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A PRODUCT FORMULA DEFINED BY THE BETA
FUNCTION AND GAUSS’S HYPERGEOMETRIC
FUNCTION

By

Takuma Ocawa and Yasuo KAMATA

Abstract. Let ¢ be a constant in R". For a plane algebraic curve
P21 = 2¢" cos nf, which depends on m and n in N, we show that
the whole length of the curve are given by a value of a product
formula defined by the Beta function and Gauss’s hypergeometric
function depending m and »n in N. Besides, we point out the fact to
be a similar model and an expansion for the complete elliptic integral
of the second kind. Last, we give a background for the fact ex-
plaining the special case m = n.

1. Introduction and a Main Theorem
Gauss’s hypergeometric function is defined by the power series

Foofoys) = 3 @B e

n=0 (y "n'

where the Pochhammer symbol (x), is defined by (x),:=1 and (x),:=
x(x+1)---(x+n—1). o, f and y are any complex constants and y is not any
negative integer or 0. Let y = F(o,f,y;z), then the hypergeometric function

satisfies the following differential equation

(L.1) z(1=2)y"+(y— (@ +f+1)2)y" —afy =0.

The hypergeometric function reduces to many elementary functions, for example,
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(t+u)" = l"F(—n,c,c; —?),
log(l1 4+ z) =zF(1,1,2; —z),

,=:sin

. . l+n 1-n3 2
= Fl— ——— .
sinnz =nsin z ( R >

We can see a value of argument 1 of the hypergeometric function in [1], [3],
and [8].

ProrosiTiION 1.1 (Gauss, [3, Proposition 3.21], [8] cf. [1]). Suppose that
a,b,ceR, c¢ Ly and ¢ > a~+b. Then

I'(e)['(c—a—-b)
F(a,b,c;1) :—F(c—a)l"(c—b)'
We denote by I'(s) the Gamma function. This can be proven by evaluation of
Euler’s integral using the Euler Beta function. These facts mentioned above can
see some articles [1], [2], [3], [8], [9] and [10].
We have a concern for some values of the hypergeometric function. M.
Kontsevich and D. Zagier introduce periods in [4].

DEFINITION 1.2 (see [4, p772]). A period is a complex number whose real
and imaginary parts are values of absolutely convergent integrals of rational
functions with rational coefficients, over domains in R” given by polynomial
inequalities with rational coefficients.

They explain a relation between periods and linear differential equations as
follows:

By definition, periods are the values of integrals of algebraically defined
differential forms over certain chains in algebraic varieties. If these forms and
chains depend on parameters, then the integrals, considered as functions of
the parameters, typically satisfy linear differential equations with algebraic
coefficients. The periods then appear as special values of the solutions of
these differential equations at algebraic arguments. This leads to a fascinating
and very productive interplay between the study of periods and theory of
linear differential equations (see [4, p778]).
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The hypergeometric function satisfies a differential equation (1.1). After giving the
explanation above, they introduce some values of the hypergeometric function.
The following are contents of [5]. Article [5] has been treated in [4] again. We can
see some values of the hypergeometric function in this here.

ProrosiTiON 1.3 (F. Beukers and J. Wolfart, [5, Theorem 3]).

15 11323\ 3, 17 2 64000\ 2 .-ex
F(u’u’2’1331>4m’ F<12’12’3’64OO9>3 253

ProrosiTiON 1.4 (F. Beukers and J. Wolfart, [5, Theorem 4]).

1 1
F<1 —3a,3a, a; 5) = 2273 ¢os 71a, F<2a, 1 —4a,1- ai) =49 cos ma.

(7 31 29 1>:25/243—11/125 Sin

43748°24° 3 sin 3%

7 21 1 4r
pl_ol 2 L1\ p223-7/6 g I°
( 6’ 3’18’9) 37sing

In this paper, we focus on some values of the Beta function and the hyper-
geometric function. We have two equalities in the following.

