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ON THE QUASI-IRREDUCIBILITY AND COMPLETE
QUASI-REDUCIBILITY OF SOME REDUCTIVE
PREHOMOGENEOUS VECTOR SPACES

By

Michio HamMADA

Abstract. In this paper, we investigate the Q-irreducibility and
complete Q-reducibility of prehomogeneous vector spaces and classify
such prehomogeneous vector spaces in some cases.

Introduction

First we recall the definition and some basic facts about prehomogeneous
vector spaces. For the detail, see [K2]. Let p be a rational representation of an
algebraic group G on a finite-dimensional vector space ' where everything is
defined over the complex number field C. If ' has a Zariski-dense G-orbit O, the
triplet (G, p, V) is called a prehomogeneous vector space (abbrev. PV). A non-
zero rational function f(x) is called a relative invariant if there exists a char-
acter y : G — GL(1) satisfying f(p(g)x) = x(g)f(x) for all g e G. Then we can
define the map ¢, = grad log f : O — V* which satisfies ¢,(p(9)x) = p*(9)9;(x)
(g€ G,x€0). If g, is dominant, i.e., the image ¢,(O) is a Zariski-dense orbit of
the dual triplet (G, p*, V"), we call such f* a non-degenerate relative invariant. A
relative invariant f of degree > 2 is non-degenerate if and only if its Hessian

N . o . . :
det ( . é[x) is not identically zero. A PV (G, p, V) is called regular if there exists
iG]

a non-degenerate relative invariant. When G is reductive, then (G, p, V) is regular
if and only if a generic isotropy subgroup G, = {ge G| p(9)x =x} (x€O) is
reductive.

For a PV (G,p, V), there are relative invariants fi(x),..., fy(x) which are
algebraically independent irreducible polynomials, and any relative invariant
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f(x) can be written uniquely as f(x) = cfi(x)"™ -+ fy(x)"™ with ¢e C* and
(my---my) e ZV (see [K2, Theorem 2.9]). We call fi(x),..., fy(x) the basic
relative invariants of (G, p, V) which are unique up to a constant multiple. For
G= GL(I)’ x H with a semisimple algebraic group H, let ¢: G — GL(l)/ be
the projection. Assume that ¢(G,) = GL(1)" for a generic isotropy subgroup G,.
Then the number N of the basic relative invariants is given by N =1/—r (cf.
[K2, Proposition 2.12]).

H. Rubenthaler introduced the following notion of quasi-irreducibility and
complete quasi-reducibility of reductive regular prehomogeneous vector spaces in
[R2].

A reductive regular PV (G,p,V) is called quasi-irreducible (abbrev.
Q-irreducible) if for any proper invariant subspace U < V, the PV (G,p, U) is
not regular.

A reductive regular PV with only one relative invariant is always
Q-irreducible. In particular an irreducible regular PV is always Q-irreducible.

A reductive regular PV (G, p, V) is called completely quasi-reducible (abbrev.
completely Q-reducible) if there exists a decomposition p = @1{1:1 pi V= @;’:1 Vi
where the V;’s are G-invariant subspaces such that (G, p;, V;) is Q-irreducible. The
spaces V; are then called a Q-irreducible component of (G, p, V). In this paper,
we assume that n > 2 for the completely Q-reducible PV to distinguish from the
Q-irreducible PV.

In this paper, we give the construction of Q-irreducible and completely
Q-reducible PV’s which are called “general type”. Then we give the list of the
non-general type of Q-irreducible and completely Q-reducible PV’s among simple
PV’s, 2-simple PV’s of type I, 3-simple PV’s of nontrivial type, and PV’s which
appear in the M. Sato’s classification. We give the proof only for the difficult
cases. Note that (G,p, V) is not Q-irreducible nor completely Q-reducible if and
only if there exists some decomposition p = p; @ p, and V = V| @ V, such that
(G,p, V1) is a regular PV and (G, p,, V) is a non-regular PV.

NotaTioN. We denote by M (m,n) (resp. M(n)) the totality of m x n (resp.
n x n) matrices. For the classical algebraic groups, we denote by GL(n) (resp.
SL(n), Sp(n), SO(n), Spin(n)) the general linear group (resp. the special linear
group, the symplectic group, the special orthogonal group, the spin group).

For the exceptional simple algebraic group of rank 2, we denote by (G»)
instead of G, to distinguish from the second group in G; (i=1,...,m). We de-
note by E; (resp. F4) the exceptional simple algebraic group of rank i (6 <i < 8)
(resp. 4).
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We denote by A; the standard representation of GL(n) on C". For a
subgroup H of GL(n), the restriction A;|, (= the inclusion H — GL(n)) is also
simply denoted by A;. More generally, Ay (k =1,...,r) denotes the fundamental
irreducible representation of a simple algebraic group of rank r.

Since ® and @ are sometimes difficult to distinguish, we use the notation
+ for the direct sum @. Let p;: G; — GL,, be a rational representation of
an algebraic group G; (i=1,...,m). Then we denote the representation p =
PRI @)+ +(1® - ®1®p,) of G x---X Gy, by p,E---Fp,,

In general, we denote by p* the dual representation of a rational repre-
sentation p. We denote by V(n) an n-dimensional vector space in general. If V' (n)
and V(n)" appear at the same time, V(n)" denotes the dual space of V(n).

