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NOTE ON HERMITIAN JACOBI FORMS

By

Soumya Das

Abstract. We compare the spaces of Hermitian Jacobi forms (HJF)
of weight k& and indices 1, 2 with classical Jacobi forms (JF) of
weight k and indices 1, 2, 4. Upper bounds for the order of vanishing
of HJF at the origin are obtained. We compute the rank of HJF as a
module over elliptic modular forms and prove the algebraic inde-
pendence of the generators in case of index 1. Some related questions
are discussed.

1. Introduction

Hermitian Jacobi forms of integer weight and index are defined for the
Hermitian Jacobi group over the ring of integers (x of an imaginary quadratic
field K. (See section 2.1.) They were defined and studied by K. Haverkamp in [7].
In [3] differential operators were constructed from the Taylor expansion of
Hermitian Jacobi forms in analogy to that for classical Jacobi forms in [5] and a
certain subspace of Hermitian Jacobi forms was realized as a subspace of a direct
product of elliptic modular forms for the full modular group. The structural
properties of index 1 froms were treated in [11].

In this paper we treat classical Jacobi forms as an intermediate space between
Hermitian Jacobi forms and elliptic modular forms. We present some of the
structural properties of index 2 forms using the restriction maps 7, : Ji »(Ok) —
Ji N(pm defined by 7,4(t,z1,22) = é(1, pz, pz) (p € Uk, see [7]). Since we do not
have (at present) the order of vanishing of a Hermitian Jacobi form at the origin
(which is known to be 2m, m being the index; in the case of classical Jacobi
forms), computations involving the Taylor expansions is not very fruitful for
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m > 2. Therefore many of the arguments in this paper rely on the Theta de-
composition (see section 2.1.1) of such forms.

The main results are in sections 3, 4 and 5. The purpose of this note is to
look at the structure of index 2 forms by comparing them with the classical
Jacobi forms. In sections 3 and 4 we relate Hermitian Jacobi forms with classical
Jacobi forms via several exact sequences. In section 4.5, we give upper bounds for
the order of vanishing of Hermitian Jacobi forms at the origin. We compute the
rank of index m forms of weight a multiple of 2 and 4 (denoted as Jy. »,(Ck),
n=2,4) as a module over the algebra of elliptic modular forms (denoted as A,)
and prove the algebraic independence of the 3 generators (see [11] for their
description) of Ju. 1(0k) over M,. Unlike the classical Jacobi forms, we find that
the number of homogeneous products of degree m of the index 1 generators
is less than the rank of J,. ,,(Ok) over M, for m > 2 (see Proposition 5.1 and
section 6, remark 3). In the final section, we discuss several related questions on
Hermitian Jacobi forms.

2. Notations and Definitions

We let e(z) := e?*= unless otherwise mentioned. In the rest of the paper we

will use the standard notation 7 := ((1) 1) and S := (? Bl).

2.1. Hermitian Jacobi forms. Let 5 be the upper half plane. Let K = Q(i)
and Ox = ZJi] be it’s ring of integers. Let I'i(Og) = {eM | M € SL(2,Z),¢ € O%}.
The Hermitian Jacobi group over (g is T/(Ok) = Ty (Ck) X OF.

DEFINITION 2.1, The space of Hermitian Jacobi forms for '/ (0k) of weight
k and index m, where k, m are positive integers, consists of holomorphic functions
on # x C? satisfying:

¢(T7 ZlaZZ) = ¢|k,m8M(TvzlaZZ)

.k —k —2mimczyz3 ) (ct+d) €21 €22
= d 1=2 Mr,——
¢ (ex+d) e ¢< Dertdertd

b
for all M = (" ) in SL(2,Z), ¢ € 0%, (2.1)
C

d
¢(T7 21722) = ¢|m[/“nu}
— eZnim(N(l)T+Zzl+).zz)¢(,[7Zl + /ALT—F,U, 2+ ZT —|—/j)

for all 2,u in O, (2.2)
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and having a Fourier expansion of the form:

#(t,21,22) Z Z cy(n, r)e2mitnetratia) (2.3)

=0 re0}
nm>N()

where OF = {0 (the inverse different of K|Q) and N : K — Q is the norm map.
The (finite dimensional) complex vector space of Hermitian Jacobi forms of
weight k& and index m is denoted by Ji ,,(Uk). We say that ¢ is a Jacobi cusp
form if it is true that c4(n,r) = 0 for nm = N(r). The space of Jacobi cusp forms
of weight k and index m is denoted J,"”(Cx). The theory of Hermitian Jacobi
forms, especially the theory of Hecke dperators for them, have been studied by
K. Haverkamp in [6], [7].