ProposITION 1.5 (complete elliptic integral, see [8] or [9]). We denote by
K (k) the complete elliptic integral of the first kind. We denote by E(k) the complete

elliptic integral of the second kind. By using the hypergeometric function and the
Euler integral, K(k) and E(k) are given by

! dx n (11
K(k I:J :—F(—,—,l;k2>,
) 0/ (1=x2)(1—k2x2) 2 \2°2
T —k2x2 n 11, .,
E(k) = JO ﬁdx—EF(—E,E,I,k )

Especially for the complete elliptic integral of the second kind E(k), for an

ellipse

(1.2) T il 21 (a>b>0,abeQY),
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we denote by L, the whole length. We can get L, , = 4aE(k), (k* =1 — (b/a)?).
We treat L, as follows. We denote by B(p,q) the Beta function.

b1 —k2x2 11 2%
(13) La,b —4aE(k) = 4CIJO ﬁdx = 2naF —5757 1, 1 - (E)
11 11 2%
:208(2,2)1;'(—2,71,1—(“))

If a=b, then equality (1.2) changes the form from the ellipse to a circle

x? 4 y* =a* and we get the whole length

11
(1.4) Ly, =2na= 2aB<2,2>.

Equality (1.2) includes a circle x>+ y? = a® for a special case. Equality (1.3)
includes equality (1.4) for a special case. Besides, from three equalities (1.2) (1.3)
and (1.4), we can see a matching relation between the figure and the length of
the ellipse (1.2). This is a viewpoint of the complete elliptic integral of the second
kind. For the viewpoint, we obtain a similar model and an expansion for the
complete elliptic integral of the second kind as follows. This is an our result.

THEOREM 1.6 (main theorem, [16, Theorem 4.2]). Let ¢ > 0 be a constant in
R. For the following plane algebraic curve, which depends on m and n in N such
that

(1.5) (x4 )" = 2c"gu(x, ),

the polar form is given by

(1.6) r2mn = 2¢" cos nb),

where g,(x,y) be functions satisfying the following equality
gn(rcos 6,rsin 8) = r" cos né.

For m and n in N, if

l:=2m—-n>0 and g<m<g(l+\/§),

then the whole length L, , of the plane algebraic curves (1.5) are given by
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11 1111 I\’
1. Lw=V22B(= 2 VF[ ==~ —4=:1— (-
(.7 ’ 7 (21’2) ( 220212 (n))

where | :=2m —n, (m,neN).

Especially if m = n, then we can easily see | = m = n and the whole length L, , are
given by

11
1. Ly, = V2cB(— =)
(18) o= 28 5;.5)

We denote by B(p,q) the Beta function. F(o,pf,y;x) denotes Gauss’s hyper-
geometric function.

ReMARrk 1.7. For Theorem 1.6 above, comparing with three equalities (1.2)
(1.3) and (1.4), we obtain a similar model and an expansion for the complete
elliptic integral of the second kind. If /=1, then L, , is the complete elliptic
integral of the second kind. Besides, from Theorem 1.6, we obtain a function,
which a product formula, defined by the beta function and the hypergeometric
function, give the length of the plane algebraic curve (1.5). Considering the
product formula (1.7), for the length of the plane algebraic curve (1.5), the

11
B(M)

determine a fundamental measure of the length and the value

111 1 I\
F(‘i@@*?“(ﬁ))

determine a rate of the transition of the length.

value

ReMARrRk 1.8. By Schneider [6, 7], we have two following facts.

(1) For all rational number, non-integer a, b, the beta function

1
B(a,b) ::J x4 = X)) dx
0
is a transcendental number.
(2) For an ellipse (1.2), we have the whole length L, , =4aE(k), (k*=
1 — (b/a)*), where E(k) denotes the complete elliptic integral of the
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second kind. If a and b be positive algebraic numbers, then L, is a
transcendental number.

From these mentioned facts, Theorem 1.6 includes some transcendental numbers.

