7;‘(0]2 +a7) + 6012013012
> 20;(0'13 +a}) + 20,‘:(0].2 +a?) + 2<7?(<7j2 +a?) + 601»20'130'[2.
This yields
(28)  Ejkilojo; + 070} + ojo7)
= 40;-‘(013 +a7) + 40,@(0]-2 +af) + 40;‘(01.2 +a7) + 120}0,%0,2
+ 20]02012 + 207(7,%013 + 20]3016012 + 2qfak0,3 + 20_/30,%0/
+ 20]201301 + 20}0,% + 2‘7]'3‘713 +20}a;
< 40;‘(0,3 +0}) + 4(7,‘:((52 + 0} + 40’?(0}2 +a}) + 12q/~zo,%0'12
+ 0307 (0} + ap) + 6toi (] + ) + 77} (o] + oF)
+a}a} (0} +0}) + 0} (0} + 07) + 7} 5} (0} + 7
+0io}(0f +0}) + ajai (o] + ) + 0] 0} (0] + 0})

=3(20} (0} + 07) +20{(0} + 0}) + 20/ (5} + 0}) + 607 507 )

<3Jj k.1,
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since 20j0; < +ak,~--. Therefore, from (2.6) and (2.7) we have
hooi(Tp) =Y II o |(oidi +ajo} +aia)/3
1<j<k<i<m |\ 1<u<m,
Wtk
=l (7 0)/3,
which proves (2.5) and the lemma. O

Now we assume that (A-1) and (A-2) are satisfied, and define

pe(t,7,8) = (1 = &E1702) p(t, 7, &)

foreeR, (1,7,&) € [0,00) x R x R", changing the notation. We note that p,(¢,7,&)
is strictly hyperbolic with respect to 9 for e € R\{0} if p(¢,7,¢) has at most triple
characteristics (see [10]). Lemma 2.2 gives

)
hmfj(la va;Ps) = {3<]’i1 1)} hm,j(l,‘[, 6717)

for 1 <j<m, eeR, (1,7,£) €[0,0) x R x R". We note that one can directly
prove that

hi(t,7,& p.) = hi(t, 71,8 p) (0<j<2)

if m=3. Write

pe(t,7,8) = 1_’”[

]:

—_

LEMMA 2.3.  For each fixed ¢ € S"! and ¢ € R we can enumerate {;(t,&;¢)}
so that the A;(t,&;¢) are real analytic in t € [0, o). Moreover, for any v € L, there
are /) (= 4 (p)) =R and Ny (e) (= N,(gp)) = R\{0} for e e R\N" satisfy-
ing the following:

(i) AceN(e) if A>0 and &e N (o).

(i) 40 (A;0) =0,

(iii) w,(N5(e)) =0 for e e R\,

(

iv) For any T >0 there is N, € Z, such that
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#{te0,T);0;(4(t,&e) — M(t,&¢)) =0} < Ny,
if 1<j<k<mand 0;(4(t,&e)— (t,&¢) #0 in t,
#{te[0,T);0;4;(t,&¢) =0} < N7,
if 1<j<mand 0,2t ¢ e) #0 in t
for e R\N" and & e S" "\ AN (e).

Here u, denotes the Lebesgue measure in R".

ReMARK. (i) The 4;(¢,¢&;¢) in the lemma are not necessarily continuous in
(&,¢). (i) If the conditions (D) or (T) are satisfied, then p.(¢,7,&) is strictly
hyperbolic for & # 0, and the assertion of the first part of the lemma is obvious
for ¢ # 0.

Proor. First fix (&,¢) € S"~! x R. To simplify the notations we write p(t, 7)
= p:(t,7,&). For 1)€[0,00) o, denotes the convergent power series ring of
(t—1y). Since .o/, is a unique factorization domain, .o/ [7] is also a unique
factorization domain. Therefore, we can write

(2.9) p(t,7) = pi(t,7)" pa(t, 7)™ - po(t,7)",

where og,r; € N, the p;(t,7) (€ o,[7]) are irreducible in .o, [z], and p;(¢,7) and
pi(t,7) are mutually prime if j # k. Since the leading coefficient of p(z,7) is equal
to 1, we may assume that the leading coefficients of the p;(z,7) are also equal
to 1. Put

e )
=1

We denote by D(r) the discriminant of ¢(¢,7) = 0 in 7. Then we have D(¢) # 0.
Indeed, suppose that D(z) = 0. Then ¢(¢,7) and 0.¢(¢,7) are not mutually prime
as polynomials in .o [t] (see, e.g., Chap. 5 of [5] and §A.1 of [6]). This leads a
contradiction. When D(#y) # 0, ¢(¢,7) is strictly hyperbolic in 7 near ¢ = ¢y and,
therefore, we may assume that the 4;(¢,&;¢) are analytic in a complex neigh-
borhood of 7;. Next assume that D(#) = 0. Since the zeros of D(¢) are discrete,
the 4;(¢,&;¢) are analytic in a complex neighborhood of 7, except for fy. Fix
Jo so that 1 < jo < m. Analytic continuations of /4;(#,¢&;¢) around #) and Rie-
mann’s theorem on removable singularities show that there is » € N such that
Ajp(to + 2", &) is analytic in a complex neighborhood of z = 0. Hyperbolicity
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implies that 4; (to +z",&; ¢) is real if z" is real, and that one can take r =1, ie.,
A, (8, &5 €) 1s analytic in ¢ near f. Starting from ¢ = 0 and continuing analytically
along [0, cv), we can enumerate {/;(z,&;¢)} so that the 4;(z, & ¢) are real analytic.
This proves the first part of the assertions of the lemma. Next let us prove
the second part. Let ./ be the ring of the real analytic functions of ¢ defined
in [0,00). Note that .o/ is an integral domain and that .&/ is not a unique
factorization domain. We denote by X the quotient field of .oZ[,¢]. Then Z[t] is
a unique factorization domain and p.(z,7,&) € X[z]. Write

Tp&‘(ta T, f) = p;l (Za T, é)rl o 'Pf(lv T, é)raa

where a,r; €N, the p/(t,7,&) (€ Z[t]) are irreducible in X[c] and p/(¢,7,&) and
pk(t,7,&) are mutually prime if j# k. Here o and the r; are different from

those as appeared in (2.9), in general. Define ¢(,7,&8) = [[ pl(t,7,&), and let

D(1,&;¢) be the discriminant of ¢(z,7,&;¢) =0 in 7. We note that
{reCyq(t,71,&e) = 0} ={re G pu(1,7,8) = 0y U{0}.
Write
D(t,&;8) = do(1, &) /da (1, ),

where dy(t,&;¢) € /[, €] and di(1,&5¢) # 0 in A[E ¢, Le., di(1,E6) 20 in (¢,E,¢)
(k=0,1). We may assume that the di(z,&;¢) are homogeneous in &. Indeed,
assume that a; (&) (k =0, 1) are polynomials of & and ay(&)/a; (&) is homogeneous
in & Write a (&) = al(&) + (ax(&) —al(¢)) (k = 0,1), where a?(¢) is the principal
part of a;(&). Then we have, with some x € Z,

ap(&) /a1 (&) = 2 "ao(2€) /a1 (2€) — ag(&)/a} (&) (2 — o0)

for & with a)(&) # 0 and, therefore, ag(&)/ai(¢) = al(&)/a)(&). So we may as-
sume that the a; (&) are homogeneous in &. Put

