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APERIODIC HOMEOMORPHISMS APPROXIMATE CHAIN

MIXING ENDOMORPHISMS ON THE CANTOR SET

By

Takashi Shimomura

Abstract. Let f be a chain mixing continuous onto mapping

from the Cantor set onto itself. Let g be an aperiodic homeo-

morphism on the Cantor set. We show that homeomorphisms that

are topologically conjugate to g approximate f in the topology

of uniform convergence if a trivial necessary condition on periodic

points is satisfied. In particular, let f be a chain mixing con-

tinuous onto mapping from the Cantor set onto itself with a fixed

point and g, an aperiodic homeomorphism on the Cantor set. Then,

homeomorphisms that are topologically conjugate to g approx-

imate f .

1. Introduction

Let ðX ; dÞ be a compact metric space. Let HþðX Þ be the set of all con-

tinuous mappings from X onto itself. In this manuscript, the pair ðX ; f Þ
( f A HþðXÞ) is called a topological dynamical system. We mainly consider the

case in which X is homeomorphic to the Cantor set, denoted by C. For any

f ; g A HþðXÞ, we define dð f ; gÞ :¼ supx AX dð f ðxÞ; gðxÞÞ. Then, ðHþðX Þ; dÞ is a

metric space of uniform convergence. Let HðXÞ be the set of all homeomor-

phisms from X onto itself. Let X be homeomorphic to C. SFTðX Þ denotes the

set of all f A HðXÞ that are topologically conjugate to some two-sided subshift

of finite type. T. Kimura [3, Theorem 1] and I [4] have shown that elements

in HðCÞ are approximated by expansive homeomorphisms with the pseudo-

orbit tracing property. SFTðCÞ coincides with the set of all expansive f A HðCÞ
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with the pseudo-orbit tracing property (P. Walters [6, Theorem 1]). Therefore,

SFTðCÞ is dense in HðCÞ. Fix f A HðCÞ. Homeomorphisms that are topolog-

ically conjugate to f will approximate some other homeomorphisms. Let ðX ; f Þ
be a topological dynamical system. x A X is called a periodic point of period n

if f nðxÞ ¼ x. Let PerðX ; f Þ :¼ fn A Zþ j f nðxÞ ¼ x for some x A Xg, where Zþ
denotes the set of all positive integers. Let ðX ; f Þ and ðY ; gÞ be topological

dynamical systems. In this manuscript, a continuous mapping f : Y ! X is said

to be commuting if f � g ¼ f � f holds. We write ðY ; gÞq ðX ; f Þ if there exists a

sequence of homeomorphisms fckgk AZþ
from Y onto X such that ck � g � c�1

k

! f as k ! y. Suppose that ðY ; gÞq ðX ; f Þ and that gn has a fixed point for

some positive integer n. Then, f n must also have a fixed point. Therefore, we

get PerðY ; gÞJPerðX ; f Þ. Let d > 0. A sequence fxigi¼0;1;...; l of elements of X

is a d chain from x0 to xl if dð f ðxiÞ; xiþ1Þ < d for all i ¼ 0; 1; . . . ; l � 1. Then, l

is called the length of the chain. A topological dynamical system ðX ; f Þ is chain

mixing if for every d > 0 and for every pair x; y A X , there exists a positive

integer N such that for all nbN, there exists a d chain from x to y of length

n. Let ðL; sÞ be a two-sided subshift such that L is homeomorphic to C. Let

X be homeomorphic to C and f , a chain mixing element of HþðXÞ. In a

previous paper [5, Theorem 1.1], it was shown that the following conditions are

equivalent:

(1) PerðL; sÞJPerðX ; f Þ;
(2) ðL; sÞq ðX ; f Þ.

Let ðY ; gÞ be a topological dynamical system and n A Zþ. In this manuscript, we

say that g is periodic of period n if gn ¼ idY , where idY denotes the identity

mapping on Y . We say that g is aperiodic if g is not periodic. Suppose that

g A HðY Þ is periodic of period n and that ðY ; gÞq ðX ; f Þ for some f A HþðX Þ.
Then, it is easy to check that f is also periodic of period n. Note that even if g is

aperiodic, all the orbits of g may be periodic. This may happen if g has periodic

points of least period n for infinitely many n A Zþ. In this manuscript, we shall

show the following:

Theorem 1.1. Let X and Y be homeomorphic to C; f A HþðXÞ, chain

mixing; and g A HðY Þ, aperiodic. Then, the following conditions are equivalent:

(1) PerðY ; gÞJPerðX ; f Þ;
(2) ðY ; gÞq ðX ; f Þ.

