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STABILITY IN SO(n + 3)/SO(3) x SO(n) BRANCHING

By

Chiaki TSUKAMOTO

Abstract. The branching rule for SO(n+ 3)/SO(3) x SO(n) is dis-
cussed. An effective bound for the stability in the branching is
given.

1. Introduction

Let G be a compact connected Lie group, K its closed subgroup, and Vg
an irreducible K-module. The space of smooth sections C*(G xg Vi) of the
associated vector bundle G xg Vi is a G-module, which has the decomposition
into irreducible finite dimensional G-modules; we have a sum of irreducible finite
dimensional G-submodules as its dense subspace. Frobenius’ reciprocity law
shows us that a G-submodule isomorphic to an irreducible G-module Vg appears
in the decomposition if and only if there exists a non-vanishing K-homomorphism
from Vg to Vi, and the multiplicity of the appearance is equal to the dimension
of the space of K-homomorphisms Homg(Vg, Vi). If we assume that all mod-
ules are over the complex number field C, by Schur’s lemma, the dimension
dim Homg (Vg, Vi) is equal to the multiplicity of K-submodules isomorphic to
Vi in the decomposition of Vi as a sum of K-irreducible K-modules. Therefore
the decomposition of C*(G xk Vi) into G-irreducible G-modules is computed by
the knowledge how a G-irreducible G-module Vi decomposes into a sum of K-
irreducible K-modules, or, more precisely, by the knowledge which G-irreducible
G-module Vg includes a K-submodule isomorphic to Vi in its decomposition
into K-irreducible K-submodules and how many times Vg includes Vk. In our
setting, the irreducible G-modules and K-modules are determined by their highest
weight. When Vg is the irreducible G-module V(Ag) with the highest weight Ag
and Vg is the irreducible K-module Vg(Ag) with the highest weight Ak, we
define the multiplicity m(Ag, Ax) by
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m(Ag,AK) = dim HomG(VG(AG), COO(G XK VK(AK)))
= dim HomK(Vg(Ag), VK(AK))

The knowledge of m(Ag, Ag) for every pair of highest weights A and Ag
is called the branching rule for G/K. When we use it for the computation of
the decomposition of C*(G xg V), it is not enough to compute m(Ag,Ak)
for some randomly taken Ag. For a fixed Ag, we should determine all the
Ag for which m(Ag, Ag) is positive and the precise value of m(Ag,Ag) for
them.

In [4], the author gave the branching rule for SO(n+ 3)/SO(3) x SO(n)
(n>3), but then it was not clear how it can effectively be used for the
computation of the decomposition of the space of smooth sections of the
associated vector bundle.

In this paper, we shall show the effectiveness by establishing the bound for
stability in the branching rule. First, we clarify what is the stability in the
branching rule.

Assume that (G, K) is a symmetric pair. We denote by r the rank of (G, K).
The G-module decomposition of the space of C*-functions C*(G/K) is well-
known and clearly described by the theory of spherical functions. There are r
fundamental weights Aj,Aj,...,A,, and each G-module whose highest weight
is their linear combination over non-negative integers appears in the decom-
position just once. Since C*(G/K) is C*(G xk Vk(0)), the above means that, if
we take the highest weight Ag = Y/, p;A; with non-negative integral coefficients
pi (1 <i<r), we always have

m(Ao,0) = 1.

We fix a non-zero element ® of Homg(Ve(Ao), C*(G/K)).

The space C*(G xg Vi) is a C*(G/K)-module, and the module structure is
compatible with the G-module structure. For ¥ € Homg(Vg(Ag), C* (G xk Vk)),
we have ¥ ® ® € Homg(Ve(Ag) ® Ve(Ao), C*(G xk Vk)), where we used
Vg @ Vi(0) = Vk. Since V(A + Ay) is the G-submodule of Vi(Ag) ® Vi(Ag)
containing the tensor product of the highest weight vectors of Vg(Ag) and
Ve(Ao), we have the restriction of ¥ ® ® to Homg(Ve(Ag + Ao), C* (G xk
Vk)), and we denote it also by ¥ ® ®. Let vg(Ag) be the vector corresponding
to the highest weight in Vg(Ag) and vg(Ag) that in Vg(Ag). If the image
Y(vg(Ag)) is a non-zero section in C* (G xg Vi), the image (¥ ® @)(vg(Ag) ®
vg(Ag)) is also a non-zero section, since it is a multiplication of W (vg(Ag)) by a
non-zero function ®(vg(Ag)) that does not vanish on an open dense set of G/K.
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Therefore, if Homg(Vg(Ag), C*(G xg Vk)) has the dimension ¢, we can make
¢ independent realizations of Vg (Ag + Ao) in C*(G xg Vk). We conclude the
following proposition.