No = {(&,¢) € R™\{0}) x Ry do(1,&¢)dli (1,&56) = 0 in 1 (€ [0, 00))}.
Then we have u,,,(Ap) =0, since
Hi2({(1,€,8) €0, 00) x (R™\{0}) x R do (1, & )d (1,E58) = 0) = 0.
Define
Ny = {e € R, ({€ € R"\{0}; (S, ¢) € Ap}) > 0.
Then it is obvious that g (A7) =0. For e R\./ we define

Ho(e) = {€ e R"\{0}; (&,¢) € A0}
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By definition we see that u,(4o(g)) =0 for ee R\./ and that dy(z,&;e) x
di(t,&e) £0in ¢, ie, D(t,&e) # 0 in ¢, for e e R\A/ and & e """\ A (e). Since
the dy(¢,&;¢) are homogeneous in &, A(¢) is a cone, ie., A& e Ap(e) if A >0 and
¢ e My(e). For fixed e e R\ and & e "1\ A (¢) the roots of ¢(t,7,&¢) =0 in
© are simple if t€ D, where D, = {t€[0,00);do(t,&5e)di(2,&;6) # 0} So,
enumerating {4, (¢ ,576)}, we can write

q(t,7,&6) = H(r — Ji(t,&¢e)) for te0,00), ee R\AY and &e S\ Ay(e),
j=1
where m = deg, ¢(t,7,&;¢) and the 4;(¢,&¢) are real analytic in ¢ € [0, 0) for
ee R\/ and ¢ e S" "\ Ay(e). We may assume that L;(t,&e) = 0. Write
Q(tv T, 57 8) = Tm +a ([a 57 S)Tn:Fl +eee aﬁlfl(ta éa S)Ta

where a;(t,¢;¢) e Z. Note that the a;(z,&;¢) are real analytic in 7€ [0, 0) for
ee R\ and ¢ e S" "\ Ap(e). Let e e R\ and & € S" '\ Ap(e). Then we have

0cq(1, 7,85 8) |y 10y - Ordi(1,E58) + 0uq(2,7, &5 8) |y ) = O

for 1 < j<m. So, for te D¢, we have 0.q(t,7,¢¢)|,_; )y # 0 and

(1, &)
at)“j(ta éa 8) = _atq(t5 T, é’ 8) |r:l_,‘(t,é;£)/afq(t’ 2 é’ 8) |T:)1/(ts535)

for 1 < j<m. Since A;(t,&¢) =0, we have
[To:4(t.&2) =o0.
=1

Noting that TTj_; < e (4(tE8) = Ai(t,&8) = (1" V2D(1,&), we can
write the other fundamental symmetric expressions as follows;

fj [T o)

J=l k)

_ (_1)Ih71+rfl(}'fl71)/2
X Z H{()"k(t7 é; 6) - ;“j([a éa 8))6;6]0, T, 67 8)|r:/lk(t,cf;{:)}/D(t7 5;8)

=l k#j

= Erhfl(ta é, {,‘)/D(l, év 8)7

S0t & e) = Ei(1,E:6)/D(1,;8),
j=1
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where the Ei(t,¢;¢) are polynomials of {a;(#,&;6)} < o and {0a(1,E:8)} < e
Put

Bltv,&e) =" — Ei(1,&e)D(t, &) 2!
+ E(t,&e)D(t,&e) " 2+ (1) B (1,E6)D(1,E6) '

m
( H T_ [/L'] [ éa ))

Jj=1
Let us repeat the above argument with 7p, replaced by p. We write

pln&e) =p' (1 0,&e)" 57 (10, & o),

where o',r/ €N, the p/(t,7,&¢) (€ Z[t]) are irreducible in Z[z] and p/(t,7,&;¢)

and pk(t,7,¢&e) are mutually prime if j # k. Put

q(t,7,&¢) = Hptrfe

and let D(t,&;¢) be the discriminant of §(t,7, &; ¢) =0 in 7. Then we can write
D(1,&e) = do(1,&0) [y (1, 0),

where c;’k(t,f;s) € /(¢ ¢ and c?k(t,é;s) #0 in /[ ¢ (k=0,1). Put

Ny = N U{(&,e) € (R"\{0}) x Rydo(1,&;6)dn (1,&6) = 0 in 1}
Then we have, similarly, g, (A7) = 0. Define

A7 = {e e Ry, ({E € R"\{03}; (¢,¢) € A7 }) > 0}
Then we have (A7) =0. For e R\ we define
Ni(e) = {€ e R"\{0}; (&,¢) € S}

By definition we have

wy(N1(e)) =0 for e e R\ A,

do(t,&;6)d (1,E6) 20 in t for ee R\/ and & e S\ (e).

We may assume that the gk(l, &; &) are homogeneous in &. So .#](e) is a cone.
For e e R\./ and ¢ e S""\.A7(e) the roots of G(¢,7,&e) =0 in t are simple
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if 1€10,00) and do(1,&;€)d (1,&; ) # 0. Therefore, the multiplicities of the roots
0:2j(t,&8) of p(t,7,&6) =0 in © (1 < j<m) are constant for ¢e R\AY, e
S\ A1(e) and 1€ 0,00) with do(t,&;e)di(t,&;€) # 0. Since do(1,&;e)dy (1,E;¢) €
o/[&,¢], it follows from Lemma 2.1 that for any 7 > O there is N7 | € Z; such
that

#{te[0,T);0,(4(t,&e) — Ak(t, & e)) =0}

(< #{te]0, T];czo(t, &; 8)(21([, &e)=0}) < Nr,
if e R\, E€ SN\ Ni(e), | <j<k<mand 0,(4(t,&¢e) — A(t,&¢)) #0 in
t. This proves the second part of the assertions of the lemma in the case where

v = 1. Repeating the above arguments we can prove the lemma for v=2,3,...,
inductively. ]

LemMmA 2.4. Let T > 0, T be a cone (with its vertex at 0) in R"\{0}, and let
a(t, &) be a function defined for (1,&) € [0,T] x T satisfying the following:

(i) a(t,&) is continuously differentiable in t€[0,T] and positively homoge-

neous of degree 1 in ¢

(i) #{te[0,T];0a(t,&) =0} <N if (€T and 0,a(t,&) #0 in t.

(iii) |a(z,&)| < Col¢| for t€0,T) and & eT.
Here NeZ, and Cy>0. Then there is a positive constant C(N,Cy), which
depends only on N and Cy, such that

T
L 2ia(1,€)|/1¢] di < C(N, Co),

T
JO 2ua(t, &)|/(la(r, )] +1) dr < C(N, Co)(log( + 1)

for EeT.

Proor. Fix £eI. We may assume that d,a(¢,&) #0 in ¢. Noting that
#{te[0,T);a(t,&) =0} < N + 1, we write

#{te[0,T];a(t,&)0a(t,&) =0} = {t1,t2,. .., tn() },

where N(&)eZ, and 0 <ty <th <--- <ty <T. It is obvious that N(¢) <
2N + 1. In each sub-interval [¢;,_1,4] (1 < j < N(&)+1) we have “a(t,&) >0 or
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a(t,£) <07 and “0ia(t,&) =0 or dsa(t,&) <07, where o =0 and tyey = T.
Then we have

|| 1wt 21161 de = lato £/12) = alty1. 18D < 260

Moreover, we have

7

Jt/ |6ta(t,é)|/(|a(t,f)|+1)dt£J [0ra(t, E/|E))| dt <2Cy if |&] < 1.

lj-1 tj-1

If |¢] > 1, then

jt"' 6uat, &)1/ (lalt, &) + 1) dr

-1

= [log(la(t;, &/IEN| + [€17) = log(la(t—1,&/IEN| + 1€ 7)]
<log(Cp+ 1) +log|é|.