From these mentioned facts, we think that the present paper is giving a
contribution for a article [4, p778—p781].

Here is a short description of what to expect in this paper. First, we give a
direct proof of Theorem 1.6 (main theorem). Second, explaining the special case
m = n, we show the background of the main theorem. The plane algebraic curve
(1.5) includes the circle and the lemniscate for a special case. Last, we would like
to exhibit some figures and examples of the plane algebraic curve (1.5). From
these figures, we can again recognize a similar model and an expansion for the
complete elliptic integral of the second kind.

2. A Proof of Theorem

Since x =rcos @ and y =rsin 0, therefore the line element for the polar
form is given by

2
dL = \/dx? +dy? = Vdr* +r2 do* = \[r? + (ﬁ) do.

do

It is easy to see that the polar form of the plane algebraic curve (1.5) are given by
(1.6) such that

(1.6) P2m = 2¢" cos nf.
From the equality (1.6) above, we have

2¢"n si
%:_%j?n@’ where [ :=2m —n.

From the facts mentioned above

2¢mn sin n0\* 4¢2n2 sin® nb
4¢2n2 sin® nb [ n?
:V\/l+md027 1+l—2tan2n9d0
— 5 e/ n oo
=V2c" cos'’' nhy/ 1 +l—2 tan- nf do,
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therefore we obtain

2
dL = V/2c" cos'!! noy /1 +% tan? no do.

The interval of 0 is —n < 0 < n. However, from equality (1.6), r > 0 and ¢ > 0,
hence it is enough to consider in a interval

Vi1
<0< —.
_6_2n

SR

Therefore (pay attention to times #), the whole length L, , of the plane algebraic
curve (1.6) are given by

n/2n n2
Lyn= ZC"I’IJ cos'! noy/1 +1—2 tan? n0 do.
—n/2n

From the equality above, change of variables nf = X, and after some computing

n/2 2
Lyn="V 2an cos'! X4/ 1 +’;—2 tan2 X dX
—n/2
I’ n 7'[/2 l 2
= \/2c”72j cos'/! Xy /tan? X + (—) dx.
0 n

We use the following computations:

we get

For the integral
n/2 Ji 2
J cos'! Xy /tan? X + <n) dx,
0

change of variables x = 1/cos?> X(= 1 + tan? X),

dx:200s)£sinX ZZSinXdX:2de
cos* X cos’ X cos’ X
=2xv/xy/1 f%d){:bc\/HdX,
hence
JX — dx

_Zx\/x— 1’
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The other parts are
2 1 1 1/1 1/1 —1/21
cos” X =—, cosX=—, cos’' X =(cosX)' =x",
X VX

tan” X = x — [;

By using these calculations above, we get

/2 Ui 5 / 2 o 1 1/1 / 2 1
cos/' Xq/tan- X + [ — dX:J <) x1+<> —  dx
JO <”) 1 \Wx n) 2xvx—1

. 2
- %J x V2 x 1) (x — @) dx, where ai=1— (i) ‘
1

Therefore, we obtain

0 ] 2
Lyn=v 2C”;J x12 (x — 1)71/2()( — a)l/2 dx, where a:=1— <Z) .
1

For the equality above, change of variables ¢ = 1/x, then

-1
dit = — dx = —1* dx,
X
1
dx = _[_2 drt.

Compute the length L,, ,, then

Ly = 3" [ (L) ) (L) a
mn = VAT ] t ! 2

-1/2 1/2
_ e 111/21+1<1 —l) / (l—at)/ (l) di
Lo t t 12

1
= 2C"; PN = )72 = an)'
JO

therefore we get

1 2
(21) Ly = \1/20”;J MY = )TV (1= an? dr, where a:=1— (1) .
0
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We have the following well-known fact, which is the Euler’s integral repre-
sentation of the Gauss’s hypergeometric function (see [10, p51])

(2.2) F(o,B,y;x) = 1"(y)J1 LY (R L § xz)”’ dt,

where for its convergence,
(2.3) Re(a) >0, Re(y—a)>0, and |x|<1.
Comparing equality (2.1) with equality (2.2), let

1 11
o= Y=+

- ﬂ'——l and '—1—52
20 272 PT Ty =)
we obtain the whole length L,, , of the plane algebraic curve (1.6) as the fol-
lowing form.