In the previous theorem, suppose that f has a fixed point. Then, PerðX ; f Þ ¼
Zþ. Therefore, the following corollary is obtained:
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Corollary 1.2. Let X and Y be homeomorphic to C; f A HþðXÞ, chain

mixing; and g A HðY Þ, aperiodic. Suppose that f has a fixed point. Then,

ðY ; gÞq ðX ; f Þ.
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2. Preliminaries

Although many lemmas in this manuscript are listed in [5], we show the

proof here for completeness. A compact metrizable totally disconnected perfect

space is homeomorphic to C. Therefore, any non-empty closed and open subset

of C is homeomorphic to C. Let Z denote the set of all integers. Let V ¼
fv1; v2; . . . ; vng be a finite set of n symbols with discrete topology. Let SðVÞ :¼ V Z

with the product topology. Then, SðVÞ is a compact metrizable totally dis-

connected perfect space; hence, it is homeomorphic to C. We define a

homeomorphism s : SðVÞ ! SðVÞ as

ðsðtÞÞðiÞ ¼ tði þ 1Þ for all i A Z; where t ¼ ðtðiÞÞi AZ A SðVÞ:

The pair ðSðVÞ; sÞ is known as a two-sided full shift of n symbols. If a closed set

LJSðVÞ is invariant under s, i.e. sðLÞ ¼ L, then ðL; sjLÞ is known as a two-

sided subshift. In this manuscript, sjL is abbreviated to s. A finite sequence

u1u2 � � � ul of elements of V is called a word of length l. For a word u of length l

and m A Z, we define the cylinder CmðuÞJL as

CmðuÞ :¼ ft A L j tðmþ j � 1Þ ¼ uj for all 1a ja lg:

Let ðX ; f Þ be a topological dynamical system such that X is homeomorphic

to C. Let U be a finite partition of X by non-empty closed and open sub-

sets. In this manuscript, we consider partitions that are not trivial, i.e., they

consist of more than one element. We define a directed graph G ¼ Gð f ;UÞ as

follows:

(1) G has the set of vertices Vð f ;UÞ ¼ U

(2) G has the set of directed edges Eð f ;UÞJU�U such that

ðU ;U 0Þ A Eð f ;UÞ if and only if f ðUÞVU 0 0q:

Note that all elements of Vð f ;UÞ have at least one outdegree and at least one

indegree. Let G ¼ ðV ;EÞ be a directed graph, where V is a finite set of vertices
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and EJV � V is a set of directed edges. SðGÞ denotes the two-sided subshift

defined as

SðGÞ :¼ ft A V Z j ðtðiÞ; tði þ 1ÞÞ A E for all i A Zg:

A two-sided subshift is said to be of finite type if it is topologically conjugate

to ðSðGÞ; sÞ for some directed graph G. Throughout this manuscript, unless

otherwise stated, we assume that all the vertices appear in some element of SðGÞ,
i.e., all the vertices of G have at least one outdegree and at least one indegree.

For the sake of conciseness, we write ðSð f ;UÞ; sÞ instead of ðSðGð f ;UÞÞ; sÞ. The
next lemma follows:

Lemma 2.1. Let ðX ; f Þ be a topological dynamical system such that X is

homeomorphic to C. Let U be a partition of X by non-empty closed and open

subsets of X. Then, PerðX ; f ÞJPerðSð f ;UÞ; sÞ.

Proof. Let x A X be a periodic point of period n under f . Then, there exists

a sequence fUigi¼0;1;...;n of elements of U such that Un ¼ U0 and f ðUiÞVUiþ1 0

q for all i ¼ 0; 1; . . . ; n� 1. Thus, ðSð f ;UÞ; sÞ has a periodic point of period n.

r

Lemma 2.2 (Lemma 1.3 of R. Bowen [1]). Let G ¼ ðV ;EÞ be a directed

graph. Suppose that every vertex of V has at least one outdegree and at least one

indegree. Then, SðGÞ is topologically mixing if and only if there exists an N A Zþ
such that for any pair of vertices u and v of V , there exists a path from u to v of

length nbN.

Proof. See Lemma 1.3 of R. Bowen [1]. r

Let KJX . The diameter of K is defined as diamðKÞ :¼ supfdðx; yÞ j
x; y A Kg. We define meshðUÞ :¼ maxfdiamðUÞ jU A Ug.