Therefore, we have

T
JO 10,a(t, )]/ 1] di < 2Co(2N + 1),

T 2Co(2N + 1) if [¢] <1,
J, 1ate a1+ 1 {<2N+ D)(log(Co+ 1) +log¢) if 18] = 1.
which proves the lemma. |
Put

P (t,7,8) = 0lp(t,7,¢) (= (1 —ele|0h)dlp(t, 7, ¢))
(1 <j<m) and write

m—j

PV (67,8 = ml/(m =) [[ (e = 2 (1.&0) (1< j<m—1).

=1

?V‘

Here we enumerate so that the i,((j)(hf;s) are real analytic in € [0, c0). Recall
that

m

PPt =i, > = 9 byt 7,& pY))
0

L

=~
i

for 1[0, 0), (r,&) e R"™, ¢e R and y e R. Then it follows from Lemma 2.1 of
[11] that
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(2.10) (m — 1)k — ) () < i (£, 7, & po) [ mic (2,7, & )
< (k—1— k- (k- 1))

for 0 <r <k <m (see, also, (2.3)). We put

pi(t,t,&¢) = H (t—2(t,&e)) for I <{1,2,...,m},

je{l,2,..,mN\I
pj(t7faé; 8) = p{j}(tvfafgg):
pj,k(tv‘[;é;g) :P{j,k}([af,fQS) (]?ék)» Tty

p(t.7.0) = (ml/(m — ) [[(e = 47 (1.:0)).

1]

Note that

(2.11) hn(tT,Ep) = > pitT.&e)
I1<={1,2,..,m},
#I=j

Lemma 2.5. LetreN, ;e R(1<j<r)and areC (0 <k <r—1), and put
p(t)=a" ' +ait P+ +a If

,
|p(7)] gAZ H |t — | for any t€R,

J=1 1<k<rk+#j

then there are b; (1 < j<r) such that |b)| <A (1<j<r) and

(2.12) p(T)er:bj I G@-w.

=1 I<k<rk#j

ProOF. Write

r ro

[Te—w)=][-»"

k=1 j=1

where 7o e N, m; eN, A; # Ay (j#j') and {t1,...,7.} ={41,...,4,}. Then we
have m; +---+m,, =r and

ro

ro
@ <ALl = 2"""> m T 1e— Al
i=1

=1 k#)
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Therefore, there are a polynomial p(z) of 7 such that deg p=rp—1 and

p() = 5@ [ (= 1)

J=1
Since
Ty
(2.13) POl <4 m [T 1=,
J=1 k#j
Lagrange’s interpolation formula gives
p(r) = Z{ﬁ(l/) 11— ;Lk)} [1G =)
=1 k#j k#j
Thus, putting
(2.14) b; = p(l) / <m,H(x, —xk)> if 7= A,
k=l
we have (2.12). (2.13) with 7=/, and (2.14) give [bj| <A (1 <j<r). O
LEmMMA 2.6. (i) The condition (D-L) is equivalent to the following condition
(D-L)":

(D-L)" There are by ;(t,&¢) (1 < j<m) defined for & eR"\{0}, t€[0,00)\
R(E/IE|) and € € R such that the by j(t,&;¢€) are positively homogeneous
in & of degree 0,

m

sub o(P)(t,7,&) = Zbl,j(f,f;ﬁ)]?j(tafa &e)
=

for eS8 te0,00)\R(E) and &€ R,
and for any T >0 there is C > 0 satisfying
min{ min |¢— s, 1}|b14j(l‘,f;8)| <C
se (<) '

for 1<j<m eS" ! te0,0)\%2(¢) and ¢eR.

(i) Assume that m = 3. Then the condition (T-L) is equivalent to the following
condition (T-L)":
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(T-L)" The condition (D-L)" is satisfied, and there are by (t,&e) (j=1,2)
defined for £eR"™\{0}, te[0,0)\Z(E/|E]) and €€ R such that the
by ;(t,&;€) are positively homogeneous in & of degree 0,

2
sub® a(P)(t,7,&) = szjlfs \(1,7,&e)

for €8 1e0,00)\2(¢) and & €R,

and for any T > 0 there is C > 0 satisfying

(2.15) min{ min |t—s| }|b2,_/(t, Lel<C

seR(E

for j=1,2,¢e8" te0,00)\%(¢) and ¢ eR.

PrOOF. It is obvious that (D-L) with C replaced by /mC is valid if (D-L)’
with ¢ =0 is valid, since we have, by (2.11),

m

D 1Pt 7,E0)| < Vi (1,7, p) 2.
=

Similarly, from (2.10) and (2.11) it follows that (1.2) with C replaced by 2/3C in
(T-L) is valid if (T-L)" with ¢ =0 is valid. The converses in (i) and (ii) easily
follow from Lemma 2.5. O

COROLLARY 2.7. Let 6>0 and t;eR (1<j<r) satisfy |tj—1| =0
(1<j<k<r). Then there are b; ;e C (0<I<r—1, 1<j<r) such that

(2.16) lbr il <67 gl
(2.17) T —Zb;,H T — Tg).
=1 k#j

Proor. Take b;; = 1! /Hk;ﬁ/( — 7). Then (2.16) and (2.17) are satisfied.
O

Define

(2.18)  P(1,7,86) = pi(t,7.Ee) — (/2000 pi (1,7, E8) (1< j < m).
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Then a simple calculation yields
(219) (= i(t.Ee) o AL, 1. Ee)
= pe(t,7,8) = (i/2)0:0: p(t, 7, )
—(i/2) Y a0y(t,&8) — M1, &) - pialty T, & e)

k#j

— 87, pi(t,7,&6)/2 for 1 < j<m,

where a(t,7,&) o b(t,7,£) denotes the symbol of a(t,D,,&)b(t,D,,&). Indeed, we
have

(v = (6, & 8) 0 pi(t,7, & 8) = polty 7, &) — idupy(t,7, &3 2),
(T - }'j(t’ & 8)) o alafpj([’ 7,&; 8) = atarpa(tv T, f) - 6;171'(1, 7,&; 8)
+0,i(t,&8) - 0 pi(t,7,E8) — i@tzéfpj(t, 7,&;¢8).
From (2.19) we have
(220) (T - A’j(la 578)) o ‘%(17 T, 57 8)
= polt,7,8) — (i/2)0:0:ps(1, 7, &) — (2m) ' 0202 p,(1, 7, &)

/2 Zat t é 8 (lyéag)) ‘p_i,k(l7fvf;8)

k#j

az{z Z (1, & 6) — M1, 6;8))pj,kﬁ1(17fyf;8)}

k#jl#j,k

for 1 < j <m. Note that p; (t,7,&¢) =1 if m=3. We have also

(221)  (c=A(1,&e) 0 p (1,1, E8) = pO(1,7,6) — idp) (1,7,E56)

for l<r<m-—1and 1 <j<m—r. In particular, we have
(2.22) (=27 (1,¢0) 0 pf (1,7, ¢50)