2.1.1.  Theta Decomposition. Hermitian Jacobi forms admit a Theta de-
composition analogous to that of classical Jacobi forms. Let ¢ € Ji ,,(Ok) have
the Fourier expansion as in equation (2.3). It is known that the Fourier coefficients
cp(n,r) (neZ,reOf) of ¢ depend only on r (mod mOx) and D = nm— N(r).
Thus, we can rewrite the Fourier development of ¢ to get the theta de-
composition:

P(z,21,22) = Z hy( rzl,zz) where

se O /mOx

hy(t) = Z cs(L)e¥™L/4m  and

L=0
N(s)+L/4emZ

O,ZS(T, Z1,22) = Z e (Nn(:) T4rz + fzz> ) (2.4)
)

r=s (mod mOk

We take as a set of representatives of (7 in OF/mUk as the set

a
ym = {5-"

We call H,,Ii , the Hermitian Theta function of index m, type s and h, the Theta
components of ¢. We will also denote the Theta components of ¢ € Ji ,(Uk) by
ha b (”*2”’ € Vm) and the Hermitian Theta functions of weight 1 and index m by
9,{1{ ap (O by 0,,1:?, s = # € ) in this paper, but we drop the index unless there

zg a,be Z/2mZ}.
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is a danger of confusion. Also we denote by 0,, ,(7,z) (1 (mod 2m)) the classical
Jacobi-Theta functions defined as

Hm,y(777 Z) = Z qr2/4mér; q= 627:1'17 — Pty

reZ,r=u (mod 2m)

2.1.2.  Transformation Formulas for the Theta components. The Theta com-
ponents of ¢ € Ji »(Ok) (see [6, p. 46, 47]) have the following transformation
properties under SL(2,Z) and O (:= The group of units in Ok):

hs|k,1 T = 672m'N(s)/th, (25)
hs|k,1S _ 4L Z e—4ni Re(is’)/rﬂhS,7 (26)
ms’eﬁ'}f/m@‘](
hy|,_ el = ehy, €€ OF. 2.7
k—1 K

In the above transformation properties, the slash operations are the usual ones
in view of the fact that i; € My_(I'(4m)) for all se OF /mUk. (See [6].)

2.1.3. Other related spaces of Modular forms. We denote the space of
Jacobi forms of weight k and index m for the Jacobi group SL(2,Z) x Z*> by
Jk.m (see [5] for their definition and properties), elliptic modular (resp. cusp) forms
of weight k for a congruence subgroup I' of SL(2,Z) by M;(T") (resp. Si(I)).
When I' = SL(2,Z), we denote the corresponding spaces by M (resp. S).

Further, we define the following space of modular forms with a multiplier
system. Let @ be the linear character of SL(2,Z) defined by o(T) =i, o(S) =i.
Then,

DeriNiTION 2.2 ([1], [10]).

M (SL(2,Z),®) := {The space of holomorphic functions f :# — C
bounded at infinity and satisfying f|,_ ;S = @(S)f,
ST =ao(T)f}.

2.1.4. Restriction maps and Differential operators. The main restriction
maps that would be used in this paper are

Ty - Jk,m(@K) - Jk,N(/))m7 ¢(Tazl722) i ¢(‘L’,pZ,ﬁZ) (p € @K)
DO : Jk,m - Mk, ¢(T,Z) = ¢(Ta O) (28)



Note on Hermitian Jacobi forms 63

Occasionally we will refer to the Taylor development of a Hermitian Jacobi form
¢ with Taylor coefficients y, 45, around the origin (0,0):

pr,21.22) = D s p(0)zi2h. (2.9)

o,f=0

We will use the following well-known differential operator on Jacobi forms,
constructed from it’s Taylor expansion around the origin z = 0 (see [5] for more
details):

k 0*¢ _o¢
Dz . Jkﬁm — Sk+2, ¢(‘L’,Z) [d (271’”’}1 E — 25) _0. (210)

3. Comparision of J;; and J; (k)

3.1. As introduced in section 2.1.1, we take %, ={0,%,1 1} as the set of
representatives of OF in OF /Ok. (= & x 4.) For convenience, in this section we
drop the index (which is 1) of the Hermitian Jacobi-Theta functions and denote

them by Oil_"j, and the corresponding Theta components by /; ; where {7, j} € {0,1}.

We denote the Jacobi Theta functions of index 1 by 0 o(z,z), 01,1(z, z). Further
we let

2
Yo(7) == Ze(rzr), i (1) = Z E(ZT> (te ). (3.1
)

reZ r=1 (mod2
3.2. The case k =2 (mod 4).

THEOREM 3.1. (1) Let k=2 (mod4). Then there is an exact sequence of
vector spaces

0 — Ji1(Ox) 2 Ty 2% My — 0. (3.2)

(2) Let k=2 (mod4). Then m4; is the zero map.

PrOOF. Let ¢ € Ji,1(Ok). In this case hgo=h;1 =0 and ho; = —h; o and
we get that
g =ho 1($101,0 — 01 1).

Since 9109 — Y01 # 0 (see [1]), we clearly have that = is injective and Im(z;) <
ker Dy.
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Let ¢ eker Dg. From [1, Theorem 1] we see that ¢(z,z) = ¢(t)(HM61,0—
3001.1), where ¢ € My_1(SL(2,Z),®).