Lemma 2.3. Let ðX ; dÞ be a compact metric space and f : X ! X , a

continuous mapping. Then, for any e > 0, there exists d ¼ dð f ; eÞ > 0 such that

d <
e

2
;

if dðx; yÞa d; then dð f ðxÞ; f ðyÞÞ < e

2
for all x; y A X :
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Proof. This lemma directly follows from the uniform continuity of f .

r

For two directed graphs G ¼ ðV ;EÞ and G 0 ¼ ðV 0;E 0Þ, G is said to be a

subgraph of G 0 if V JV 0 and EJE 0.

Lemma 2.4. Let ðX ; dÞ be a compact metric space; f : X ! X , a continuous

mapping; and e > 0. Let d ¼ dð f ; eÞ be as in lemma 2.3 and U, a finite covering of

X such that meshðUÞ < d. Let g : X ! X be a mapping such that Gðg;UÞ is a

subgraph of Gð f ;UÞ. Then, dð f ; gÞ < e.

Proof. Let x A X . Then, x A U and gðxÞ A U 0 for some U ;U 0 A U. Because

Gðg;UÞ is a subgraph of Gð f ;UÞ, there exists a y A U such that f ðyÞ A U 0.

Therefore, from lemma 2.3, it follows that

dð f ðxÞ; gðxÞÞa dð f ðxÞ; f ðyÞÞ þ dð f ðyÞ; gðxÞÞ < e

2
þ diamðU 0Þ < e: r

From this lemma, the next lemma follows directly.

Lemma 2.5. Let ðX ; dÞ be a compact metric space; f : X ! X , a continuous

mapping; and fUkgk AZþ
, a sequence of coverings of X such that meshðUkÞ ! 0 as

k ! y. Let fgkgk AZþ
be a sequence of mappings from X to X such that Gðgk;UkÞ

is a subgraph of Gð f ;UkÞ for all k. Then, gk ! f as k ! y.

Lemma 2.6. Let ðX1; f1Þ and ðX2; f2Þ be topological dynamical systems such

that both X1 and X2 are homeomorphic to C. Let fUkgk AZþ
be a sequence of finite

partitions by non-empty closed and open subsets of X1 such that meshðUkÞ ! 0

as k ! y. Let fpkgk AZþ
be a sequence of continuous commuting mappings from

X2 to X1. Suppose that for all k A Zþ, pkðX2ÞVU 0q for all U A Uk. Then,

ðX2; f2Þq ðX1; f1Þ.

Proof. Let k A Zþ. Let U A Uk. Because pkðX2ÞVU 0q, p�1
k ðUÞ is a non-

empty closed and open subset of X2. Both p�1
k ðUÞ and U are homeomorphic to

C. Therefore, there exists a homeomorphism ck : X2 ! X1 such that ckðp�1
k ðUÞÞ

¼ U for all U A Uk. Because pk is commuting, pkð f2ðp�1
k ðUÞÞÞVU 0 0q only

if f1ðUÞVU 0 0q. Let gk ¼ ck � f2 � c�1
k . Then, from the construction of ck,

Gðgk;UkÞ is a subgraph of Gð f1;UkÞ. Because k A Zþ is arbitrary, from lemma

2.5, we get the result. r
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Lemma 2.7. Let ðX1; f1Þ and ðX2; f2Þ be topological dynamical systems.

Let ðYk; gkÞ ðk A ZþÞ be a sequence of topological dynamical systems. Suppose

that there exists a sequence of homeomorphisms ck : Yk ! X1 such that

ck � gk � c�1
k ! f1 as k ! y and that ðX2; f2Þq ðYk; gkÞ for all k A Zþ. Then,

ðX2; f2Þq ðX1; f1Þ.

Proof. Let e > 0. There exists an N A Zþ such that dðck � gk � c�1
k ; f1Þ <

e=2 for all k > N. Fix k > N. Let d > 0 be such that if dðy; y 0Þ < d, then

dðckðyÞ;ckðy 0ÞÞ < e=2. Because ðX2; f2Þq ðYk; gkÞ, there exists a homeomor-

phism c 0 : X2 ! Yk such that dðc 0 � f2 � c 0�1; gkÞ < d. Then, we find that

dððck � c 0Þ � f2 � ðck � c 0Þ�1
; f1Þ < dðck � ðc 0 � f2 � c 0�1Þ � c�1

k ; ck � gk � c�1
k Þ þ

dðck � gk � c�1
k ; f1Þ < e. r

Lemma 2.8. Let G ¼ ðV ;EÞ be a directed graph. Suppose that every vertex

of G has at least one outdegree and at least one indegree. Suppose that SðGÞ is

topologically mixing and that SðGÞ is not a single point. Then, SðGÞ is homeo-

morphic to C.