P2i(t,7,&8) + (i/2)0, (A0 (1, & 6) — 41 (1,8:¢))

Mw

—
I
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if m=3 and {j, k} = {1,2}. Indeed, we have

2
2,07 po(t,7,8) = 8,0:p) (1,7,8) = > dupy;

k=1

1trés

v

Pgl)(lafaé§3) (/2)aap£t‘[f Z lfég

3. Proof of Theorem 1.2

In this section we assume that the hypotheses of Theorem 1.2 are fulfilled and
we shall prove Theorem 1.2. Let {¢},_, , ~be a sequence satisfying ¢; € (0, \AY
and ¢ | 0 as j — oo, where /3 is as in Lemma 2.3. Put

E(): {8/,]: 1,2,}U{0},

N = @ Na(g) U A(0)U{0} (= R"),
=1

where A%5(¢) is as in Lemma 2.3. Note that g,(A4") = 0. We define

Py(t,7,¢) = P(,7,8) + pe(t,7,€) — p(1,7,€)
= (i/2)0:0:(ps(1,7, &) — p(1,7,£)).
Note that
sub a(P,)(t,7,&) = sub o(P)(t,7, &),
P.(t,7,&) = P(t,7,&) + p.(t,7,8) — p(t,7,&) if m=3.

Consider the Cauchy problem

(CP) {Pl,(t, D, Dy)u.(t,x) = f(¢,x) in [0,00) x R",

¢ Diu,(t,x)|,_g =uj(x) in R" (0<j<m—1)
for ee Ey, where fe C®([0,0); H*(R})) and uje H*(R") (0<j<m—1).
Here H*(R") denotes the Sobolev space over R" of order s and H*(R") =
(\,cr H'(R"). By partial Fourier transformation in x, the Cauchy problem (CP),
is reduced to the Cauchy problem for an ordinary differential operator with
parameters ¢&:
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) Py, Dy, &)uu(t,8) = f(1,6) for (&) €[0,00) x R”,
' Dlv,(t,8)|,_o = (&) for £eR" (0<j<m-—1)

for ¢ e Ey, where f(t,&) and (&) (0<j<m—1) denotes the partial Fourier
transforms of f(f,x) and wu;(x) with respect to x, respectively, for example,
f(t,f):fRn e ™<f(t,x) dx. We note that the Cauchy problem (3.1) has a
unique solution v,(z,¢) € C*([0, 00); C*(RY)). If it can be shown that v,(2,¢) €
C"([0,00); ' (RY)), then uy(t,x) = F: '[0.(1,0)](x) (€ C™([0,00);.”'(R})) is a
unique solution to the Cauchy problem (CP),_, where ﬁé‘l [v(2,&)](x) denotes the
inverse partial Fourier transform of v(z,&) in £ We fix 7 > 0. Define

Wo(,&) = Y. (O —9KE+1+1,
]

seR(E/EDN0, T+1

&’

Wi &e) = Y [0(r,&5e) = (. &)/ (1(1, & e) — Ault, & o) + 1)

1<j<k<m

+ Y 1074(t,& 8)l/1€,
=1

t

Al &) = L(Wo(& &) + Wis. &:e)) ds

for (1,¢,8) € [0, T] x (R"\A") x Ey, where (&> = (1+ |¢]*)"/%. Note that

(3.2) 9 log(y/(t—5)CE + 1+ (1 — KD =<2\ (1= 5)7¢E> + 1,

(33) [0, Wo(1,8)] < Yo KO-+ 1) < Wo(1,6).

seA(E/IEN0, T+1]
From (3.2) and Lemmas 2.3 and 2.4 it follows that there is Cy > 0 satisfying
(3.4) 0=<A(t,&e) < Cr(logéy+1) for te0,T], e R"\A and ¢ € Ey.
Here we have used the fact that, with some Cj; >0,
(3.5) |0:4;(1,&6)| < Cpl|é] for (1,¢,6) €[0,T] x R" x [—1,1]

(see, e.g., Theorem 1 of [14]). For (1,&,e) € [0,T] x (R"\A") x Ey and 4 > 1 we
define
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m

E(t,& e A) =Y e MNP (1, D, Ee)u(1,6)|

=

m—1 m—k

+ 30T W1, N P (1 Dy E ey (1, ).

k=1 j=1

Let (1,&) € [0, 7] x (R"\A") and &€ Ey. It is obvious that

(3.6) D,&(1,E64) = zz [AA =N Pw,)* + 2 Im{e™ 42 (D, 20, - (Prv,)}]

m—1 m—k
+i [4 W()zA,e”M|pj<4k>vg,|2 —2Wy Wo,e’AA|p](»k) vg|2
k=1 j=1

3

~.
I

_ k
+2 Im{Wie N (D pv,) - (pj) M

Here we write A = A(t,&e), Ay = 0,A(1, &), 75 = Zi(t,1,&5€), v, = 0,1, &), Wo =
Wo(t, &), Wor = 0,Wo(t,&) and so forth. Since the /;(,&;¢) are real-valued, from
(2.19) we have

(3.7)  Im{e (D, Zw,) - (Pv.)}
= Im{e " (D, — 4(1,&;€)Zv,) - (Pve) }

= Im{e"**((p; — (i/2)(0,0:p:)(t, D1, €))0s) - (Fjvs)}

— Re{eAA Z(;th — Aka) (D), kVe) - (W)}/Z

k#j
—Im{e (07 0:p))(t, D1, &;6)0.) - (Poe)} /2 (1< j<m).
Similarly, (2.21) gives

(3.8) m{Wge M (Dpv,) - (pPv,)}

= Im{ e (p¥n,) - (0.}

— Re{We M a,pM)(t, Dy, Ee)vs) - (p)0,)}
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(1<k<m-—1,1<j<m-—k). Therefore, (3.1), (3.3) and (3.6)—(3.8) yield

m

(39) 8:6(t,&eA) <mA e N f(1,8))P =D

Jj=1

(4 —2m — D)Ae NP, |

+ A,leAA{ Isub o (P)(£, Dy, EYvel* + > | (A — 2a) pycvel > /4
k#j

+ Z |Pm—k(l7 Dt7€)08|2 + I(afafpj)(h Dl7é;8)vﬁ|2/4}]

k=2

m—1 m—k
> KA -2 WiA, - 20 e AN py, )2
=1 j=1

M

=

= WA e M| pBul? + (00 (1, D, &2,

since

(pe — (i/2)(0:0:pe)(t, Dy, &))vg

= P,v, — sub o(P)(t,D,, &) ZPm k(t, Dy, &)

From (D-L), Lemma 2.6 and Corollary 2.7 we have, with some C,C’ >0,

(3.10) min{ min |7 — s|?, 1}|subo( )(t, D, &),
seR(&/E)

m m m—1
<n S il <€ (Sl + Sl
k=1

=1 =1

for te[0,T], £e R"\A" and ¢ € Ey. Here and after the constants do not depend
on the parameter A unless stated. Indeed, p(V)(z,7,¢&;¢) is stictly hyperbolic with
respect to & for 1€ [0,00) and &€ e R. By Corollary 2.7 with r =m — 1 and (3.5)
we have, with some C” > 0,

nm—

|(a[61pj)(t7D,, a Ue"| < CHZ |pk Uf|

When min{min,e et — s|, 1} < <&~/

Corollary 2.7 that

, we can not use (3.10). It follows from
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-1
sub a(P)(t,7,&) = co()T" 1+ e (1, &7

3

k=1
m—1 |
=)t 7.&e) + Y alt&e)py (1,1, 88),
k=1

where 1 < j <m, deg: ci(t,&) = k and the & (t,¢;¢) are functions, determined by
Corollary 2.7, satisfying, with some C > 0,

lén(t,&e)| < CKEY for te[0,T], e R\ A and ¢ € E.