1. Q-irreducible and Completely Q-reducible PV’s of General Type

First recall the castling transformation. For m > n, a triplet (G x GL(n),
PROAL,V(m)®V(n) is a (resp. regular) PV if and only if a triplet
(Gx GL(m—n),p* @ Ay, V(m)" ® V(m—n)) is a (resp. regular) PV (See [K2],
[SK]). In this case, one is called the castling transform of the other. Their generic
isotropy subgroups are isomorphic and the number of relative invariants are the
same.

If m < n, a triplet (G x GL(n),p ® A1, V(m) ® V(n)) is always a non-regular
PV for any (G,p, V(m)). We call such a triplet a non-regular trivial PV.

If m =n, a triplet (G x GL(n),p ® Ay, V(m) ® V(n)) is always a regular PV
for any (G,p, V(m)). We call such a triplet a regular trivial PV.

THEOREM 1.1. Let (G,p,V) be any reductive regular PV. Assume that
P=p® - ®@p, V=V1@®--®V, (I=2) with dim V; >2 where each p;
is irreducible (i=1,...,1). Put M =dim Vi +---+dim V; — 1. Then a triplet
(GXxGL(M), py @A+ +p @A, VMMOV(M)+---+V,®V(M)) is a
Q-irreducible PV.

Proor. Since a triplet (G x GL(1),p @A+ +p, @A, V1 ®V(1)+
<+ V3 ® V(1)) is a reductive regular PV, its castling transform (G x GL(M),
POAI+ 4+ QALVIQV(M)+---+V,®V(M)) is also a reductive reg-
ular PV. For any proper subset {ij,...,i} of {1,...,/}, we have dim V;; +---+
dim V;, < M. Hence (G x GL(M),p; @ A1+ ---+p, @AV, @ V(M) +-- -+
Vi, ® V(M)) is a non-regular trivial PV. This implies that a triplet (G x GL(M),
PLOA+ - +p @ALVIQV(M)+ -+ V;®V(M)) is a Q-irreducible PV.

|
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DrrFINITION 1.2, We call a regular PV (G, p, @ - - @ p,, V(n) ®--- @ V(n,))
a Q-irreducible PV of general type if there exist my,...,m, such that (G,p,, V(n;))
~(H; xGLm +---+m—1),0, A1, V(m;)) ® V(my + -+ - +m, — 1)) where o;
is an irreducible representation of H; of the reductive subgroup of G
(i=1,...,r). Then (G,p,®---®p,,V(n) ®---® V(n,)) is Q-irreducible. It is
not reduced because by the castling trasformation the dimension of its repre-
sentation space can be reduced. However this castling transform may not be
Q-irreducible.

ExampLE 1.3. By [KKIY], (GL(4) x GL(2),A ® A1 + A1 ® A, V(6) ®
V(2)+V(4)® V(2)) is a regular PV which has 2 basic relative invariants.
For their explicit form, see [KKS; Theorem 5.4]. This PV is not Q-irreducible
nor completely Q-reducible. However by Theorem 1.1, its castling transform
+V@®V(2)® V(19)) is a Q-irreducible PV of general type. Since the number
of the basic relative invariants does not change under the castling transforma-
tions, this PV has also the 2 basic relative invariants.

ExampLE 1.4. Let (Gj,p;, Vi) be an irreducible regular PV (i=1,...,])
with dim 7; >2 and /> 2. Then (G, x ---x G, pyH---Hp, V1®---@V)) is
a reductive regular PV, and ((G) x---x G)) x GL(M),(p, B---Hp;) ® A,
M@ dV)®V(M)) with M =dim ¥V} +---+dim V; — 1 is a Q-irreducible
PV of general type. This PV has / irreducible relative invariants.

For example, (GL(2) x GL(6) x GL(23),3A1 ® 1@ A1+ 1 @ A3 @ Ay, V(4)
® V(23) + V(20) ® V(23)) is a Q-irreducible PV of general type which has 2
irreducile relative invariants.

DermNiTION 1.5, For any PV (Gup, Vi) (i=1,...,1), the triplet
(Gi X X G,pyH-Hpe, M@ ® V) is a PV. This is called the direct
sum of (Gi,p;, Vi) (i=1,...,]), and we denote it by @il(Gi,pi, V). If each
(Gi,p;, Vi) (i=1,...,]) is a regular PV, then its direct sum is also a regular
PV (See Proposition 2.13 in [R2]). In particular, if (G, p;, Vi) (i=1,...,])
are Q-irreducible, then its direct sum (—B;(Gi,pi, V:) is always completely
Q-reducible.

We shall give another construction of completely Q-reducible PV’s.

ProposITION 1.6.  The following assertions are equivalent.
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1. (GL(1)> X G, p, + py, V(my) + V(my)) is a regular PV where GL(1)* acts
on each irreducible component as a scalar multiplication.

2. (GXxGL(m; —1)x GL(1),p; @ A1 ® 1 +p, @ L @A, V(my)" @ V(m — 1)
+ V(my)) is a regular PV.

