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STRUCTURAL PROPERTIES OF IDEALS OVER Z./ 1

By
Yoshihiro ABE

Abstract. We try to take a first step to a theory of the structural
properties of ideals over Z.A, that was studied in detail by Baum-
gartner, Taylor and Wagon [1] for x. In defining the basic notions,
P-points, Q-points, and selective ideals,we put importance on the
behavior of the function on #Z.A to the bounded ideal and Rudin-
Keisler ordering.

Several facts hold similarly as on x, for instance, the bounded
ideal is a nowhere Q-point. However some differences exist such
as the bounded ideal is isomorphic to another ideal. We state the
sufficient condition for ideals to be Q-points and the weakly normal
ideals selective.

1 Introduction

Throughout x denotes a regular uncountable cardinal and A a cardinal > «.
Let #,.4 denote the set of the subsets of 4 with the cardinality less than x, that is,
PA={xcl:|x| <x}.

DerFiNITION 1.1. Let X < Z.A.

We say X is unbounded if for every x € #./ there exists y € X such that
x c y. The set {X < Z.: X is not unbounded} denoted by I, is called the
bounded ideal. For each a € #. let a={xe #.A:acx}. Thus X €], , if and
only if XNa= ¢ for some a e ZJ.
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X is said to be closed if | ) C € X for every —-chain C = X with |C| <x. X
is a club if it is closed and unbounded. X is stationary if XN C # ¢ for any
club C. The set {X < Z.1: X is not stationary} denoted by NS, ; is called the
non-stationary ideal.

DEeriNniTION 1.2. We say [ is an ideal over %4 if the following hold:

(1) I = 2(2.),

(2) el and ZA¢1,

(3)if XcYel, then X el,

(4) (UD€l for every D = I with |D| <«

(we say I is x-complete),

(5) L, = I (we say I is fine).
Let It =2(#)\ and I* ={X c P A: PI\Xe€l}. For XelIT I X ={Y c
P.A: YNX el}, which is an ideal extending I.

A function f is regressive if f(x) e x for every x e dom(f)\{I}.

An ideal I over 2.\ is normal if for any X € I'* and regressive function f
on X there exists ¥ e 2(X)NIT such that f | Y is constant.

I is weakly normal if for any X € I and regressive function f/ on X there
exists y < A such that {xe X : f(x) <y}el™.

Note that I, ; is the minimal, and NS, ; the minimal normal ideal over ZA.
For a function f and X < dom(f) f[X] denotes the set {f(x):xe X}
together with an abuse f~![Y]={x: f(x)e Y} for a set Y.
The structural properties of ideals on x was almost completely described in
Baumgartner-Taylor-Wagon [1]. We state the basic notions.

DeriNiTION 1.3, We say I < (k) is an ideal on x if the following hold:
() el and k¢ 1,

(b) if X = Yel, then X el,

(c) I is k-complete,

(d) I, = I (I, = {x =k : |x| < x}, the bounded ideal on «).

Suppose that 7 is an ideal on x and f: Kk — k.

(1) f is I-small if Vo < xf ~'[{a}] e 1.

(2) I is a P-point if for every I-small f there exists X € I* such that f [ X is
I.-small.

(3) I is a Q-point if every I.-small f is injective on a set in I*.
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(4) I is selective if every [-small f is injetive on a set in [*.

(5) L) ={X cx:f'[X]el}.

Several notions for subsets of x were first translated into #.1 by Jech [3].
Later Zwicker and some others tried to develop #.4 analogue of the theory
for the structural properties unsccesfully [2], [7]. We have several choices and
difficulties in defining basic notions in [1]. For instances,

(1) X €1, if and only if | X| < x. While some X € I, ; has the cardinality |Z,/|
for 4 > . Note that I, # I .

(2) For every f : x — x and X €1, f[X] € I,.. However, for some f : #.4 —
P and X el fIX]ell,.

The follwing motivates our definition.
Fact 1.4. For an ideal I on k, f.(I) is an ideal if and only if f is I-small.

DeFmNiTION 1.5. Let I be an ideal over #.A and [ : .4 — P4
(1) f is I-fine if Vo < M{xe ZA:a¢ f(x)} el
(2) I is a P-point if for every I-fine f there exists X € [* such that f is
I, | X-fine, that is, Va < A{xe X :a ¢ f(x)} €L ;.
(3) I is a Q-point if every I, ;-fine f is injective on a set in I*.
(4) I is selective if every I-fine f is injetive on a set in I*.
(5) £ill) = {X € 2d: f[X] e ).