This gives
(3.11) lsub a(P)(t, Dy, &)v,|* < c<|y)vp| —|—<f>22|pk v )
k=1

for 1€[0,T], (e R"\ A and ¢ € Ey,. We have also, with some C > 0,

(3.12) (4 — A)pjavsl

< |{% - yk + (1/2)((atarpj)(lv Dfa é; 3) - (6Iarpk)(ta Dt7é;8))}vx|2

m—1
= 3{I%ug|2 2w+ Y Ipﬁ”vfz}’

I=1

m—1 m—k

(3.13) Z| ik (1, Dy, E)vg <CZZ|pj vl
k=

(3.14)  [(270:p))(1, Dyy & e)e?

m—

CZ|Pk Ur| JFCZMIm (t,&8)] |£|722|p(1>v,|2,
k_

(3.15) WA e MM pNu,?

m

Z(‘% + (1/2)(61‘61}7])([) Dtv f; 8))Us

J=1

m m—1

=1 k=1

2 A—] —AA
= W5A; e

IA
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m—1
(3.16) WA e M (@pV) (1, Dr, & e)ul® < CWEA e NS 1p 0,
k=1

(3.17) WA e N pW o, 4 (0,0 (2, Dr & )0 )
m—k+1 - 5 m—k ‘ )
=< CW()zA : AA{ Z |p§ - >U£| + Z |P§ )Us| }
=1 =1

for2<k<m-1land 1<j<m—k

for te[0,7], £eR"\ A" and ee€ Ej. Indeed, (3.12), (3.13) and (3.15) follow
from Corollary 2.7, applying the argument as in (3.10), since p¥)(z,7,&;¢)
(1 <k <m—1) are strictly hyperbolic with respect to 3. We have

oéfp,trf Zzimt«f &) pjk,i(t,1,&5e)

k#jl1#jk

YD &)t & e)pyrnit TG e)

k#jl#j ki#j k1

By (3.5) and the same argument as in (3.10) we obtain (3.14), (3.16) and
(3.17). Let us estimate A, e M sub o(P)(t,D;,E)v,|>. First assume that

min{minge p/¢plt — s, 1} < <712, Then we have

Wo(t,€) = <2V,

Therefore, from (3.11) we have

(3.18) A, e N sub a(P)(t, D;, E)ve|*

k=1

m—1
< CA[te M (L@,vd2 +4W, Z |p,(cl)vg|2>

m—1
< CA;le_AA|<ijS\2 +4C Z WozA,e_AA|p,(€l)v,g|2
k=1

for 1€ [0,T], e R"\A" and ¢ € Ep. Next assume that min{ming gz |t — |, 1}
> (&>712. Then we have

-1
Wo(t7f)2(\/§min{ min |t—s|,l}> .
seR(/IE)
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This, together with (3.10), yields

(3.19) A e N sub (P)(t, D;, E)v,|*
m m—1
j=1 k=1

m m—1

< 2C'A N Z |/7}‘Us|2 + 2C/W02A16—AA Z |P1<cl>”6‘2

=1 k=1

for 1€[0,T], (e R"\A" and ¢ € Ey. Thus, by (3.18) and (3.19) we have

(3.20) A, e N sub a(P)(t, D, &)v,|*
m m—1
< CAe™ M ST 120 + CWEIAe M p )
j=1 k=1

for te[0, 7], £eR"\ A" and ¢ € Ey. It follows from (3.12) and the definition of
Wl(l, 6;8) that

(321) AN (dy — ) pyvs]

< 2Whe N2y — AP+ D) pjave)?

m
< 6Ae N0 + |2iwl?) + CWEAE NS e
k=1

for 1€[0,T], (e R"\ A" and ¢ € Ey. From (3.13)-(3.17) we have

m m—1 m—k
(322) AN P (6. D Gl < CWEATN ST ST M,
k=2 k=1 j=1

m—1
(323) AT N(020.p)) (1, Dy &0, < 2CWEANST |,
k=1
5 m ) m—1 | 5
(3.24)  WEA e M pWy,)* < CA,e‘AAZ|%08| + CWiAe N |p,(€>v£| ,
j=1 k=1

m—1
(325) WA e MN(@up)) (1, Dy, Ee)u)> < CWEA NS |p v,
k=1
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(3.26) WA e M pFv.] + |(@.0)) (1, D1, & )ve] )
m— 1) m—k
< CW&AteAA{ Z Do + Z 19} 0] }
=1
for2<k<m-land 1 <j<m—k

for 1e[0,T], ¢ R"\A and &€ Ey, since | |*|é] > < W2. So it follows from
(3.9) and (3.20)—(3.26) that there is A¢ > 1 satisfying

08 (1, &6 A) < mA e N (1, )
for A > Ao, t€0,T], £ R"\.A" and ¢ € Ey. This gives

(3.27) S(1,E 55 A) < 6(0,E 55 A) +mj0 .02 ds

for A > Ay, t€0,T), £ e R"\A and ¢ € Ey. From (3.4) we have

1> e—AA(l,é;a) > e—ACT<é>7ACT

for te[0,7], ¢ e R"\N" and ¢ € E).

Lemma 3.1.  For a fixed T > 0 there are ¢ > 0 and C4 > 0, which depends on
A, such that

m—1
(328)  cb(t,&aA) < Y (XD P < CKETTE (1, ¢ 5 A)
k=0
Jor A>1, tel0,T], £eR” and ¢€[0,1]. In particular, we have uv.(t, &) e

C" ([0, 00); ' (RE)) and  uy(t,x) (= F; ' [v(1,€)](x)) € C"'([0, 0); H*(R"))
for €€ E.

Proor. We can write
m—1 —_ 4 ”7 1— / i/2)0,0 .
D[ (l é) }1 ch 7 UF+ZCJ lé +(l/ ) t Tpl(taDhéaE)Um

where ¢;(1,&¢) (1 <j<m—1) satisfy |cj(t,&¢)| < C|¢|) for ¢e[0,1]. So Cor-
ollary 2.7 gives

m—1
DI 0,(1,6)] < |1(, Dy &)l + CE S p (1, Dy )|

J=1
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Similarly, we have

m—k
(&K DI 1 Hy,| <C<|f|2pj (,D;, & e U£|+Z\p] ué>

(1 <k <m—1). Therefore, we have

m—k

m—1 m—
(3.29) 3 <o¥prt |2scA<£>2“C"eAA<J7WI + W5|p,‘»">val2>

>
Il

1 j=1
< CKETTE(1,E 8, 4)

for A>1, te[0,T], £eR" and ¢€[0,1], where C4(> 0) depends on A. It is
obvious that, with some C,C’ > 0,

m m—1 m—k

6(t,& 5 4) me + <&l p,|

j=1 k=1 j=1

m—1
< C/ Z <é>2k|D;”717kUg|2
k=0

for te[0,T], £eR" and ¢€[0,1], since Wo(l,é)2 < C{&). This, together with
(3.29), proves the lemma. O