3. (G X GL(m1 — 1) X GL(le — 1), pl* A ®1 +p; ®1 @A], V(ml)* ®
V(im — 1)+ V()" @ V(my — 1)) is a regular PV.

Proor. It is enough to prove the equivalence of 1 and 2. Let H be

a generic isotropy subgroup of (G,p,, V(mz)). Then, 1 is PV-equivalent to
(H,pily, V(m1)), and its castling transform is (H x GL(m; —1),pf ® Ay,
V(m)" ® V(m; — 1)) which is PV-equivalent to 2. Note that the regularity
does not change under the castling transformations (see [KKTI; Theorem 1.30]).
|

By Theorem 1.1 and Proposition 1.6, we can construct a completely
Q-reducible PV.

We call a completely Q-reducible PV (G,01 ®--- @ a,, V(t;) ®--- ® V(1))
of “general type” if at least one of Q-irreducible components (G,a;, V(#;)) is of
general type.

ExampLE 1.7. By [KKIY], a triplet (GL(1)* x Spin(7) x SL(2), the vector
rep. ®A; + 1 ® A1+ the spin rep. ®1, V(7)) ® V(2) + V(2) + V(8)) is a regular
PV with the 3 basic relative invariants. Here GL(1)® acts on each irreducible
component as scalar multiplications. This is not Q-irreducible nor completely
Q-reducible. Put p; = the vector rep. ®A; + 1 ® Ay, and p, = the spin rep. ®1.
Then by Proposition 1.6, a triplet (GL(1)* x Spin(7) x SL(2) x GL(15), the vector
rep. AT @ A1 +1®A; ® Ay + the spin rep. 1R 1, V(7)) ® V(2)® V(15)+
V(2)® V(15)+ V(8)) is a regular PV. By Theorem 1.1, (GL(1)* x Spin(7) x
SL(2) x GL(15), the vector rep. AT @ A1+ 1R AT ® AL, V(7)) ® V(2) ® V(15)
+ V' (2) ® V(15)) is a Q-irreducible PV. Since (GL(1) x Spin(7) x SL(2) x GL(15),
the spin rep. ®1 ® 1, V(8)) is also Q-irreducible, a triplet (GL(1)* x Spin(7) x
SL(2) x GL(15), the vector rep. ®A; ® A; + 1 ® A} ® A + the spin rep. ®1 ® 1,
VT @V2)@ V(1S5 +V(2)® V(15 + V(8)) is a completely Q-reducible PV
with 3 irreducible relative invariants. Note that (Spin(7), the vector rep.) and
(SL(2),A,) are self-dual.

ExampLE 1.8. Assume that (G,p, @ - - @ p, Do @ - - Da, V(im) D - D
Vim)® V() ®---@®V(ng)) is a regular PV where (G,p, ®---®p,, V(m)
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@ --@V(m)) and (G,61 @ - - @5, V() ®---® V(ny)) are regular PV’s and
p; and g; are irreducible with m; > 2, n; >2 and r > 2, s > 2. Here we do not
assume any Q-irreducibility nor complete Q-reducibility. Then by Proposition 1.6,
a triplet (Gx GL(my+---+m,—1)x GL(my +---+n,—1),(pf +---+p)) ®
AMRl+(oi++d)RLIRALV(m) @V (m+---+m—1)+ -+ V(ng)"
®V(m +---+n,—1)) is a regular PV. By the assumption and Theorem 1.1,
both (G x GL(my + -+ +m, = 1), (pf +-+p)) @ A1, V(m) @ V(mi +--+
m—1)+-+Vm) @V +--+m—1) and (G x GL(ny +---+n;— 1),
(@i + +0)@ALVm) @V(m +-+n,— 1)+ +V(n,) @V(m+ -+
ms — 1) are Q-irreducible PV’s. Therefore a triplet (G x GL(m; +---+m, — 1)
XGLm +---+n,—=1), (pi +-+p) QAN Q1L+ (6 +--+ 7)) @1 ® A,
Vim)* @ V(imy +-+m— 1)+ +V(n) @ V(n +---+n;,—1)) is a com-
pletely Q-reducible PV.

2. Simple Q-irreducible and Completely Q-reducible PV’s

In [K3, p93-p97], the list of the simple regular PV’s is given. We shall pick
up the Q-irreducible PV’s and completely Q-reducible PV’s among these 21
regular PV’s.

THEOREM 2.1. The Q-irreducible non-irreducible simple PV's are given in the
following list. The number of basic relative invariants is denoted by N.

1. (GL(1)* x SL(n), Ay + A}, V(n) + V(n)"), (n>2), N=1.

n

—~

GL(1)" x SL(n),A1 +---+ A, V(n)+---+V(n), (n=2), N=1.

GL(1)? x SL2m + 1), Ay + Ay, V(m(2m + 1)) + V(2m + 1)), (m > 1),

1.

GL(I)2 x Spin(10), the even half-spin rep. + the even half-spin rep.,
V(16) + V(16)), N = 1.

5. (GL(1)* x Sp(n), Ay + Ay, V(2n) + V(2n)), N = 1.

b wo
AZ/—\
Il

THEOREM 2.2. The completely Q-reducible simple PV’s are given in the
following list. The number of basic relative invariants is denoted by N.