By definition we have:

Facr 1.6. (1) fi(1) is an ideal if and only if f is I-fine.

(2) Every normal ideal is a P-point.

(3) I is selective if it is both a P-point and a Q-point.

(4) Let I be a Q-point and I = J. Then, J is a Q-point. Furthermore, J is
selective if J is a P-point.

(5) The following are equivalent for every X €L :

(a) f is I,(; I X -ﬁne
(C) VYCZ(/L (me[ ]EIK'A_)f_l[ }HXGIKJ)’
(d) VY c ZAYNX ell, - f[YNX] el ).

(6) If f is I-fine and f is L, | X-fine for some X € I*, there is an 1, ;-fine g
such that f.(I) = g.(I); for instance, g = f [ X UId | (ZA\X).
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ReMARK 1.7. The converse of (3) does not hold.

Fact 1.8 (Usuba). Suppose that P.J. carries a selective ideal and the GCH
holds. Then, there is a selective ideal which is not a P-point.

2. The Bounded Ideal

Clearly the bounded ideal I, ; is a P-point.
First we give some definitions and present known facts on I,.

DerFmiTioN 2.1. Let J and K be ideals on a set S.

(1) J and K are isomorphic and denoted by J =~ K if there is a bijection
F:S — S such that K = F.(J).

(2) We write J ~*K if K=F,(J) and F [ X is injective for some X € J*.

Fact 2.2. (1) L has no isomorph except itself.

(2) filly) =L | flx] for any Le-small f.

(3) For any A,BeI'\I', I, | A=, |B

4) If 1 X is injective and I # 1. | X for some X € I*, then I = f.(I). Thus,
for two ideals on Kk, = and =* are equivalent.

We show some of the above do not hold in Z.A. Our first interest is f. (L, ;).
It holds that I, ; | f[ZA]  fi(L,) for every f. However we have:

THEOREM 2.3.  For each X € L7 )\I; ; there is an 1, ;-fine function f such that
f;ﬂ(Ilc,}.) - Ilc.l rX # IK,X rf[%(}-]

Proor. Let Y =#\X €I, and choose a non-empty a € 2. Define f
as:

(1) f(x)=x for xe XNa
(2) x= f(x)e X for xea\X
(3) x= f(x)e YNa for xe Z\a

Since x < f(x) for every x € Z.A, f is I ;-fine.

For any x € Z,/, x\a € Z.J\a and f(x\a) € Y Na. Hence f(x\a) = (x\a)Ua
=x. Thus f[#J\a] €L}, and f[Z\a] ¢ L, | f[P:A).

Since fla] =X and f[ZA\a] <Y, [Tf[ZA\d]] =P \ael, ;. Hence
J12:2\a] € f.(L ), which says fi(Lc.2) # Le.i I f[ZcA).
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To show f.(L,) =1, [ X, first suppose that Z eI, ;[ X. Since f is I, ;-
fine, f~'[ZNX]el. ;. flznY)c2iael. ;. So, f[Z]=/"'ZNnX]U
fZnY]el,; and Ze f.(I, ;).

Second let Z € fi(I, ;). Since fXNa=1d, ZNXNac f~'[ZNXNa] =
f7YZ] el . Hence ZNX €1, ;. O

REMARK 24. VY c ZA(fYINXel,, — YN[f[X]el,) & fille, | X)
< Lo T f1X].

So, filli; 1 X) =Ll fIX] & fis L, | X-fine and VY = ZA(f YN X €
IK,;, — Yﬂf[X} € I;c,}.)-

In particular, fi(I, ;) =1, < f is I, ;-fine and VX = ZA(f'[X] e, —
XGIKA’/{).

For every X —cx and f:x — K, the following is clear:
() Xel, — flX] el
) f'[X]el, — X el,.

For X < #.4 we have the following:

PROPOSITION 2.5.  Suppose that f is 1. ,-fine and VY €1, ; f[|Y] €L, ,. Then,
fille s 1 X) =Ly 1 f1X] for every XGI:’A.

ProoF. We only have to show f.(I.;X) <1, ! f[X]
For Ye fi(I.; 1 X), f7'[Y]NXel., and f[f7'[Y]NX]=YNf[X]. By
our assumption, we have Y N f[X] eI, ;. O

REMARK 2.6. (1) It may happen that f~'[Y]NX < f~'[Y N f[X]].