1\ ../1
, nr(i>r<§> 111 1 I’
Lm,n: zcn_i _a__7_+_;1_ - .
L (L1 2° 27202
2072

By using the following well-known two equalities

L'(p)I'(g)

B(p,q) “T(rtq)’

F(a7ﬁ7 y; x) = F(ﬂ’ a? y; x)’
we obtain a equality (1.7). The assumption of this theorem

[:=2m—-n>0 and g<m<g(l+\/§)
depends on a convergence of the equality (2.2), in short the assumption depends
on the relations (2.3). O

3. Background

From the polar form (1.6), we give a proof of Theorem 1.6. The plane
algebraic curve (1.5) includes the circle and the lemniscate for a special case. In
fact, the plane algebraic curve (1.5) is an expansion of the polar form for the
plane algebraic curve (3.7). We can see some similarities of the circular function
and the lemniscate function [11], [12], [13], and [14]. Considering based on the
similarities, we get a plane algebraic curve (3.7), which depends on n in N. The
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plane algebraic curve (3.7) is a special case for Theorem 1.6 and its includes
the circle and the lemniscate.

The following is the contents of [14, 15, 16].

First, we recall the construction method of the plane algebraic curve the unit
circle x2 4 y? = 1 and the lemniscate (x2 + y?)* = x? — y2. After that, we exhibit
a construction method of the plane algebraic curve (3.7), which depends on # in

N.

3.1. A construction method of the plane algebraic curves. The construction
of the unit circle x? + y*> =1 is the following.

Put P:= (x, y) in R%. Let F := (a,b) be a fixed point in R?, and ¢ > 0 be a
constant in R. For P, F, and ¢, consider the plane algebraic curve which satisfy
the following condition such that

(3.1) PFl=c, (IPF| = \/(x—a)+(y —b)*).

The unit circle x> + y?> = 1 is a special case of the condition (3.1). For condition
(3.1), if F=(0,0) and ¢ =1, then the plane algebraic curve is the unit circle
x2+y? =1

On the other hand, the construction of the lemniscate (x2 4+ y2)* = x2 — 2 is
the following.

Put P := (x, y) in RZ. Let F| := (a17b1) and F, := (az,bz) (F] #* Fz) be two
fixed points in R?, and ¢ > 0 be a constant in R. For P, F;, F», and ¢, consider
the plane algebraic curve which satisfy the following condition such that

(2)  IPRIIPR|=c, (PFl:=y/(x—a) +(r—b)* (i=12).

The lemniscate (x2+ y2)? = x2 — y2 is a special case of the condition (3.2). If
Fy = (=1/v2,0), F; = (1/+/2,0) and ¢ = 1/2, then the plane algebraic curve is
the lemniscate (x2 4 y?)* = x? — 2.

Based on the condition (3.1) and (3.2) of the plane algebraic curve mentioned
above, we give a generalization of the condition.

Put P:= (x, y) in R% Let F; := (a;,b;) (i = 1,2,...,n. i # j, F; # F;) be some
fixed points in R?, and ¢ > 0 be a constant in R. For P, F;, and ¢, consider the
plane algebraic curve which satisfy the following condition such that

(3.3) |PFy| |PF,|---|PF,| = c,

(|PFy| :== \/(x—a,-)z—l—(y—b,-)z, (i=1,2,...,n).
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Furthermore, in addition to assume the fact which F, depends on n in N, we
consider the following plane algebraic curve which depends on n in N. We denote
by f.(x,y) =0 the plane algebraic curve.

fi(x,y) =0« |PF| =c,
fz(x, y) =0 |PF1| |PF2| =,
(34) Ju(x,9) =04+,
Sfi(x,y) =0« |PF|||PF;| - |PF| = c,

This is a fundamental construction method of the plane algebraic curve which
depends on n in N.