Fix T >0 and put

Ep1[u) Z||<D SR (L ) | 2

n=0

where k>m—1, [leR, u(t,x)eCk([0,T];H*(R") and |u(t,x)||; =
(S lu(t, x )2 dx)V2. 2 It follows from (3.27), (3.28) and Plancherel’s theorem that

m—1

(3.30) Epp[ue](1) < CAO{ D IKD A2y (o) 72

v=0

t
+J KDy 21 (5 1) )12, ds}
0

for [eR, te[0,7] and ¢ € E.
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LemmA 3.2. For g€ Ey we have u.(t,x) e C*([0,c0); H*(R")). Fix T > 0.
Then, for any k e Z, with k >m — 1 there is C, >0 such that

m—1

(3.31) Ejealu)(r) < Ck{ D IKD A2y ()1

v=0

t
" J KDYt ACT A (s )17 ds
0

k—m
T+ KDDL x>||iz}

#=0

for leR, te[0,T) and ¢ € Ey, where Zl]f;{)"--~:O if k=m-—1.

Proor. By (3.30) (3.31) with k = m — 1 is valid. Let K > m, and assume that
u.(t,x) e CX=1(0, T]; H*(R")) and that (3.31) is valid if (m— 1<)k <K —1.
Write

PS(t7Ta é) = Tm + Zaj,ﬁ(t7 f)rm_j'
J=1

Then we have

m K—m
(3.32) DEv,(1,6) = — Z (K ; e ) (D" ay o1, &) D) (1, &)

+DEf(1,8).

Since the right-hand side of (3.32) belongs to C([0, T];.Z ' (H*(R"))), we have
u, € CX([0, T]; H*(R")). Moreover, we have

||<Dx>lDtKu8(t, x)”iZ(Rf)
K-1 , ,
< CK{Z KD D u (1, )| L2y + KD DS (1, X)||L2(Rg>}
1=0
for /eR, te0,T] and ¢ € Ey. Therefore, (3.31) is valid for k = K. O
Put u(t,x) = uo(t,x) and wu;(t,x) = u,(t,x). Applying the same argument as
in §3 of [16], we can prove that

DD u(t,x) — DFD*u(t,x) uniformly in [0,7] x R" as j — co.
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Denote by Kj_i(m‘x(]) the generalized flows for p, (z,7,&). Then it follows from §3
of [13] (or [15]) that for any (f9,x°) € (0,0) x R"” and any neighborhood V' of
K o) {t = 0} there is J € N such that

(to

N{t=0}cV if j=J.

I<jlo‘(

Since Py (t,D;, Dy) is strictly hyperbolic with respect to §, we can show
that (tp,x°) ¢ supp w if je N, (t,x°) € (0,0) x R”, w(t,x) e C*([0,0) x R"),
supp Py (1, Dy, Di)w(t, x) VK, 0 N {1 >0} = & and {0} x (U 01 supp(D¥w)(0,

x))NK; o) = D (see, e.g., [9]) So we can repeat the same arguments as in the
end of §3 of [16] and prove Theorem 1.2.

4. Proof of Theorem 1.3

In this section we assume that the hypotheses of Theorem 1.3 are fulfilled and
we shall prove Theorem 1.3. We shall change the definitions of Ey, A", Wy, Wy,
A and &(t,¢e4). Let {g},_,, be a sequence satisfying ¢ € (0, I\(A(p) U
A 2(p1)) and ¢ | 0 as j — oo, where .45 (p) and A7 (p!)) are as in Lemma 2.3.
Put

Ey ={g;/=1,2,...}U{0},

8

A= (Aol p) Ui p ) U-A2(0: p) UA1 (0 pT) U {0},

j=1

where A5(g; p) and A (e; pV)) are as in Lemma 2.3. We note that u,(4") = 0.
Consider the Cauchy problem (CP), and (3.1) with m =3. Fix T > 0. Define

W&oy = Y &P — )& 11

seA(&/1ENNN0, T+1]

+ Y V@ Ee - &)+ 1

l<j<k<3

< 1\ Oslt,E8) — 1, 6:8) + 1+ 1,
WinEe) = Y 102051 &e) — e, &)1y &e) — Aa(t,E )| + 1)

1<j<k<3
100 (1, &) = AV (1, &Nl (A (1, & e) — AV (1,8 0)] + 1),

Al o) = j(j(Wo(s,f;e) (s, & 8)) ds
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for (1,&,6) € [0,T] x (R"\A") x Ey. It is easy to see that
(4.1) 0 Wo(t, & 8)| < Wolt, & e)(Wo(t, & e) + V2 (1, e))
< 3Wo(t,&;6)0A(1, & e)

for (1,&,6) €[0,T] x (R"\A") x Ey. By Lemmas 2.3 and 2.4 there is Cr >0
satisfying

0 <A(1,¢e) < Cr(logddy +1)
for (2,&,¢) € [0,T] x (R"\A") x Ey, since

8108y (1 — 7Y + 14 (1= KEOY) = Y3\ (1= 9 + 1.

For (1,£,6) €[0,T] x R"\A") x Ey and A > 1 we define

3 2

_ 1 —
E(t, ¢ e A) = Ze AA|H7f,~v£|2—|—Z We AA|pj<- >ve\2+ Wie v,
=1 j=1

~.

Here we write A = A(t,&5¢), 2 = #(t, Dy, &z ¢8), p](-1> = p](-U(I, D, & ¢), v, =v,(t,&)
and Wy = Wy(t,&¢e). Let (1,8) €[0,T] x (R"\A") and ¢ € Ey. It is obvious that

3
(42) Dib(t,&64) =iy [ANe M P|* + 2 Im{e (D, Ppv,) - (Pr,)}]
J=1

2
+1 Y [(AWGA, = 2WoWo)e M piVu,|?
=

+2Im{ e A (D,p"v) - (pV0,)})
+I{(AWSA, — WG Wo)e Mo, |
+ 2 Im{ W(;‘eiAA(D[Ue) : Ff}]a

where A, = 0,A(t,&e) and Wy, = 0,Wy(t,&;¢). Since the /;(t,&e) and the
MW(1,&e) are real-valued, 9,0:p.(1,7,&) = 8,0:p(t,7,E) and 0202 p,(t,7,¢) =
0202 p(t,7,¢), it follows from (2.20) and (2.22) that

(4.3) Im{e~*N(D,2yv,) - (Zyo.)}
= Im{e™ (D, = 2))Zyv.) - (Z0.)}

= Im{e **((p: — (i/2)(0,:0:p)(t, D1, ))ve) - (Fyv.)}
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— Im{e” (0702 p)(1, D1, )vs) - (Zy02)} /6

— Re{e_AA Z(}vjt - lkt)(Pj,kUe) : (%)}/2

=y
+ Im{e_AA Z(;“jtt — Akat) Vs - (%)}/67
=y
(4.4) Im{ W3 N (D,pv.) - (p]V02))

= Im{Wge (D = 2)pj we) - () 0.)}

=3 (e N (2w - (p) )}
k=1

+Re{(~1) W2e M) — Ay, - (pV0,)}/2,
(4.5) Im{Wye N(Dyw,) -7} = Im{ We (p1 vp) Ts )