So, it is enough to prove hy 1 € My_1(SL(2,Z),®), which easily follows from
equations (2.5) and (2.6). Since Dy is surjective, we get (1).

(2) This follows easily from [4, p. 5] or from Lemma 4.9, so we omit the
proof. ]

From the above Theorem and the results of [1] we get an isomorphism of
Ji1(Ok) to Sisz, which was also obtained by R. Sasaki in [11].

COROLLARY 3.2. Let k=2 (mod4). Then Ji1(Okx) = My_1(SL(2,Z),®).
Proor. This follows from the proof of Theorem 3.1, (1). I

CoROLLARY 3.3. Let k=2 (mod4). Then the composite
Ter(Ox) &5 Tt B S (33)

gives an isomorphism of Ji 1(Og) to Siya.

Proor. The result follows from [1, Theorem 2], which in the case N =1
says that D; : Jx| — Sk gives an isomorphism of ker{Dy : Jy,; — M} to the
space Sy, = {f € Skl ::'E( € Mk,l(SL(27Z),a’))} (where o is defined in sec-
tion 2.1.3), and & = %9y — 9| (where 3;, i = 0,1 are defined in equation (3.1)).
But S7,, = Sky2 when N =1, since by [l1, Proposition 2], e S3(SL(2,Z),w).
From equation (3.2) we have ker{Dy : Jx,1 — M} } = Im(n;), on which D, induces
an isomorphism by the above. Therefore the Corollary follows. O

We define Jj 1 (Uk, N) to be the space of Hermitian Jacobi forms of weight k and
index 1 for the congruence subgroup I'g(N) in the usual way. It is immediate that
the same proof as in Theorem 3.1 applies to this case when k£ =2 (mod 4) (see
also [1] where the case of classical Jacobi forms is done) and we have an exact
sequence of vector spaces

0 — Ji1(Ox, N) 2 Je 1 (N) 25 Mi(N) (3.4)
COROLLARY 3.4. Let N> 1. Then Jy(Ok,N)=0.

ProOF. A result of T. Arakawa, S. Bocherer [2] says that Dy in (3.4) is
injective when k =2 and N > 1. Therefore the Corollary follows from equation
(3.4). L
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3.3. The case k=0 (mod 4)

THEOREM 3.5. (1) Let k=0 (mod4). Then there is an exact sequence of
vector spaces

-1
< |Sk+4 il

0 Sk+4 Jk,l(@K)

Jk1 0, (3.5)

where & : Jy 1(Og) — My @ Sii2 @ Skra is the isomorphism given in [11].
(2) Let k=0 (mod4). Then miy; induces an isomorphism of Ji1(0k) to
Jk,2~

Proor. (1) follows directly from Lemma 3.7 given below.
(2) When k=0 (mod4), in the Theta decomposition of ¢ € Ji 1(Ok), we

have hg 1 = hio. Let ¢ e ker m;4;. From the Theta decomposition of 7;.;¢ (see
[4, p. 5]) we easily deduce that in this case /o1 =hio=0, (a2 —ad)hoo=
(a3 —a3)hi1 = 0. But a} # a3 since Wry does not vanish on # (see the proof of

Step 1 of Theorem 4.11). Hence, the kernel is trivial. Moreover, from Corollary
3.6, considering the dimensions, we conclude that n,; is an isomorphism. []

COROLLARY 3.6. Let k=0 (mod 4). Then

z—1

M @ Ski2 ® Sira —

Do+Dy+Dy
=

Jk,2

Ji. 1(Ok)

is an isomorphism, where & is as in Theorem 3.5.

Proor. In fact, each arrow is an isomorphism. The first map is injective by
[5] and dimension count shows that it is an isomorphism. O

REMARK 3.1. In the above Theorem, it is clear that if f € Si.4,
E = {peTi1(k) 1220 = 12004 = f}

Lemma 3.7. The following diagram

Ji,1(Ok) S Ji1

~lé NJVDoH’Tf/k)DZ

M ® Sii2 ® Siia ——— My ® Siia

is commutative.
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ProOF. The proof is immediate from definitions. First, (pr.o )¢ =y —
% X(I)A,o +%1.1- On the other hand, from the Taylor expansion of ¢ around the
origin with Taylor coefficients y, , we get,

i 2mi
(Do +ED2) om¢ = Yo0+ (o2 + 120 +x11) — 7150

2ni
= 20,0~ 7 X0.0 + X115

since g, = 12,0 =0 =10 = %o, When k=0 (mod4). In fact, y, ; =0 unless
o—pf =k (mod4) follows from first transformation rule (2.1) for Hermitian
Jacobi forms. O

REMARK 3.2. We remark here that from the Fourier expansion (2.3) of
a Hermitian Jacobi form ¢ of index 1, we get ¢(zt,z1,22) = ¢(7,22,21) if
k =0 (mod 4) and hence in it’s Taylor expansion we have y, s = x4, Vo, > 0.
Therefore the isomorphism ¢ in Theorem 3.5 is also given by ¢ +— x5+ <11+
2.2 — 12(xp,4)- (For the definition of &, ; and ¢, 5, see [3] or [11].) Hence the four
Taylor coefficients g o, X045 X1.1> X2,» determine ¢, as expected in analogy with
classical Jacobi forms.