PropoSITION 1. Let Ak be the highest weight of an irreducible K-module, and
Ag the highest weight of an irreducible G-module. For any highest weight Ay =
S pil\i with non-negative integers p; (1 <i<r), we have

m(Ac + Ao, Ax) = m(Ag, Ak).

Therefore, the value m(Ag, Ag) is non-decreasing with respect to the addition
of the highest weight Ay.

It is generally known to stabilize for the large Ag; the value m(Ag, Ag) stops
increasing. See, for example, Sato [3]. But, for our application, the effective
bound for Ag so that the equality m(Ag + Ao, Ax) = m(Ag, Ag) should hold is
needed. With such bound, we can select Ag for which we should compute
m(Ag,Ag), and can finally compute the decomposition of the space C*(G xg
Vk(Ak)). Thus, the effectiveness of a branching rule is evaluated by how it gives
the stability bound. We shall show the effecitve bound is obtained from the
branching rule in [4].

The author is led to consider the stability bound for the branching rule of
SO(n+3)/SO(3) x SO(n) after Professor Mashimo’s works [1], [2] and thanks
him for the valuable discussions on this theme.

2. The Case n is Even

We first recall the branching rule given in [4] for G = SO(2m + 3) and K =
SO(3) x SO(2m) with the integer m > 2. We use the same notation for weights
given there.

The hightest weight Ag of an irreducible G-module is of the form Ag =
holo + Ay + -+ - + hyyhw, where g, hy, ... h, are integers satisfying hy >
hy >--->h, >0. The highest weight Ax of an irreducible K-module is of
the form Ag = polo + p141 + -+ Pm—14m—1 + &DmAm, Where po,p1,..., Pm-1,Pm
are integers satisfying po >0 and p; >--- > pp_1 = pn =0, and ¢ is +1 or
—1.

An irreducible G-module Vg(Ag) is always the complexification of a real
vector space with G-action. On the other hand, an irreducible K-module Vi (Ak)
is the complexification of a real vector space with K-action, when p,, = 0. (In this
case, ¢ is irrelevant.) The complexification of a real vector space with irreducible
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K-action is Vi(Ag) with p,, = 0 or a direct sum Vg(Ag) + Vi(Ak) with p,, > 0,
where Ag is the Ag the sign ¢ of which is reversed. In the decomposition of
Ve(Ag), there appear only Vi(Ak)’s with p, =0 or direct sums Vg(Ag)+
VK(A_K) with p,, > 0, since they must be the complexifications of real vector
spaces with irreducible K-action. In this respect, we may restrict our attention to
Ak with e=1 (or p,, =0), for, if Vx(Ag) appears in the decomposition of
Ve(Ag), Vi(Ag) also appears with the same multiplicity.

In the following, we set s(1) =exp(l) —exp(—4) and c¢(4) =exp(4)+
exp(—4).

THEOREM 2. The irreducible K-module Vi (Ax) with the highest weight Ax =
Polo + PiAL + - -+ 4+ PmAm appears in the decomposition of the irreducible G-module
Ve(Ag) with the highest weight Ag = hodo + A + - + hy oy, if and only if the
following conditions are satisfied.

L pm < hpmety, Pt <hma, hipa < pi <hiy (1 <i<m-—2).

2. In the following expression, in which we calculate the left hand side and

arrange them as in the right hand side, m,, does not vanish:

m

{1 s(1570)
>, o= ol (r+3)5)

(ki sy kom) p=0

where the sum in the left hand side is taken over all the sequences of integers
ki, ..., ky satisfying

ki > > ky >0,
P < Ky <min{p,,_1, M1},
max{p;, b1} <k <min{p;_1,h1} 2<i<m-1),
max{pi,m} <k <h,
and Iy, 1y, ... 1, are given by
lo = ho — max{hy, ki } + 1,
Iy = min{h;, k;} — max{hi 1, ki1 }+1 (1 <i<m-—1),

Ly = min{hy,, k,, } + %

We have m(Ag, Ax) = my,.
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The fundamental weights for the pair (G,K) are given by
Ay = 2)"07
Ny =270 + 244,

A3 =lo+ A + Ao
Let Ao be any linear combination of Aj, Ay, and A3 with non-negative integral

coefficients. Our main theorem on the stability bound is given as follows:

THEOREM 3. Assume that hy — hy > po + p1, b1 — hy = po + p1, and hy > p1.
Then we have m(Ag + Ao, Ax) = m(Ag, Ak).