Here we also write A; = 0:4;(¢,&;¢), Ay = 6 Aj(t,&;¢e) and so forth. (3.1) and
(4.1)-(4.5) yield

(4.6) 0,6(t,¢6,4)
<3A e N f(n )

3
_Zl 7 Aze_AAWUA le—AA
j=1

X {'(Sub O.(P)(Z7Dfaé) + Pl(l7Dtaé) + 03672p(l, Dt7é)/6)vs|2

+|Po (0wl + D (e = Zaa) pyicvsl /4 + Y | (e — ikn)vslz/%}]

k#j k+#j

3
z[ WA 0

J=1

3
~ W2A; {Z P, + (A1) — ﬂ»§1>>vs|2/4H

k=1

— (A= 13 WA e Mo > + WEA pV o,
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From Lemma 2.6 we can write

3
(4.7) sub a(P)(t,7,&) = Zbljtésp,trfs)

mind min 11—, }ib G0l < Cr (153
se A(E/E)) '

for £ e R"\{0}, € [0, T\%(¢/|¢|) and ¢ € R, where C7 > 0. Operating > in both
sides of (4.7), we have

3
(4.8) OIPa(t,7,8) =2 by (1, ).
Jj=1
Since

2,0:pi(1,1,&8) = = (1, & 8),

k#j
0,02 p(1,7,8;6) = —2ZA,(,z§g
00:pi(1,7,&8) — 0,07 p(1,7,&8) /3 = =Y (alt, &) — A1, 52)) /3,

k#j

(1.1), (2.18), (4.8) and Lemma 2.6 give

(4.9) sub a(P)(t,7,&) + Pi(t,7,&) + 07202 p(t,7,&)/6
3
= b (t,&) (1,7, &) + Pi(t, T, &) + 0;07 pl1,7,£) /6
Jj=1
3
- (1/6) Z Zblj(t, éa 6)(ikt(ta 57 8) - /ljt(t; f’ 8))
=1 k#j
3
+ (i/6) Zbu(t, &)0,0;p(t,7,¢)
Jj=1

3
= b (t,&e)P(t,7, & 8) + sub® o(P)(1,7,E)
j=1

Zzbu t,&e) (Au(t,&s8) — 2u(t, &5 2))

j=1 k#j
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3
Z (1, & 6)2 lrés—i—szjtég)p] (t,7,&5¢)

J=

Zzbutﬁ (Zaa(t; ) = A(1, & 8)),

j=1 k#j
where the b ;(1,&;¢e) satisty (2.15). If {j, k,I} = {1,2,3}, then we have

(4.10) (% = A)vel® = [(pj = pet)val® < 21 pj10:]* + 2| prc v .

It follows from (2.10) with m =3, k =2 and r = | and Lemma 2.5 that there are
bjku(t, &) (=1,2) satisfying

2
pj,k(ta T, év 6) = Z bj‘k,‘u([a 57 8)1’,(,1)“ T, ‘f, 8)7
n=1

bkn(t,E8) < 1/V2 (1n=1,2),
since

hl(ﬁﬁé?l’n) = Z pj,k(t7raé;6)27

Therefore, we have

2
(4.11) |pjvl” < Z plv? (1<j<k<3).

It is obvious that

(4.12)

2

2 (1 1

(35" = Ael® <23 |pfPul’.
p=1

Let us estimate A, 'e 2| (sub a(P)(t, Dy, &) + Pi(t, Dy, &) + (0202 p)(t, Dy, &)/6)v,|%.
First assume that min{mingc p/¢)|t — 5|, 1} < (EY2. Then we have

Wo(t, &e) = <& IV2.
Therefore, we have

(4.13) A, e N (sub a(P)(t, Dy, &) + Py (1, Dy, &) + (0202 p) (1, Dy, &) /6)v, |

< CAe M| P> + W vl + Wiu*}
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for 1€[0,T], £eR"\ N and ¢ € E,, since
sub a(P)(t,7,&) + Pi(t,7,&) + 0202 p(t, 7, &) /6
= a()P(1,1.88) + (6, & )P (11,6 e) + ¢a(1, & e),
leo()] < C,  |eja(t, & 6)| < CLE (k=1,2)

for 1€ [0,T], e R"\.A" and ¢ e Ep. Next assume that min{ming gz |t — |, 1}
> (&)>7?3. Then we have

-1
Wo(t,f;g)z(\/imin{ min |z—s|,1}> .
se (/e

This, together with (4.9)—(4.11), yields

(4.14) A 'e N (sub a(P)(t, Dy, &) + Pi(t, Dy, &) + (0202 p) (1, Dy, €)/6)v,)

3 2
< CWOZAtle_AA{ Z |P0,|” + W Z \p](-1>06|2

J=1 J=1

+ > uﬁ—xmzvgﬁ}

1<j<k<3
< CAeAA{Z% o+ W&ZIp(l) ve* + W0“|ve|2}
Jj=1 j=1
for 1€[0,T], £eR"\ N and ¢ € E,, since
(1, & 8) = daalt, &) P < Wo(1,&8)° ((A(1, & 8) — A(1,E2)° + 1),

By (4.13) (4.14) is also valid in the case where min{ming
<é>‘2/ 3. We can easily show that

—s,1} <

(4.15) Al NPy (1)v,]P < CWEA e M,

(4.16)  A'e ™ (i — A)pjavel®
k#j

1 _AAZ WO [7] kvs| +|p] kU£| )
k#j

3 2
< C’A,eAA{ZW’kvsz—i— WOZZ|p§(1)vsz} (1<j<3),

k=1 k=1
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(4.17) A;lE_AA Z |(ij1t - ;tht)vs|2
k#j
< AN WEWE (= vl + [eel)

k#j

2
< CWozAzeAA{Z P v + W02|v£|2} (1<j<3),
k=1

4(1 1
(25 = Ay

< WEWEA e N2 = 20l + [0

(4.18) WEA e

2
< 2W02A,e“"‘{z 1Mo + W02|v8|2}

for 1 €0, 7], £ e R"\.A" and ¢ € Ey. Indeed, (4.15) is obvious. (4.16) follows from
(3.12) and (4.11). In (4.17) we use (4.10) and (4.11). (4.18) follows from (4.12).
So it follows from (4.6) and (4.14)—(4.18) that there is 4y > 1 satisfying

0:6(1,7,8 6, A) < 3N Te N (1,8)|

for 4 > Ay, te[0,T], £ e R"\A" and ¢ € Ey. Therefore, repeating the same argu-
ments as in §3, we can prove Theorem 1.3.

5. Some Remarks and Examples

Let us first consider the validity of the condition (T-L). Let P(z,7,&) =
(T - /l(tv f))3 + b2([a T, é) + bl (t7 T, é) + bO(t)a where

i(t? é) = Zjnzl )“](t)ijy
(5.1) balt,7,€) = boo(1)e% + 0y b (078 + X o b€,
b](l, T, f) = bl‘o(Z)T + Z;qzl blﬁj([)fj.
We assume that the /;(¢) are real-valued and that the 4;(¢), the b; () and bo(¢)

belong to C*([0, o0)). It is well-known that the Cauchy problem for P(¢, D, Dy)
is C* well-posed if and only if P(¢,D,, D) can be represented as follows:

2
P(t,D;,Dy) = (D, — A(t,Dx))* + > _ ¢;(1)(D: — A, Dy))’,
j:

(=1

where ¢;(f) € C*([0,00)) (0 <j<2) (see, e.g., [4] and [18]).
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The following theorem insists that the condition (T-L) is a reasonable and
likely condition for C* well-posedness.