Proof. Suppose that SðGÞ is topologically mixing. Then, by lemma 2.2,

there exists an N A Zþ such that for any pair u and v of vertices of G, there exists

a path from u to v of length n for all nbN. Then, it is easy to check that every

point t A SðGÞ is not isolated. Hence, SðGÞ is homeomorphic to C. r

Lemma 2.9 (Krieger’s Marker Lemma, (2.2) of M. Boyle [2]). Let ðL; sÞ be

a two-sided subshift. Given k > N > 1, there exists a closed and open set F such

that

(1) the sets s lðFÞ, 0a l < N, are disjoint, and

(2) if t A L and t�k � � � tk is not a j-periodic word for any j < N, then

t A 6
�N<l<N

s lðFÞ:

Proof. See M. Boyle [2, (2.2)]. r

The next lemma is essentially a part of the proof of the extension lemma

given by M. Boyle [2, (2.4)]. Although the next lemma is slightly strengthened

from Lemma 3.4 in [5], the proof is quite similar. In spite of the similarlity of the

proof, we show all of the proof here again for completeness.
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Lemma 2.10. Let ðS; sÞ be a mixing two-sided subshift of finite type. Let W

be a finite set of words that appear in some elements of S. Then, there exists an

M A Zþ that satisfies the following condition:
� if ðL; sÞ is a two-sided subshift such that PerðL; sÞJPerðS; sÞ and L has

either a non-periodic orbit or a periodic orbit of least period greater than

M, then there exists a continuous shift-commuting mapping p : L ! S such

that there exists a t A pðLÞ in which all words in W appear as segments

of t.

Proof. S is isomorphic to SðGÞ for some directed graph G ¼ ðV ;EÞ.
Therefore, without loss of generality, we assume that S ¼ SðGÞ. Because ðSðGÞ; sÞ
is a mixing subshift of finite type, there exists an n > 0 such that for every

pair of elements v; v 0 A V and every mb n, there exists a word of the form

v � � � v 0 of length m. In addition, there exists an element t A SðGÞ such that t

contains all words of W as segments. Let w0 be a segment of t that contains

all words of W . Let n0 be the length of the word w0. Let N ¼ 2nþ n0. If

v; v 0 A V and mbN, then there exists a word of the form v � � �w0 � � � v 0 of length
m. Let k > 2N. Let M > N. Note that N depends only on SðGÞ and W .

Therefore, M also depends only on SðGÞ and W . Let L be a two-sided subshift

such that PerðL; sÞJ PerðS; sÞ and L has either a non-periodic orbit or a

periodic orbit of least period greater than M. Using Krieger’s marker lemma,

there exists a closed and open subset F JL such that the following conditions

hold:

(1) the sets s lðFÞ, 0a l < N, are disjoint;

(2) if t A L and t B 6�N<l<N
s lðFÞ, then tð�kÞ � � � tðkÞ is a j-periodic word

for some j < N;

(3) the number k is large enough to ensure that if j is less than N and a

j-periodic word of length 2k þ 1 occurs in some element of L, then that

word defines a j-periodic orbit that actually occurs in L.

The existence of k follows from the compactness of L. Let t A L. If s iðtÞ A F ,

then we mark t at position i. There exists a large number L > 0 such that whether

s iðtÞ A F is determined only by the 2Lþ 1 block tði � LÞ � � � tði þ LÞ. If t is

marked at position i, then t is unmarked for position l with i < l < i þN.

Suppose that tðiÞ � � � tði 0Þ is a segment of t such that t is marked at i and i 0 and t

is unmarked at l for all i < l < i 0. Then, i 0 � ibN. If t A 6�N<l<N
s lðFÞ, then t

is marked at some i where �N < i < N. Suppose that tð�N þ 1Þ � � � tðN � 1Þ is

an unmarked segment. Then, t B 6�N<l<N
s lðFÞ, and according to condition (2),

tð�kÞ � � � tðkÞ is a j-periodic word for some j < N. Suppose that tðiÞ � � � tði 0Þ is an
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unmarked segment of length at least 2N � 1, i.e., i 0 � ib 2N � 2. Then, for each

l with i þN � 1a la i 0 �N þ 1, tðl � kÞ � � � tðl þ kÞ is a j-periodic word for

some j < N. Therefore, it is easy to check that tði þN � 1� kÞ � � � tði 0 �N þ
1þ kÞ is a j-periodic word for some j < N. In this proof, we call a maximal

unmarked segment an interval. Let t A L. Let � � � tðiÞ be a left infinite interval.