For the proof, we first assume /4, > p;. Then the summation over (ki,..., k)
in Theorem 2 splits into the product of two parts.

T s(li2 A
zg)( O)_ S(lo/uo)s(ll/lo) 1
ey bl (1,
(K1 oK) (s(40)) hekien (5(4))
m—1 N
s(li2o) s(Luio)
X . ’
max{p2v%5k25pl g S(}'O) S(%AO)

max{ p;, hit1} <ki<max{p;_i,hi-1} (3<i<m-1)
P <k <max{ pp_1,hm_1}

where we have
lo = ho — max{hy, k1 } + 1,
L =min{h, k1} —h + 1,
h = ky — max{hs,ks} + 1,
L = min{h;, k;} — max{hi1,kip1}+1, B3<i<m-—1),

L = min{hy,, ky,} + %
Since s((14 1)) /s(Ao) = exp(ldo) +exp((! — 2)Ao) + - - - + exp(—11p), and
s((1+1/2)20)/5((1/2)20) = exp(ldo) + exp((/ — 1)Ao) + - - - + exp(—I4y), we can
conclude

m—1
H S(IM.()) ) SUm%O) _ Z Ckc(k;{o)_ (1)

S(/l()) S(%/uo) 0<k=p

max{pz,h3}sk2 <pi i=2
max{ p;, hiy1} <k;<max{p;_1,hi-1} (3<i<m-1)
P <k <max{pm—1,hm-1}

Notice that the coefficient C; does not depend on /gy, &, nor hy.



244 Chiaki TSUKAMOTO

We shall compute the former part.

s(lo2o)s(li2o) s (1 /10)

hy <ki <hg (S(/IO))Z

2
- S((h() —h+ 1)10) S((k1 —hy + 1)/1())S<1/AL >
a S(;»()) 2 0

S()LO) hy <ki <hy

S((hl —hy + l)ﬂo) S((h() — ki + 1)].0) 1
o (5)

S()“O) <k <hg

_s((ho — b + 1)) > klzhz(_l)qs(ocl—hz—q—i-%)io)

s(4o) hh<ki<h ¢=0
A h _h 11 ho—ky 1
+v(( 1 )2+ )%0) Z Z(—l)qs<(ho—kl_4+§)l°>
s(40) h<ki<hy q=0

h[*hz 2
_sllin =+ i) 5 L((hl hzzqg)%)
2

S(;\.()) =0

[(ho—m—1)/2]
s((hy — hy + 1)1 1
+ (( 1 2 ) 0) Z S((ho—hl—1_2q+§)io> (2)

S()v()) =0

We can calculate this from the following:

LemmA 4. For k < h, we have

Ms< (k + %) /10> - hk(-l)”‘“ﬂv((p + %) /10)

s(40) =
k 1

+ E s((h—k+2q+2>io>.

For h <k, we have

(o) ol
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ProorF. We use the following equality.

s«h+lﬂws<(k+1>%>:§«h+1ﬂws<1%)s«k+%i®

S(/l()) 2 S()vo) 2 S(% ﬂo)
h
= —)Ps{ (h— A
> ((r-r+5)n)
2k
x> _exp((k — q)k)
q=0

Notice that we have
1 2k h+k 1
L (1)

The lemma follows from a straightforward computation. O
Using this lemma, we have:

PROPOSITION 5. For an integer p satisfying 0 < p < min{hy — hy,h — hy},
the coefficient D, in the equation

ho—hy
MSGAO) =Y Dﬂ((p%)io)’
p=0

2
hy <k <hgy (S()LO))

depends only on hy — hy and hy — hy, and does not change when hy — hy or hy — h;
are increased by even integers.