4. Hermitian Jacobi forms of Index 2

In this section we consider Hermitian Jacobi forms of index 2 by relating
them to classical Jacobi forms and elliptic modular forms via several restriction
maps. Let & := 2i(k, the Different of K. We use a representation of the group
defined for a positive integer m:

Gy :={uelx/mz|N(u) =1 (mod 4m)}.
For a positive integer m, we consider the representation of G, defined in [6]:
Pt G — AUt (T n(Cx)), = W,
where W), is defined by W,(h'-©,)) =h" - O h'" = (hys) e ot oy
O (7,21,22) = (00 ,(1.21,22))sctmer €CM5 h=(h)scoppme,: (41)
Accordingly we have a decomposition of Ji ,,(COk):

Jiem(Uk) = 62 lem((ﬁK)a (4.2)
neGy,
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where G is the group of characters of G, and
T o(OK) = {$ € Tin(Ok) | Wob = n(1) Vi € Gr}. (4.3)
Now we note that G, = Of @ Z/4Z viai— 1, —1— 2, —i— 3, 1— 0. Also,
Gy = {n, = (x — /%Y. x 0 € Z.JAZ}.

The following Lemmas give the Theta decomposition of the images of Hermitian
Jacobi forms of index 2 under the restriction maps. We define for convenience of
notation a, := 0, ,(7,0) (u€Z/4Z) and b, := 04 ,(7,0) (ueZ/8Z).

Let ¢ € Ji2(Ok) have the Theta decomposition as in equation (2.4) with
Theta components /4, as explained in section 2.1.1.

LemMa 4.1. Let m¢p= ). Hy(t)-0,(t,2) be it’s Theta decomposition,
HEZL/AZ

where H, = (—l)kH,ﬂ (neZ/AZ). Then,

Hy = hy oap + ho1a1 + ho 2a> + ho 3a3, (4.4)
Hy = hyoap + hivay + hy 2ar + hy zas, (4.5)
Hy = hy gayg + hy1a1 + ho 2a0 + hy 3as. (4.6)

Proor. Let se %. The effect of n; on HZH;S is given below.

N(r)
2

nIGZH:XZ ( 7+ 2 Re(r) -z)
r=s (mod 20k)

0#
reOg

e
Re(2r)=Re(2s) (mod 4Z) (
Re(2r)eZ

X

(Im(2r))> T)

e
Im(2r)=Im(2s) (mod 4Z) (
Im(2r)eZ

= 92,Re(2s)(f, z)- Aim(2s)-

This shows that m¢= > > hs-amay | 02,4(7,2), which proves the

neZ/AZ SES
Lemma. Re(2s)=u O
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LEMMA 4.2. Let miyp= >, Hu(t)- 04 ,(1,2) be it’s Theta decomposition,
uel/8Z
where H, = (—1)kﬁ,ﬂ (ueZ/8Z). Then,

Ho = ho.obo + h1.1b3 + ha 2bs + h3 3bs, (4.7)
Hi = hy ob1 + ha1bs + h3 2bs + ho 3b7, (4.8)
Hy = Iy 0by + h3.1bs + ho 2b6 + Iy 3bo, (4.9)
H3 = h3.0b3 + ho 1bs + hy 2b7 + ha 31, (4.10)
Hy = ho obs + hy.1b6 + ha.2bo + h3 3b. (4.11)

Proor. We note that 2(1 + )0 = 40k U (2(1 + i) + 4Ck) (disjoint union) as
abelian groups. Let s =5+ % € %. We have

N(r
UH,-@;IS(T,ZI,ZZ) = Z e( 2( )‘c + A4+ +(1 - i)f22>
r=s (mod 20k)

N(r'
6( (V )
r'=(1+i)s (mod 2(1+i)0k)

T4+r'z + r'zz>

. N()

< T4+7r'z1 + f’zz)
1= (=) 2+ (17 4)/2) (mod 40x)

N()

+ 7471z —|—;7’22>,

d
r'=(u—244)/2+i((u+2+4)/2) (mod 40k)

from which the Lemma follows easily. O

REMARK 4.1. From the transformation /|,_ el = &h,, (¢ € OF), we conclude
that

a+ib

hap = i*n_p oy hap = (—l)khmb( E cr;f/m@,{) (4.12)

From the direct-sum decomposition (4.2) or from above equation (4.12) we see
that Ji »(Ok) = J}%(Ck) for k+o=0 (mod 4).