1. (GL(1)* x SL2m), Ay + A1 +A], V(m@2m—1))+V(2m)+ V(2m)*),
N=2.

2. (GL(1)* x Spin(8), the vector rep. + a half-spin rep., V(8) + V(8)), N = 2.

3. (GL(1)* x Spin(7), the even half-spin rep. + the even half-spin rep.,
V(16) + V(16)), N =2.
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4. (GL(1)* x Spin(12), the vector rep. + a half-spin rep., V(12) + V(32)),
N =2.

3. 2-simple Q-irreducible and Completely Q-reducible PV’s of Type I

The definition of the 2-simple PV’s of type I is given in [KKIY, p369]. In
[KKIY, p395-p398], the list of the 2-simple regular PV’s of type I is given. We
shall pick up the Q-irreducible PV’s and completely Q-reducible PV’s among
these 46 2-simple regular PV’s of type I

THEOREM 3.1. The Q-irreducible non-irreducible 2-simple PV’s of type I are
given in the following list. The number of basic relative invariants is denoted by N.

1. (GL(1)* x SL(5) x SL(2), Ay ® A1 + (A} + A}) ® 1, V(10) ® V(2)+
(V(5)" +V(©5)) @ V() N=3.

2. (GL(1)* x SL(5) x SL(8), A, @ A| + 1 @ A}, V(10) ® V(8) + V(1) ®
V(8)"), N =2.

3. (GL(1)* x SL(5) x SL(9), Ay ® A1 + 1 ® A}, V(10) @ V(9) + V(1) ®
V(9)*), N=1.

4. (GL(1)* x Sp(n) x SL2m +1),A] @ A + A ® 1, V(2n) @ V(2m + 1) +
V(2n) ® V(1)), N =1.

5. (GL(1)? x Spin(10) x SL(15), a half-spin rep. @A1+1Q AL, V(16)®
V(15) + V(1) ® V(15)%), N = 1.

Lemva 3.2, (10) (GL(1)® x Sp(n) x SL(2m), Ay @ A1 + 1@ (AL + A1)
in the list of [KKIY] is not Q-irreducible nor completely Q-reducible if and only if
m=>2and 1® (A7 +AY) =10 (A +A)Y

Proor. Since (GL(1) x Sp(n) x SL(2m),A1 @ A ® A;) is a regular PV
and (GL(2m), (A + Ay)") with m > 2 is a non-regular PV, we have our result
in this case. Note that if m =1, we have A; =A{ for SL(2), and hence
(GL(2), (A1 +Ay)") is a regular PV. [ ]

THEOREM 3.3. The completely Q-reducible 2-simple PV’s of type I are given
in the following list. The number of basic relative invariants is denoted by N.

1. (GL(
V(1) ® (V(2m) + V(2m)*)), N =2.

2. (GL(1)* x Sp( ) x SL2), A1 ® Ay + 1 ® 2A;, V(2n) @ V(2) + V(1) ®
V(3)), N =

1)’ x Sp(n) x SL2m), A] ® A +1® (A; + A}), V(2n) @ V(2m) +
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w
—~

GL(1)* x Sp( )X SL2), A1 @ A1 +1®3A,L,V2n) @ V(2) + V(1) ®
V4), N
4. (GL(1)? ><Spm(7) x SL(2), the wvector rep. QA+ the spin rep. ®I1,

V(e r2)+ V@) r)), N=2.

5. (GL(1)* x Spin(8) x SL(2), the vector rep. ® A+ a half-spin rep. ®1,
V@)@ V2)+ V@)@ V1)), N =2.

6. (GL(1)* x Spin(8) x SL(3), the vector rep. @A+ a half-spin rep. ®1,
V@) ®@V(3)+ V@)@V (1), N=2.

7. (GL(1)? x Spin(10) x SL(Z), a half-spin rep. ®A;+1®2A;, V(16) ®
V) + () ®rQ3)), N

8. (GL(1)* x Spin(10) x SL(Z), a half-spin rep. QA1 +1®@3A;, V(16)®
V) + V(1) ®V(4), N =2.

9. (GL(1)* x Spin(10) x SL(2), a half-spin rep. ®A; +1Q® (A + A1),
Vo) @ V2)+ V() ® (V(2) + V(2)), N =2.

4. 3-simple Q-irreducible and Completely Q-reducible PV’s

of Nontrivial Type

The definition of the 3-simple PV’s of nontrivial type is given in [KUY,
p159]. In [KUY, pl87-pl190], the list of the 3-simple regular PV’s of nontrivial
type is given. We shall pick up the Q-irreducible PV’s and completely Q-reducible
PV’s among these 67 3-simple regular PV’s of nontrivial type.