(2) The assumption that VY eI, ;f[Y] €], is stronger than VX (f![X]e
Ii;, — X €l ): choose an « < A and set f [ {a} =1Id [ {a} and f(x) = xU{a} if
o ¢ x.

Now we show that =~* is equivalent to =.
The following is clear.

LemMA 2.7. Suppose that I is an ideal over %/, f is I-fine, and f | A is
injective with A € I*. If one of the following holds, then I = f.(I):

(1) ‘yxl\“” = ‘@h}\f[AH

(2) |2 AN\A| > |PAN\S[A]| and there is X € P(A) NI such that |X| = |ZA\A]
(3) |2 AN\A| < |PAN\S[A]| and there is X € P(A) N1 such that |X| = |2\ f[A4]|.
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The proof of the next proposition is by the referee to whom the author is very
grateful. She/He showed that the author’s assumptions in Proposition 2.8, 2.9,
and 2.10 of the original manuscript are not necessary.

ProrosITION 2.8. Suppose that I is an ideal over D1, f : P — Pl is
I-fine, and f | A is injective for some A€ lI*. Then I = f.(I). (Hence I = J and
I =*J are equivalent.)

Proor. If |4] <27, (1) in Lemma 2.7 holds and the assertion follows.

So, we assume |4]| = A~

Case 1: There exists Be #(A) NI with |B| = |A|.

When |Z.A\A4| = |#./\f|A4]|, the assertion follows from (1) in Lemma 2.7.
If |2.\A| > |2 A\f[A]], we can find C e 2(4)NI with |C| = |#.A\A| by our
assumption and (2) in Lemma 2.7 works. In case that |Z.A\A| < |24\ f[A4]],
we have D e Z2(A) NI with |D| = |22\ f]A]| and the assertion follows by (3) in
Lemma 2.7.

Case 2: There is no Be 2(A4)NI with |B| = |4|.

First note that [{xeZA:0¢x} =2"". If [2A\4] <1, we have
H{xeZA:0¢x}\A| < 2™ hence |[{xeZA:0¢x}NAl=.""=]|A|. However
{xe #./:0¢x}NAel, which contradicts our assumption. Hence |2\ 4| = A~".

Suppose that |24\ f[4]| < A~*. Since f is I-fine, we have that |[{xe 4 :
0¢ f(x)}| <A™ by our assumption. Hence [{xe f[4]:0¢x}| <A . Since
|2\ f[A]] < 27", we know that |[{x e 2.4 : 0 ¢ x}| < A~". This contradiction tells
us that |24\ f[4]] = 2~". Now we have that |2.J\A| = |2A\f[4]] = 2~" and
the assertion holds by (1) in Lemma 2.7. O

It is possible to have an unbounded set of #.A with the cardinality < A<
An ideal which satisfies the following might exist:

there is 4 € I* with the cardinality A~* such that every X € 2(4) N1 has
the cardinality < A<*.

We show this is not the case.

PROPOSITION 2.9.  Suppose 1 > k. Then every X < P has a subset Y €1,
with |Y| = |X|.

ProOF. We may assume X €L, Since 4> x, we have that |X| > x.
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Case 1: cof(|X]) > x.

For a<x, let B,={xeX:a¢x}. Then B,e?(X)NI,, and X =
(J{B. : o < x}. Since cof(|X|) > «, there is « < x with |B,| = |X|. Then B, is as
desired.

Case 2: cof (| X]|) < .

Since |X| > /4 >«™, it holds that |X| > x*.

For a <«*, let C,={xe X :xNk" ca}. Then C, e 2(X)NI,; and X =
(J{Cy: o< kT}. Note that for o < < x', we have C, = Cp. Then for every
cardinal u < |X]|, the set {a < k* : |C,| < u} is bounded in xT; Otherwise, there is
a cardinal u < |X| such that |C,| < u for every o < x*. Then |X|=|(J{Cy:a <
kt} <kt x u<|X|. Contradiction.

Now we know that for every u < |X]|, the set {a < x™ :|C,| < u} is bounded
in xT. Since cof (| X|) < x, there is « < k™ such that |C,| > u for every u < |X]|.
Now C, is as reqired. O

PROPOSITION 2.10. There is a bijection f : P — P such that f.(1.,) >
L., [ A for some Ae I;).\I;,;;

ProOF. Let {s,:a < A"} be an enumeration of Z.. By induction on
o < A°° we define {(x,, y,) o < A~") such that

(a) Sy < Xy, Vo
(b) xz # s
(©) Xu, yu & {xp, yp: B < 0t}

This is possible since |a| = A" for every a € Z./; there is an injection from
2.(A\a) into a.