4.1. n=mn,. Inthiscase k =3 (mod 4), and it is easy to see from equation
(4.12) that hg o =ha o =hoo»=hyo=0, and after a calculation,
hos = —ho1, hio=—iho, hi3z=—ihi1, hyy=ihiy, hyz=—ihis, (4.13)

hy,o = tho1, h31=ihi1, hip=—hi2, h3z=—h;. (4.14)



Note on Hermitian Jacobi forms 69

Using Lemma 4.2 we have from equation (4.13) and (4.14) that

myif(T,2) = Z H,04 ,4(t,z) where Hy=H4=0, (4.15)
4 (mod 8)

Hy = —(1+i)ho by — (1 — i)y 2b3,  Hy = il 1(bs — by), (4.16)

Hy = (1+i)ho 1b3 + (1 — i)l 2by; (4.17)

from which we conclude that 7;; is injective. But for k > 4, from [6, Satz 2.5] we
get dim JF5(0k) = 0. Also for k > 4, using the Trace formula (see [7, Theorem
3], or [6, Korollar 2.5, p. 92]) we get dim Ji »(Ok) = % = dim Jj », where the
last equality follows from [5, Cor. Theorem 9.2]). When k = 3, J3 4 = 0, hence so
is J32(0k). Therefore,

PropoSITION 4.3. Let k=3 (mod 4). Then nyy; induces an isomorphism of
Jk,z(@K) to Ji 4.

4.2. n=m,. In this case k =2 (mod 4) we have /o = hy» = 0 and using
equation (4.12),

hos=ho1, hio=—ho1, hsz=—h, hy=—hp hy3=—h, (418)
hso=—ho1, h31=—hi1, h3a2="h12, h33=h;. (4.19)

The transformation formulae of kg 1, ho 2, 71,1, h12 under S, T are given in [4,
p. 11].

LemMMmA 44. Let k=2 (mod4). Then in the Theta decomposition of ¢ €
Je2(Ok), hiy € My_1(SL(2,Z),®), where w is the linear character of SL(2,Z)
defined by o(T) = w(S) =1i.

Proor. From [4, p. 11] we get i | € My_1(SL(2,Z),&); since hy | is already
a modular form for I'(8), it is holomorphic at infinity. O

Lemva 4.5. k=2 (mod4). Then J.y"(0x) = {0}.

Proor. This follows easily from the fact that [6, Proposition 5.6] the
Eichler-Zagier homomorphism ¢ : J,f’;"z(cﬂk) — M;_1(To(8), (%)) (see [6, Proposi-
tion 5.6] for details) defined by 1(¢)(z) = >  hs(87), is injective. In this case

seeOF 20k

we clearly have 1(¢)(7) =0 from equations (4.18) and (4.19). O
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The following Lemma will be used in the proof of the next Theorem.

LEMMA 4.6. Let p,qe Z/4Z so that §+i] € S5 Then

36
ﬁ(ep{’q(f,zl,zz) =0 (1,21,22)). .,
1
= 2(167zi)3((ap ag — a,'ap) +15(aja, — a)a;))
ProoF. We omit the computation, which can be found in [4]. ]

THEOREM 4.7. Let k=2 (mod 4). We have the following exact sequence of
vector spaces

0 — Sti2 X Skis — Je2(Ok) 2 Ty = M — 0 (4.20)

—The map o is defined as follows. We will prove that,

I
ker 7y = Mk,l(SL(z,Z),CZ)) X Skis;

¢ — (h1.1,D0(6) (¢ — hi 1 (0], — 05 — 05, + 61'5))) (4.21)

where Dy(6)¢ = x4, the coefficient of z¢ in the Taylor expansion of ¢ around
z1 =z, =0 (see [3] for the definition of Differential operators D,, v e Zs).
We define the isomorphism I, of Siy» to My_1(SL(2,Z),®) given by Lf =
f/& & as in the proof of Corollary 3.3, see [1].
Then o is merely the composition of the following:

i
Sk+2 X Sk+6 ﬂ) Mk 1(SL(2 Z) ) X Sk+6 SELEEN ker T — JA 2(@ ) (422)

Proor. We divide the proof into 3 steps.

Step 1. ker 7y = Im(o). From the description of the map ¢ in equation (4.22),
it is enough to prove the assertion about ker 7; in equation (4.21). Let ¢ be in
ker 7;. From Lemma 4.1 (the notation are as stated at the beginning of this
section), and using equations (4.18), (4.19) we get

hoy  —hoa i

—= = === 4.23
as 2a1 70 lﬂ ( )

y is well defined since it is well known that a, (u € Z/4Z) never vanish on .
Therefore

¢= l/f(az(Oé,’l + 05,{3 - Ofo —0§) - 2a1(052 - Ofo)

+a0(0 92Hl 9273 + 931,12)) +;11‘1(0{.,11 - 9173 - 051 + 631,{3)~ (4.24)
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From [4, p. 11] we get the following transformation formulas for i:

_l :u‘[k73/2 T T = — . T
M ) S, e 1) = ) (4.25)

T

Further, from [4, p. 11] (since the transformations of (kg 1,02, M, 2) and 5y
under S, 7 are independent of each other) we conclude that & 1(9 0{13
0y, +0£’3) € Ji,2(Ok) and hence so is ¢ — h1’1(01’1 -0y - 931,11 + 0 13 )

 We define ker n = {p eker my | h1,; =0}. By the same reasoning as in the
above paragraph,

ker my = My_(SL(2,Z),®) x ker n] via
¢ (hi1,¢—ha (0], — 011,13 - 051 + 031,{3)%

using Lemma 4.4 and that Gfll - 61’713 - 0;{1 + Hf3 #0.
We now prove that Dy(6) : ker 75 — Sii is an isomorphism.
Let ¢ € ker n{. From equation (4.24) and Lemma 4.6 we get

Do(6)¢ = 2car((affar — a}'ag) + 15(a}'ay — aja})) — 2ea (aff'ar — a3l ay)

+15(agay — agay)) + 2cpao((a)'ay — ay'ar) + 15(aya; — ajay))

= 15¢c - Wry(t) = 15¢"ym">(7)

where ¢ =2(167i)°, ¢’ = c(”—i)32'4' and Wr,(t) = 2" det(0" ( 0)o<v u<m)
the Jacobi-Theta Wronskian of order m. The equality Wr(z (HZ) 2141715(
(n(7) being the Dedekind’s x-function) follows from [8].

Do(6)yer - is clearly injective. It’s surjectivity is equally clear from the
transformation properties of 7. From the definition of the map o, this finishes
Step 1.

Step 2. The case k =2. We claim J, »(0k) = 0. Indeed, using Step 1 for the
description of ker 7; we find dim J, »(0k) = dim ker ; + dim Im(z;) = dim Sy +
dim S3 =0, since J, = 0. The Theorem is trivially true in this case.

Step 3. ker Dy = Im(n;) for k > 4. We have Do(Ok)¢ = xp o = 0 (see Remark
3.2). So Im(z;) < ker Dy. But a direct check (considering k = 2,6,10 (mod 12))
shows

-1
dim Im(7;) = dim Ji 2(O) — dim ker 7; = [kT} — dim Sy» — dim Sk

= dim Ji » — dim M) = dim ker Dy

since Dy is surjective. This completes the proof of the Theorem. O
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43. n=mn;. In this case k=1 (mod4). It is easy to see using equation
(4.12) that hgo = hy 2 =ho» = hyo =0, and after a calculation,

hos = —ho1, hio=iho1, hi3z=ihi1, hy1=—ihis, hyz =iy, (4.26)
hso = —iho1, hi1 = —ihi1, hio=—h, h3=—h (4.27)

Exactly the same argument as in the case # = #, applies here. For k > 4, we use
that dim J; 2(Ox) = %55 (= dim J; 4), whereas Ji »(0x) < J; 4 = 0. Hence,

ProPOSITION 4.8. Let k=1 (mod4). Then n; induces an isomorphism of
Ji.2(Ok) to Jya.

44. n=rmny In this case k =0 (mod 4) and,
hoo1 =ho3 =hi0 =h3,0, ho2=hao, (4.28)
hip=hy1=hy3=h3z h1=hj3=h1=hs;3. (4.29)

We prove two Lemmas which will be used in the proof of the next Theorem.
First we define the map:

DeriNITION 4.1 ([6]).
U/) : Jkﬁm(a‘K) - ‘]kA,N(p)m((ﬁK); ¢(7721722) = ¢(T,P217ﬁ22)- (430)

Lemma 4.9. Let ¢ € Ji 1(Ok) be with the Theta decomposition ¢ = /1001’;{04—
hl/ZOﬁll/z+hi/20{;11/2+h(1+i)/2011;[1/2- Then the Theta decomposition of Uy, ;p is
given by:

Utip = o0y + ho03'y + hy p0fT) + hy 2035 + hip 05,

+ hipa0fs + s 2055 + b1y 2077 (4.31)

Proor. First we note (1 4 i)0x = 20k U ((1 +i) 4+ 20k) (disjoint union) as
abelian groups. Let s =3+ % e Y. We have

Ui (t,21,2) = > e(N()t+ (1+i)rzy + (1 = i)Fzy) (4.32)

r=s (mod Uk)

!/
N(zr )r +r'z + f/zz). (4.33)

P = (x-)/2+i((x+3)/2) (mod (14+)Cx) (
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Using the above formula and that (1 +i)0gx =20gU((1 +1i)+20k), we see
that

Uniffly = 05y + 03 Uil = 01 + 07%; (4.34)
U1+i011-;1i/2 = 0;[1 + 011-137 U1+19 (1+4)/ = 05‘[2 + 921—10 (435)
The Lemma now follows at once. |

LemMA 4.10.  Let ¢, be the basis element of Js1(Uk) given in [11]. Then,
{Uyig 15 is a basis of J4 (k).