Lemma 4.1, (12) (GL(1)* x Spin(10) x SL(2) x SL(5), a half-spin  rep.
RAIRTI+1IRARA+1IRLI® (A + Al(*))) in the list of [KUY)] is completely
Q-reducible if and only if A\ = A}

Proor. First note that (Spin(10) x GL(2), a half-spin rep. ®A,) is a regular
PV. If Af*) = A{, by 1 of Theorem 3.1, we have our result. If Ai*) = A4, then
(GL(1)* x SL(5),A{ + A1) is a regular PV and (GL(2) x SL(5),A1 ® Az) is a
non-regular PV, and hence it is not Q-irreducible nor completely Q-reducible.

|

LemmA 42. (67) (GL(1)* x Sp(n) x SL(2) x SL2n—1),A] @ A1 @ 1 + A,
RIXAI+1RIRAT+1R®AI®1) in the list of [KUY] is not Q-irreducible
nor completely Q-reducible.

Proor. Since (Sp(n) x GL(2),A; ® A;) is a regular PV, it is enough to
show that (GL(1)? x Sp(n) x SL(2) x SL2n—1),A| ® | QA1+ 1@ 1@ A] +
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1 ® A; ® 1) is a non-regular PV. However the SL(2)-part of its generic isotropy
subgroup is, clearly, not reductive, and hence it is not a regular PV. |

THEOREM 4.3. The Q-irreducible 3-simple PV’s of nontrivial type are irre-
ducible PV’s which are given in the following list. The number of basic relative
invariants is denoted by N.

1. (GL(1) x SL(2) x SL(2) x SL(2), A{®@ A; ®A;, V(2)® V(2)® V(2)),

N=1
2. (GL(1) x SL(3) x SL(3) x SL(2), AI®@ A ® A, V(3)® V(3)® V(2)),
N=1.

THEOREM 4.4. The completely Q-reducible 3-simple PV’s of nontrivial type
are given in the following list. The number of basic relative invariants is denoted
by N.

1. (GL(1)* x Spin(10) x SL(2) x Spin(10), a half-spin rep. ®A; @1+ 1®
A1 ® a half<spin rep., V(16)@V2)®@V(1)+V(1)® V(2) ® V(16)),
N =2.

2. (GL(1)* x Spin(10) x SL(2) x Spin(10), a half-spin rep. A, ® 1 +1®
A1 ® a half-spin rep. +1Q@2A: @1, V(1)@ V2)®@V(1)+ V(1) ®
V)@ viae)+ V()@ Vi3) ® (1)), N =3.

3. (GL(1)* x Spin(10) x SL(2) x Spin(10), a half-spin rep. A, @ 1+1®
A1 ® a half-spin rep. +1Q@3A ®1, V(16)@V(2)® V(l)+ V(1) ®
Vr)@ vae)+ V()@ Vid) ® v (1)), N =3.

4. (GL(1)* x Spin(10) x SL(2) x Spin(10), a half-spin rep. A, ® 1 +1®
A1 ® a half-spin rep. +1 Q@ (A1+AN)® 1L, V(16)®@V(2)® V(1) + V(1)
RVR)®V(16)+ V() ®(V(2)+ V(2)® V(l)), N=3.

5. (GL(1)* x Spin(10) x SL(2) x SL(5), a half-spin rep. ®A1 @ 1+1® A} ®
M+1IRI® AT +AD, VIR V2)®V(D)+ V(1) ®@V(2) ® V(10)+

()®V()®( V(5" +V(5)7), N=4.

6. (GL(1)* x Spin(10) x SL(2) x Sp(n), a half-spin rep. QA ®1+1®
AMIOALV(IORV2)®@ V() + V(1) ®V(2)® V(2n)), N =2.

7. (GL(1)? x Spin(10) x SL(2) x Sp(n ) a half-spin rep. @A Q1 +1 Q@A ®
A+1®20, 01, V16)@ V2) @ V(1) + V(1) ® V(2)® V(2n) + V(1)
®V@)e V1), N=3.

8. (GL(1)* x Spin(10) x SL(2) x Sp(n), a half-spin rep. @A, @ 14+1 @ A ®
AM+1R3ARL V1)@ V2)@ V(1) + V(1)@ V(2)® V(2n) + V(1)
®V@)®V()), N=3.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
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. (GL(1)* x Spin(10) x SL(2) x Sp(n), a half-spin rep. A1 @ 1+1Q A; @

AM+H1QAN+ANRL VIO RV2)@ V() + V(1) ®V(2)® V(2n)+
V(N ®(F2)+ ¥(2)® F(1), N =3.

(GL(1)* x Spin(10) x SL(2) x SO(n), a half-spin rep. @A ®1+1Q®
AI®AL V1)@ V)R V()+ V(1) ® V(2)® V(n), N =2.
(GL(1)* x Spin(10) x SL(2) x Spin(7), a half-spin rep. @A ®1+1Q®
A1 ® the vector rep. +1®1® the spin rep., V(16)®V(2)®
ViH+ V() V2)@ V) + V1) e V(l)® V(8)), N=3.

(GL(1)* x Spin(10) x SL(2) x Spin(8), a half-spin rep. @A @1+1®
A1 ® the vector rep. +1 ® 1 ® a half-spin rep., V(16) @ V(2) ® V(1) +
FiHevr)e V@) +r1)e V) r()), N=3.