Define f : #.A — P by f(s,) = x,. Since f(s,) > s, for every a < 1~*, f
is I, ;-fine. We know that {x,:a <A™} and {y,:a <A™} are two disjoint
unbounded sets. Hence {x,: o < 2™} = f[#A] e [[,\I; ;. Cleary f is injective.
Hence f.(I. ;) = 1., by Proposition 2.8, and we have f.(I. ;) 2 L., | f[Z:A].

O

CorOLLARY 2.11. I ; has an isomorph other than itself.
Moreover the referee kindly pointed out the following:

ProposITION 2.12. I ; is isomorphic to 1, ;1 A for some A e I;A\I:’A.
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Proor. Define f: #.4 — Z.4 by

[ xU{sup(xNx)} if sup(xNk) ¢ x
S = { xU{sup(xNx)+1} otherwise

It is easily seen that f is an I, ,-fine injection and f[Z.A] € I;“, S\, By 2.8 it
holds that f,(I. ;) = 1. ;. We have f.(I.;) =L, | f[ZA] if we show f.(L. ;) <
IK,/l rf[@}c)”]

Let X € f.(I; ;). Then we have a € Z. such that for any xea, f(x) ¢ X.
Let b = aU{sup(aNx) + 1}. We show X N f[2]Nb= &. Choose any x € 2.}
such that b = f(x) € X. In case that sup(xNk) ¢ x, we have aU {sup(aNk) + 1}
< xU {sup(xNx)} and sup(xNx) is a limit ordinal. Hence a = x € f~![X], which
contradicts to the choice of a. When sup(x) € x, it holds that a U {sup(aNx) + 1}
= xU{sup(xNk)+1}. Again we have a < x. O

DerNITION 2.13. An ideal I is a weak Q-point (weakly selective) if for
any I, ,-fine (/-fine) f and X €I there is Y € 2(X)NI" such that f[Y is
injective. I is said to be a nowhere Q-point if for any X eI™ I'| X is not a
Q-point.

THEOREM 2.14. (1) The bounded ideal 1. ) is a weak Q-point (hence weakly
selective).
(2) L, is a nowhere Q-point.

PrOOF. Choose any 4 €1}, and set y =min{|Y|: Y e (I, [ 4)"}.

(1) Let f: Pd — Pci be I )-fine. We will find a Be 2(A) ﬂI:_Z such that
f I B is injective. '

Let X € 2(A) ﬂIKf;. with |X| =y and {x,:o <y} be an enumeration of X.
By induction we define {s,|a < > such that

(@) x, =s, e X
(b) f(s.) # /(sy) for any § <.

Suppose (sp|f < o) is defined. There is a € Z.A such that {f(sp):f <a}N
a= . Since f is I ;-fine, {xeZi:ac f(x)} el ;. Choose s, from XN
XN{xePir:ac f(x)} # .

Now {s,: o <y} is a desired set.

(2) We define an I, ;-fine f : Z.A — 2. such that for any X e (I, ; [ 4)"
f 1 X is not injective. Pick a B = {b::¢ <y} e[, N2(4).
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By induction on & <y we define {(x;, ys)|<& < yp) such that

(a) xe # yeebe 4
(b) xg,ye ¢ {xr: (<& U{y (<&}

Suppose <(xz, yo) | < &> is defined. Since {x;:{<}U{y:{<&lel,,
and b;NA ell,, we can find x; # ye eb:NA\{x;: < EYU{ye: {< &}

Set C={xe:&<yU{ys: &<y} Then Ce2(4)NI],.

Let £ 1 (2\C) = Id | (2/\C) and for each ¢ < 7 f(x) = f(ve) > x:U .

f is I y-fine since f(x) > x for every x € Z.A.

Suppose that X € (I, | A4)". Since Z.A\X €1, | A, we have an a € . such
that ANaN(ZJ\X) = . For some & <y, a < be. bAfﬂA N(ZA\X) = & hence
bAgﬂACX. Now x¢, y: € X and f(xe) = f(pe). O

REMARK 2.15. Usuba proved more general fact that / is a nowhere Q-point
if non(7) = cof(I), where non(/) = min{|X|: X eI} and cof(/) = min{|W]|:
WcIAVXeldYeW X c Y}. It is easily seen that non(I, ;) = cof (I ;).