THEOREM 5.1.  The Cauchy problem for P(t,D,,D,) is C* well-posed if and
only if the condition (T-L) with #(&) = & is satisfied.

PROOE. It is obvious that
(1= A1) 0 (x = A1,€) = (r = A(1,0)* +i0,A(1,€),
(v = At,€) o (t = At,€)) o (1 — A1, €))
= (1= Mt,8)* +3i0,4(1,8) - (1 = A1, ) + 7 A(1,&).
Therefore, we have
P(t,D;,D,) = (D, — A(t,D,))* + bao(£)(D, — A1, D,))?
+ bro(t)(D; = A(t, Dy)) + ba(t, Dy, Dy) + by (1, Dy, D) + bo (1),
where
(52)  ba(t,7,8) = ba(t,7,8) = boo(1) (= A(1,€))* = 3i0,4(1,€) - (v = 4(1,9)),
(53)  bi(t,7,&) = bi(t,7,&) — by o(t)(t — A(t,&)) — iba,o(1),A(1, &) — 82A(1, &).
On the other hand, we have
h(t,7,6)"? = V3t = Ut,€)% (7,87 = V3]t = 2(1,¢)],
sub o(P)(t,7,&) = ba(t, 7, &) — 3i0iA(1, &) - (v — A1, €)),
sub® a(P)(t,7,&) = bi(t,7,&) — 02A(t, &) — iba.o(1)0,A(1, &).
This, together with (5.2) and (5.3), shows that
by(t,7,&) = by (1,7,8) =0

if and only if the condition (T-L) is satisfied, since (T-L) implies that
sub o(P)(t,7,&) and sub? o(P)(1,7,&) are divided by (t—A(t,¢))* and
(t — A(t,£)), respectively. O
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Finally we shall give two simple examples.

EXaMPLE 5.2. Let P(1,7,¢) = (22 — a(0)|é)*)t + ba(t,7,E) + by (1,7,E) + bo (1),
where b;(t,7,&) (j=1,2) and bo(¢) are as in (5.1) and a(¢) is real analytic in a
neighborhood of [0, o0). Assume that a(#) > 0 for 7 € [0, 00). Then the conditions
(A-1), (A-2) and (T) are satisfied. A simple calculation yields

hy(t,7,&) = 3t + a()*|¢]*,

hi(t,7,¢) = 37 + 2a(1)|¢%,

sub o(P)(1,7,¢) = ba(1,7,¢) — (i/2)d,a(1) - |,
sub® a(P)(t,7,&) = bi(t,7,¢).

Therefore, we have

(2 + Va(lel [&] + a(0léP) /5 < ha(1,7,8) "2
< 2(c2 + Va(dlt] |E] + a()|E)?),
[t + Va(0)[¢] < m(t,7,6) ' < 2(|2] + Va()|¢).

Let 7 € [0, 0) be a zero of a(t) of order vx (k=1,2,3,...), where 0 <, <1, <
t3 < ---. Taking #(&) = {t1,t2,13,...} we can see that the condition (T-L) is
satisfied if and only if

by ()= O0((t—1)"* ") as t—1 (1<j<n),
bro(t) = O((t—1)" ") as t— 1 (Ja| =2),
bij(t) = O((t—1)"*7?) as t—u (1<j<n)

for k=1,2,3,....

Let S be a subset of [0,00) x S"~!, and define the condition (T-L)g by
replacing [0, 7] x R x S"! with {(¢,7,&) € [0,T] x R x §"7';(¢,&) € S} in the
condition (T-L).

ExampLE 5.3. Let P(t,7,&) = (v — A(t,E))t? + ba(t,7,E) + by (1,7, &) + bo(2),
where A(t,&) = ¢ + &, ki, ko€ Zy, k1 <Ky and bi(t,7,&) (j=1,2) and
bo(t) are as in (5.1). A simple calculation yields
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ho(t,7,8) = T2 (7 + 2(t = (1, €))?),
hi(t,7,6) =22 + (v — A(1,))%,
sub a(P)(t,7,&) = by(t,7,&) —id,A(t,€) - 7,
sub® a(P)(t,7,&) = by (t,7,&) — 0241, &) /3 — (i/3)ba.0(£)0,4(1, &).
Therefore, we have
(T + A5 ) 12))/3 < ha(t,7,)" < 3(22 + a1, O)| |2,
(Il + 146 /2 < hi(t7,6) 2 < 2(7 + 45, E)).
It is obvious that
(54) bj()=h (=0 (3=<j<n) and  h,()=0 (o =2)

if the condition (T-L) is satisfied. Let us first consider the case where x| = K.
Then it is easy to see that the condition (T-L) with 2(£) = {0} is satisfied if
and only if

{172,1(1) =by(t) = O(t*171) as 10,
bi1(t) =b12(t) =0 2) as t|0

and (5.4) is satisfied. Next consider the case where x| < k. Put

St ={(1,8) €[0,00) x §"1;£1¢, > 0},

Sy ={(1,&) €[0,00) x §"11¢&1¢, <0 and 0 < 1* < |&/&]/2},

Sy ={(1,&) €[0,00) x " 11&1&, <0 and 1* > [&1/&]/2},
where k = xy — k1. If (¢,&) € S1, then we have

48, Q) = 1 |&i| + 12]¢]-

Therefore, the condition (T-L)s with #() = {0} is satisfied if and only if
(5.5) by ;(f) = Ot and by ;(f)=0("?) ast]0
for j=1,2 and (5.4) is satisfied. If (¢,&) € S, and #(&) = {0}, then we have

(& + (&) /4 < A O] = &6 /&l = 1)

< & |+ 128
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This implies that (T-L)s, with #(¢) = {0} is satisfied if and only if (5.4) and
(5.5) are satisfied, since

0,4(2, &) < 12 (£71|E |+ 127 1E, ),
|07(8,&)| < K22 — 1) (£9721E | + 1272|&]).

If (1,&) e S5 and 2(E) = {|€,/&]"/*}, then we have

min{ min |z — s, 1} = min{|t — &, /&]"*], 1},

se ()

min{ min)|t—s|2, 1} = min{|t — |& /&1, 1),

BT
| = (& /&l R E ] + o7& /3
<At = & [ = (& /&l T + (G G T e (G
e I S [ RV TR
< V=) M= & /&l RN E ] + ).

Therefore, the condition (T-L)g, with 2(¢) = {|£1/£2|1/ "1 is satisfied if and only
if (5.4) and (5.5) are satisfied, since

10,:2(1,&)| < ra (71 Er| + 271 E)),

[t = &1/ &M 107 A8, &)| < 071, )| < reaoe = D)+ 0271 &)

1/k
Thus, taking (&) = {0.Jc/&l (& # 0)’, we can show that the condition
{0} (& =0)
(T-L) is satisfied if and only if (5.4) and (5.5) are satisfied. Moreover, it is easy
to see that (5.4) and (5.5) are satisfied if the condition (T-L) is satisfied for

some Z(¢&).
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