(GL(1)* x Spin(10) x SL(2) x Spin(7), a half-spin rep. @A ®1+1Q®
A1 ® the spinrep., V(16) @ V2)@ V(1) + V(1) @ V(2) ® V' (8)), N =2.
(GL(1)* x Spin(10) x SL(2) x (G,), a half-spin rep. @A @1+1®
A ®A, V1)@ V)R V()+V(1)®V(2)® V(7), N=2.
(GL(1)* x Spin(10) x SL(2) x SL(2), a half-spin rep. @A ®1+1Q®
M QAL V(16 @ V2) @ V(1) + V(1) ® V(3)® V(2), N =2.
(GL(1)? x Spin(10) x SL(2) x SL(6), a half-spin rep. QA @1+1®
AN®A, VI6O)RV(2)®@ V() + V(1) ® V(2) ® V(15)), N=2.
(GL(1)* x SL(5) x SL(2) x Sp(n), A2 ® A; ® L + 1 ® A| @ Aj + (A} +A])
RLIRXLVA)R V)R V(1) +V(H®V(2)®V(2n)+ (V(5) + V(5"
RV(1)®V(l)), N=4.

(GL(1)* x Sp(n) x SL(2) x Sp(m),Ai @ Ai @ 1 + l @ A; @ A1, V(2n) ®
r)@vih+rV(1) @ VR)® V(2m)), N =2.

(GL(1)? x Sp(n) x SL(2) x Sp(m), A @ A @ 1 + 1 ® A| @ A + 1 ®
MR LTV2n)@V2)@ V() + V(1)@ V(2)® V2m)+ V(1) ® V(3)
®V(l)), N=3.

(GL(1)* x Sp(n) x SL(2) x Sp(m), Ay ® A, ® 1+ 1 @A ® Al +1Q®
SMMRLV2n) @ V)@ V() + V(1)@ V(2)® V(2m) + V(1) ® V(4)
®V(1)), N=3.

(GL(1)* x Sp(n) x SL(2) x Sp(m), Ay ® A ® 1+ 1 QA @A +1®
M+A)RLTV2H)@V2)@ V(1) + V(1)@ V(2)® V(2m) + V(1) ®
(V(2)+ V(2) @ V(1)), N =3.

(GL(1)* x Sp(n) x SL(2) x SO(m),A] @ A1 @1 +1® A ® A, V(2n) ®
r)@vih+ 1) ® V2)® V(im)), N =2.

(GL(1)* x Sp(n) x SL(2) x Spin(7), Ai@A I ®1+1 QA ® the vector
rep. +1®1® the spin rep., V2n)@V2)@ V() + V(1) ®V(2)®
Vi + V(1)@ V(l)® V@s)), N=3.
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24. (GL(1)* x Sp(n) x SL(2) x Spin(8), A\ @ A1 @1+ 1 QA @ the vector
rep. +1®1® a half-spin rep., V2n) @ V2Q)@ V() + V(1) ® V(2) ®
V8)+ V(1)@ V(1) ® V(8), N =3.

25. (GL(1)* x Sp(n) x SL(2) x Spin(7), Ai@A @1 +1QA, ® the spin
rep., V2n) @ V(2Q)@ V(1) + V(1)@ V(2) ® V(8)), N =2.

26. (GL(1)? x Sp(n) x SL(2) x (G2), Af ® A @1 + 1 ® A} ® Ay, V(2n) ®
)@ V() + V(1)@ VQR)® V(T), N =2.

27. (GL(1)* x Sp(n) x SL(2) x SL2),Ai ® Ai ® 1 + 1 ® 2A; @ A1, V(2n) ®
rR)@ V() + V(1)@ V(3)® V(2), N =2.

28. (GL(1)* x Sp(n) x SL(2) x SL(6),A1 ® A1 ® 1 + 1 ® A| ® Ay, V(2n) ®

V)@ V(1) + V(1)@ V() ® V(15), N =2.

5. M. Sato’s Classification

In the 1960s, Professor Mikio Sato considered the reductive PV’s of the form
(Go x G,A1 ® p,V(n) ® V) with a connected semisimple subgroup Gy of SL(n).
Here p: G — GL(V) is a d-dimensional representation of a connected reductive
algebraic group G. Then we have p=p, +---+p,, and V =V, +--- + V,,, where
pu: G — GL(V,) is an irreducible representation (1 <u <m). For each u, we
have V, =V, ® - ® Vu, where some simple component of G acts on V,
irreducibly. Put d, = dim V), and d,, = dim V. Then we have d =d| + - -- + d,
and d, =d, - dy,. Here if d, = 1, we put k, = 0. If d,, > 2, we have k, > 1 and
we may assume d,, > 2 (1 <v < k,). Now put 6 = max{d,, }. We may assume that
0 =dj; by changing the numbers if necessary. Then k; = 0 implies that 6 = 1.

Professor Mikio Sato proved that if (Gy x G,A; ® p, V(n) ® V) is a PV for
0<n<d-9, then k; must be one of 0, 1, 2, and classified such PV’s when
ki =2 as follows.