Proor. By carefully counting the appearance of s((p+1/2)4) in the
formula (2), we can show that, if p =/hy—/h, (mod2), we have

D, =

p+(h07h1)7(h17/12)_ ho—hy — 1 i hy —hy
2 2 2 ’

and that, if p=hy—h +1 (mod2), we have

Dy

:P-l-l—(ho—hl)-i-(/n—hz)+ ho—h =11 [l —hy
2 2 2 '
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The coefficient m, in Theorem 2 for 0 < p <min{hy — hi,hy —h2} — pi
depends only on the coefficients Cr (0 <k < p;) in the formula (1) and the
coefficients D, (0 < p <min{hy — hi,h — hy}) in Proposition 5. By adding Ay to
Ag, the condition /; > p; does not alter and the values of hy — h; and hy — hy
increase by even integers. Therefore m, does not change. Thus the proof of
Theorem 3 is completed. ]

3. The Case n is Odd

We next treat the case n =2m+ 1 (m > 2). We again recall the branching
rule given in [4] for G = SO(2m+4) and K = SO(3) x SO(2m + 1), following
the same notation for weights there.

The hightest weight Ag of an irreducible G-module is of the form Ag =
h—l)h—l + /’10/1() + /’11/11 +---+ hm_llm_] + Shmim, where h_l,/’lo,/’ll, ce ,/’lm_l, hm are
integers satisfying h.y >hy>hy >--->hy, 1 >h, >0 and ¢ is +1 or —1. The
highest weight Agx of an irreducible K-module is of the form Agx=p 4+
pir1+ -+ pmim, where p_y,pi,...,pn are integers satisfying p_; >0 and
pr=-=p,=0.

THEOREM 6. The irreducible K-module Vi (Ax) with the highest weight Ag =
P11+ piAL+ -+ pmdn appears in the decomposition of the irreducible G-
module Vg(Ag) with the highest weight Ag =h_1_1+ holo+MmA + -+
hip—12m—1 + ehpmla if and only if the following conditions are satisfied.

Lopw <hpo, i <pi<hi, (1 <i<m-1).

2. In the following expression, in which we calculate the left hand side and

arrange them as in the right hand side, m, , does not vanish:

m

= =l

(90,15 qm) p=0

where the sum in the left hand side is taken over all the sequences of integers
qo,q1, - - -, qm satisfying

q0 = q1 2"'2%11207
hm < qm < min{mel,hmfl}a
max{p;i1,h} < g <min{p; 1, hi1} 2<i<m-—1),

max{pg,hl} <q1 < /’l(), max{pl,ho} <qo < hfl,
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and ro,ri, ...,y are given by
ro = qo — max{q, p1} + 1,
r; =min{g;, p;} — max{qgis1, pir1}+1 (1 <i<m-—1),
I = min{qy, pm} + %
We have m(Ag,Ag) =my, .
The fundamental weights for the pair (G,K) are given by
A =204,
Ay =20_1+4 24,
As=I1+ 4+ 4.

Let Ay be any linear combination of A;, A,, and A3 with non-negative
integral coefficients. Our main theorem on the stability bound is given as follows:

THEOREM 7. Assume that h_y—hy>p_1+ p1, hy—h > p_1+ p1, and
hy = p1. Then we have m(Ag + Ao, Ag) = m(Ag, Ak).

For the proof, we assume /; > p;. Then the summation over (qo,q1,---,¢m)
in Theorem 6 splits into the product of two parts.

ﬁ s(rid_1)

(90,915 qm)

- Z S(roﬂll)s(ll_l)
ho<qo<h_i s(Z-1) \2

h<q<ho

= ,
max{p3,}<q<p i=1 s(;h_l) S(Zj'*l)
max{ pii1,h} <gi<max{p;_1,hi-1} (3<i<m-1)
T < G <MAX{ P, 1 }

where we have
ro=¢qo—q1 +1,

ri = p1 —max{q, p»},
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ri =min{q;, pi} —max{qis1,pir1} +1, 2<i<m-—1),
. 1
P = min{ gy, pm} + 3

The latter part is represented as

n1fls(ri/171).s(rml—l)_ § Cre(ki-y). (3)
! _ _1).
max{ps,h} <q <p1 i=1 S(/Ll) S(Z/Ll) 0<k<pi
max{pir1, i} <gi<max{p;_1,hi-1} 3<i<m-1)

hin < g <max{ pm—1, hp-1}

Notice that the coefficient C; does not depend on %y, hy, nor hy.
We shall compute the former part.

S(roj"_l)s<1/11> _ Z s((qo — q1 + 1>Ll)s<lil)
ho<qo<h_, s()bfl) 2 ho<qo<h_, s(;“*l) 2

h<q1<ho h<q1<ho

q0—41

- Z Z (_l)qs<(% —q1 - q+;>l_1>

ho<qo<h_; q=0
h<qi<hy

1
= Z Dps<(p+§>)»_|>,
0<p<h_—n

where D, is given by

D= 3 (- @

ho<qo<h_,
h<qi<hy
P=qo—q1

PROPOSITION 8. For an integer p satisfying 0 < p <min{h_y — ho,ho — h1 },
the coefficient D, in (4) depends only on h_y — hy and hy — hy, and does not change
when h_y — hy or hy — hy are increased by even integers.