3. Weakly Normal Ideals and Selectivity

For an ideal I on x the weak normality coincides with the normality, and the
sup-function is injective on r. This implies the selectivity of normal ideals and the
fact an ideal extending the non-stationary ideal is a Q-point.

In the following we state a %4 version. The proof is essentially by Menas’ [4]
for fine ultrafilters over Z.A.

DeriNiTION 3.1, Let J, = {X =« Z.4:3f : X — A, regressive, Vy < A{xe X:
S(x) <ytel;}

Shioya [6] proved (3) and (4) in the follwoing.

Fact 3.2. (1) J,, is an ideal and {x : sup(x) € x} € J,,.
(2) Jw =1L, if and only if cof(A) < k.
(3) Jy is the minimal weakly normal ideal over Z.A if cof(1) = k.

(4) The minimal weakly normal ideal over P.J is a proper extension of J,, if
cof (1) > k.

Lemma 3.3. Let cof(A) =k, J,, = I be an ideal over P4, [ I -fine, and
f12y) € L.y for all y < A. Then there is S € I'* such that sup(x) = sup(y) whenever

S(x)=71(y) and {x,y} = S.
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Proor. Otherwise, X = {x e Z.A: Iy, (sup(yy) < sup(x) A f(x) = f(y))} €
I*. Since X ¢ J,,, we have a y < A such that ¥ = {x e X : sup(y,) <y} € [ ,. Let
Z ={yc:xe Y} Since [ is I ;-fine, f[Y] €L} ,. However f[Y] = f[Z] = f[Z:)]
€ I, ;. Contradiction. ' O

It might be better to assume f[X] eI, ; for all X €I, ;, which implies f[Z.y] €
I ; for all y < A. Other choices are y<* < 4 or the sup function is < # to one for
some # < A.

By the same argument we have the following theorem, which seems the most
natural Z,/ version of the fact that an ideal extension of NS, is a Q-point:

THEOREM 3.4. Let cof(l) > k.

(1) Suppose that J,, = I and sup | X is injective for some X € I*. Then I is a
Q-point.

(2) If I is a weakly normal ideal over #.A and sup | X is injective for some
X eI*, then I is selective.

REmARK 3.5. Usuba proved several facts for weak normality and selectivity.
For instances:

(1) Suppose that A is regular. Then, weakly normal prime ideal 7 is selective
if and only if sup [ X is injective for some X e I*.

(2) For new, #.u™ carries a normal selective ideal I such that sup [ X is
not injective for any X e I*.

(3) NSy« is not a Q-point for any n € w.

DErFINITION 3.6. Two ideals I and J are coherent if there is an ideal K such
that /UJ < K. This is equivalent to I*NJ = ¢J.

In [1] the coherence with the non-stationary ideal NS, is mentioned. We in-
vestigate that with J,,.

DrriNiTION 3.7. For an ideal I, let R(I)={f:X — #.A: [ is Ifine and
XerI*}. For f,ge R(I), f <g if {x:sup(f(x)) <sup(g(x))} el".

Clearly < is well-founded.

LemmA 3.8.  Suppose that cof (1) > «, f is <-minimal in R(I), and sup(f(x))
¢ f(x) for any x e dom(f). For every A€ f.(I)" and regressive function g on A,
there is a y < A such that {xe A :g(x) <y} e f.()".
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Proor. Let A€ f.(I)", g be regressive on A, and X = f~'[4]. Since
sup(y) ¢ y for any ye f[X], g(») <sup(p) for every ye f[X]. Define h: X —
P4 by h(x) = f(x)Ng(f(x)). Then sup(h(x)) < sup(f(x)) for all xe X. Hence
h is not I-fine, and we have a y < A such that ¥ ={xe X : y ¢ i(x)} € I*. Since
f is I-fine, we may assume y € f(x) for all xe Y. Thus, g(f(x)) <y for every
xeY. Now {x:g(x)<y}efi(I)". O

DeFmNITION 3.9. A function f : 2.4 — Z.A is said to be incompressible for
I if f e R(I) and <-minimal in R(I | 4) for all Ael*.

ProposiTION 3.10.  If f: P4 — P A is incompressible for I and sup(f(x)) ¢
f(x) for any x € P.A, then f.(I|A) is weakly normal for every Ael™.