PropOSITION 5.1 (M. Sato). Assume that (Go x G, A\ ®@p,V(n)®V) is a
PV with d <n<d—0 and k1 =2. Then it is one of the following regular PV’s.

m—1

1. (SL(n) x ((GL(2) x SL(2)) x GL(2) x --- x GL(2)), A1 ® ((A; ® Ay)

m—1 m—1
MEBALVWO V)@V + TR+t V) with m=1
and n=2 or n=2m(=d —2). m—l

2. (SL(n) x ((GL(3) x SL(2)) x GL(3) x --- x GL(3)), A1 ® (A1 ® Ay)

m—1 m—

—_—~
ABE---BA),VO)QVB)V2)+V3)+---+V(3))) with m>1
and n=73 or n=3m(=d - 3).
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3. (SL(3) x ((GL(2) x SL(2)) x GL(2)), A1 ® (A1 ® A1) HA1), V(3) ® (V(2)
®V(2)+V(2))).

4. (SL(n) x ((GL(3) x SL(2)) x GL(3)), A1 ® (A1 @ A1) H A1), V(n) ® (V(3)
®V(2)+V(3))) (n=4,5). m—2

5. (SL(n) x ((GL(3) x SL(2)) x GL(k) x GL(3) x --- x GL(3)), A| ®

m—2

(A @A)BEABAB ---BA),VH® V3 V(2 + Vik)+

m—2

V3)+---4+V(3)) withm=>=2,n=30orn=k+3m—-3(=d-3); k=
or 2.

m—2

6. (SL(n) x ((GL(2) x SL(2)) x GL(1) x GL(2) x --- x GL(2)), A| ®

m=2

(M@A)BAEHAMBE--BA) VN (V2 V2 -+ V)+

m—2

V2)+---4+V(2))) with m>2; and n=2 or n=2m— 1(=d - 2).

Proof. See p. 239 in [KI]. |

We shall pick up the Q-irreducible PV’s and completely Q-reducible PV’s
among the list of Proposition 5.1.

THEOREM 5.2. The Q-irreducible PV’s among the list of Proposition 5.1 are
given as follows. The number of basic relative invariants is denoted by N.

x (GL(2) x SL(2)), A1 ® (A1 ® A1), V(2)® (V(2)® V(2))), N =
X (GL(3) x SL(2)),A1 ® (A1 ® A1), V(3)®(V(3)®V(2)), N

SL(5) x ((GL(3) x SL(2)) x GL(3)), A1 ® (A1 @ A1) A1), V(S) @ (V
+7(3))
X

/\

2 )
V(3))), N = 2.

Q
h
@
x
IS
x
Q
h
©
>
®
>
®
>
H
>

V(5)®(V(3)

THEOREM 5.3. The completely Q-reducible PV’s among the list of Prop-
osition 5.1 are given as follows. The number of basic relative invariants is denoted
by N.

m—1

1. (SL(2) x ((GL(2) x SL(2)) x GL(2) x --- x GL(2)), A1 ® (A1 ® A})
m—1 m—1
AME--BA), VOV VQR) +V(2)+-+V(2)) with m>2,
N =m.
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m—1

2. (SL(3) x ((GL(3) x SL(2)) x GL(3) x --- x GL(3)), A1 ® ((A; ® Aj)

m—1 m—1

AEH--EHAD),VO)QWVB)QV2)+ V@) +---+V(3))) with m=>2,
N =m.

The remaining case k; = 1 implies that (G, p;, V1) = ((GL(1) x)Gj, (A1 ®)o,
V(0)) where Gy is a simple algebraic group.

In [KIRHKOK], the complete classification of these PV’s when G, is an
exceptional simple algebraic group is given as follows.

PROPOSITION 5.4.  Assume that (Go X G,A; ® p, V(n) ® V) with k;y =1 is a
PV with (G,p;, V1) = ((GL(1) x)Gy, (A1 ®)a, V(0)) where Gy is an exceptional
simple algebraic group. Then it is one of the following regular PV’s.

m—1

1. (SL(n) x ((GL(1) x G,) x GL(d) x --- x GL()), A1 ® (A1 ® o)

m—1 m—1

——
ANBE--BHA),VO)QWV©O)+VE©O)+---+ V() with m=2; n=9 or

n = (m — 1)0 where a is any irreducible representation of G with deg o = 0.
m—2

2. (SL(n) x ((GL(1) x (G2)) x GL(f) x GL(7) x --- x GL(7)), A1 ® (A1 ® As)

m—2 m=2

—~
HAIBEHAME---BA),VEH) VT +V(e)+ V(T)+ --- + V(7))
(m=>=3) with t=1,2,5,6 where n="7 or n=1t+7(m—2).

m—2

3. (SL(n) x ((GL(1) x Eg) x GL(1) x GL(27) x - - x GL(27)), A1 ® (A1 ® A;)

m—2 m—2

—_——
ANBAHE---BHA), VR VR +V(e)+ V(2T)+---+ V(27)))
(m=>3) with t =1,2,25,26 where n =27 or n=1t+27(m —2).

m—2

4. (SL(n) x ((GL(1) x E7) x GL(t) x GL(56) x - -- x GL(56)), A} ®2((A1 ® Ag)
m=2 m—

—N—
HABEABR---BA)VH Q (V(56)+ V() + V(56) + -+ V(56)))
(m > 3) with t =1,55 where n =56 or n=1t+ 56(m —2).

THEOREM 5.5. There is no Q-irreducible PV's among the list of Proposition
5.4.