Then, it is j-periodic for some j < N. Similarly, a right infinite interval tðiÞ � � � is
j-periodic for some j < N. If t itself is an interval, then it is a periodic point with

period j < N. If an interval is finite, then it has a length of at least N � 1.

We call intervals of length less than 2N � 1 as short intervals. We call intervals of

length greater than or equal to 2N � 1 as long intervals. If t has a long interval

tðiÞ � � � tði 0Þ, then tði þN � 1� kÞ � � � tði 0 �N þ 1þ kÞ is j-periodic for some

j < N. We have to construct a shift-commuting mapping f : L ! S. Let V 0 be

the set of symbols of L. Let F : V 0 ! V be an arbitrary mapping. Let t A L.

Suppose that t is marked at i. Then, we let ðfðtÞÞðiÞ be FðtðiÞÞ. We map periodic

points of period j < N to periodic points of S. Then, we construct a coding of

fðtÞ in three parts. For any ðv; v 0; lÞ A V � V � fN � 1;N;N þ 1; . . . ; 2N � 2g, we
choose a word Cðv; v 0; lÞ in G of length l such that the word of the form

vCðv; v 0; lÞv 0 is a path in G.

(A) Coding for short interval: Let tðiÞ � � � tði 0Þ be a short interval. Then, t is

marked at i � 1 and i 0 þ 1. We have already defined a code for positions i � 1

and i 0 þ 1 as Fðtði � 1ÞÞ and Fðtði 0 þ 1ÞÞ, respectively. The coding for fi; i þ 1;

i þ 2; . . . ; i 0g is defined by the path CðFðtði � 1ÞÞ;Fðtði 0 þ 1ÞÞ; i 0 � i þ 1Þ.
(B) Coding for periodic segment: For an infinite or long interval, there exists

a corresponding periodic point of L. The periodic points of L are already

mapped to periodic points of S. Therefore, an infinite or long periodic segment

can be mapped to a naturally corresponding periodic segment.

(C) Coding for transition part: To consider a transition segment, let

tðiÞ � � � tði 0Þ be a long interval. Then, tði � 1Þ has already been mapped to

Fðtði � 1ÞÞ, and tði þN � 1Þ is mapped according to periodic points. Assume that

tði þN � 1Þ is mapped to v0. The segment tði � 1Þ � � � tði þN � 1Þ has length

N þ 1. We map the segment tðiÞ � � � tði þN � 2Þ to CðFðtði � 1ÞÞ; v0;N � 1Þ. In

the same manner, the transition coding of the right-hand side of a long interval is

defined. Similarly, the transition coding of the left or right infinite interval is

defined.

It is easy to check that there exists a large number L 0 > 0 such that the

coding of ðfðtÞÞðiÞ is determined only by the block tði � L 0Þ � � � tði þ L 0Þ.
Therefore, f : L ! S is continuous. Because L has either a t A L, which is not a

periodic point, or a t 0 A L, which is a periodic point of least period greater than
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M, there appears a short interval or transition segment in some elements of L. In

the above coding, we can take C such that both short intervals and transition

segments are mapped to words that involve w0. r

3. Proof of the Main Result

Lemma 3.1. Let X be homeomorphic to C and f , a chain mixing element

of HþðXÞ. Let fWkgk AZþ
be a sequence of non-trivial finite partitions by non-

empty closed and open subsets of X such that meshðWkÞ ! 0 as k ! y. Then,

there exists a sequence fckgk AZþ
of homeomorphisms from Sð f ;WkÞ to X such

that ck � s � c�1
k ! f as k ! y. Furthermore, if f is chain mixing, then all

ðSð f ;WkÞ; sÞ ðk A ZþÞ are mixing.