Based on the construction method above (3.4), we consider the plane al-
gebraic curve which for all fixed points depends on n in N as follows.

Put P:= (x,y) in R?. Let Fj := (a;,b;) be some fixed points in R? which
depend on i, j in N (1 <i<n,1<j<n). Prepare a function ¢ : N — R. We
denote by f,(x,y) =0 the plane algebraic curve. The plane algebraic curve
Jfu(x, y) =0 satisfies the following condition.

Silx,y) =0 & |PFy| = ¢(1),
fr(x,y) =0 & |PFy| [PFa| = ¢(2),

(3.5)  fulx, ) =0 f3(x,y) = 0 & |PF3| |PF3| |PF33| = ¢(3),

BN

Ji(x,y) =0 |PFu||PFia| |PFs| - - - |PFu| = ¢(k),

For the construction method (3.5) of the plane algebraic curve f,(x,y) =0,
we give a sample which can be considered important for number theory as
follows.

Let ¢ >0 be a constant in R. By using ¢, we define F,; and a function
¢ :N — R as follows:

2k . 2k
Fy = ccosnn,csmnn) (k=1,2,...,n,neN);

d(n) :=c".

(3.6)

This is the plane algebraic curve (3.7) of Theorem 3.1, which is a special
case for Theorem 1.6. After some computing, we get the plane algebraic curve
(3.7).
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THEOREM 3.1 (see [14, Theorem 4.1], [16, Theorem 4.1]). Let ¢ >0 be a
constant in R. For the following plane algebraic curve f,(x,y) =0 which depends
on n in N such that

“ 2kn 2kn
37 2 272 “nae O 2\ Zn:O
(3.7) H(x +y c(xcos p -+ ysin n>+c> ¢ ,

k=1

the whole length L, of the plane algebraic curve f,(x,y) =0 are given by

Y 1 1
Ln = \/ECB(E,E)

We denote by B(p,q) the Beta function such that
1
B(p,q) = J =X dx (p,g>0).
0

3.2. Proof of Theorem 3.1 [14, 16]. There are two steps in this proof. The
first step includes some important meanings.

The first step. Considering the plane algebraic curve (3.7) over C, in other
words, replacing P := (x, y) in R? with z:= x+iy in C, and rewriting the con-
struction method of the plane algebraic curve (3.5), (3.6), we obtain a polar form
and a polynomial form for a complex variable z of the plane algebraic curve
(3.7).

F,; has changed

2k . 2k
Ok ::c<cos —n—i-ism—n), (k=1,2,...,n,neN).
n n

For a complex variable z := x + iy, we have
|zl = VX2 + 32, |ziz| = |z |z,
By using three equalities above, the condition (3.5) and (3.6) have just changed

|z = o] |z = o] |2 — o3| -+ - |2 — o] = ™.
Hence

[(z—om)(z— o) (z—am3) - (2 — o) = "
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In fact o, is a root of the algebraic equation z” — ¢” = 0. Therefore, we obtain
(3.8) |z" — " = "

This is a polynomial form for a complex variable z of the plane algebraic curve
(3.7).

Let r and 0 be polar coordinates of z:= x4 iy. Since x =rcos @, and
y=rsin 0, z can be written in polar form and Euler’s formula as

z=r(cos 0 +isin 0) = re”.

By using equality above and de Moivre’s formula (e?)" = ™, equality (3.8) can
be written

(3.9) r'" = 2c" cos nb.

This is a polar form of the plane algebraic curve (3.7) of Theorem 3.1 and a
special case for equality (1.6) of Theorem 1.6.