THEOREM 5.6.  The completely Q-reducible PV’s among the list of Proposition
5.4 are given as follows. The number of basic relative invariants is denoted by N.
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m—1

1. (SL(n) x ((GL(1) x Gy) x GL(n) x --- x GL(n)), A1 ® ((A| ® o)

m—1 m—1

—N—
AEH-BHA),VR)QVn)+V(n)+- -+ Vn)) with m>2; ¢ is any
irreducible representation of Gy with dego =n, N =m.

The regular PV’s of the extreme case n=0 or n=d —J when G; is a
classical simple algebraic group with G, # SL(J) is also given as follows in
[KIRHKOK].

PROPOSITION 5.7.  Assume that (Gy x G,A1 ® (p; + -+ p,), V(n) ® (V(9) +
V(dy)+ -4+ V(dy)) with n=06 or n=d—-90=dry+---+dy is a regular PV
where (G,p,,V(0)) = (GL(1) x Gy, A1 ® 0, V(0))(# (GL(0), A1, V(3))) with a
classical simple algebraic group G, and each V(d,) has an independent scalar
multiplication. Then it is one of the following Il’V’s.

1. (SL(n) x ((GL(1) x G,) x GL(d) x --- x GL(d)), A1 ® (A1 ® o)

m—1 m—1

—N——
AEH-EBHA),VR)QV©O)+VE©O)+ -+ V(©0))) with m=>=2;, n=0 or

n = (m — 1)0 where a is any irreducible representation of G with deg o = 0.
m—2

2. (SL(n) x (GL(1) x G,) x T x GL(3) x -~ x GL(9)), A1 ® (A1 ® ¢) @

m—2 m—2
— N
AMBE--BA),VO)QVE©O)+V()+V(©)+---+ V() with m=>3,
o0>t=>1;n=0orn=t+ (m—2)0 where (G;x T,c®1,V(0)® V(1)) is
a nontrivial irreducible regular 2-simple PV.

m—3

3. (SL(n) x ((GL(1) x Sp(0)) * GL(w) x GL(v) x GL(20) x -~ x GL(2),

—_—~
A ® (A ®AY) /\1 HABAMB - -BA), V0 (VQ2)+ V(u+

m—>3

V(o) + V(2t)+---+ V(28t))) with t >2; n=2t or n=u+v+2t(m—3)
where (u,v) = (1,1) or (1,k) with m=>=4, or (u,v)=(1,2t-1),
(2t — 1,2t — 1) or (k,2t — 1) with m = 3. Here k is an odd integer satisfying
3<k<2t-3 m—3

4. (SL(n) x ((GL(1) x Spin(10)) x GL(u) x GL(u) x GL(16) x --- x GL(16)),

m-3

e N
Al ® (A1 ® a half-spin rep ) AATHATHAIH---BA), V(n) ® (V(16)

m—3
+V(u)+ V(u)+ V(16)+---+ V(16))) with n =16 or n = 2u + 16(m — 3)
where u=1 and m >4, or u=15 and m > 3.
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m—1

5. ((SL(2r = 1) > SL(1) x (GL(1) x Sp(1)) x GL(21) x - x GL(21)),

—N—

V(2t)+ -+ V(2t))) with t =2 and m > 2.

THEOREM 5.8. There is no Q-irreducible PV’s among the list of Proposition
5.7.

THEOREM 5.9. The completely Q-reducible PV’s among the list of Proposition
5.7 are given as follows. The number of basic relative invariants is denoted by N.

m—1

1. (SL(n) x ((GL(1) x G,) x GL(n) x --- x GL(n)), A1 ® (A; ® o)

m—1 m—1

AME--BAN), V0 (Vn)+V(n)+---+ V(n)) with m>=2; o is any

irreducible representation of G, with dego =n, N =m.
m—3

2. (SL(2t) % ((GL(1) x Sp(£)) x GL(1) x GL(2t — 1) x GL(2t) % - -- x GL(21)),

m—3

—_—
A ® (A ®AY) /\13 ABABE--BA)VQ2)® (V(2)+ V(1) +

m—

VRr— 1)+ V2t +---+V(2¢)) with t >2 and m>3, N=m— 1.

m—1

3. ((SLQ2t—1) x SL(1)) x ((GL(1) x Sp(t)) x GL(2t) x --- x GL(21)),

m—1

(A1 Al) ® ((Al ®A1) Aq ~--A1),(V(2l— 1)+ V(l)) ® (V(21)+

m—1

V(2t)+---+V(21)) with t >2 and m >2, N =m.

Proor. For 2, only we have to note that (SL(2¢) x (GL(1) x GL(2t— 1)),
AL ® (A EA))) is castling-equivalent to (GL(1)? x SL(21), A + AY) for which
N =1 by 1 of Theorem 2.1

For 3, by the number of GL(l) (see Introduction), we have N <1
for  ((SL(2t—1) x SL(1)) x ((GL(1) x Sp(2)), A1 B A1) ® (A1 ® A1), M(21))
and ((SL(2t—1) x SL(1)) x (GL(2¢t), (A1 H A1) ® A1, M(2¢)). Since f(x) =
det x(x € M(21)) is its non-generate relative invariant, these PV’s are regular PV’s
with N = 1. [ |
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