Proof. Consider a sequence fWkgk AZþ
of non-trivial partitions of X by

non-empty closed and open subsets such that meshðWkÞ ! 0 as k ! y. Assume

that k A Zþ. Let Gk ¼ Gð f ;WkÞ. Let d > 0 be such that if x; x 0 A X satisfy

dðx; x 0Þ < d, then both x and x 0 are contained in the same element of Wk. Let

fx0; x1g be a d chain. Let U ;U 0 A Wk be such that x0 A U and x1 A U 0. Then,

f ðUÞVU 0 0q. Therefore, ðU ;U 0Þ is an edge of Gk. Let U ;V A Wk. Let x A U

and y A V . Because f is chain mixing, there exists an N > 0 such that for every

nbN, there exists a d chain from x to y of length n. Therefore, for every nbN,

there exists a path in Gk from U to V of length n. From lemma 2.2, ðSðGkÞ; sÞ is
topologically mixing. By lemma 2.8, SðGkÞ is homeomorphic to C. Therefore,

there exists a homeomorphism ck : SðGkÞ ! X such that for any vertex u of Gk,

ckðC0ðuÞÞ ¼ u. Let gk ¼ ck � s � c�1
k . Then, by construction, we obtain Gðgk;UkÞ

¼ Gð f ;UkÞ. Because meshðUkÞ ! 0 as k ! y, we conclude that gk ! f as

k ! y by lemma 2.5. r

Proof of Theorem 1.1

Proof. Let X and Y be homeomorphic to C. First, suppose that ðY ; gÞq
ðX ; f Þ. Then, it is easy to see that PerðY ; gÞJPerðX ; f Þ. Conversely, suppose

that f A HþðXÞ is chain mixing; g A HðY Þ, aperiodic; and that PerðY ; gÞJ
PerðX ; f Þ. Let fWigi AZþ

be a sequence of non-trivial finite partitions by non-

empty closed and open subsets of X such that meshðWiÞ ! 0 as i ! y. By

lemma 3.1, there exists a sequence of homeomorphisms ci : Sð f ;WiÞ ! X such

that ci � s � c�1
i ! f as i ! y and that all ðSð f ;WiÞ; sÞ ði A ZþÞ are mixing.

Fix i A Zþ. Let S ¼ Sð f ;WiÞ. Let fUkgk AZþ
be a sequence of finite partitions

181Aperiodic homeomorphisms approximate



of S by non-empty closed and open subsets. Let Uk ¼ fUk; j : 1a ja nkg for

k A Zþ. Then, there exists a sequence uk; j ðk A Zþ; 1a ja nkÞ of words and

a sequence mðk; jÞ ð1a ja nkÞ of integers such that the following condition is

satisfied:

Cmðk; jÞðuk; jÞJUk; j ðk A Zþ; 1a ja nkÞ:

Fix k A Zþ. Let W ¼ fuk; j j 1a ja nkg. We shall show the following:

(1) there exists a continuous commuting mapping fk : Y ! S such that

fkðY Þ contains an element t A S that contains all words of W .

Then, fkðYÞVU 0q for all U A Uk. Because k A Zþ is arbitrary, we conclude

that ðY ; gÞqS by lemma 2.6. Then, by lemma 3.1 and lemma 2.7, we can

conclude that ðY ; gÞq ðX ; f Þ.
Let M be a positive integer that satisfies the condition in lemma 2.10. Let

V be a partition of Y by non-empty closed and open subsets. Then, for each

y A Y , there exists a unique ty A Sðg;VÞ such that glðyÞ A tyðlÞ A V for all l A Z.

Therefore, there exists a commuting mapping fV : Y ! Sðg;VÞ such that

fVðyÞ ¼ ty for all y A Y . Because all elements of V are open, it is easy to see

that fV is continuous. Let L ¼ fVðY Þ. Then, L is a two-sided subshift. Because

S is mixing, there exists an m A Zþ such that for all integer nbm, there exists

a periodic point tn A S of period n. If V is su‰ciently fine, then the period

n A PerðSðg;VÞ; sÞ, where n < m, has a real periodic point of ðY ; gÞ of period n.

Therefore, because PerðY ; gÞJPerðX ; f Þ, we get PerðSðg;VÞ; sÞJPerðS; sÞ for

all su‰ciently fine V. Let M > maxfm;Mg be an arbitrary positive integer.

Because g is aperiodic, if V is su‰ciently fine, then L is not a set of periodic

points of period less than M. Therefore, by lemma 2.10, there exists a continuous

commuting mapping pk : L ! S such that pkðLÞ contains an element that

contains all words of W . Finally, let fk ¼ pk � fV; this concludes the proof.

r
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