The second step. Since x = r cos 6 and y = r sin 0, therefore the line element
for the polar form is given by

2
dL = \/dx? +dy* = Vdr* +r2 do* = || r* + (ﬂ) do.

do
From equality (3.9), we have

ﬂ L 2¢" sin no
do pn-l

By using two equalities above,

N 2 20 oinl
L = \/ﬂ N (2c su: n@) 40— ,rz +4c 2sm2 no 40
rn* r n—

PP A sin’ no 40— 4¢2 cos? n + 4c2 sin® né
- p2n=2 - p2n—2

[4c?r? 4c2ny2 r
g —dH: d@: d0: n2 ]/n_l ede.
r2n 4c2 cos? no cos nf V2e cos "

Therefore, we get

do

(3.10) dL = /2¢ cos'/" ! nf do.
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The interval of 6 is —n < 6 < 7. However, from equality (3.9), r > 0 and ¢ > 0, it
is enough to consider in a interval

<0<

S’IN
SE

Therefore (pay attention to times n), the whole length L, of the plane algebraic
curve (3.7) are given by

7n/2n
L,= \"/Ean cos!/"=1 no do.

—7n/2n
From the equalities above, change of variables nf = X, and after some com-
puting we get

/2
(3.11) L,= \"fzczj cos'/" ! X dx.
0

For the equality (3.11), applying the properties of the Beta-function:
1
(definition)  B(p,q) ::J X1 =x)""dx (p,g>0);
0

(property 1)  B(p,q) = B(q, p);

/2 1 1 |
(property 2) J sin® 0 cos? 0 do = —B(a - /’L) 7
0 2 2 2

we obtain the whole length L, as the following form.

i)y

3.3. Setting a problem, the answer, and some related articles. From the
proof of Theorem 3.1, especially for the step 1, we can easily see three forms of
the plane algebraic curve (3.7). From the form (3.8), which is an expression of the
absolute value of the complex variable polynomial, we think Theorem 3.1 to be a
special case for two articles [17], [18].

For the plane algebraic curve (3.7), from some calculations, figures, and the
polar form (3.9), we obtain a problem. The following are the calculations for the
plane algebraic curve (3.7).
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| Salx,y) =0

1| x24+1y2=2ex=0

2| (x2+ ) —2e2(x2 —y?) =0

3| (2247 - 263(x3—3xy )=0

41 (x2 + p)*t = 2¢4(x* — 6x2p2 4+ ¥4 =0

50 (24 p2)° —265(x° - 10x3y +5xy%) =0

6 || (x2+ p2)® — 2¢5(x® — 15x*y2 + 15x2p* — 16) = 0

For n in N, Let g,(x, y) be functions satisfying the following equality

gn(r cos 6,rsin 6) = r" cos né.

n | gn(x, )
1| x
X2 2

x? — 3xy?

x> —10x3y? 4 5xp*

2
3
4 | x*—o6x2y? 4 y*
5
6

X6 — 15x%y? 4+ 15x%p% — »©

Let ¢ > 0 be a constant in R. Based on the calculations above, we consider the
length of the following plane algebraic curve, which depends on m and n in N
such that

(3.12) (x2 4+ )" = 2c"g,(x, ).

Can we give the length of the plane algebraic curve (3.12)?

Theorem 1.6 is the answer. Comparing two theorems Theorem 1.6 and
Theorem 3.1, we can also see an expansion from a view point of the length. In
other words, Theorem 1.6 includes Theorem 3.1 for a special case. We exhibit a
connection between some plane algebraic curves and the length. Through Theorem
1.6 and Theorem 3.1, we obtain a rule, which the Beta function and Gauss’s
hypergeometric function gives the length for the plane algebraic curve (1.6) and
(3.7). Besides, from the figures and a view point some equalities (1.2), (1.3), (1.4),
(1.5), (1.6), (1.7), and (1.8), we obtain a similar model and an expansion for the
complete elliptic integral of the second kind.
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