PrOOF. The Taylor expansion of ¢, ; around z; = z; =0 can be computed
to be

$4.1(7,21,22) = 2E4 + miEyz1 2y + - -5

from which the proof follows easily by writing down the corresponding Taylor
expansions of Ui, and ¢ [V>. O

THEOREM 4.11. Let k =0 (mod 4). We have the following exact sequence of
vector spaces

0 ——— Jia(Ox) 2250 Ty x Jea 222 g xS ——— 0 (4.36)

where A(m) := Do + Dy : Ji,m — My X Siya.

Proor. We divide the proof into two steps.

Step 1. Injectivity of n; x m.;. Let ¢ eker n; x my5;. From Lemma 4.1
and 4.2 (the notation is as stated at the beginning of this section), we get
(b7 — b3)ho,1 = (b? — b3)hy » = 0.

Now, O, u(7,0) # 0, 4(7,0) for p#v (0 <u,v<m), veH. Otherwise the
Wronskian Wr,, of 0, , (0 <u <m), would be identically zero on # contra-
dicting the fact that it is a non-zero multiple of Dedekind’s #-function (see [8]).

Therefore b7(7) # b3(r) (re€ #) which implies ho = hi»=0. It follows
that hy = ho» =0, and (b3 — b3)ho.o = (b3 — b3)ha» = 0. By the above, we get
h(),() = hzgz = 0. Hence ¢ =0.

Step 2. Im(m; X 714;) < ker(A(2) — A(4)). We use the Taylor expansions
of the Jacobi forms involved. Let ¢(z,z1,22) = > )(w(f)z?zf € Jk.2(0k) be the

%f=0
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Taylor expansion of ¢ around z; = z; = 0. Then the Taylor development of 7;¢
and 7y ;¢ are

T = Xo.0 4'}{1,122 + (Xo.4 + 22,2 +X4,0)Z4 +ee (4.37)
i = Yo.0 t 2)(1,122 —4(x0,4 — X2, +X4,0)Z4 T+ (4.38)

from which it easily follows that A(2)m1¢ = A(4)7i4:6.

Im(7; x m14;) = ker(A(2) — A(4)). We show that they have the same
dimension (for k > 4). dim Im(n; X 7y4;) = dim Ji 2(0g) =% (see Lemma 4.10
for k=4) whereas, dim ker(A(2)—A(4)) =dim Ji ,+ dim J; 4 —dim M) —
dim Sy, =4 (follows easily).

Finally, A(2) — A(4) is clearly surjective since A(2) is surjective. (Recall that
from [5] we know Dy + Dy + Dy : Ji,o — My @ Skio @ Skya 1s an isomorphism.)

O

4.5. Order of vanishing at origin. For ¢eJi ,,(Okx) let ¢(z,z1,20) =

> xmﬁ(f)z?‘zf be the Taylor expansion around z; =z; =0. Define a non-
o, >0

negative integer ok ¢ by

ok m$ = min{o+ f|z, 4(v) #0} if ¢ #0, (4.39)
= otherwise. (4.40)

i.e., or,m¢ can be interpeted as the order of vanishing of ¢ at the origin. From
the relation with Jacobi forms, we can give upper bounds on gk ,¢ for any
¢ € Jiem(Ok) (m=1,2).

ProposITION 4.12. (i) Let ¢ € Ji,1(Ok) be non zero. Then
0< o 19<2if k=2 (mod4); 0< g 194<4if k=0 (mod4). (441)
(ii) Let ¢ € Jx 2(Ok). Then

0<ok20<5if k=1,3 (mod4); 0<20<8 if k=0,2 (mod4). (4.42)

ProoF. All of these assertions except the case k =2 (mod 4), m = 2 follow
easily from Propositions 4.8, 4.3 and Theorem 4.11 and the corresponding result
for Jacobi Xforrns (see [5, p. 37]). In the case k=2 (mod4), m =2 we have

T X7 +i

Ji.2(Ok) " Ji2 X Jka (as in the case k=0 (mod4)). This follows from
Lemmas 4.1 and 4.2 and equations (4.18) and (4.19). For convenience, we give the
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proof. Let ¢ € Ji 2(Ck), with Theta components %, , (a,b € ). From n; ;¢ = 0,
we get /i1 =0 and from m¢ =0 that (using Ao o = hp2 = 0)

21 ay O ho,1
a 0 a hoo | =0
0 aop 261] h 1,2

2a; a 0 .. .. :
Since det( w 0 a ) = —dapa1a;, we get the injectivity and hence the Proposi-
tion 0 2 O

5. Rank of J,. ,,(0k) over M, and Algebraic Independence of ¢, |, ¢s i,

P12,1
We refer the reader to [11] for the definition of the index 1 forms ¢, , ég i,
$1,1 which form a basis for Jax1(Ok) @J4k1 Ok) as a module over M,.

k>0

REMARK 5.1. For m > 1, it is natural to see that Jy. ,,(0kx) (n =2,4) can be

regarded as modules over MY = = C[E4, EZ] and hence over M, via the algebra
isomorphism
Ey— Ey, Eﬁn—>E o)
= C[Ey, E) ————S C[E4, EZ) = M. (5.1)

We note here that, Eq - Jyum(Ok) ¢ Jpem(Ok). From the argument in [5, p. 97|,
we easily see that J, .(Ck) is free over M,, and J,,. ,,(0Uk) is of finite rank r,(m)
over M,.