Proor. We notice that

Do — (= 1)@ 1, when both h_y — hy and hy — h; are even,
0 7%&109“ - 0, otherwise.

h<q<ho
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For p satisfying 0 < p <min{h_y — hy,hy — h1}, we have

(1D, =Dy~ 37 (-1
0<po,p1
Pot+p1<p

from which Proposition 8 is obvious. |

The coefficient m, in Theorem 6 for 0 < p <min{h_y — ho,ho — hi} — p1
depends only on the coefficients Ci (0 <k < p;) in the formula (3) and the
coefficients D, (0 < p <min{h_y —ho,hy —h1}) in the formula (4). By adding
Ao to Ag, the condition /#; > p; does not alter and the values of 4| — &y and
ho — hy increase by even integers. Therefore m, does not change. Thus the proof
of Theorem 7 is completed. |

4. The Case G = SO(6) and K = SO(3) x SO(3)

For the sake of completeness, we state the result for » = 3, which is omitted
in the section 3. We follow the notation in [4].

The hightest weight Ag of an irreducible G-module is of the form Ag =
h_1A_1 + holo + ehy Ay, where h_y, hy, h; are integers satisfying h_| > hy > hy
>0 and ¢ is +1 or —1. The highest weight Agx of an irreducible K-module is
of the form Ag = p_jA_| + pi41, where p_j, p; are integers satisfying p_; >0
and p; >0. We give the branching rule in the different but equivalent
manner.

THEOREM 9.  The irreducible K-module Vi (Ax) with the highest weight Ax =
P—12-1 + p1A1 appears in the decomposition of the irreducible G-module Vg(Ag)
with the highest weight Ag = h_1A_1 + holo + el 21 if and only if, when we
calculate

q0—4q1 41 1 1
) ZZs((qo—ql—p+q+§)/1_1>s<<p+q+§>il)
hy<qo<h_; p=0 ¢=0

h<q1<ho
go—q1—1 ¢ 1 1
_1\490—91—94 _ _ —
=3 e ()i ((+3)) )

the coefficient of s((p-1+1/2)A-1)s((p1 +1/2)41) does not vanish. Then the
coefficient is equal to m(Ag, Ak).
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The fundamental weights for the pair (G,K) are given by
Ay =20y,
Ay = /1 + o+ 41,

Az =11+ — 1.

Let Ay be any linear combination of Aj, A, and A; with non-negative
integral coefficients. Our main theorem on the stability bound is given as follows:

THEOREM 10. Assume that h_y —hy > p_1+ p1, ho—h > p_1 + p1, and
ho = (3/2)(p-1 + p1). Then we have m(Ag + Ao, Ax) = m(Ag, Ak).

Proor. We consider the set S of the sequence (4,71, p,q) of non-negative
integers.

0<to<h_y—hy, 0<Z0 <hy—h,
S=<(¢o,1,p,9)|0<p<lo+4, 0<qg=<hy—10,
p1=lbo+l—p+q, pr=p+yg

Then we have

m(Ag,Ag) = #S + Z (,1)(/0”1)*(177%171)

0<to<h-1—h
0</ <hy—h
p-1tp1<to+h

If (,4,p,q) satisfies p_1 =4y+¢1 — p+q and p; = p+¢q, we have £+
/1 +2¢ = p_1 + p1. Under the assumption of Theorem 10, we can conclude

OS/(% Osflv
S=q(,01,0,9)|0<p<tr+4, 0<yq, :
p-1=b+tlh—ptq, pP=p+q

and #S does not depend on /_j, hy, nor h;. We also have

t+4)—(p- _ l+1
(_1)( 0+4)—(p1+p1) _ (_l)p 1+p1 Do — § : (_1) 0+ 7
0<tH<h_i1—hy 0<4,4
0<4 <hy—h H+4 <p-11+p1
P-1+p1<tot+t

where Dy is the same number in the section 3. When we add Ag to Ag, the value
of hy increases and the values of 4_; — iy and /g — h; increase by even integers.
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Therefore the assumption of Theorem 10 remains to hold, and, since the value Dy
does not change, the equality m(Ag + Ao, Ax) = m(Ag, Ak) holds. O
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