PrROOF. Suppose that A el and / is regressive on X e f,(IA)". Set
Y=f"!'X]NA Then YelI* and Xe f,(I|Y)". Since f is <-minimal in
RINY), {xeX:h(x)<y}efi(I|Y)" for some y < A by the previous lemma.
Clearly £,(I1Y)" < £.(I14)". O

DerFINITION 3.11. For an ideal I over Z.A, let R'(I)={feR(I):Vy<
A{x s sup(f(x)) <y} e L)}

Facr 3.12. If f is L ,-fine, then f e R'(I).

Fact 3.13.  For every ideal I over 2.1, the following are equivalent.

(1) I and J,, are coherent.

(2) For every Ael* and regressive h on A, there is y <A such that
{xed:h(x)<ytell,

LemMa 3.14.  Let cof(Z) >k and f e R'(I).

(1) If f is L ,-fine, <-minimal in R'(I), and {x : sup(f(x)) ¢ f(x)} e I*, then
fi(I) and J,, are coherent.

(2) If f.(I) and J,, are coherent and f[X] €l , for all X €1, ;, then f is <-
minimal in R'(I).

ProOF. (1) Suppose that X € f.(I)* and ¢ is regressive on X. For xe
7YX, let h(x) = f(x)Ng(f(x)). We may assume sup(f(x)) ¢ f(x) for any
xe f7'X]. Hence {x:sup(h(x)) <sup(f(x))} eI*. Thus, for some y < i, ¥ =
{x:sup(h(x)) <y} ell,. For any xe Y, y+1¢ f(x)Ng(f(x)). Since f is I, ;-
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fine, {x:y+1¢ f(x)} €l ;. S0, Z={xeY :g(f(x) <y} ell, Now f[Z] eI},
since f is I ;-fine. For every x e f[Z], g(x) <.

(2) Suppose that 4 eI*, g€ R(I), and sup(g(x)) < sup(f(x)) for all xe 4.
For each y e f[A], choose x, € 4 such that y = f(x,) and set A(y) = sup(g(x,)).
Then h(y) <sup(y) for all ye f[A4]. Since f.(I) is coherent with J, and
flA] e f.(I)", {y e flA] : h(y) <y} eI, for some y < 1. By our assumption, we
have {x, :sup(g(x,)) <y} el,. Hence g ¢ R'(I). O

Remark 3.15. (1) If J, and fi.(I) are coherent, then {x:sup(f(x))¢
S(x)}yel”
(2) If J,, < fi(I), then {x:sup(f(x)) ¢ f(x)}el*.

DerFINiTION 3.16. A function f: Z.4 — Z . is said to be weakly incom-
pressible for I if f e R'(I) and <-minimal in R'({ [ A) for all A el™.

We get a result analogous to the previous lemma.

ProposiTION 3.17.  Let cof (1) >« and f e R'(I).

(1) If f is 1. ;-fine, weakly incompressible, and {x:sup(f(x)) ¢ f(x)} eI",
then J,, < f.(I).

Q) If Jw < foI) and f[X] €l , for all X €1, ,;, then f is weakly incom-
pressible for I.

Proor. (1) Let X e f.(I)". Then, f~'[X]elI® and f is <-minimal in
R'(I'l f7'[X)). Since X € £.(I | f~'[X])", X ¢J,, by the above lemma.
(2) Clear by the above lemma. O

DErFINITION 3.18. An ideal I over %4 is a weak P-point if for every X e I'
and I | X-fine f there is ¥ € 2(X)NI" such that f is L., | Y-fine.

ProposITION 3.19.  Suppose that cof (1) = x, I is a weak P-point, f[X]€]l,
SJor every X el.;, and {x:sup(f(x))¢ f(x)}elI*. Then the following are
equivalent.

(1) f is incompressible for I.

(2) fi(I) is weakly normal.

(3) Jy = fu(I).

(4) f is weakly incompressible for I.
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Proor. By the previous argument we only have to show (4) — (1). Let
Aelt, ge R(IA), and sup(g(x)) < sup(f(x)) for all x € 4. Since I is a weak
P-point, we can find a Be #(4) NIT such that for every y < 4, {x e B:y ¢ g(x)}
€l ,. Now ge R'(I | B) and g < f in R'(I | B), which contradicts to f is weakly
incompressible. ]
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