PrROPOSITION 5.1. (i) r4(m) = m* + 2, (i) ra(m) = 2(m> +1).

Proor. The proof is immediate from the dimension formula of Ji ,,(COk)
in [7, Theorem 3]. We find that dim Ji ,(Ox) = (m? + 2) dim My + f(m) + O(1),
(respectively, = m?* dim My + g(m) + O(1)) where f(m), g(m) are functions de-
pending only on m when k=0 (mod4) (resp. k =2 (mod 4)). Letting k — oo,
we get (i). Since there can be no linear relation between the generators of weights
0 (mod 4) and 2 (mod 4) by Remark 5.1, (ii) follows. O

PROPOSITION 5.2. ¢y, @51, P12 are algebraically independent over M.

Proor. It is enough to prove the algebraic independence of vy 4, Vie 15 Y1615

where lp&l = E4¢4,1 — g1 lP12,1 = E4¢8,1 - ¢12,1: lP16,1 = 5E4‘//12,1 - 3¢16,1§ lp&l:
Y121, V16,1 being the generators of J,,"7(Ux) over M, (see [11] for their defi-
nition).
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Let f(X,Y,Z)= 3 QupX?Y?Z¢ be a homogeneous polynomial over

a+b+c=m
M, of least degree m such that f (g 1,6 1,¥16.1) = 0. Applying the map 7 in

the above relation we get

Z Qo,b,c(nll/;le,1)})(751!016,1)C =0, since ”1‘//8,1 =0.

b+c=m
From Lemma 5.3 mlﬁlm #0, Don11/;1671 =0, Domy6,; # 0. Hence, the argu-
ment in 5, p. 90] for classical Jacobi forms applies, showing Qy . = 0 for all b, ¢
such that b+ ¢ =m. Hence we have

Z Qa,b‘(flpg‘ llﬁlhé, ll//lcé‘l = 0’

a+b+c=m,a>1

giving an equation of lower degree. Hence the Proposition is proved. O

LemMa 5.3, (i) Y61 = —2°Ady | +2E¢s | — Eads -

(iii) nuﬁlé,l = (%Ef +3. 29A)E4,1 + §E4E6E67 15 E4.1, E61 being the normalised
Jacobi Eisenstein series, which are a basis of Ja.1 over M. A=q[[,—,(1 - g™
is the Discriminant cusp form of weight 12.

Proor. The calculations follow from the Theta decompositions of ¢,
(i=1,2,3) given in [11] and using the Theta relations (see [9]): Let 07(7) :=
Hfa‘b(r7070), where 4% = s %. Then we have

1

1
Orio(0) =5 (7 + 50, 001 (0) = 0y(0) = 32°, 01 () =5 (° = »7);

ST

x:Ze(’%) y=z(—1)"e<n7zr>’ = 2 e<t27f)

neZ nel tel/2+Z

are the “Theta constants”. We omit the calculations. O

6. Further Questions and Remarks

(1) The restriction maps that we use in this paper do not commute with
Hecke operators. Nevertheless it is expected that the following should be
true. There should exist finitely many algebraic integers p; € Ok, 1 < j <n
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(where n depends only on the index m) such that we have an embedding/
isomorphism

Ty, X X Ty - -]k,m((pK) — Jk,mN(pl) X X Jk,mN(pn)a

where N : K — Q is the norm map. From the results of this paper (see
Theorem 4.11 and the proof of Proposition 4.12) this is true for m = 1,2
and these cases suggest that p; and n above should be related to the
decomposition of m in (.

(2) We know that for k=0 (mod4), dim Ji,(0k)=5%=2(dim M;_4+
dim Mj_g + dim Mj_;;). This suggests what the minimal weights of the 6
generators of Jy,. 2(0k) over M, should be, but the calculations seem to
be much more than that in the case of classical Jacobi forms.

(3) It would be interesting to write down m? + 2 forms in Jy. ,,(COg) which

are linearly independent over M,. We have (’”2”) such forms from

Proposition 5.2. Since m? +2 — (") = ("), we ask the following ques-

tion. Let 4 :=¢,,, B:=¢g,, C:= ¢, ;. Does there exist a form ¢; in
Ji.3(Ok) (for suitable k) such that the set

{AaBch}a+b+c:m U {¢3AaBbCC}a+b+c:mf3

consists of m? + 2 linearly independent forms (over M,) in Jy. n(COk)?
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